Kako postaviti pametne telefone i računala. Informativni portal
  • Dom
  • Windows 10
  • Što je tlak od 1 bara? Pomoću pretvarača "Pretvarač tlaka, mehaničkog naprezanja, Youngovog modula

Što je tlak od 1 bara? Pomoću pretvarača "Pretvarač tlaka, mehaničkog naprezanja, Youngovog modula

Pretvarač duljine i udaljenosti Pretvarač mase Pretvarač mase i volumena hrane Pretvarač površine Pretvarač volumena i jedinica u kulinarski recepti Pretvarač temperature Pretvarač tlaka, mehaničko naprezanje, Youngov modul Pretvarač energije i rada Pretvarač snage Pretvarač sile Pretvarač vremena Pretvarač linearna brzina Pretvarač toplinske učinkovitosti ravnog kuta i učinkovitosti goriva Pretvarač brojeva u raznih sustava notacije Pretvarač mjernih jedinica količine informacija Tečaj valuta Veličine ženske odjeće i obuće Veličine muške odjeće i obuće Pretvarač kutne brzine i frekvencije rotacije Pretvarač akceleracije Pretvarač kutne akceleracije Pretvarač gustoće Pretvarač specifičnog volumena Pretvarač momenta tromosti Pretvarač momenta sile Okretni moment pretvarač Pretvarač specifične topline izgaranja (po masi) ) Pretvarač gustoće energije i specifične topline izgaranja (po volumenu) Pretvarač temperaturne razlike Pretvarač koeficijenta toplinske ekspanzije Pretvarač toplinskog otpora Pretvarač toplinske vodljivosti Pretvarač specifičnog toplinskog kapaciteta Pretvarač izloženosti energiji i snage toplinsko zračenje Pretvarač gustoće toplinskog toka Pretvarač koeficijenta prijenosa topline Pretvarač volumenskog protoka Pretvarač masenog protoka Pretvarač molarnog protoka Pretvarač masenog protoka Pretvarač gustoće Molarne koncentracije Pretvarač masene koncentracije u otopini Pretvarač dinamičke (apsolutne) viskoznosti kinematička viskoznost Pretvarač površinske napetosti Pretvarač paropropusnosti Pretvarač paropropusnosti i brzine prijenosa pare Pretvarač razine zvuka Pretvarač osjetljivosti mikrofona Pretvarač razine zvučni pritisak(SPL) Pretvarač razine zvučnog tlaka s izbornim referentnim tlakom Pretvarač svjetline Pretvarač svjetlosnog intenziteta Pretvarač osvjetljenja Pretvarač rezolucije računalna grafika Pretvarač frekvencije i valne duljine Pretvarač jačine dioptrije i žarišne duljine Pretvarač jačine dioptrije i povećanja objektiva (×) električno punjenje Pretvarač linearne gustoće naboja Pretvarač gustoće površinskog naboja Pretvarač gustoće volumena Pretvarač gustoće naboja električna struja Linearni pretvarač gustoće struje Pretvarač površinske gustoće struje Pretvarač jakosti električnog polja Pretvarač elektrostatskog potencijala i napona električni otpor Pretvarač električnog otpora električna provodljivost Pretvarač električne vodljivosti Električni kapacitet Pretvarač induktiviteta Američki pretvarač mjerača žice Razine u dBm (dBm ili dBm), dBV (dBV), vatima i drugim jedinicama Pretvarač magnetomotorne sile Pretvarač napona magnetsko polje Pretvarač magnetskog toka Pretvarač magnetske indukcije Zračenje. Pretvarač brzine apsorbirane doze ionizirajućeg zračenja Radioaktivnost. Pretvarač radioaktivnog raspada Zračenje. Pretvarač doze izloženosti Zračenje. Pretvarač apsorbirane doze Pretvarač decimalnog prefiksa Prijenos podataka Pretvarač jedinica tipografije i obrade slike Pretvarač jedinica volumena drveta Izračun molarne mase Periodni sustav kemijskih elemenata D. I. Mendeljejeva

1 bar [bar] = 1,01971621297793 kilogram-sila po kvadratnom metru. centimetar [kgf/cm²]

Početna vrijednost

Pretvorena vrijednost

pascal exapascal petapascal terapascal gigapascal megapascal kilopascal hectopascal decapascal decipascal centipascal millipascal mikropascal nanopascal picopascal femtopascal attopascal newton po kvadratnom metru metar newton po kvadratnom metru centimetar newton po kvadratnom metru milimetar kilonewton po kvadratnom metru metar bar milibar mikrobar din po kvadratnom centimetar kilogram-sila po kvadratnom metru. metar kilogram-sila po kvadratnom metru centimetar kilogram-sila po kvadratnom metru. milimetar gram-sila po kvadratnom metru centimetar tonske sile (kor.) po sq. ft tona-sila (kor.) po kvadratnom inch tona-sila (dugačka) po kvadratnom ft tona-sila (dugo) po kvadratnom inch kilopound-sila po sq. inch kilopound-sila po sq. inch lbf po kvadratnom ft lbf po kvadratnom inch psi poundal po sq. stopa torr centimetar žive (0°C) milimetar živinog stupnja (0°C) inč žive (32°F) inč žive (60°F) centimetar vode. kolona (4°C) mm vode. kolona (4°C) inča vode. stupac (4°C) stopa vode (4°C) inč vode (60°F) stopa vode (60°F) tehnička atmosfera fizička atmosfera decibar zidovi na četvorni metar barium pieze (barium) Planck tlakomjer morske vode foot of sea water (na 15°C) metar vode. stupac (4°C)

Više o pritisku

Opće informacije

U fizici se tlak definira kao sila koja djeluje na jedinicu površine. Ako dvije jednake sile djeluju na jednu veću i jednu manju plohu, tada će pritisak na manju plohu biti veći. Složite se, puno je gore ako vam na nogu stane netko tko nosi štikle nego netko tko nosi tenisice. Na primjer, pritisnete li oštricu oštrog noža na rajčicu ili mrkvu, povrće će se prepoloviti. Površina oštrice u kontaktu s povrćem je mala, tako da je pritisak dovoljno visok da se to povrće reže. Ako tupim nožem pritisnete istom snagom na rajčicu ili mrkvu, najvjerojatnije se povrće neće rezati, jer je površina noža sada veća, što znači da je pritisak manji.

U SI sustavu tlak se mjeri u paskalima ili njutnima po kvadratnom metru.

Relativni tlak

Ponekad se tlak mjeri kao razlika između apsolutnog i atmosferskog tlaka. Taj se tlak naziva relativnim ili manometarskim tlakom i mjeri se npr. prilikom provjere tlaka u automobilskim gumama. Mjerni instrumentiČesto, iako ne uvijek, prikazuje se relativni tlak.

Atmosferski tlak

Atmosferski tlak je tlak zraka u ovo mjesto. Obično se odnosi na tlak stupca zraka po jedinici površine. Promjene atmosferskog tlaka utječu na vrijeme i temperaturu zraka. Ljudi i životinje pate od jakih promjena tlaka. Nizak krvni tlak uzrokuje probleme različite težine kod ljudi i životinja, od psihičke i fizičke nelagode do smrtonosnih bolesti. Zbog toga se kabine zrakoplova održavaju iznad atmosferskog tlaka na danoj visini jer Atmosferski tlak na preniskoj visini krstarenja.

