Как настроить смартфоны и ПК. Информационный портал

Основные виды аналоговой модуляции. Оптимальный прием сложного периодического сигнала

Обработка сигналов в условиях воздействия импульсных помех

2.6.1. Обработка сигналов в условиях воздействия
несинхронных импульсных помех

При работе РЛС могут заметно сказываться взаимные импульсные помехи. Различают несинхронные и синхронные взаимные импульсные помехи. Несинхронные помехи образуются, если периоды повторения импульсов мешающего источника не совпадают с периодом повторения полезных сигналов. На индикаторах с большим послесвечением несинхронная помеха при большой разнице в периодах повторения создает эффект наличия большого числа целей. По мере сближения частот повторения, изображение несинхронной помехи на экране индикатора принимает вид спирали. При полностью синхронном излучении спирали вырождаются в окружности. В этом случае говорят о синхронной помехе.

Признаком, по которому несинхронную помеху можно отличить от цели, является иной, чем у цели, интервал между соседними импульсами. Существует ряд способов, позволяющих исключить из обработки помеховые сигналы. Наиболее употребительны два способа, базирующиеся на регулярности отраженных сигналов от ВС и случайным временным положением сигналов несинхронных импульсных помех (НИП). Первый способ основан на рециркуляции задержки сигналов, второй - на эффекте «движущееся окно». Рассмотрим оба
способа обработки.

Несинхронные помехи образуются, если периоды повторения мешающего источника не совпадают с периодом повторения сигналов от ВС. Следовательно, различительным признаком сигнала и помехи является интервал между соседними импульсами. Для ослабления НИП может быть использовано перемножение незадержанных и задержанных на период следования сигналов в схеме селекции по периоду следования (рис. 2.146). Если перемножение осуще-

Рис. 2.146. Схема селекции по периоду следования.

ствляется на видеочастоте, через схему пройдут сигналы, имеющие известный период повторения Т n , и не пройдут сигналы, для которых период следования отличается от Т n . В таких схемах могут быть применены потенциалоскопы.

Разновидностью устройства селекции по периоду следования может являться следующее (рис. 2.147).

Рис. 2.147. Простейший подавитель НИП

В течении первого периода зондирования на выход электронного ключа обрабатываемый сигнал не походит, поскольку нет разрешающего сигнала со схемы совпадений. Входной сигнал первого зондирования запоминается устройством задержки на время периода повторения Т n . В момент излучения следующего зондирующего импульса вновь поступает принятый сигнал, который непосредственно приходит на схему совпадений одновременно с сигналом от устройства задержки. В моменты прихода полезных сигналов, повторяющихся в соседних периодах зондирования, на выходе схемы совпадений появляется
разрешающий импульс, благодаря чему открывается электронный ключ и пропускает на выход схемы импульс цели.

В данной схеме реализован алгоритм 2/2, то есть, если имеется 2 сигнала в одном и том же дискрете дальности на текущем и предшествующем периодах зондирования, то принимается решение о том, что это сигнал цели. Значительно большей эффективностью обладают подавители, реализующие алгоритм 4/4.

Еще один вариант схемы селекции по периоду повторения - рециркуля-
тор, который осуществляет и функцию накопления сигнала. Схема такого устройства изображена на рис. 2.148.

На вход рециркулятора поступают нормированные сигналы полезные и
НИП. Цепь обратной связи образована линией задержки на время Т n и усилителем b(K ус. < 1).

Суммарный сигнал на выходе накопителя

Рис. 2.3. Рециркулятор и графики, поясняющие его работу.

Сигналы от ВС регулярны, следуют через Т n и будут накапливаться на
выходе накопителя. Период следования сигналов НИП отличается от Т n и такие сигналы накапливаться не будут. Дальнейшая пороговая обработка исключает сигналы НИП и выделяет накопленные сигналы от ВС.

Метод "скользящего окна" заключается в следующем. Зона обнаружения первичной РЛС разбита по дальности на отдельные дискреты DД (рис.2.149).

Рис. 2.149. Скользящее окно.

На рисунке показана только часть обзора, причем увеличены для наглядности временные промежутки между соседними зондированиями (они обозначены цифрами 1, 2, ...). При наличии сигналов в каком-либо дискрете дальности они будут обнаружены в соответствующих ячейках (сигналы обозначены +). Дальнейшая обработка предполагает проверку критерия "k/m". Если в данном дискрете дальности в окне, включающем т соседних зондирований, находится l ³ k: входных сигналов, делается вывод о том, что это не случайный набор, а упорядоченная группа сигналов (пачка импульсов от ВС). Если l становится меньше k (сигналы НИП), то критерий не выполняется и сигналы исключаются из обработки.

