Как настроить смартфоны и ПК. Информационный портал
  • Главная
  • Вконтакте
  • Простой источник аварийного питания. Почему автомобильный аккумулятор нельзя использовать в ИБП

Простой источник аварийного питания. Почему автомобильный аккумулятор нельзя использовать в ИБП

Электрическая схема, представленная на рисунке, удобна в применении на даче и там, где электроэнергия пока еще поступает нестабильно. Простое устройство, собранное по рекомендуемой схеме, обеспечит автоматическое включение резервного освещения (или другой активной нагрузки мощностью до 10–12 Вт) при пропадании сетевого напряжения 220 В.
Транзистор VT1 серии КТ825 (можно заменить указанный на схеме на транзистор КТ825 с буквенными индексами Д и Е) обеспечивает максимальную нагрузку до 25 Вт. Он должен быть установлен на радиатор с площадью охлаждения не менее 100 см2. Если планируется менее мощная нагрузка (до 5 Вт), то возможно применить в схеме управляющий транзистор типа КТ818АМ - КТ818ГМ.

В качестве резервного источника питания используется автомобильный аккумулятор емкостью 55-190 А/ч. В качестве ламп резервного освещения используются автомобильные лампы накаливания.
Сетевой блок питания (БП) вырабатывает пониженное выпрямленное напряжение 13–14 В. В БП входят понижающий трансформатор и выпрямительный мост. Пульсации этого источника питания сглаживаются электролитическим конденсатором большой емкости С1. Напряжение с блока питания через диоды VD1, VD2 и ограничивающий резистор R1 беспрепятственно поступает к подключенному аккумулятору и заряжает его слабым током. При величине зарядного тока 80-110 мА автомобильная АКБ может находиться без вреда под зарядкой продолжительное время, примерно до десяти суток подряд. Падение напряжения на диоде VD2 создает обратное смещение для перехода база-эмиттер транзистора VT1. Транзистор находится в закрытом состоянии и нагрузка (EL1, EL2) обесточена. Переключатель S1 служит для принудительного включения аварийного режима. Это может понадобиться для разрядки АКБ или проверки системы резервного освещения (целостности ламп).
Устройство в налаживании не нуждается.
Когда сетевая энергия отключается, стационарный источник питания обесточивается, и в цепь базы транзистора VT1 поступает ток через резистор R2, транзистор открывается и нагрузка питается от АКБ. Как только поступление энергии в сети возобновляется, транзистор VT1 закрывается, нагрузка выключаются, и аккумулятор заряжается по рассмотренной схеме.
Резистор R1 марки МЛТ-2, резистор R2 - типа МЛТ-0,5. Аккумулятор и лампы нагрузки подключаются к устройству многожильными изолированными сетевыми проводами сечением не менее 1 мм и с минимальной длиной (для уменьшения потерь энергии в проводах). Конденсатор С1 марки К50-24, К50-3Б или другой на напряжение не менее 25 В.
Оптимальный вариант для понижающего трансформатора сетевого источника питания - универсальный силовой трансформатор ТПП 127/220-50-12.

Чем автомобильный аккумулятор отличается от аккумулятора для ИБП ?

Почему нельзя установить автомобильную батарею для работы с источником бесперебойной работы?

Поскольку автомобильная батарея значительно дешевле специализированного аккумулятора для ИБП , то эти два вопроса являются основными при покупке источника бесперебойного питания, работающего от внешних аккумуляторов.

Ответ на вопрос уже содержится в названии аккумуляторов: они отличаются по предназначению и условиям функционирования. Автомобильная батарея расположена в хорошо проветриваемом пространстве — под капотом. Она предназначена для запуска двигателя при помощи стартера и подачи электрического тока на свечи зажигания у бензиновых двигателей. Этот процесс длится недолго, после запуска двигателя внутреннего сгорания питание всех систем происходит от работающего генератора. Несмотря на то, что цикл невелик, от аккумулятора требуется высокое значение тока за небольшой период времени для запуска двигателя. В процессе работы батарея теряет большую ёмкость.

Аккумуляторные батареи для ИБП располагаются, как правило, в малопроветриваемом помещении и источники бесперебойного питания с такими батареями предназначены для длительной работы (до нескольких суток). Выбор комплекта ИБП и батарей определяется ёмкостью батарей и мощностью зарядного устройства аппарата. Батареи для ИБП равномерно отдают энергию, но этот процесс длится долго. Первое существенное различие — длительность цикла работы и равномерность выделения электрического тока достигается за счёт толщины пластин (электродов) внутри аккумулятора. У автомобильной батареи средняя толщина электрода составляет 1-1,2 мм, у аккумулятора для ИБП — 2-2,5 мм. Чем меньше толщина электродов, тем быстрее движутся электроны. Если автомобильный аккумулятор функционирует в длительном цикле с ИБП, то его пластины быстро разрушатся. Однако электроды большей толщины у специализированной батареи не смогут отдать больше тока за определенную единицу времени, если их установить в автомобиль. У них намного больше ресурс при длительной эксплуатации.