Atmosferski tlak opada s visinom. Ljudi i životinje koji žive visoko u planinama, poput Himalaja, prilagođavaju se takvim uvjetima. Putnici bi, s druge strane, trebali uzeti potrebne mjere mjere opreza kako se ne bi razboljeli zbog činjenice da tijelo nije naviklo na tako nizak tlak. Penjači, na primjer, mogu patiti od visinske bolesti, koja je povezana s nedostatkom kisika u krvi i gladovanjem tijela za kisikom. Ova bolest je posebno opasna ako ste u planinama Dugo vrijeme. Pogoršanje visinske bolesti dovodi do ozbiljnih komplikacija kao što su akutna planinska bolest, visinski edem pluća, visinski cerebralni edem i ekstremna planinska bolest. Opasnost od visinske i planinske bolesti počinje na nadmorskoj visini od 2400 metara. Kako biste izbjegli visinsku bolest, liječnici savjetuju da se ne koriste depresivi poput alkohola i tableta za spavanje, da se pije puno tekućine i da se na visinu penje postupno, primjerice pješice, a ne prijevozom. Dobar je i za jelo veliki broj ugljikohidrate i dobro se odmorite, pogotovo ako se uspon dogodio brzo. Ove mjere će omogućiti tijelu da se navikne na nedostatak kisika uzrokovan niskim atmosferskim tlakom. Ako slijedite ove preporuke, vaše tijelo će moći proizvesti više crvenih krvnih stanica za prijenos kisika u mozak i unutarnji organi. Da bi to učinilo, tijelo će povećati puls i brzinu disanja.

Prva medicinska pomoć u takvim slučajevima pruža se odmah. Važno je bolesnika premjestiti na nižu nadmorsku visinu gdje je atmosferski tlak viši, po mogućnosti na visinu nižu od 2400 metara nadmorske visine. Također se koriste lijekovi i prijenosne hiperbarične komore. To su lagane, prijenosne komore koje se mogu stlačiti pomoću nožne pumpe. Bolesnik s visinskom bolešću stavlja se u komoru u kojoj se održava tlak koji odgovara nižoj nadmorskoj visini. Ova kamera se koristi samo za prvu pomoć medicinska pomoć, nakon čega se pacijent mora spustiti niže.

Neki sportaši koriste niski tlak za poboljšanje cirkulacije. Obično se obuka za to odvija u normalnim uvjetima, a ti sportaši spavaju u okruženju niskog tlaka. Tako se njihovo tijelo navikava na visinske uvjete i počinje proizvoditi više crvenih krvnih zrnaca, što zauzvrat povećava količinu kisika u krvi i omogućuje im da postignu više visoke rezultate U sportu. U tu svrhu proizvode se posebni šatori, čiji je tlak reguliran. Neki sportaši čak mijenjaju tlak u cijeloj spavaćoj sobi, ali brtvljenje spavaće sobe je skup proces.

Svemirska odijela

Piloti i astronauti moraju raditi u okruženjima s niskim tlakom, pa nose odijela pod pritiskom kako bi kompenzirali niski tlak. okoliš. Svemirska odijela u potpunosti štite čovjeka od okoline. Koriste se u svemiru. Odijela za kompenzaciju visine koriste piloti na velikim visinama - ona pomažu pilotu pri disanju i suzbijaju nizak barometarski tlak.

Hidrostatski tlak

Hidrostatski tlak je tlak tekućine uzrokovan gravitacijom. Ovaj fenomen igra veliku ulogu ne samo u tehnologiji i fizici, već iu medicini. Na primjer, krvni tlak je hidrostatski pritisak krvi na stijenke krvnih žila. Krvni tlak- ovo je pritisak u arterijama. Predstavljaju ga dvije vrijednosti: sistolički ili najviši tlak i dijastolički ili najniži tlak tijekom otkucaja srca. Mjerni instrumenti krvni tlak koji se nazivaju sfigmomanometri ili tonometri. Jedinica krvnog tlaka je milimetar žive.

Pitagorina šalica je zanimljiva posuda koja koristi hidrostatski tlak, točnije princip sifona. Prema legendi, Pitagora je izumio ovu šalicu kako bi kontrolirao količinu vina koju pije. Prema drugim izvorima, ova šalica je trebala kontrolirati količinu popijene vode za vrijeme suše. Unutar šalice nalazi se zakrivljena cijev u obliku slova U skrivena ispod kupole. Jedan kraj cijevi je dulji i završava u rupici na dršci šalice. Još jedan, više kratki kraj, povezan rupom s unutarnjim dnom šalice tako da voda u šalici ispunjava cijev. Princip rada šalice sličan je radu modernog WC vodokotlića. Ako se razina tekućine digne iznad razine cijevi, tekućina teče u drugu polovicu cijevi i istječe van zbog hidrostatskog tlaka. Ako je razina, naprotiv, niža, tada možete sigurno koristiti šalicu.

Pritisak u geologiji

tlak - važan koncept u geologiji. Bez pritiska nemoguće je formiranje dragog kamenja, prirodnog i umjetnog. Visoki tlak i visoka temperatura također su potrebni za stvaranje ulja iz biljnih i životinjskih ostataka. Za razliku od dragulja, koji se prvenstveno stvaraju u stijenama, nafta se stvara na dnu rijeka, jezera ili mora. S vremenom se preko ovih ostataka nakuplja sve više pijeska. Težina vode i pijeska pritišće ostatke životinjskih i biljnih organizama. Tijekom vremena, ovaj organski materijal tone sve dublje i dublje u zemlju, dosežući nekoliko kilometara ispod površine zemlje. Svaki kilometar ispod površine zemlje temperatura se povećava za 25 °C, pa na dubini od nekoliko kilometara temperatura doseže 50–80 °C. Ovisno o temperaturi i temperaturnoj razlici u okruženju formacije, umjesto nafte može nastati prirodni plin.

Prirodno drago kamenje

Formiranje dragog kamenja nije uvijek isto, ali pritisak je jedan od glavnih komponente ovaj proces. Na primjer, dijamanti nastaju u Zemljinom plaštu, u uvjetima visokog tlaka i visoke temperature. Tijekom vulkanskih erupcija dijamanti se zahvaljujući magmi pomiču u gornje slojeve Zemljine površine. Neki dijamanti padaju na Zemlju iz meteorita, a znanstvenici vjeruju da su nastali na planetima sličnim Zemlji.

Sintetičko drago kamenje

Proizvodnja sintetičkog dragog kamenja započela je 1950-ih i stječe popularnost u U zadnje vrijeme. Neki kupci preferiraju prirodno drago kamenje, ali umjetno kamenje postaje sve popularnije zbog svoje niske cijene i nedostatka gnjavaže povezanih s iskopavanjem prirodnog dragog kamenja. Stoga se mnogi kupci odlučuju za sintetičko drago kamenje jer njegovo vađenje i prodaja nije povezano s kršenjem ljudskih prava, dječjim radom i financiranjem ratova i oružanih sukoba.