2.6.2. Обработка сигнала на фоне шума и сигнальных импульсных помех

2.6.2.1. Понятие о динамическом диапазоне сигналов и помех
и необходимости их нормирования

Системы обработки сигналов на фоне шума и помех должны обеспечить заданный уровень вероятности правильного обнаружения при фиксированной вероятности ложных тревог. Последние вызываются как выбросами шума, так и импульсными и иными помехами. Импульсные помехи очень распространены и часто по своему уровню значительно превосходят полезные сигналы, что затрудняет их надежное выделение. Поэтому приходится использовать нелинейные и иные методы обработки сигналов на фоне шумов и помех. Простейшим и весьма эффективным из них является амплитудное ограничение. Обычно ограничитель выбирается жестким, т. е. уровень ограничения выбирается меньше среднеквадратического значения s шума. При его применении уровни сигнала, шума и помехи становятся одинаковыми. Чтобы уменьшить искажения сигналов, после амплитудного ограничителя ставят фильтр, выделяющий его первую гармонику.

Поскольку ограничитель устраняет все амплитудные различия между
сигналом, шумом и помехами, последующая обработка должна использовать
иные различия между сигналом, с одной стороны, и шумом и помехами, с другой. Если применяются простые сигналы, то такими различиями могут быть или длительности их импульсов, или ширина их спектров, определяемая этими длительностями, а в случае сложных сигналов - их фазовая структура, т. е. законы фазовой модуляции или манипуляции.

Очевидно, требуемые характеристики работы радиосистемы будут гарантированы, если обеспечить высокое отношение сигнал-шум и малое отношение помеха-шум. Поскольку импульсные помехи могут быть очень сильными, их уровень необходимо нормировать к среднеквадратическому уровню шума. Иначе говоря, необходимо обеспечить высокий динамический диапазон сигналов и нормирование динамического диапазона помех.



Под динамическим диапазоном сигналов понимается отношение уровней максимального и минимально различимого сигналов. Последний определяется уровнем шума, характером сигнала и применяемым алгоритмом его обработки. Поэтому динамический диапазон сигналов можно характеризовать отношением амплитуды максимального сигнала к среднеквадратическому уровню шума.

Аналогично динамический диапазон помехи описывается отношением
амплитуды максимальной помехи к среднеквадратическому уровню шума. Поэтому нормирование динамического диапазона помех сводится к нормированию уровня этих помех. В дальнейшем под помехой будем понимать немодулированную импульсную помеху, частота которой совпадает с частотой сигнала. При этом будет рассматриваться самый неблагоприятный с точки зрения подавления помехи случай, поскольку спектры сигнала и помех полностью перекрываются, что исключает применение частотной фильтрации. Амплитуды помехи и сигнала будем считать столь большими относительно среднеквадратического уровня шума, что в течение их действия на ограничитель влиянием шума можно пренебречь.

Заметим, что в данной главе, как это и следует из ее названия, рассматривается только внутрипериодная обработка сигналов на фоне шума и сильных импульсных помех. Дальнейшее подавление импульсных помех возможно путем череспериодного накопления сигналов в процессе их межпериодной обработки на фоне шума и указанных помех и достигается вследствие несинхронного характера импульсных помех.

2.6.2.2. Нормирование уровня длинных импульсных помех
с помощью схемы ШОУ

Схема ШОУ (рис. 2.150,а) состоит из широкополосного фильтра Ш, ограничителя О, узкополосного фильтра У. Рассмотрим воздействие на нее радиоимпульсного сигнала длительностью t 1 шума и помехи длительностью t п1 . Пренебрегаем искажениями сигнала и помехи в широкополосном фильтре, что вполне допустимо при его большой полосе. Узкополосный фильтр будем считать оптимальным для сигнала. Тогда отношение сигнал-шум на его выходе

,

где Ез - энергия сигнала на входе этого фильтра;

N 03 - спектральная интенсивность шума на его входе.

Рис. 2.150. Схема ШОУ (широкая полоса - ограничитель-узкая полоса)

При идеальном ограничении входного колебания (рис. 2.151) выходное
колебание имеет вид меандра, принимающего значения ±Uо. При этом энергия сигнала на выходе этого ограничителя (т.е. на входе узкополосного фильтра) Ез= 1/2 V 2 з t 1 =1/2(a 1 U 0) 2 t 1 , а спектральная интенсивность шума N 03 =W ш3 /DF ш =1/DF ш х 1/2(a 1 U 0) 2 , где a 1 = 4/p - коэффициент первой гармоники образовавшегося при ограничении колебания в виде меандра, а W ш3 - мощность шума на входе узкополосного фильтра. Подставляя два последних выражения в им предшествующее, получаем

где n = DF ш t 1 @ DF ш / DF у - отношение полос пропускания широкопо-
лосного и узкополосного фильтров.