Второе важное отличие заключается в напряжении постоянного тока у зарядного устройства в машине и у источника автономного электроснабжения. Напряжение цепи постоянного тока автомобиля примерно равно 14-14,2 В, у зарядного устройства ИБП оно составляет от 13,5 до 13,8 В. Автомобильные и специализированные аккумуляторы рассчитаны на различные значения напряжения тока заряда. Подсоединив автомобильную батарею к системе резервного электропитания, вы обнаружите, что она постоянно недозаряжена. Если аккумулятор заряжен не полностью, то время автономной работы будет меньше, чем при заряженном аккумуляторе. Полностью заряженная батарея имеет высокое внутреннее сопротивление, потому при работе с ИБП потребляет во время заряда небольшой ток. У разряженного аккумулятора низкое внутреннее сопротивление, в процессе заряда он потребляет больший ток. Т.к. автомобильная батарея при работе с ИБП будет постоянно потреблять ток и не перейдёт в режим полной зарядки, это приводит к кипению электролита, что негативно сказывается на параметрах аккумуляторной батареи.

Третье отличие аккумуляторов: в процессе заряда батарея выделяет водород. Когда она установлена под капотом машины, то пространство вокруг АКБ хорошо проветривается, выделяемый водород быстро улетучивается. Если такой аккумулятор установить в помещении, то водород может скапливаться в замкнутом пространстве. Смесь водорода с воздухом образует очень опасную взрывоопасную смесь, которая может детонировать от любой искры, например, при включении или выключении света. Аккумулятор для ИБП полностью герметизирован, в процессе работы он не выделяет водород в атмосферу, а рециркулирует в пространстве батареи.

У автомобильного аккумулятора большое значение тока саморазряда . Как правило, батарея для машины имеет жидкий электролит (разбавленная серная кислота), а в жидкой среде химические процессы протекают быстро, за счёт чего срок службы АКБ меньше, чем в аккумуляторе для ИБП. Не подключённый аккумулятор разряжается быстрее специализированного. Батареи для аппаратов резервного электроснабжения изготовлены по технологии AGM : между электродами располагается губчатый материал, пропитанный электролитом, а не жидкий электролит. За счёт этого ток саморазряда невелик. Когда система резервного электропитание переходит на функционирование от батарей, то даже полностью заряженные автомобильные аккумуляторы проработают за счёт большого тока саморазряда меньше, чем специализированные батареи такой же ёмкости.

Немаловажный фактор — экологичность применяемого оборудования. У АКБ электролит постепенно выкипает, под крышкой батареи образуется свободное пространство, которое заполняет взрывоопасный водород. Применять такие аккумуляторы в жилом помещении не рекомендуется, т. к. они могут выделять водород в атмосферу.

Автомобильная аккумуляторная батарея стоит дешевле аналогичной по ёмкости специализированной аккумуляторной батареи для ИБП, но экономия ощутима только при покупке . Очень быстро экономия превратится в убытки. В среднем, автомобильный аккумулятор на 100 А/ч стоит 4000 руб. (цены на Яндекс.Маркет) и служит 2 года (с ИБП). Батарея для ИБП, например, на 100 А/ч стоит около 8000 руб., но служит 10 лет . Получаем, что специализированные батареи в долгосрочной перспективе выгодней более чем в 2 раза.

При применении автомобильного аккумулятора вместе с источником автономного электропитания есть вероятность, что ИБП перестанет работать или совсем не запустится. Для надежной и длительной работы системы резервного электроснабжения в качестве ёмкости электрического тока лучше покупать специализированные аккумуляторы известных производителей, выполненные по технологии AGM.

Использование качественного аккумулятора — это залог надежности работы охранно-пожарной системы в чрезвычайных ситуациях, например при внезапном отключении электричества, что случается, к сожалению, нередко.

Критериев при выборе аккумулятора не так много: проверенный поставщик, сертифицированный продукт и знание основных характеристик.

В соответствии с НПБ-88-2001 "Установки пожаротушения и сигнализации. Нормы и правила проектирования" электроприемники установок пожарной автоматики по степени обеспечения надежности электроснабжения относятся к 1 категории.
На практике, в большинстве случаев, имеются источники электропитания 3 категории. В этом случае в качестве резервных источников питания (РИП) разрешается использовать аккумуляторные батареи или блоки бесперебойного питания (ББП).
В данном случае речь пойдет об аккумуляторных батареях (АКБ), которые во многом определяют работоспособность РИП, а следовательно и установок пожарной автоматики в целом.

В ОПС обычно используются свинцово-кислотные аккумуляторы, изготовленные по технологии AGM (Absorbed in Glass Mat), в которых содержится электролит, абсорбированный в стекловолоконном сепарате. Срок их службы измеряется годами (к примеру, Delta DTM — до 5-7 лет). Применение аккумуляторов, произведенных по технологии AGM, связано с тем, что нет необходимости в их обслуживании (за счет внутренней рекомбинации газа), батареи полностью герметичны, поэтому утечка электролитов невозможна, а соотношение цена/качество лучшее. Эти батареи оптимизированы для работы как в циклическом, так и в буферном режимах.

Электрическая емкость АКБ для РИП, измеряемая в ампер/часах (А/ч), рассчитывается исходя из потребляемого тока установкой пожарной автоматики и необходимого времени работы установки от РИП.
При этом надо помнить, что РИП должен обеспечить требуемое время работы в течении всего срока эксплуатации установки пожарной автоматики, то есть не менее 10 лет.
Поэтому правильная эксплуатация АКБ, диагностика и своевременная их замена является залогом надежной работы установки пожарной автоматики.