Jedna od tehnologija uzgoja dijamanata u laboratorijskim uvjetima je metoda uzgoja kristala na visoki krvni tlak I visoka temperatura. U posebnim uređajima ugljik se zagrijava na 1000 °C i podvrgava tlaku od oko 5 gigapaskala. Obično se mali dijamant koristi kao klica kristala, a grafit se koristi kao baza ugljika. Iz njega izrasta novi dijamant. Ovo je najčešći način uzgoja dijamanata, posebno kao dragog kamenja, zbog niske cijene. Svojstva ovako uzgojenih dijamanata jednaka su ili bolja od svojstava prirodnog kamenja. Kvaliteta sintetičkih dijamanata ovisi o metodi koja se koristi za njihov uzgoj. U usporedbi s prirodnim dijamantima, koji su često prozirni, većina umjetnih dijamanata obojena je.

Zbog svoje tvrdoće, dijamanti se široko koriste u proizvodnji. Uz to se cijeni njihova visoka toplinska vodljivost, optička svojstva i otpornost na lužine i kiseline. Alati za rezanje često su obloženi dijamantnom prašinom, koja se također koristi u abrazivima i materijalima. Većina dijamanata u proizvodnji je umjetnog podrijetla zbog niske cijene i zato što je potražnja za takvim dijamantima veća od mogućnosti njihovog iskopavanja u prirodi.

Neke tvrtke nude usluge stvaranja spomen dijamanata iz pepela pokojnika. Da bi se to postiglo, nakon kremiranja, pepeo se pročišćava dok se ne dobije ugljik, a zatim se iz njega uzgaja dijamant. Proizvođači reklamiraju ove dijamante kao uspomene na preminule, a njihove su usluge popularne, osobito u zemljama s veliki postotak financijski sigurni građani, primjerice u SAD-u i Japanu.

Metoda uzgoja kristala pri visokom tlaku i visokoj temperaturi

Metoda uzgoja kristala pod visokim tlakom i visokom temperaturom uglavnom se koristi za sintetiziranje dijamanata, no u novije vrijeme ova se metoda koristi za poboljšanje prirodnih dijamanata ili promjenu njihove boje. Za umjetni uzgoj dijamanata koriste se razne preše. Najskuplja za održavanje i najsloženija od njih je kubična preša. Koristi se prvenstveno za poboljšanje ili promjenu boje prirodnih dijamanata. Dijamanti rastu u preši brzinom od otprilike 0,5 karata dnevno.

Je li vam teško prevoditi mjerne jedinice s jednog jezika na drugi? Kolege su vam spremne pomoći. Postavite pitanje u TCTerms i u roku od nekoliko minuta dobit ćete odgovor.

Pritisak- ovo je veličina koja je jednaka sili koja djeluje strogo okomito na jedinicu površine. Izračunava se pomoću formule: P = F/S. Međunarodni sustav račun uključuje mjerenje takve vrijednosti u paskalima (1 Pa jednaka sili 1 newton po površini od 1 kvadratnog metra, N/m2). Ali budući da je ovo prilično nizak tlak, mjerenja su često naznačena u kPa ili MPa. U raznim industrijama uobičajeno je koristiti vlastite brojčane sustave, u automobilskoj, tlak se može mjeriti: u barovima, atmosfere, kilogrami sile po cm² (tehnička atmosfera), mega paskala ili psi(psi).

Za brz prijevod mjerne jedinice trebaju se voditi sljedećim međusobnim odnosom vrijednosti:

1 MPa = 10 bara;

100 kPa = 1 bar;

1 bar ≈ 1 atm;

3 atm = 44 psi;

1 PSI ≈ 0,07 kgf/cm²;

1 kgf/cm² = 1 at.

Tablica omjera jedinica tlaka
Veličina MPa bar bankomat kgf/cm2 psi na
1 MPa 1 10 9,8692 10,197 145,04 10.19716
1 bar 0,1 1 0,9869 1,0197 14,504 1.019716
1 atm (fizička atmosfera) 0,10133 1,0133 1 1,0333 14,696 1.033227
1 kgf/cm2 0,098066 0,98066 0,96784 1 14,223 1
1 PSI (lb/in²) 0,006894 0,06894 0,068045 0,070307 1 0.070308
1 at (tehnička atmosfera) 0.098066 0.980665 0.96784 1 14.223 1

Zašto vam je potreban kalkulator za pretvorbu jedinica tlaka?

Online kalkulator omogućit će vam brzo i točno pretvaranje vrijednosti iz jedne mjerne jedinice tlaka u drugu. Ova pretvorba može biti korisna vlasnicima automobila prilikom mjerenja kompresije u motoru, provjere tlaka u cijevi goriva, napumpavanja guma na potrebnu vrijednost (vrlo često je potrebno pretvoriti PSI u atmosfere ili MPa u bar prilikom provjere tlaka), punjenje klima uređaja freonom. Budući da ljestvica na manometru može biti u jednom brojevnom sustavu, a u uputama u sasvim drugom, često se javlja potreba preračunavanja barova u kilograme, megapaskale, kilograme sile po kvadratnom centimetru, tehničke ili fizikalne atmosfere. Ili, ako vam je potreban rezultat u engleskom numeričkom sustavu, tada funta-sila po kvadratnom inču (lbf in²), kako bi točno odgovarala traženim uputama.

Kako koristiti online kalkulator

Kako bi iskoristili trenutni prijenos jednu vrijednost tlaka u drugu i saznajte koliko će vam bar biti u MPa, kgf/cm², atm ili psi:

  1. Na lijevom popisu odaberite mjernu jedinicu s kojom želite pretvoriti;
  2. Na desnom popisu postavite jedinicu u koju će se izvršiti konverzija;
  3. Odmah nakon unosa broja u bilo koje od dva polja pojavljuje se “rezultat”. Tako možete pretvarati iz jedne vrijednosti u drugu i obrnuto.

Na primjer, ako je u prvo polje upisan broj 25, tada ćete ovisno o odabranoj jedinici izračunati koliko je barova, atmosfera, megapaskala, kilograma sile proizvedeno po cm² ili funt-sile po kvadratnom inču. Kada se ista vrijednost stavi u drugo (desno) polje, kalkulator će izračunati obrnuti omjer odabranih fizičkih vrijednosti tlaka.