Чем больше это отношение, тем больше отношение сигнал-шум на выходе рассматриваемой схемы. Физически это объясняется тем, что с расширением полосы широкополосного фильтра уменьшается спектральная интенсивность шума после ограничения и мощность после узкополосной фильтрации.

Рис. 2.152. Прохождение сигнала,
короткой и длинной помех через схему
ШОУ

Рассмотрим прохождение радиоимпульсов сигнала, короткой и длинной помех (различающихся тем, что длительности короткой помехи t¢ п1 меньше, а длинной помехи t" п1 больше длительности сигнала t 1 через систему ШОУ, в качестве узкополосного фильтра которой применяется оптимальный фильтр для импульсного сигнала указанной длительности.

Анализ временных диаграмм амплитуд напряжений (рис.2.152) в различных точках структурной схемы (рис. 2.150, б) показывает, что сигнал,
короткая и длинная помехи имеют соответственно амплитуды напряжений на выходе системы

V 4 =1/b V 3 t 1,

U¢ п4 =1/b U п3 t п1,

U" п4 =1/b U п3 t 1,

где (b - постоянная времени контура ВИРУ, связанная, с его полосой
пропускания DF соотношением b = (pDF) -1 , причем b » t 1 и b » t п1 , а V 3 и U п3
- амплитуды сигнала и помех на выходе ограничителя. Ввиду равенства последних (V 3 = U п3) амплитуды сигнала и длинной помехи совпадают:

V 4 = U" п4 , а амплитуда короткой помехи U¢ п4 = V 4 (t¢ п1 /t 1).

рис. 2.153. Зависимость отношения помеха-шум на выходе схемы ШОУ от длительности входной помехи

Все это - следствие того, что совокупность задерживающего и вычитающего устройств в оптимальном фильтре ограничивает время интегрирования любого входного колебания длительностью t 1 сигнала на входе.

Следовательно, если длительность помехи равна или больше длительности сигнала, то ее амплитуда на выходе узкополосного фильтра совпадает с амплитудой сигнала. Если же длительность помехи меньше длительности сигнала, то ее амплитуда и отношение помеха-шум пропорциональны длительности помехи.

Таким образом, отношение помеха-шум на выходе (рис. 2.153)

При t п1 ≤t 1

При t п1 >t 1

Важно отметить, что уровень помехи на выходе совершенно не зависит
от ее амплитуды на входе (если она, конечно, достаточно велика). Схема ШОУ осуществляет селекцию импульсных помех по длительности. Помеха нормируется к уровню шума (r 4 £1), если ее длительность удовлетворяет условию

Следовательно, схема ШОУ защищает только от достаточно коротких настроенных импульсных помех.

С точки зрения лучшего нормирования помех, а также уменьшения числа взаимных помех, создаваемых радиосистемами с близкими несущими частотами, которые попадают в полосу пропускания предограничительного
фильтра, отношение n следует выбирать меньше. Но при этом уменьшается отношение сигнал-шум, а следовательно, и вероятность обнаружения сигнала. Кроме того, при уменьшении n увеличиваются потери из-за нелинейности обработки, обусловленные уменьшением степени нормализации шумов в узкополосном фильтре после ограничения. Расчеты показывают, что если при n =100 они составляют 1,5 дБ, то при n=10 возрастают до 5 дБ. На практике динамический диапазон сигналов выбирают q = 5 ¸ 10 из условия нормальной работы индикатора кругового обзора, что соответствует n = 12,5 ¸ 50.

2.6.2.3. Нормирование уровня длинных импульсных помех
с помощью схемы РОС

Схема РОС (расширяющий фильтр - ограничитель - сжимающий фильтр) работает по принципу: расширение сигнала Р - ограничение О- сжатие сигнала С и представляет собой последовательное соединение двух
дисперсионных линий задержки ДЛЗ с сопряженными (т. е. различающимися знаками) фазо-частотными характеристиками и ограничителем между ними (рис. 2.154). Полосы пропускания ДЛЗ DF 1 выбираются равными ширине спектра полезного сигнала (на уровне 2/p): DF 1 = П=1/t 1 , а длительность Т p импульсной характеристики значительно больше длительности сигнала, т. е.