В современных РИП самое широкое применение нашли герметичные свинцово-кислотные АКБ. Еще их называют "необслуживаемые".
Это не совсем правильно, так как даже обычная грязь на клеммах может привести к потере контакта, нагреву клеммного соединения и, возможно, выходу АКБ из строя.
Здесь уместнее говорить о простоте и большой периодичности обслуживания.
К несомненным достоинствам данных АКБ также относиться возможность кратковременного разряда большим током, до 3С,
где "С" — условное обозначение тока разряда (заряда), выраженное в числовом значении емкости АКБ в А/ч при часовом разряде батареи.
Это особенно актуально для установок пожаротушения, где пусковой ток может быть в десятки раз больше тока дежурного режима.
Свинцово-кислотные АКБ не боятся глубокого разряда и быстро восстанавливают свою электрическую емкость.
Они имеют достаточно длительный срок хранения и эксплуатации.

По конструкции свинцово-кислотные батареи представляют собой набор аккумуляторов, заключенных в пластиковый корпус,
на котором имеются положительный и отрицательный выводы и односторонний клапан для поддержания на определенном уровне избыточного давления газа в АКБ.
Каждый аккумулятор имеет набор положительных и отрицательных свинцово-олово-кальциевых пластин с активной массой из химических соединений свинца.
Между пластинами расположены сепараторы из химически устойчивого, не электропроводящего стекловолокна.
В качестве проводящей среды – электролита используется раствор серной кислоты. В результате заряда в процессе электрохимической реакции в аккумуляторе накапливается энергия в форме химической энергии. При этом на положительных пластинах происходит реакция с выделением кислорода, который переносится внутри аккумулятора и поглощается поверхностью отрицательных пластин. При разряде происходит обратная электрохимическая реакция.

Наибольшее распространение получили АКБ из трех и шести аккумуляторов, так называемые "шестивольтовые" и "двенадцативольтовые" АКБ.

Электрические характеристики АКБ существенно зависят от температуры окружающей среды.
Температурный режим оказывает наибольшее влияние на срок службы аккумуляторов.
Допустимый диапазон хранения в среднем составляет от -35° до +60°С (нужно понимать, что производитель, как правило, указывает максимальные характеристики). И все-таки хранить
их лучше всего при температуре от +10° до +20°С — это оптимальные показатели для хранения. При эксплуатации аккумулятора нужно учитывать, что при повышении температуры на каждые 10° от нормальной (+20°С) срок службы уменьшается почти вдвое. Это связано с тем, что при работе в повышенных температурах увеличивается выделение газа за счет более активных электрохимических процессов. Не весь газ успевает рекомбинировать и стравливается через клапан. Вследствие этого увеличивается плотность электролита и происходит сульфатация пластин, что приводит к уменьшению срока службы аккумулятора.

Однако в практической эксплуатации вряд ли кто-то будет создавать для АКБ оптимальный температурный режим, поэтому все характеристики будем рассматривать для комнатных условий при температуре от 18°С до 22°С и относительной влажности воздуха до 85%.

Для выбора правильного режима эксплуатации АКБ необходимо представлять в какой зависимости находятся электрические характеристики АКБ от различных режимов эксплуатации.
При одинаковой разрядной емкости АКБ, при малых токах разряда активные материалы в аккумуляторе работают эффективнее, поэтому конечное напряжение разряда остается выше, чем при больших токах разряда.
Эта зависимость приведена на графике 1 для "двенадцативольтовой" АКБ.

Одно из важнейших условий успешной работы свинцово-кислотных батарей — правильный заряд. Поэтому нужно помнить, что оптимальный ток заряда для аккумуляторных батарей -0,1 С. При выборе зарядного устройства обязательно обращайте внимание на то, подходит оно вам по току заряда или нет.

Герметизированные свинцово-кислотные батареи очень чувствительны к перезаряду. Срок службы быстро снижается при работе в режиме постоянного подзаряда и увеличении напряжения источника питания и тем самым тока подзаряда. И в обратном случае, при постоянном недозаряде, происходит неполное восстановление активных масс и пластин, что ведет к повышению скорости коррозии и выпадению осадка. Со временем осадок может замкнуть пластины и, как следствие, аккумулятор выходит из строя. Многократные переразрядки снижают разрядную емкость и уменьшают срок службы. Такие же изменения могут происходить и при длительном хранении батарей в разряженном состоянии.

Рекомендуемый ток разряда, при котором не происходит необратимых изменений в характеристиках АКБ, лежит в пределах от 1/20С до 3С.
Величина разрядной емкости АКБ зависит от тока разряда.
Оптимальный ток разряда составляет 1/20С и при его увеличении разрядная емкость уменьшается, как показано на графике 2 для "двенадцативольтовой" АКБ.

При хранении АКБ происходит явление саморазряда. Рекомендуется ставить АКБ на хранение полностью заряженной. Во время хранения разряженного свинцового аккумулятора происходит перекристаллизация сульфата свинца на пластинах. Кристаллы сульфата становятся крупнее и могут частично перекрывать доступ электролита в глубину пористой структуры пластин. Это — начало сульфатации аккумулятора, которая ведет к уменьшению срока службы и способствует его старению.

В течении 12 месяцев хранения, за счет саморазряда, разрядная емкость АКБ падает до 50% от первоначальной, поэтому с этой же периодичностью рекомендуется производить перезаряд АКБ.