Pretvarač duljine i udaljenosti Pretvarač mase Pretvarač mjera volumena rasutih proizvoda i prehrambenih proizvoda Pretvarač površine Pretvarač obujma i mjernih jedinica u kulinarskim receptima Pretvarač temperature Pretvarač tlaka, mehaničkog naprezanja, Youngovog modula Pretvarač energije i rada Pretvarač snage Pretvarač sile Pretvarač vremena Pretvarač linearne brzine Pretvarač ravnog kuta Pretvarač toplinske učinkovitosti i iskoristivosti goriva Pretvarač brojeva u različitim brojevnim sustavima Pretvarač mjernih jedinica količine informacija Tečaj valuta Veličine ženske odjeće i obuće Veličine muške odjeće i obuće Pretvarač kutne brzine i frekvencije vrtnje Pretvarač ubrzanja Pretvarač kutnog ubrzanja Pretvarač gustoće Pretvarač specifičnog volumena Pretvarač momenta tromosti Pretvarač momenta sile Pretvarač momenta Pretvarač specifične topline izgaranja (prema masi) Pretvarač gustoće energije i specifične topline izgaranja (prema volumenu) Pretvarač temperaturne razlike Pretvarač koeficijenta toplinske ekspanzije Pretvarač toplinskog otpora Pretvarač toplinske vodljivosti Pretvarač specifičnog toplinskog kapaciteta Pretvarač snage izloženosti energiji i toplinskom zračenju Pretvarač gustoće toplinskog toka Pretvarač koeficijenta prijenosa topline Pretvarač volumenskog protoka Pretvarač masenog protoka Pretvarač molarnog protoka Pretvarač masenog protoka Pretvarač molarne koncentracije Pretvarač masene koncentracije u otopini Pretvarač dinamički (apsolutni) pretvarač viskoznosti Pretvarač kinematske viskoznosti Pretvarač površinske napetosti Pretvarač propusnosti pare Pretvarač propusnosti pare i brzine prijenosa pare Pretvarač razine zvuka Pretvarač osjetljivosti mikrofona Pretvarač razine zvučnog tlaka (SPL) Pretvarač razine zvučnog tlaka s izborom referentnog tlaka Pretvarač osvijetljenosti Pretvarač svjetlosnog intenziteta Pretvarač osvjetljenja Pretvarač rezolucije računalne grafike Pretvarač frekvencije i valne duljine Dioptrijska snaga i žarišna duljina Dioptrijska snaga i povećanje leće (×) Pretvarač električnog naboja Pretvarač gustoće linearnog naboja Pretvarač gustoće površinskog naboja Pretvarač gustoće volumena Pretvarač električne struje Pretvarač linearne gustoće struje Pretvarač gustoće površinske struje Pretvarač jakosti električnog polja Elektrostatski potencijal i pretvarač napona Pretvarač električnog otpora Pretvarač električnog otpora Pretvarač električne vodljivosti Pretvarač električne vodljivosti Električni kapacitet Pretvarač induktiviteta Američki pretvarač promjera žice Razine u dBm (dBm ili dBm), dBV (dBV), vatima itd. jedinice Pretvarač magnetomotorne sile Pretvarač jakosti magnetskog polja Pretvarač magnetskog toka Pretvarač magnetske indukcije Zračenje. Pretvarač brzine apsorbirane doze ionizirajućeg zračenja Radioaktivnost. Pretvarač radioaktivnog raspada Zračenje. Pretvarač doze izloženosti Zračenje. Pretvarač apsorbirane doze Pretvarač decimalnog prefiksa Prijenos podataka Pretvarač jedinica tipografije i obrade slike Pretvarač jedinica volumena drveta Izračun molarne mase Periodni sustav kemijskih elemenata D. I. Mendeljejeva

1 bar [bar] = 10197,1621297793 kilogram-sila po kvadratnom metru. metar [kgf/m²]

Početna vrijednost

Pretvorena vrijednost

pascal exapascal petapascal terapascal gigapascal megapascal kilopascal hectopascal decapascal decipascal centipascal millipascal mikropascal nanopascal picopascal femtopascal attopascal newton po kvadratnom metru metar newton po kvadratnom metru centimetar newton po kvadratnom metru milimetar kilonewton po kvadratnom metru metar bar milibar mikrobar din po kvadratnom centimetar kilogram-sila po kvadratnom metru. metar kilogram-sila po kvadratnom metru centimetar kilogram-sila po kvadratnom metru. milimetar gram-sila po kvadratnom metru centimetar tonske sile (kor.) po sq. ft tona-sila (kor.) po kvadratnom inch tona-sila (dugačka) po kvadratnom ft tona-sila (dugo) po kvadratnom inch kilopound-sila po sq. inch kilopound-sila po sq. inch lbf po kvadratnom ft lbf po kvadratnom inch psi poundal po sq. stopa torr centimetar žive (0°C) milimetar živinog stupnja (0°C) inč žive (32°F) inč žive (60°F) centimetar vode. kolona (4°C) mm vode. kolona (4°C) inča vode. stupac (4°C) stopa vode (4°C) inč vode (60°F) stopa vode (60°F) tehnička atmosfera fizička atmosfera decibarski zidovi po kvadratnom metru barij pieze (barij) Planckov tlak metar morske vode podnožje mora ​​vode (na 15°C) metar vode. stupac (4°C)

Električni potencijal i napon

Više o pritisku

Opće informacije

U fizici se tlak definira kao sila koja djeluje na jedinicu površine. Ako dvije jednake sile djeluju na jednu veću i jednu manju plohu, tada će pritisak na manju plohu biti veći. Složite se, puno je gore ako vam na nogu stane netko tko nosi štikle nego netko tko nosi tenisice. Na primjer, pritisnete li oštricu oštrog noža na rajčicu ili mrkvu, povrće će se prepoloviti. Površina oštrice u kontaktu s povrćem je mala, tako da je pritisak dovoljno visok da se to povrće reže. Ako tupim nožem pritisnete istom snagom na rajčicu ili mrkvu, najvjerojatnije se povrće neće rezati, jer je površina noža sada veća, što znači da je pritisak manji.

U SI sustavu tlak se mjeri u paskalima ili njutnima po kvadratnom metru.

Relativni tlak

Ponekad se tlak mjeri kao razlika između apsolutnog i atmosferskog tlaka. Taj se tlak naziva relativnim ili manometarskim tlakom i mjeri se npr. prilikom provjere tlaka u automobilskim gumama. Mjerni instrumenti često, iako ne uvijek, pokazuju relativni tlak.

Atmosferski tlak

Atmosferski tlak je tlak zraka na određenom mjestu. Obično se odnosi na tlak stupca zraka po jedinici površine. Promjene atmosferskog tlaka utječu na vrijeme i temperaturu zraka. Ljudi i životinje pate od jakih promjena tlaka. Nizak krvni tlak uzrokuje probleme različite težine kod ljudi i životinja, od psihičke i fizičke nelagode do smrtonosnih bolesti. Zbog toga se kabine zrakoplova održavaju iznad atmosferskog tlaka na danoj visini jer je atmosferski tlak na krstarećoj visini prenizak.

Atmosferski tlak opada s visinom. Ljudi i životinje koji žive visoko u planinama, poput Himalaja, prilagođavaju se takvim uvjetima. Putnici bi, s druge strane, trebali poduzeti potrebne mjere opreza kako bi se izbjegle bolesti zbog činjenice da tijelo nije naviklo na tako nizak tlak. Penjači, na primjer, mogu patiti od visinske bolesti, koja je povezana s nedostatkom kisika u krvi i gladovanjem tijela za kisikom. Ova bolest je posebno opasna ako se dugo boravi u planini. Pogoršanje visinske bolesti dovodi do ozbiljnih komplikacija kao što su akutna planinska bolest, visinski edem pluća, visinski cerebralni edem i ekstremna planinska bolest. Opasnost od visinske i planinske bolesti počinje na nadmorskoj visini od 2400 metara. Kako biste izbjegli visinsku bolest, liječnici savjetuju da se ne koriste depresivi poput alkohola i tableta za spavanje, da se pije puno tekućine i da se na visinu penje postupno, primjerice pješice, a ne prijevozom. Također je dobro jesti puno ugljikohidrata i puno se odmarati, pogotovo ako brzo idete uzbrdo. Ove mjere će omogućiti tijelu da se navikne na nedostatak kisika uzrokovan niskim atmosferskim tlakom. Ako slijedite ove preporuke, vaše tijelo će moći proizvesti više crvenih krvnih stanica za prijenos kisika do mozga i unutarnjih organa. Da bi to učinilo, tijelo će povećati puls i brzinu disanja.