Сигнал, действуя на первую ДЛЗ, расширяется по длительности до Т p и приобретает ЛЧМ с девиацией DF= П. Он становится сложным, ибо произведение его ширины спектра на длительность

D p =П Т p = Т p /t 1 »1,

где D p - коэффициент растяжения сигнала в ДЛЗ. После прохождения
ограничителя он, будучи сложным, сжимается во второй ДЛЗ до прежней длительности 1/DF = t 1), а его амплитуда увеличивается в раза по сравнению с амплитудой на выходе ограничителя, которая совпадает с амплитудой окружающего шума. Поэтому отношение сигнал-шум.

Прохождение помехи через рассматриваемую систему существенно зависит от ее длительности t п1 . Ее спектр на уровне 2/p имеет ширину П 1 =1/t п1 (см.рис. 2.155,а). Так как полоса пропускания ДЛЗ составляет лишь DF 1 =1/t 1 , то ширина П 2 спектра короткой помехи на ее выходе ограничивается этой величиной (см. рис. 2.155,6):

П 2 =DF 1 = 1/t 1 , При t п1 П 2 = 1/t п1 При t п1 ³t 1

При t п1 >t 1 весь спектр помехи (на уровне 2/p) попадает в полосу пропускания ДЛЗ, которая вследствие своей дисперсионности задерживает различные гармонические составляющие на разное время, определяемое дисперсионной характеристикой этой ДЛЗ. Время задержки наиболее сильно различается на крайних (максимальной и минимальной) частотах спектра помехи. Разность этих временных задержек определяет длительность импульса помехи t п2 на выходе, которая, как это следует из подобия треугольников abc и deg на дисперсионной характеристике ДЛЗ (рис. 2.156), составляет

t п2 = Т p П2/DF 1 = Т p t 1 /t п1

и уменьшается с увеличением t п1 (рис. 2.15 5,в). Последние физически объясняется сужением спектра помехи. Но длительность импульса на выходе

растягивающего фильтра не может быть меньше длительности импульса на

Минимальную величину определим из условия
из которого следует

При действии более длительной помехи последняя не меняет
своей длительности.

Итак, величина Тщ является минимально возможной длительностью импульсной помехи на выходе ДЛЗ. Кроме того, она представляет собой
длительность основного переходного процесса на выходе ДЛЗ (т. е. оптимального фильтра для ЛЧМ сигнала с длительностью Тр и девиацией частоты ар]), вызванного действием достаточно длинной немодулированной настроенной импульсной помехи.

Из предыдущего следует, что коэффициент сложности D2 помехи на выходе первой ДЛЗ, т. е. произведение ее ширины спектра П2 на длительность , зависит от длительности помехи следующим образом (рис. 2.15 5,г):

Поэтому после прохождения ограничителя, который сделает равными

т < т
уровни помехи и шума, помеха во второй ДЛЗ при сожмется по длительности в D2 раз, увеличится по амплитуде в раз и при этом в раз превысит среднеквадратическое значение шума. При иной длительности помеха пройдет через ДЛЗ, не меняя амплитуды и длительности. Таким образом, отношение помеха-шум на выходе составляет (рис. 2.155, д).

Следовательно, помехи, длительность которых превосходит
нормируются рассматриваемой схемой к уровню шума. Физически это объясняется тем, что столь длительные помехи, обладая сравнительно узким спектром, проходят через обе ДЛЗ, не подвергаясь растяжению и сжатию. Поэтому после ограничения они становятся на уровне шума. Таким образом, схема РОС осуществляет селекцию импульсных помех по ширине спектра.

Итак, если схема ШОУ нормирует уровень коротких импульсных помех, то схема РОС - уровень длинных импульсных помех. Возникает естественное стремление совместить достоинства обеих схем в единой системе обработки.
Эта возможность и рассматривается ниже.

2.6.2.4. Нормирование уровня коротких и длинных помех
с помощью схемы ШОУ-РОС

Для нормирования уровня как коротких, так и длинных импульсных помех целесообразно применить систему ШОУ-

РОС - совокупность последовательно соединенных схем ШОУ и РОС (рис. 2.157). Комбинацию РОС-ШОУ, образованную в результате другой последовательности соединения указанных схем, использовать не имеет смысла, так как в схеме РОС полоса пропускания равняется ширине спектра полезного сигнала и использование широкополосного фильтра последнее будет бесполезным.

Приближенный анализ прохождения сигнала, шума и импульсных помех , выполненный для случая, когда отношение п полос пропускания фильтров схемы ШОУ совпадает с коэффициентом Dр растяжения сигнала в первой ДЛЗ схемы РОС (п-Dр), позволяет получить следующую зависимость отношения помеха-шум на выходе системы ШОУ-РОС от длительности помехи на ее входе:

Анализ этой зависимости (рис. 11.9) показывает, что указанная система
нормирует уровень как коротких, так и длинных импульсных помех к уровню шума.