Необходимо помнить, что со временем характеристики АКБ безвозвратно ухудшаются, даже если АКБ не эксплуатируется, а находиться на хранении. Остаточную емкость АКБ можно грубо оценить измерением напряжения на выводах АКБ при отключенной нагрузке. Эта зависимость приведена на графике 3 для "двенадцативольтовой" АКБ. Не рекомендуется разряжать АКБ до напряжения ниже 1,75В на аккумулятор.

Данные характеристики и зависимости справедливы для АКБ, произведенных известными фирмами, где используются качественные материалы и строго соблюдается технологический процесс. Дешевые аналоги этих АКБ могут иметь характеристики, которые существенно отличаются в худшую сторону.

Существуют два основных режима применения свинцово-кислотных АКБ.

1. АКБ – это основной источник питания, работающий в циклическом режиме заряда и разряда.
Данный режим, в силу своих особенностей, практически не нашел применения в РИП установок пожарной автоматики.

2. Буферный режим, когда АКБ отдает питание на нагрузку только при отключении основного источника переменного тока. Этот режим получил наибольшее распространение.

В зависимости от режима применения АКБ существует несколько способов заряда АКБ.

При циклическом режиме используются следующие способы заряда:

    — поддержание постоянного напряжения заряда. Это наиболее предпочтительный способ, так как позволяет АКБ достичь максимальной отдачи. При этом на АКБ в течении всего времени заряда подается напряжение из расчета 2,45В на аккумулятор и завершается, когда зарядный ток имеет постоянное минимальное значение в течении 3 часов. При этом способе необходимо точно контролировать значение напряжения и времени заряда, так как перезаряд может отрицательно сказаться на рабочих характеристиках АКБ. Как правило, время заряда при таком способе находиться в пределах 6-12 часов.

    — поддержание постоянного напряжения заряда при ограничении начального тока заряда. При этом на АКБ подается напряжение заряда из расчета 2,45В на аккумулятор и начальный ток ограничивается 0,4С. Если АКБ достаточно глубоко разряжена то на начальном этапе заряда вряд ли удастся обеспечить требуемое напряжение заряда, но в последующем величину этого напряжения и времени заряда необходимо строго контролировать. Это более щадящий способ заряда АКБ, однако, требует чуть больше времени.

    — для быстрого заряда может применяться способ с двумя значениями постоянного напряжения. На начальной стадии заряда на АКБ подается зарядное напряжение из расчета 2,45В на аккумулятор и зарядный ток до 0,8С. Когда величина зарядного тока уменьшиться до 0,15-0,2С необходимо уменьшить зарядное напряжение до 2,3В на аккумулятор и контролировать постоянство минимального значения зарядного тока аналогично пункту "а". При этом способе время заряда сокращается примерно в 1,5 раза. Этим способом не рекомендуется пользоваться часто.

    При работе АКБ в буферном режиме ей необходим компенсирующий подзаряд. Конечно, если источник длительное время работал от АКБ и она разрядилась необходимо применить один из вышеперечисленных способов заряда. В источнике питания АКБ может быть включена двумя вариантами:
    — АКБ отсоединена от нагрузки и заряжается от источника малым током только для компенсации саморазряда. Подключения АКБ к нагрузке происходит автоматически только при пропадании основного питания.

    — АКБ и нагрузка соединены постоянно параллельно с выходом выпрямителя. При этом ток с выхода выпрямителя распределяется между нагрузкой и АКБ.

Поскольку ток нагрузки постоянно изменяется в процессе работы установки пожарной автоматики, то в режиме постоянного подзаряда следует контролировать величину напряжения и тока подзаряда. Стандартное напряжение подзаряда рассчитывается по 2,3В на аккумулятор и тока не более 0,15С. Однако, в ряде РИП с целью уменьшения их стоимости такие цепи контроля не применяются, что в свою очередь может приводить к перезаряду АКБ и уменьшению срока ее эксплуатации.

Ведущие фирмы выпускают АКБ различных типов для применения в различных режимах. Это, как правило, отражено в маркировке моделей.

Исходя из выше изложенного, можно сформулировать несколько практических рекомендаций по выбору и эксплуатации свинцово-кислотных АКБ:

    — Перед приобретением АКБ надо определиться в каком из режимов она будет использоваться. Исходя из этого, выбрать конкретную модель АКБ. Определить ее параметры заряда и разряда.
    — При приобретении источника питания отдавать предпочтение тому, где существуют схемы заряда и разряда, подходящие для выбранной модели АКБ.
    — Не рекомендуется приобретать АКБ, которые были выпущены более года назад.
    — Перед установкой в источник питания полностью зарядить АКБ.
    — При расчете требуемой электрической емкости АКБ необходимо учитывать, что стандартная АКБ на 4-м году, даже при правильной эксплуатации, безвозвратно теряет от 10% до 40% электрической емкости, поэтому для обеспечения требуемого времени работы установки пожарной автоматики от резервного источника питания на 4-5 году ее эксплуатации эти потери надо закладывать в расчеты.
    — В процессе эксплуатации необходимо:
    — соблюдать температурный режим,
    — правильно выбирать и применять зарядное устройство,
    — избегать глубоких или быстрых разрядов АКБ, а равно как и избыточного заряда, так как эти критические режимы при многократном повторении сокращают срок эксплуатации АКБ.
    — В процессе эксплуатации необходимо следить за остаточной емкостью АКБ и при уменьшении ее ниже критической, то есть более чем на 50%, производить замену АКБ.
    — При необходимости обеспечить большую электрическую емкость рекомендуется применять одну АКБ большой емкости, чем соединять параллельно несколько АКБ меньшей емкости.
    — Следить за чистотой корпуса и выводов АКБ, не допускать ее падения, попадания на корпус агрессивных жидкостей, солнечных лучей. Не рекомендуется использовать АКБ при температуре воздуха ниже -15°С или выше +60°С, а также высокой влажности воздуха. Утилизацию АКБ необходимо производить в специализированных организациях.