Prva medicinska pomoć u takvim slučajevima pruža se odmah. Važno je bolesnika premjestiti na nižu nadmorsku visinu gdje je atmosferski tlak viši, po mogućnosti na visinu nižu od 2400 metara nadmorske visine. Također se koriste lijekovi i prijenosne hiperbarične komore. To su lagane, prijenosne komore koje se mogu stlačiti pomoću nožne pumpe. Bolesnik s visinskom bolešću stavlja se u komoru u kojoj se održava tlak koji odgovara nižoj nadmorskoj visini. Takva se komora koristi samo za pružanje prve pomoći, nakon čega se pacijent mora spustiti ispod.

Neki sportaši koriste niski tlak za poboljšanje cirkulacije. Obično to zahtijeva da se trening odvija u normalnim uvjetima, a ti sportaši spavaju u okruženju niskog tlaka. Tako se njihovo tijelo navikava na visinske uvjete i počinje proizvoditi više crvenih krvnih zrnaca, što pak povećava količinu kisika u krvi, što im omogućuje postizanje boljih sportskih rezultata. U tu svrhu proizvode se posebni šatori, čiji je tlak reguliran. Neki sportaši čak mijenjaju tlak u cijeloj spavaćoj sobi, ali brtvljenje spavaće sobe je skup proces.

Svemirska odijela

Piloti i astronauti moraju raditi u okruženjima niskog tlaka, pa nose svemirska odijela koja kompenziraju okruženje niskog tlaka. Svemirska odijela u potpunosti štite čovjeka od okoline. Koriste se u svemiru. Odijela za kompenzaciju visine koriste piloti na velikim visinama - ona pomažu pilotu pri disanju i suzbijaju nizak barometarski tlak.

Hidrostatski tlak

Hidrostatski tlak je tlak tekućine uzrokovan gravitacijom. Ovaj fenomen igra veliku ulogu ne samo u tehnologiji i fizici, već iu medicini. Na primjer, krvni tlak je hidrostatski pritisak krvi na stijenke krvnih žila. Krvni tlak je tlak u arterijama. Predstavljaju ga dvije vrijednosti: sistolički ili najviši tlak i dijastolički ili najniži tlak tijekom otkucaja srca. Uređaji za mjerenje krvnog tlaka nazivaju se sfigmomanometri ili tonometri. Jedinica krvnog tlaka je milimetar žive.

Pitagorina šalica je zanimljiva posuda koja koristi hidrostatski tlak, točnije princip sifona. Prema legendi, Pitagora je izumio ovu šalicu kako bi kontrolirao količinu vina koju pije. Prema drugim izvorima, ova šalica je trebala kontrolirati količinu popijene vode za vrijeme suše. Unutar šalice nalazi se zakrivljena cijev u obliku slova U skrivena ispod kupole. Jedan kraj cijevi je dulji i završava u rupici na dršci šalice. Drugi, kraći kraj spojen je rupom s unutarnjim dnom šalice tako da voda u šalici ispunjava cijev. Princip rada šalice sličan je radu modernog WC vodokotlića. Ako se razina tekućine digne iznad razine cijevi, tekućina teče u drugu polovicu cijevi i istječe van zbog hidrostatskog tlaka. Ako je razina, naprotiv, niža, tada možete sigurno koristiti šalicu.

Pritisak u geologiji

Tlak je važan koncept u geologiji. Bez pritiska nemoguće je formiranje dragog kamenja, prirodnog i umjetnog. Visoki tlak i visoka temperatura također su potrebni za stvaranje ulja iz biljnih i životinjskih ostataka. Za razliku od dragulja, koji se prvenstveno stvaraju u stijenama, nafta se stvara na dnu rijeka, jezera ili mora. S vremenom se preko ovih ostataka nakuplja sve više pijeska. Težina vode i pijeska pritišće ostatke životinjskih i biljnih organizama. Tijekom vremena, ovaj organski materijal tone sve dublje i dublje u zemlju, dosežući nekoliko kilometara ispod površine zemlje. Svaki kilometar ispod površine zemlje temperatura se povećava za 25 °C, pa na dubini od nekoliko kilometara temperatura doseže 50–80 °C. Ovisno o temperaturi i temperaturnoj razlici u okruženju formacije, umjesto nafte može nastati prirodni plin.

Prirodno drago kamenje

Formiranje dragog kamenja nije uvijek isto, ali pritisak je jedna od glavnih komponenti ovog procesa. Na primjer, dijamanti nastaju u Zemljinom plaštu, u uvjetima visokog tlaka i visoke temperature. Tijekom vulkanskih erupcija dijamanti se zahvaljujući magmi pomiču u gornje slojeve Zemljine površine. Neki dijamanti padaju na Zemlju iz meteorita, a znanstvenici vjeruju da su nastali na planetima sličnim Zemlji.

Sintetičko drago kamenje

Proizvodnja sintetičkog dragog kamenja započela je 1950-ih, au posljednje vrijeme dobiva na popularnosti. Neki kupci preferiraju prirodno drago kamenje, ali umjetno kamenje postaje sve popularnije zbog svoje niske cijene i nedostatka gnjavaže povezanih s iskopavanjem prirodnog dragog kamenja. Stoga se mnogi kupci odlučuju za sintetičko drago kamenje jer njegovo vađenje i prodaja nije povezano s kršenjem ljudskih prava, dječjim radom i financiranjem ratova i oružanih sukoba.

Jedna od tehnologija uzgoja dijamanata u laboratorijskim uvjetima je metoda uzgoja kristala pri visokom tlaku i visokoj temperaturi. U posebnim uređajima ugljik se zagrijava na 1000 °C i podvrgava tlaku od oko 5 gigapaskala. Obično se mali dijamant koristi kao klica kristala, a grafit se koristi kao baza ugljika. Iz njega izrasta novi dijamant. Ovo je najčešći način uzgoja dijamanata, posebno kao dragog kamenja, zbog niske cijene. Svojstva ovako uzgojenih dijamanata jednaka su ili bolja od svojstava prirodnog kamenja. Kvaliteta sintetičkih dijamanata ovisi o metodi koja se koristi za njihov uzgoj. U usporedbi s prirodnim dijamantima, koji su često prozirni, većina umjetnih dijamanata obojena je.

Zbog svoje tvrdoće, dijamanti se široko koriste u proizvodnji. Uz to se cijeni njihova visoka toplinska vodljivost, optička svojstva i otpornost na lužine i kiseline. Alati za rezanje često su obloženi dijamantnom prašinom, koja se također koristi u abrazivima i materijalima. Većina dijamanata u proizvodnji je umjetnog podrijetla zbog niske cijene i zato što je potražnja za takvim dijamantima veća od mogućnosti njihovog iskopavanja u prirodi.

Neke tvrtke nude usluge stvaranja spomen dijamanata iz pepela pokojnika. Da bi se to postiglo, nakon kremiranja, pepeo se pročišćava dok se ne dobije ugljik, a zatim se iz njega uzgaja dijamant. Proizvođači ove dijamante reklamiraju kao uspomene na preminule, a njihove su usluge popularne, posebice u zemljama s velikim postotkom bogatih građana, poput SAD-a i Japana.