2.6.2.5. Нормирование уровня импульсных помех
при обработке сложных сигналов

В качестве сложного сигнала возьмем сначала ЛЧМ импульс. Оптимальный фильтр для такого сигнала состоит из полосового фильтра ПФ и дисперсионной линии задержки ДЛЗ, которая фактически выполняет функции фазового компенсатора ФК. Пусть этот фильтр располагается после ограничителя, которому предшествует лишь широкополосный фильтр (рис. 2.159, а).

Поскольку полосовой фильтр можно рассматривать в качестве узкополосного, то схема до фазового компенсатора представляет собой схему ШОУ с шириной полосы «узкополосного» фильтра -девиация частоты ЛЧМ сигнала. Поэтому на ее выходе, т. е. на входе фазового компенсатора, отношение сигнал-шум составляет , а отношение помеха-шум

Амплитуда ЛЧМ сигнала увеличивается в ДУЛЗ фазовом компенсаторе в
раз, а мощность шума не претерпевает изменений. Поэтому на выходе фазового компенсатора отношение сигнал-шум составляет При длительности помехи меньшей длительности сжатого в ДЛЗ ЛЧМ

импульса, длительность ее на выходе полосового фильтра равна . На выходе ДЛЗ помеха в этом случае расширяется до длительности ЛЧМ импульса а ее амплитуда уменьшается в раз. Поэтому

При длительности помехи, меньшей длительности переходного процесса

в ДЛЗ , помеха расширяется в ДЛЗ до и амплитуда ее на

выходе уменьшается в раз. В этом случае (при ) отношение помеха-шум составляет

При помеха проходит через ДЛЗ, не изменяя своей длительности и амплитуды. Поэтому отношение помеха-шум на выходе ДЛЗ совпадает с этим отношением на выходе полосового фильтра, которое равно

Следовательно, отношение помеха-шум на выходе

Поскольку , отношение помеха-шум будет меньше единицы, если ее
длительность удовлетворяет условию

Это условие нормирования помехи к уровню шума.

Далее пусть сложным сигналом является рассмотренный ФМ сигнал общей длительности Ть составленный из радиоимпульсов длительностью , которые различаются временным положением и могут различаться начальной фазой Последняя принимает одно из двух значений: 0 и π. Тогда полосовой фильтр ПФ на схеме (см. рис. 2.159, а), который будем считать «узкополосным», представляет собой оптимальный фильтр для радиоимпульса длительностью , а фазовый компенсатор ФК -
совокупность линии задержки на время равномерно расположенными отводами, N фазовращателей на угол и сумматора (рис. 2.160). Тогда на входе фазового компенсатора, как_на выходе схемы ШОУ,отношение сигнал-шум составит , а отношение помеха-шум

где в данном случае

Шум после прохождения полосового фильтра, являющегося оптимальным фильтром для радиоимпульса длительностью , будет иметь треугольную АКФ с шириной основания 2 . Поэтому шумы на входах сумматора не коррелированы и суммируются в нем по мощности, ввиду чего .
Поскольку сигнал возрастает в фазовом компенсаторе в N раз по амплитуде и в
раз по мощности, то отношение сигнал-шум на его выходе составит

Помеха малой длительности растягивается полосовым фильтром
до длительности То элементарного импульса, а если длительность помехи превышает указанное значение, то фильтр оставит ее без изменения.

Поэтому при помехи на.входах сумматора могут накладываются друг на друга только фронтами, что не приведет к увеличению амплитуды помехи на выходе. Вследствие этого и того, что мощность шумов возрастает, отношение помеха-шум на выходе фазового компенсатора уменьшится в раз:

Если длительность помехи не менее длительности сигнала
то помехи на входах сумматора будут перекрываться, вследствие чего амплитуда помехи на выходе будет больше в раз, чем на входе. Суммирование помех по мощности, а не по напряжению объясняется квазислучайным законом изменения коэффициентов передачи фазовращателей, который обусловлен псевдослучайным характером используемого кода. Вследствие того, что в данном случае и помеха, и шум возрастают в одинаковой степени, их отношения
не меняются:

По-видимому, в промежуточном случае имеем

Отношение помеха-шум на выходе

Поскольку при отношение помеха-шум не больше
единицы, если длительность этой помехи удовлетворяет условию

Это условие нормирования помех к уровню шума. Оно выполняется только для
достаточно коротких помех.