БОРЬБА С КОРРОЗИЕЙ

Еще одной из причин, уменьшающей срок службы, является преждевременная деградация положительных пластин при работе в буферном режиме. Это влечет за собой коррозию решеток и изменения в активной массе пластин. Коррозия решеток приводит к нарушению контакта с активной массой и увеличению внутреннего сопротивления. Из-за увеличения удельного объема вещества возникают большие внутренние напряжения, деформации пластин и корпуса. В результате возрастает вероятность короткого замыкания, происходит оплывание и осыпание активной массы. Этот эффект чаще проявляется при заряде аккумуляторов после разряда при низкой температуре и при больших токах нагрузки.

ВОССТАНОВЛЕНИЕ ЕМКОСТИ

При изменении глубины разряда от 20 до 100 % срок эксплуатации герметизированных свинцово-кислотных аккумуляторов уменьшается в пять раз и более. Если после длительного хранения устройство потеряло менее 40% емкости, то ее можно частично или полностью восстановить. Для этого аккумулятор несколько раз заряжают и разряжают небольшими токами около 10%емкости (например,Delta DTM 1207, емкостью 7 Ач — ток 0,7 А). Оптимально провести 3 цикла заряда-разряда. В случае если аккумулятор потерял более половины емкости, то его полное восстановление, как правило, невозможно.

ПРЕДОТВРАЩЕНИЕ ДЕФЕКТОВ

Периодически необходимо проверять емкость тестером свинцово-кислотных аккумуляторов. Это поможет своевременно исправить возникшие дефекты или предотвратить их. И заключительный совет: покупайте аккумуляторы только у проверенных поставщиков, запрашивайте сертификаты и декларации о соответствии. Это поможет избежать приобретения подделок, а значит, сделать свою охранно-пожарную сигнализацию надежной.

Все изложенное справедливо не только для резервных источников питания установок пожарной автоматики, но и для всех остальных систем безопасности.

Для обеспечения надежной работы многих стационарных устройств необходимо применять резервное питание. Чаще всего для этих целей устанавливают аккумулятор, но за ним надо следить, не допуская сильного разряда и вовремя ставить на подза- ряд. Удобнее эту обязанность поручить автоматике.

Для подзаряда аккумулятора необходимо соответствующее устройство (внутреннее или внешнее). Зарядное устройство можно выполнить в составе системы бесперебойного питания и полностью автоматизировать процесс, т. е. оно может включаться при снижении напряжения на аккумуляторе ниже порогового уровня , или же применить «плавающий» подзаряд . Под плавающим зарядом подразумевают подключение аккумулятора параллельно с нагрузкой (рис. 2.18), когда источник питания служит только для компенсации токов саморазряда в элементах питания. В этом случае схема получается наиболее простой.

В этих схемах поступающее напряжение с трансформатора выбирается таким, чтобы зарядный ток, проходящий через аккумулятор, компенсировал ток естественного саморазряда. Нужное напряжение после выпрямителя можно подобрать экспериментально установкой дополнительных диодов или с помощью отводов от вторичной обмотки трансформатора (у некоторых унифицированных трансформаторов, например из серии TH, ТПП и др., есть возможность немного изменить напряжение во вторичной цепи за счет переключения отводов в первичной обмотке). При этом контролируем ток в цепи аккумулятора по амперметру. Обычно значение тока «плавающего» подзаряда не должно превышать 0,005…0,01 номинального для аккумулятора. Уменьшение тока заряда приводит только к увеличению продолжительности процесса (в данном применении время заряда значения не имеет - оно всегда будет достаточным).

Такие схемы можно применять, если ваша сеть достаточно стабильна и питающее напряжение не выходит за рамки допуска

Рис. 2.18. Схемы, обеспечивающиеплавающийподзаряд аккумулятора резервного питания

(в крупных городах за этим следят). В противном случае между трансформатором и аккумулятором устанавливается стабилизатор напряжения и диод, препятствующий прохождению тока аккумулятора в стабилизатор, когда трансформатор не включен (рис. 2.19). Микросхема KP142EH12 может быть заменена аналогичной импортной LM317.

Рис. 2.19. Схема зарядного устройства со стабилизатором напряжения

Более совершенная схема зарядного устройства приведена на рис. 2.20. Она не только поддерживает стабильное напряжение на

аккумуляторе, но и имеет настраиваемую токовую защиту, которая предотвращает повреждение элементов в случае короткого замыкания на выходе (или неисправности аккумулятора). Ограничение тока полезно и в тех случаях, когда подключается новый аккумулятор (еще не заряженный или сильно разряженный ранее). В этом случае ограничение тока на нужном уровне предотвращает перегрузку питающего сетевого трансформатора (он может быть маломощным - 14…30 Вт, так как в режиме «Тревога» необходимый ток вполне может обеспечить сам аккумулятор). Кроме того, внутри микросхемы есть температурная защита, отключающая ее выход при перегреве, что исключает повреждение компонентов.