Metoda uzgoja kristala pri visokom tlaku i visokoj temperaturi

Metoda uzgoja kristala pod visokim tlakom i visokom temperaturom uglavnom se koristi za sintetiziranje dijamanata, no u novije vrijeme ova se metoda koristi za poboljšanje prirodnih dijamanata ili promjenu njihove boje. Za umjetni uzgoj dijamanata koriste se razne preše. Najskuplja za održavanje i najsloženija od njih je kubična preša. Koristi se prvenstveno za poboljšanje ili promjenu boje prirodnih dijamanata. Dijamanti rastu u preši brzinom od otprilike 0,5 karata dnevno.

Je li vam teško prevoditi mjerne jedinice s jednog jezika na drugi? Kolege su vam spremne pomoći. Postavite pitanje u TCTerms i u roku od nekoliko minuta dobit ćete odgovor.

Ako razmišljate o novi sustav grijanja ili opskrbe vodom, onda ćete htjeli-ne htjeli naići na koncept kao što je "BAR". Osobno sam se susreo s tim kada sam postavljao kotao za grijanje. Za iskusne fizičare, ili za one koji su dobro učili u školi, ova kratica ne predstavlja ništa komplicirano, štoviše, lako je mogu prevesti u atmosfere, ali ako je vjerovati internetu, onda drugi koji se ne sjećaju baš svega iz školski plan i program također puno! Stoga, danas koristan i informativan članak o prevođenju ovog značenja...


Počet ću s definicijom

BAR – (od grčkog “baros” prevodi se kao težina) je jedinica za mjerenje tlaka izvan sustava. Također bih želio naglasiti da ne mjere samo tekućinu, već i druge veličine, na primjer, atmosferski tlak, iako je on u “milibarima” mBAR.

Jednostavnim riječima, ovo je samo još jedna kratica koja karakterizira tlak, a mnogi su je proizvođači iz nekog razloga usvojili u svoje sustave, čini mi se, kako bi je razlikovali od drugih uređaja.

Tako drugačije iznutra

Znate što - sada u Rusiji koriste dvije kategorije jedinica, koje se podrazumijevaju pod "BAR".

  • Korišteno u fizički sustav jedinice – centimetar, gram, sekunda, skraćeno GHS. Definicija – 1DIN/cm2, gdje je DIN mjera sile (u odnosu na fiziku).
  • Češća jedinica, mnogi je nazivaju "meteorološka" - približno je jednaka jednoj standardnoj atmosferi ili 106 DIN/cm2.

Kopamo li dublje, dobivamo još više atmosfere, primjerice – postoji tehnička i fizička.

Tehnički, ili "mjerni", poznat i kao "metrički" - uglavnom se koristi u tehnički sustavi, jednaka proizvedenoj sili od 1 kgf usmjerenoj okomito i jednoliko na površinu jednaku 1 cm2.

Fizički (normalno) – je jedinica za pritisak na površinu zemlje. Mjeri se stupcem žive na 0 stupnjeva Celzijusa. Ako ga spojite s šipkom, dobit ćete omjer od 0,9869 atm.

Primijenjeno u praksi

Malo zbunjujuće, ali bilo je potrebno prikazati sva očitanja tlaka. Sada siđimo "s neba na zemlju" i odlučimo se za "BAR" koji se koristi u našim kotlovima, vodovodnim sustavima itd.

Da pretjerujemo, svi proizvođači koriste tehnički BAR - i on je jednak 1,0197 kgf/cm2 ili otprilike 1 atmosferi.

Danas se u mnogim kotlovima s dvostrukim krugom tlak mjeri u "BARIMA", preporučeni radni raspon je od 1 do 2. To jest, u stvari, ako ovo prevedemo, ispada od jedne do dvije atmosfere, tlak je približno isto kao u automobilskom kotaču, samo ovaj pritisak vode (ili antifriza), a ne zraka.

Prijenos naPSI

Postoji i takav buržoaski koncept kao što je PSI (omjer tlaka plina, koji se mjeri u funtama po kvadratnom inču), u biti su to iste atmosfere, samo se ne mjere prema našim prihvaćenim mjernim jedinicama. Zašto su mnogi ljudi zainteresirani za ove jedinice? Opet, jednostavno je - mnogi kotlovi, posebno azijski, imaju indikator u PSI. Stoga je u nastavku kratki prijevod.

1 BAR ≈ 1 ATM (teh.) ≈ 14,5 PSI

Zašto je približno jednak, i zato što postoji mala greška, ne više od 1 - 2%.

O kotlovima za grijanje

Da budem iskren, sve ovo razmišljanje sam započeo zbog kotla za grijanje, upravo u moderni modeli koji zahtijevaju pritisak u svom sustavu imaju indikatore sa strane ili na digitalnom zaslonu.

"Zašto je to potrebno?" - pitaš. DA, jednostavno je, postoji pumpa koja pokreće vodu kroz sustav, a što je veći pritisak, to joj je lakše to učiniti! Zato ako padne na minimalna razina(obično ispod 0,9 BAR), kotao se automatski gasi - neće raditi.

Odnosno, da bi normalno funkcionirao, mora pratiti "šipke". Međutim, također se ne isplati "boršč" - ako povećate tlak iznad 2,7 BAR, kotao će se također isključiti (zaštita će raditi), jer su izmjenjivači topline izrađeni od bakra ili mesinga - a ovo je mekan materijal, može jednostavno puknuti! Stoga su ugrađeni sustavi za rasterećenje prekomjernog tlaka.

Zato je obavezno iznijeti senzor s indikatorom.

Wow, ovo je bio sjajan članak, pokušao sam pokriti temu što je više moguće. Mislim da je uspjelo.

Pretvarač duljine i udaljenosti Pretvarač mase Pretvarač mjera volumena rasutih proizvoda i prehrambenih proizvoda Pretvarač površine Pretvarač obujma i mjernih jedinica u kulinarskim receptima Pretvarač temperature Pretvarač tlaka, mehaničkog naprezanja, Youngovog modula Pretvarač energije i rada Pretvarač snage Pretvarač sile Pretvarač vremena Pretvarač linearne brzine Pretvarač ravnog kuta Pretvarač toplinske učinkovitosti i iskoristivosti goriva Pretvarač brojeva u različitim brojevnim sustavima Pretvarač mjernih jedinica količine informacija Tečaj valuta Veličine ženske odjeće i obuće Veličine muške odjeće i obuće Pretvarač kutne brzine i frekvencije vrtnje Pretvarač ubrzanja Pretvarač kutnog ubrzanja Pretvarač gustoće Pretvarač specifičnog volumena Pretvarač momenta tromosti Pretvarač momenta sile Pretvarač momenta Pretvarač specifične topline izgaranja (prema masi) Pretvarač gustoće energije i specifične topline izgaranja (prema volumenu) Pretvarač temperaturne razlike Pretvarač koeficijenta toplinske ekspanzije Pretvarač toplinskog otpora Pretvarač toplinske vodljivosti Pretvarač specifičnog toplinskog kapaciteta Pretvarač snage izloženosti energiji i toplinskom zračenju Pretvarač gustoće toplinskog toka Pretvarač koeficijenta prijenosa topline Pretvarač volumenskog protoka Pretvarač masenog protoka Pretvarač molarnog protoka Pretvarač masenog protoka Pretvarač molarne koncentracije Pretvarač masene koncentracije u otopini Pretvarač dinamički (apsolutni) pretvarač viskoznosti Pretvarač kinematske viskoznosti Pretvarač površinske napetosti Pretvarač propusnosti pare Pretvarač propusnosti pare i brzine prijenosa pare Pretvarač razine zvuka Pretvarač osjetljivosti mikrofona Pretvarač razine zvučnog tlaka (SPL) Pretvarač razine zvučnog tlaka s izborom referentnog tlaka Pretvarač osvijetljenosti Pretvarač svjetlosnog intenziteta Pretvarač osvjetljenja Pretvarač rezolucije računalne grafike Pretvarač frekvencije i valne duljine Dioptrijska snaga i žarišna duljina Dioptrijska snaga i povećanje leće (×) Pretvarač električnog naboja Pretvarač gustoće linearnog naboja Pretvarač gustoće površinskog naboja Pretvarač gustoće volumena Pretvarač električne struje Pretvarač linearne gustoće struje Pretvarač gustoće površinske struje Pretvarač jakosti električnog polja Elektrostatski potencijal i pretvarač napona Pretvarač električnog otpora Pretvarač električnog otpora Pretvarač električne vodljivosti Pretvarač električne vodljivosti Električni kapacitet Pretvarač induktiviteta Američki pretvarač promjera žice Razine u dBm (dBm ili dBm), dBV (dBV), vatima itd. jedinice Pretvarač magnetomotorne sile Pretvarač jakosti magnetskog polja Pretvarač magnetskog toka Pretvarač magnetske indukcije Zračenje. Pretvarač brzine apsorbirane doze ionizirajućeg zračenja Radioaktivnost. Pretvarač radioaktivnog raspada Zračenje. Pretvarač doze izloženosti Zračenje. Pretvarač apsorbirane doze Pretvarač decimalnog prefiksa Prijenos podataka Pretvarač jedinica tipografije i obrade slike Pretvarač jedinica volumena drveta Izračun molarne mase Periodni sustav kemijskih elemenata D. I. Mendeljejeva