Таким образом, рассматриваемая система обработки (см. рис.
2.159,а) с оптимальной фильтрацией после ограничения нормирует к уровню
шума только достаточно короткие импульсные помехи. В этом и заключается
ее существенный недостаток, который объясняется тем, что помехи, ограниченные до уровня шума в ограничителе, накапливаются в узкополосном поло-
совом фильтре. Поэтому устранить указанный недостаток можно только путем
ликвидации этого накопления (интегрирования) помех.

Поскольку совсем убрать полосовой фильтр ПФ невозможно, ибо
он осуществляет абсолютно необходимую оптимальную частотную фильтрацию сигналов от шумов, то поставим его перед ограничителем

(см. рис. 2.159, б). При таком построении схемы необходимость в применении широкополосного фильтра отпадает. Указанный полосовой фильтр осуществляет первую основную операцию оптимальной фильтрации - частотную фильтрацию. Вторая операция - компенсация фазовых сдвигов между спектральными составляющими сигнала - производится фазовым компенсатором. Полоса пропускания последнего может быть неограниченно большой.
Поэтому накопление помех (и сигналов) в нем можно полностью устранить, ввиду чего его вполне можно поставить после ограничителя.

Рассмотрим действие сигнала, помех и шумов на систему, в которой полосовой фильтр предшествует ограничителю, а фазовый компенсатор стоит после него (см. рис. 2.159,6).

Так как уровни сигнала, шума и помехи на выходе ограничителя
одинаковы, то отношение сигнал-шум и отношение помеха-шум составляют

В случае ЛЧМ сигнала его амплитуда увеличивается фазовым компенсатором в раз, а уровень шума остается неизменным. Поэтому отношение
сигнал-шум на выходе В случае ФМ_сигнала его амплитуда возрастает в фазовом компенсаторе в раз, а среднеквадратическое значение шума

В N раз, ввиду чего отношение сигнал-шум на выходе .

Как следует из предыдущего, фазовый компенсатор может только оставить без изменения или даже уменьшить отношение помеха-шум

Следовательно, система обработки сложного сигнала, состоящая из узкополосного полосового фильтра, ограничителя и широкополосного фазового компенсатора, позволяет нормировать к уровню шума импульсные помехи любой длительности. В этом и заключается ее несомненное достоинство. Она реализует одно из основных преимуществ системы со сложными сигналами ее помехозащищенность, обусловленную сложной фазовой структурой этих сигналов.

Борьба с шумами и помехами является основной задачей во многих областях радиотехники. Обеспечить высокую помехоустойчивость систем передачи информации можно разными путями. Например, создают такие устройства для обработки, которые некоторым наилучшим образом выделяют сигнал, искаженный присутствием помехи. Другой путь заключается в совершенствовании структуры передаваемых сигналов, использовании помехоустойчивых способов кодирования и модуляции. Примерами таких помехоустойчивых сигналов служат коды Баркера и сигналы с линейной частотной модуляцией, изученные в гл. 3, 4.

16.1. Выделение полезного сигнала с помощью линейного частотного фильтра

Чтобы выделить полезный сигнал, искаженный наличием шума, можно прибегнуть к частотной фильтрации. Пусть частотный коэффициент передачи линейного стационарного фильтра выбран так, что значения величины велики в области частот, где сконцентрирована основная доля энергии сигнала, и малы там, где велика спектральная плотность мощности шума. Следует ожидать что, подав на вход такого фильтра сумму сигнала и шума, на выходе можно получить заметное увеличение относительной доли полезного сигнала.

Отношение сигнал/шум.

Придадим данному положению количественную формулировку. Пусть на входе линейного фильтра присутствует входной сигнал

являющийся суммой полезного сигнала и шума Здесь и в дальнейшем предполагается, что оба эти сигнала являются узкополосными с одинаковыми центральными частотами . Считается, что сигналы некоррелированы в том смысле, что среднее значение произведения

Будем также предполагать стационарность этих сигналов на неограниченно протяженном интервале времени.

Интенсивность колебаний на входе фильтра можно характеризовать величиной среднего квадрата (средней мощности) входного сигнала, которая в силу равенства (16.2) есть сумма средних квадратов полезного сигнала и шума:

где - дисперсия входного шума.

Для описания относительного уровня сигнала принято вводить так называемое отношение сигнал/шум на входе фильтра по формуле

или в логарифмических единицах (дБ)

Отметим, что безразмерное число характеризует уровень сигнала по отношению к уровню шума весьма приближенно и неполно. Пользоваться этим отношением целесообразно лишь тогда, когда заранее известно, что реализации сигнала и шума в каком-нибудь содержательном смысле «схожи» между собой. Так, входной шум обычно хорошо описывается моделью нормального узкополосного случайного процесса. Отдельные реализации данного шума представляют собой квазигармонические колебания. Естественно, что в этом случае можно пользоваться формулой (16.4) для оценки уровня полезных модулированных сигналов вида AM или ЧМ.