Для сборки устройства можно воспользоваться односторонней печатной платой из стеклотекстолита, показанной на рис. 2.21, ее внешний вид приведен на рис. 2.22.

При монтаже применялись детали C1 - любой оксидный, С2-С4 - из серии K10. Подстроечный резистор R4 - многооборотный СП5-2В. В качестве микросхемы можно использовать любые из серии K142EH3 или K142EH4 - они имеют планарные выводы. Для установки микросхемы со стороны печатных проводников, в плате сделано окно размером 15 x 10 мм и отверстия для ее крепления. Между пластиной теплоотвода микросхемы и платой подкладываются диэлектрические шайбы так, чтобы выводы легли прямо на токопроводящие дорожки. Это позволит ко всей плоскости микросхемы закрепить отводящую тепло пластину.

Рис. 2.21. Топология печатной платы и расположение элементов

Рис. 2.22. Внешний вид монтажа элементов на плате

Трансформатор (T1) можно заменить на ТП115-K9 - он имеет 2 обмотки по 12 В с допустимым током до 0,8 А. В холостом ходу на обмотке будет напряжение 16 В, а после выпрямления и сглаживания конденсатором - 19 В, что вполне достаточно для работы стабилизатора (основную часть времени схема будет работать как раз в режиме хрлостого хода).

Работающая аналогично еще одна схема приведена на рис. 2.2,3- Основой ее является микросхема L200 (отечественных аналогов нет), имеющая выводы (2 и 5) для контроля тока в нагрузке. Приреденное включение микросхемы является типовым: от номинала резистора В2 зависит максимальный ток в цепи нагрузки (Lax = 0,45/R2), а нужное напряжение выставляется резистором R3. Стабилизатор может обеспечить выходной ток от 0,1 до 2 А и имеет внутреннюю защиту от перегрева.

Рис. 2.23. Второй вариант схемы зарядного устройства с ограничением тока

Для монтажа элементов второй схемы зарядного устройства можно воспользоваться печатной платой, показанной на рис. 2.24.

О настройке всех схем со стабилизацией. Вам потребуется миллиамперметр, вольтметр (лучше цифровой) и имитирующий нагрузку мощный резистор. Все это соединяется no схеме, показанной на рис. 2.25.

Сначала при отключенном аккумуляторе соответствующим подстроечным резистором выставляем на выходе стабилизатора напряжение 13 В, После этого переключателем S1 включаем резистор RH и проверяем ток ограничения. Его можно установить любым при помощи подбора резистора токовой обратной связи - R3 в схеме рис. 2.20 (например, для тока 220 мА - R3 = 3,9 Ом; для 300 мА - R3 = 3,3 Ом) или R2 в схеме на рис. 2.23.

Рис. 2.24. Топология печатной платы и внешний вид монтажа

Рис. 2.25. Стенддля настройки и проверки зарядногоустройства

Теперь вместо резистора RH подключаем аккумулятор GB1. Необходимый ток в цепи заряда (для энергоемкости конкрегного аккумулятора) устанавливаем подстройкой выходного напряжения. Окончательную установку следует делать уже после того, как аккумулятор полностью зарядится - этот ток должен компенсировать саморазрядОВ1.

Дополнительная литература

1. Кадино Э. Электронные системы охраны. Пер. с франц. - M.: ДМК Пресс, 2001,c. 11.

2. Шелестов И. П. Радиолюбителям: полезные схемы. Книга 1. - M.: СОЛОН-Пресс, 2003, с. 84.

3. Шелестов И. П. Радиолюбителям: полезные схемы. Книга 3. - M.: СОЛОН-Пресс, 2003, с. 133.

4. Сайт фирмы: http://www.dart.ru/index5.shtml?/cataloguenew/acoustics/oscillator.shtml

5. ХрусталевД. А. Аккумуляторы. - M.: Изумруд, 2003.

  • Лайфхаки для гиков
  • Предыстория
    На тот момент, когда я первый раз попробовал заменить в ИБП старый аккумулятор ёмкостью 7Ач на старый автомобильный аккумулятор номинальной ёмкостью 65Ач, я ещё не знал, почему этого нельзя делать, и как это может навредить здоровью аккумулятора, самому ИБП и людям, проживающим в одном помещении с ним.

    Доработка бесперебойника не заняла много времени, но профит был заметен сразу же. Сто-ватная нагрузка в виде домашнего «сервера» продержалась порядка двадцати часов без внешнего питания, хотя раньше 10 минут - это был предел, которого хватало разве что на корректное завершение работы. Более длительных отключений за время эксплуатации данной модификации замечено не было, а подключение интернета по технологии GPON позволяло серверу оставаться в сети даже при масштабных отключениях электроэнергии.