1 megapaskal [MPa] = 10 bar [bar]

Početna vrijednost

Pretvorena vrijednost

pascal exapascal petapascal terapascal gigapascal megapascal kilopascal hectopascal decapascal decipascal centipascal millipascal mikropascal nanopascal picopascal femtopascal attopascal newton po kvadratnom metru metar newton po kvadratnom metru centimetar newton po kvadratnom metru milimetar kilonewton po kvadratnom metru metar bar milibar mikrobar din po kvadratnom centimetar kilogram-sila po kvadratnom metru. metar kilogram-sila po kvadratnom metru centimetar kilogram-sila po kvadratnom metru. milimetar gram-sila po kvadratnom metru centimetar tonske sile (kor.) po sq. ft tona-sila (kor.) po kvadratnom inch tona-sila (dugačka) po kvadratnom ft tona-sila (dugo) po kvadratnom inch kilopound-sila po sq. inch kilopound-sila po sq. inch lbf po kvadratnom ft lbf po kvadratnom inch psi poundal po sq. stopa torr centimetar žive (0°C) milimetar živinog stupnja (0°C) inč žive (32°F) inč žive (60°F) centimetar vode. kolona (4°C) mm vode. kolona (4°C) inča vode. stupac (4°C) stopa vode (4°C) inč vode (60°F) stopa vode (60°F) tehnička atmosfera fizička atmosfera decibarski zidovi po kvadratnom metru barij pieze (barij) Planckov tlak metar morske vode podnožje mora ​​vode (na 15°C) metar vode. stupac (4°C)

Više o pritisku

Opće informacije

U fizici se tlak definira kao sila koja djeluje na jedinicu površine. Ako dvije jednake sile djeluju na jednu veću i jednu manju plohu, tada će pritisak na manju plohu biti veći. Složite se, puno je gore ako vam na nogu stane netko tko nosi štikle nego netko tko nosi tenisice. Na primjer, pritisnete li oštricu oštrog noža na rajčicu ili mrkvu, povrće će se prepoloviti. Površina oštrice u kontaktu s povrćem je mala, tako da je pritisak dovoljno visok da se to povrće reže. Ako tupim nožem pritisnete istom snagom na rajčicu ili mrkvu, najvjerojatnije se povrće neće rezati, jer je površina noža sada veća, što znači da je pritisak manji.

U SI sustavu tlak se mjeri u paskalima ili njutnima po kvadratnom metru.

Relativni tlak

Ponekad se tlak mjeri kao razlika između apsolutnog i atmosferskog tlaka. Taj se tlak naziva relativnim ili manometarskim tlakom i mjeri se npr. prilikom provjere tlaka u automobilskim gumama. Mjerni instrumenti često, iako ne uvijek, pokazuju relativni tlak.

Atmosferski tlak

Atmosferski tlak je tlak zraka na određenom mjestu. Obično se odnosi na tlak stupca zraka po jedinici površine. Promjene atmosferskog tlaka utječu na vrijeme i temperaturu zraka. Ljudi i životinje pate od jakih promjena tlaka. Nizak krvni tlak uzrokuje probleme različite težine kod ljudi i životinja, od psihičke i fizičke nelagode do smrtonosnih bolesti. Zbog toga se kabine zrakoplova održavaju iznad atmosferskog tlaka na danoj visini jer je atmosferski tlak na krstarećoj visini prenizak.

Atmosferski tlak opada s visinom. Ljudi i životinje koji žive visoko u planinama, poput Himalaja, prilagođavaju se takvim uvjetima. Putnici bi, s druge strane, trebali poduzeti potrebne mjere opreza kako bi se izbjegle bolesti zbog činjenice da tijelo nije naviklo na tako nizak tlak. Penjači, na primjer, mogu patiti od visinske bolesti, koja je povezana s nedostatkom kisika u krvi i gladovanjem tijela za kisikom. Ova bolest je posebno opasna ako se dugo boravi u planini. Pogoršanje visinske bolesti dovodi do ozbiljnih komplikacija kao što su akutna planinska bolest, visinski edem pluća, visinski cerebralni edem i ekstremna planinska bolest. Opasnost od visinske i planinske bolesti počinje na nadmorskoj visini od 2400 metara. Kako biste izbjegli visinsku bolest, liječnici savjetuju da se ne koriste depresivi poput alkohola i tableta za spavanje, da se pije puno tekućine i da se na visinu penje postupno, primjerice pješice, a ne prijevozom. Također je dobro jesti puno ugljikohidrata i puno se odmarati, pogotovo ako brzo idete uzbrdo. Ove mjere će omogućiti tijelu da se navikne na nedostatak kisika uzrokovan niskim atmosferskim tlakom. Ako slijedite ove preporuke, vaše tijelo će moći proizvesti više crvenih krvnih stanica za prijenos kisika do mozga i unutarnjih organa. Da bi to učinilo, tijelo će povećati puls i brzinu disanja.

Prva medicinska pomoć u takvim slučajevima pruža se odmah. Važno je bolesnika premjestiti na nižu nadmorsku visinu gdje je atmosferski tlak viši, po mogućnosti na visinu nižu od 2400 metara nadmorske visine. Također se koriste lijekovi i prijenosne hiperbarične komore. To su lagane, prijenosne komore koje se mogu stlačiti pomoću nožne pumpe. Bolesnik s visinskom bolešću stavlja se u komoru u kojoj se održava tlak koji odgovara nižoj nadmorskoj visini. Takva se komora koristi samo za pružanje prve pomoći, nakon čega se pacijent mora spustiti ispod.