Пример 16.1. На входе фильтра присутствует однотональный AM-сигнал и гауссов шум односторонний спектр мощности которого

Найти отношение сигнал/шум на входе фильтра.

Среднюю мощность сигнала получим, усредняя его квадрат по времени:

Здесь первое слагаемое соответствует средней мощности несущего колебания, которое не содержит информации о передаваемом сообщении. Поэтому при расчетах помехоустойчивости принято опускать эту составляющую и считать, что

Дисперсия шума на входе фильтра

Отношение сигнал/шум

оказывается прямо пропорциональным квадрату коэффициента модуляции и обратно пропорциональным частоте модуляции.

Отношение сигнал/шум на выходе фильтра.

Линейный фильтр подчиняется принципу суперпозиции. Сигнал и шум обрабатываются таким фильтром независимо и создают на выходе сигнал со средним квадратом

Это дает возможность ввести отношение сигнал/шум на выходе фильтра:

Будем называть выигрышем фильтра по отношению сигнал/шум величину

которая также может быть выражена в децибелах:

(16.10)

Ясно, что если то фильтрация суммы сигнала и шума приводит к благоприятному результату в смысле принятого нами критерия - повышению относительного уровня полезного сигнала на выходе.

Ответ на вопрос о том, какое отношение сигнал/шум следует считать достаточным для нормального функционирования радиосистемы, целиком зависит от назначения этой системы и всей совокупности предъявляемых технических требований.

Средняя мощность узкополосного сигнала.

Понятие средней мощности целесообразно вводить только по отношению к узкополосным сигналам, неограниченно протяженным во времени. Удобной и достаточно общей математической моделью такого сигнала является сумма

(16.11)

в которой амплитуды и фазы произвольны, а все частоты сосредоточены в узкой полосе вокруг опорной частоты Мгновенная мощность такого сигнала

Среднюю мощность полезного сигнала можно получить, проведя усреднение по времени:

Очевидно, что вклад в сумму дадут только слагаемые с совпадающими индексами, когда Отсюда следует, что

(16.12)

Влияние частотного коэффициента переда и фильтра на отношение сигнал/шум.

Если сигнал вида (16.11) проходит через линейный фильтр с частотным коэффициентом передачи , то средняя мощность сигнала на выходе

Дисперсия выходного шума

Отсюда находим выражение для отношения сигнал/шум на выходе фильтра:

Данная формула содержит полное решение поставленной задачи и позволяет в принципе, зная спектры сигнала и шума, так подобрать АЧХ фильтра, чтобы получить ощутимый выигрыш. Следует, однако, иметь в виду, что полезный сигнал, как правило, сам претерпевает некоторые, порой значительные искажения.

3. Модулированные сигналы. Теория передачи сигналов

3. Модулированные сигналы

3.1. Аналитическое представление модулированных колебаний

Модулированные сигналы различаются по виду переносчика (несущей) и по его модулированным параметрам. В качестве переносчиков в настоящее время широко используются гармонические колебания, периодическая последовательность импульсов и узкополосный случайный процесс. Каждый из этих переносчиков характеризуется определенным числом параметров. Параметры, изменяющиеся во времени под действием передаваемого сообщения, называются информационными, так как в их изменениях заложена передаваемая информация. Параметры, которые остаются неизменными, являются постоянными признаками сигнала; они могут быть использованы на приеме для отличения сигнала от помех. Во многих случаях модулированный сигнал можно представить как произведение двух функций

где - функция, представляющая несущее колебание (переносчик), а - модуляционная функция, выражающая воздействие передаваемого сообщения u (t ) на несущую f (t ). Когда для представления несущей выбирается аналитический сигнал (2.98), то для каждой модуляционной функции M (t ) существует комплексный модулированный сигнал s (t ). При аналитическом представлении сигнала его действительная и мнимая части соответствуют реально существующему модулированному сигналу, а его модуль определяет огибающую. В случае, когда несущей является гармоническое колебание , модуляционная функция выражает воздействие видеосигнала u (t ) на амплитуду (частоту или фазу) несущей.