    Но это было давно. А год назад мне случайно попалось на глаза объявление о продаже нескольких бывших в употреблении ИБП APC 3000 за смешные деньги, 4000 рублей за штуку, без аккумуляторов, но рабочие. Немного подумав, решил что надо брать, причём сразу два, правда к моменту покупки цена успела подняться до 5000 рублей за штуку, но меня это не остановило, ведь в магазине за те же деньги предлагали лишь варианты на 1кВт, да и то от всяких noname фирм с не очень лестными отзывами и модифицированным синусом.

    Без аккумуляторов ИБП включаться отказался, судя по информации из интернета, ему требовалось восемь аккумуляторов по 12 вольт, т.е. батарея на 96 вольт, но конденсаторы на входе батарей были номиналом 63 вольта. Оказалось, что в картридже две параллельно соединённых цепочки по четыре аккумулятора, по 5Ач каждый. Итого получается батарея на 48 вольт и 10Ач. И вот тут началось самое интересное.

    Выбор АКБ
    Настало время покупать аккумуляторы. Разница в цене между специализированным аккумуляторами для ИБП и обычными автомобильными была примерно раза в два при сопоставимой ёмкости. Зачем платить больше? Решил загуглить и нашёл несколько сайтов продающих АКБ для ИБП, которые почти под копирку приводили несколько доводов, почему стоит заплатить больше. В целом звучит правдоподобно, но давайте их рассмотрим поподробнее.
    Итак, первая значительная разница - это различное напряжение постоянного тока в автомобиле и у источника автономного электроснабжения. У автомобильной батареи напряжение постоянного тока примерно равно 14-14.2 В, а у аккумулятора для источника бесперебойного питания оно составляет 13.5-13.8 В. Напряжение тока заряда у обычных автомобильных и специальных для ИБП рассчитано на различные значения. После того как Вы подсоедините автомобильный аккумулятор к системе резервного электропитания, то результат будет виден такой - постоянно батарея будет недозаряжена. Высокое внутреннее сопротивление имеется у максимально заряженной батареи, так как потребляется небольшой ток при работе с ИБП. С разряженными аккумуляторами дела состоят с точностью наоборот. В конечном итоге присоединение автомобильного аккумулятора может привести к кипению электролита, так как будет потребляться постоянно ток и аккумулятор не будет до конца заряжаться.

    Заглядываем в статью википедии о свинцово-кислотных аккумуляторах и видим, что ЭДС заряженного аккумулятора 2.11-2.17В, для 6 банок это получается 12,66-13,02В. Смотрим на аккумулятор для ИБП и видим надписи о рекомендуемых значениях напряжений: в режим постоянного подзаряда 13.5-13.8В, в циклическом режиме 14.4-15.0В. Смотрим на полностью заряженный автомобильный аккумулятор, видим 12.7В, заводим двигатель, напряжение поднимается до 14.2. Получается что 14.2В - это не напряжение автомобильного аккумулятора, а напряжение которым его заряжает автомобильный генератор. Но разве в автомобиле предусмотрена какая-либо схема заряда аккумулятора? В общем мне показался данный довод несостоятельным.
    Второе отличие - временной этап работы и равномерное выделение электрического тока за счет пластин, которые встроены внутри аккумуляторной батареи. Средняя толщина электрода (пластины) у автомобильного аккумулятора составляет примерно 1-1.2 мм, а у специализированных для ИБП 2-2.5 мм. Движение электронов происходит на менее толстой поверхности. Если подключить автомобильный аккумулятор к источнику бесперебойного питания, то пластины которые находятся внутри быстро разрушатся из-за длительного функционирования цикла.

    Если бы в автомобиле не было сигнализации и магнитолы, то наверное можно было бы поверить в то, что автомобильный аккумулятор не способен длительное время отдавать малые или средние токи, но ведь они питаются от того же аккумулятора. И это не говоря о том, что автомобиль в принципе может некоторое время двигаться без генератора, только лишь на заряде аккумулятора, и после этого достаточно будет просто зарядить аккумулятор и он продолжит работать. По поводу толщины пластин сложно что либо сказать, разве что в аккумуляторах от ИБП некоторым попадаются нанотехнологические вставки из стекла. Стекло добавляет толщины пластинам и вес батареи, правда в химических реакциях не участвует.

    И третье важное отличие - в процессе заряда аккумулятора выделяется водород. Когда батарея установлена под капотом автомобиля, то водород быстро улетучивается и не представляет никакой опасности. Так как источник бесперебойного питания установлен как правило в замкнутом пространстве, то газ начнет скапливаться, а смесь водорода с кислородом образует взрывоопасную смесь, которая может детонировать от любой искры (даже от включения света). Аккумулятор для ИБП полностью герметизирован, в процессе работы он не выделяет водород в атмосферу, а рециркулирует в пространстве батареи.

    Данный довод мне сразу показался подозрительным, ввиду того, что мне не доводилось видеть герметичных аккумуляторов в ИБП. Если посмотреть на аккумулятор, то можно увидеть небольшие отверстия для отвода газов, в отличии от автомобильных аккумуляторов, они закрыты резиновыми колпачками и замурованы под пластиковые заглушки, но вовсе не герметично. Если снять пластиковые заглушки и поставить аккумулятор на зарядку, то некоторые резиновые колпачки весело улетят в неизвестном направлении. Значит вода всё таки распадается на кислород и водород, и простой резиновый колпачок не заставит их преобразоваться обратно в воду, а после определённого давления газы всё равно выйдут наружу. Впрочем ладно, если за несколько лет эксплуатации автомобильного аккумулятора в закрытом шкафу ничего не взорвалось, то в проветриваемом подвале и на балконе наверняка проблем с накоплением водорода не возникнет.