Neki sportaši koriste niski tlak za poboljšanje cirkulacije. Obično to zahtijeva da se trening odvija u normalnim uvjetima, a ti sportaši spavaju u okruženju niskog tlaka. Tako se njihovo tijelo navikava na visinske uvjete i počinje proizvoditi više crvenih krvnih zrnaca, što pak povećava količinu kisika u krvi, što im omogućuje postizanje boljih sportskih rezultata. U tu svrhu proizvode se posebni šatori, čiji je tlak reguliran. Neki sportaši čak mijenjaju tlak u cijeloj spavaćoj sobi, ali brtvljenje spavaće sobe je skup proces.

Svemirska odijela

Piloti i astronauti moraju raditi u okruženjima niskog tlaka, pa nose svemirska odijela koja kompenziraju okruženje niskog tlaka. Svemirska odijela u potpunosti štite čovjeka od okoline. Koriste se u svemiru. Odijela za kompenzaciju visine koriste piloti na velikim visinama - ona pomažu pilotu pri disanju i suzbijaju nizak barometarski tlak.

Hidrostatski tlak

Hidrostatski tlak je tlak tekućine uzrokovan gravitacijom. Ovaj fenomen igra veliku ulogu ne samo u tehnologiji i fizici, već iu medicini. Na primjer, krvni tlak je hidrostatski pritisak krvi na stijenke krvnih žila. Krvni tlak je tlak u arterijama. Predstavljaju ga dvije vrijednosti: sistolički ili najviši tlak i dijastolički ili najniži tlak tijekom otkucaja srca. Uređaji za mjerenje krvnog tlaka nazivaju se sfigmomanometri ili tonometri. Jedinica krvnog tlaka je milimetar žive.

Pitagorina šalica je zanimljiva posuda koja koristi hidrostatski tlak, točnije princip sifona. Prema legendi, Pitagora je izumio ovu šalicu kako bi kontrolirao količinu vina koju pije. Prema drugim izvorima, ova šalica je trebala kontrolirati količinu popijene vode za vrijeme suše. Unutar šalice nalazi se zakrivljena cijev u obliku slova U skrivena ispod kupole. Jedan kraj cijevi je dulji i završava u rupici na dršci šalice. Drugi, kraći kraj spojen je rupom s unutarnjim dnom šalice tako da voda u šalici ispunjava cijev. Princip rada šalice sličan je radu modernog WC vodokotlića. Ako se razina tekućine digne iznad razine cijevi, tekućina teče u drugu polovicu cijevi i istječe van zbog hidrostatskog tlaka. Ako je razina, naprotiv, niža, tada možete sigurno koristiti šalicu.

Pritisak u geologiji

Tlak je važan koncept u geologiji. Bez pritiska nemoguće je formiranje dragog kamenja, prirodnog i umjetnog. Visoki tlak i visoka temperatura također su potrebni za stvaranje ulja iz biljnih i životinjskih ostataka. Za razliku od dragulja, koji se prvenstveno stvaraju u stijenama, nafta se stvara na dnu rijeka, jezera ili mora. S vremenom se preko ovih ostataka nakuplja sve više pijeska. Težina vode i pijeska pritišće ostatke životinjskih i biljnih organizama. Tijekom vremena, ovaj organski materijal tone sve dublje i dublje u zemlju, dosežući nekoliko kilometara ispod površine zemlje. Svaki kilometar ispod površine zemlje temperatura se povećava za 25 °C, pa na dubini od nekoliko kilometara temperatura doseže 50–80 °C. Ovisno o temperaturi i temperaturnoj razlici u okruženju formacije, umjesto nafte može nastati prirodni plin.

Prirodno drago kamenje

Formiranje dragog kamenja nije uvijek isto, ali pritisak je jedna od glavnih komponenti ovog procesa. Na primjer, dijamanti nastaju u Zemljinom plaštu, u uvjetima visokog tlaka i visoke temperature. Tijekom vulkanskih erupcija dijamanti se zahvaljujući magmi pomiču u gornje slojeve Zemljine površine. Neki dijamanti padaju na Zemlju iz meteorita, a znanstvenici vjeruju da su nastali na planetima sličnim Zemlji.

Sintetičko drago kamenje

Proizvodnja sintetičkog dragog kamenja započela je 1950-ih, au posljednje vrijeme dobiva na popularnosti. Neki kupci preferiraju prirodno drago kamenje, ali umjetno kamenje postaje sve popularnije zbog svoje niske cijene i nedostatka gnjavaže povezanih s iskopavanjem prirodnog dragog kamenja. Stoga se mnogi kupci odlučuju za sintetičko drago kamenje jer njegovo vađenje i prodaja nije povezano s kršenjem ljudskih prava, dječjim radom i financiranjem ratova i oružanih sukoba.

Jedna od tehnologija uzgoja dijamanata u laboratorijskim uvjetima je metoda uzgoja kristala pri visokom tlaku i visokoj temperaturi. U posebnim uređajima ugljik se zagrijava na 1000 °C i podvrgava tlaku od oko 5 gigapaskala. Obično se mali dijamant koristi kao klica kristala, a grafit se koristi kao baza ugljika. Iz njega izrasta novi dijamant. Ovo je najčešći način uzgoja dijamanata, posebno kao dragog kamenja, zbog niske cijene. Svojstva ovako uzgojenih dijamanata jednaka su ili bolja od svojstava prirodnog kamenja. Kvaliteta sintetičkih dijamanata ovisi o metodi koja se koristi za njihov uzgoj. U usporedbi s prirodnim dijamantima, koji su često prozirni, većina umjetnih dijamanata obojena je.

Zbog svoje tvrdoće, dijamanti se široko koriste u proizvodnji. Uz to se cijeni njihova visoka toplinska vodljivost, optička svojstva i otpornost na lužine i kiseline. Alati za rezanje često su obloženi dijamantnom prašinom, koja se također koristi u abrazivima i materijalima. Većina dijamanata u proizvodnji je umjetnog podrijetla zbog niske cijene i zato što je potražnja za takvim dijamantima veća od mogućnosti njihovog iskopavanja u prirodi.

Neke tvrtke nude usluge stvaranja spomen dijamanata iz pepela pokojnika. Da bi se to postiglo, nakon kremiranja, pepeo se pročišćava dok se ne dobije ugljik, a zatim se iz njega uzgaja dijamant. Proizvođači ove dijamante reklamiraju kao uspomene na preminule, a njihove su usluge popularne, posebice u zemljama s velikim postotkom bogatih građana, poput SAD-a i Japana.

Metoda uzgoja kristala pri visokom tlaku i visokoj temperaturi

Metoda uzgoja kristala pod visokim tlakom i visokom temperaturom uglavnom se koristi za sintetiziranje dijamanata, no u novije vrijeme ova se metoda koristi za poboljšanje prirodnih dijamanata ili promjenu njihove boje. Za umjetni uzgoj dijamanata koriste se razne preše. Najskuplja za održavanje i najsloženija od njih je kubična preša. Koristi se prvenstveno za poboljšanje ili promjenu boje prirodnih dijamanata. Dijamanti rastu u preši brzinom od otprilike 0,5 karata dnevno.

Je li vam teško prevoditi mjerne jedinice s jednog jezika na drugi? Kolege su vam spremne pomoći. Postavite pitanje u TCTerms i u roku od nekoliko minuta dobit ćete odgovor.

Najbolji članci na temu