    Автомобильные аккумуляторы имеют разбавленный электролит, а так как в жидкой среде все процессы протекают быстро, то срок службы этих батарей намного меньше чем у специализированных для ИБП. Внутри АКБ для источников бесперебойного питания находится губчатый материал, который пропитан электролитом. И поэтому ток самозаряда получается небольшим. И когда система перейдет на функционирование от аккумулятора, то батареи для ИБП проработают больше.

    Действительно, в автомобильном аккумуляторе электролит находится в жидком состоянии, а в специализированных аккумуляторах для домашних ИБП им пропитан пористый материал, и если перевернуть его с открытыми заглушками, то ничего из него не выльется, это позволяет размещать его внутри ИБП в любом положении, хоть вверх ногами (хотя и не рекомендуется). Как это связано с током саморазряда, полностью электролита и скоростью протекания химических реакций - я не знаю, но вероятнее всего, что никак.

    И не стоит забывать о том, что автомобильный аккумулятор работает в суровых условиях, от него несколько раз в день требуют больших токов, несколько месяцев в году это сопровождается очень низкими температурами, а несколько месяцев высокими, кроме того он испытывает вибрационные и ударные нагрузки во время движения автомобиля, а генератор заряжает его без какого либо контроля, и хорошо, если владелец следит за его состоянием.

    Так же, некоторые высказывают сомнение по поводу того, что ИБП в состоянии зарядить автомобильный аккумулятор, ведь у него значительно большая ёмкость. Но ведь увеличив ёмкость, мы получаем увеличение длительности работы от батареи, странно ожидать, что последующая зарядка будет производиться за прежнее время.

    Прочитав ещё несколько статей о вреде использования автомобильного аккумулятора в быту, стало понятно, что ничего не понятно. Но, учитывая предшествующий положительный опыт, было решено выбрать вариант с большей ёмкостью, т.е. автомобильные аккумуляторы. Для одного ИБП были выбраны самые дешёвые аккумуляторы от Тюменского Медведя на 75Ач, для второго АКБ фирмы BRAVO на 90Ач примерно за ту же стоимость. И вот сейчас, спустя почти год эксплуатации решил попробовать замерить ёмкость аккумуляторов, чтобы понять, насколько всё плохо.

    Результаты замеров

    Параметр АКБ №1 АКБ №2
    Модель BRAVO 6CT-90VL Tyumen Batbear 75
    Ёмкость, макс. ток 90Ач, 760А 75Ач, 610А
    Стоимость на момент покупки 2200 руб 2400 руб
    Дата установки 9 ноября 2014 11 ноября 2014
    ИБП APC Smart-UPS 3000VA, 2700Вт, 230В, чистый синус 50Гц +-3 Гц
    насос газового котла, насос тёплого пола,
    насос скважины с водой, морозильная камера,
    холодильная камера, освещение
    освещение, холодильник
    Циклов заряда-разряда 330+ 10
    Производилась калибровка нет да
    Дата контрольного замера 31 августа 2015 1 сентября 2015
    Контрольный разряд 4 часа 20 минут, 37.22Ач 9 часов, 55.7Ач
    Напряжение после разряда 45.0В под нагрузкой, 48.7В без нагрузки 44.6В под нагрузкой, 46.3В без нагрузки
    Контрольный заряд 9 часов, 37.32Ач 14 часов, 52.28Ач
    Напряжение после заряда 55.4В, плюс-минус 0.02В на каждой батареи
    Уровень электролита Визуально не изменился, уровень выше пластин с запасом
    Графики процесса разрядки-зарядки по данным самого ИБП можно посмотреть и . Одна линия показывает напряжение на батарее, вторая мощность нагрузки в процентах.

    Хотя я не уверен, что правильно произвёл замер, но лучше способа, чем включить цифровой ватт-метр в разрыв между АКБ и ИБП, я придумать не смог. Сомнения в корректности замеров у меня возникли из-за того, что не смотря на постоянно включенную нагрузку, ИБП потреблял ток периодами (3-5 секунд потребление нарастает до номинала и опускается до нуля, 1-2 секунды потребления нет), возможно это связано с тем, что по аккумуляторному входу установлена пара ёмких конденсаторов, которые сглаживают нагрузку на АКБ. Зарядка производится примерно таким же образом (некоторое время подаётся ток, затем пара секунд перерыв). После полной зарядки ИБП продолжает периодически подавать ток на АКБ в районе 1А.

    Не смотря на то, что один бесперебойник нещадно насиловал аккумуляторы каждый день почти полностью разряжая их, а затем вновь заряжая, а второй работал в штатном режиме и разряжал АКБ только при отключениях электричества, спустя год они по-прежнему работают и держат нагрузку. Специализированные аккумуляторы в ИБП, что стоящие с завода, что купленные в процессе эксплуатации не жили у меня даже этого времени, они просто высыхали и переставали держать заявленную ёмкость. В общем я не смог ответить для себя на вопрос, почему же автомобильные аккумуляторы не годятся для использования в ИБП, но через год я постараюсь повторить измерения и сравнить результаты.
    Добавить метки

    Лучшие статьи по теме