Спектр модулированного колебания (3.1) согласно теореме о спектре произведения определяется сверткой

(3.2)

Отсюда следует, что процесс модуляции приводит к сложному преобразованию спектра сигнала. Если несущая представляет собой узкополосное колебание, то модуляция приводит к расширению спектра и переносу его в область около несущей частоты (рис. 3.1 а). Если несущая - чистая синусоида, то имеет место простое смещение спектра (рис. 3.1 б). Если несущая записывается в форме аналитического сигнала, спектр которого существует только для положительных частот, то частотное преобразование относится только к положительным частотам, как показано на рис. 3.1.

Рис. 3.1. Смещение спектра при модуляции: общий случай аналитической несущей (а), случай гармонической несущей (б)

3.2. Основные виды аналоговой модуляции

К основным видам аналоговой модуляции относятся амплитудная модуляция (AM), фазовая модуляция (ФМ) и частотная модуляция (ЧМ). Разновидностями AM являются балансная (БМ) и однополосная (ОМ) модуляции.

Непосредственная передача. Наиболее простым сигналом для передачи непрерывного сообщения u (t ) является сигнал, пропорциональный u (t ):

s (t )= Au (t ), (3.3)

где А - некоторая постоянная. Такой сигнал соответствует форме (3.1), если в ней положить f (t )= A и М [ u (t )]= u (t ). Примером такой непосредственной передачи сообщений является обычная телефонная связь по проводам.

Амплитудная модуляция. Для этого вида модуляции: f (t )=,

где т - коэффициент модуляции.

Модулированный сигнал запишется

Это выражение даёт представление реального AM сигнала

Спектр сигнала в общем случае определяется как преобразование Фурье от s (t ):

Учитывая, что и

где - спектр передаваемого сообщения. Отсюда видно, что при AM происходит перенос спектра сообщения на частоту (рис. 3.16). Ширина спектра сигнала F при AM в два раза шире спектра сообщения Fm :

u (t )=,

Из этого выражения следует, что амплитуда модулированного сигнала изменяется от до , а мощность сигнала соответственно от до

Где мощность несущего колебания. Средняя мощность AM сигнала равна:

При m=l и Pcp =1,5 PH ; отношение средней мощности к максимальной равно 0,375. "Эти соотношения указывают на существенный недостаток амплитудной модуляции - плохое использование мощности передатчика.

Балансная модуляция (БМ). Кроме обычной AM применяется передача AM без несущей - балансная модуляция. Для этого вида модуляции:

f (t )=, (3.7)

Спектр сигнала при БМ

Здесь имеются только две боковые полосы - несущая отсутствует.

При однополосной модуляции (ОМ) передается только одна боковая полоса. Для этого вида модуляции при передаче верхней боковой полосы:

f (t )=, (3.10)

Спектр сигнала ОМ

(3.12)

Действительно, если разложить функции u (t ) и (t ) в ряд Фурье:

и учесть, что cosx; и sinx являются парой преобразования Гильберта, по получим

Такое представление является аналитическим для всех >0. Замена модуляционной функции [ u (t )] на сопряженную ей *[ u (t )]= u (t )- i (t ) дает форму сигнала s (t ), соответствующую нижней боковой полосе.

Системы БМ и ОМ позволяют сократить бесполезный расход энергии на составляющую несущей частоты, а при ОМ дополнительно вдвое сократить ширину спектра передаваемого сигнала. Однако реализация указанных преимуществ требует более сложной аппаратуры.

Угловая модуляция. В случае угловой модуляции (ЧМ и ФМ) модуляционная функция имеет вид

При синусоидальной несущей f (t )= модулированный сигнал будет иметь следующее выражение:

Реальный сигнал

Это обычное представление сигнала с угловой модуляцией. Согласно (3.15) полная фаза высокочастотного колебания равна:

(3.16)

а мгновенная частота колебания изменяется по закону производной от , т. е.

(3.17)

Наоборот, при изменении частоты по закону ω(t ) (3.17) фаза колебания ψ(t) будет изменяться по закону интеграла от ω(t ):

(3.18)

В случае фазовой модуляции . Тогда на основании (3.15) и (3.16) имеем:

(З.19) (3.20)

При частотной модуляции по закону передаваемого сообщения изменяется частота несущего колебания

(3.21)

где- амплитуда частотного отклонения (девиация частоты). Полная фаза колебания при этом будет равна:

Тогда выражение ЧМ сигнала запишется в виде

При модуляции одним тоном, когда и (t )= cosΩt , выражения сигнала при ФМ и ЧМ по форме имеют одинаковый вид:

где т - индекс модуляции: при ФМ при ЧМ

Для определения спектра сигнала заменим в (3.24) косинус суммы двух углов по известным формулам из тригонометрии

Здесь для упрощения записи мы положим =0. Из теории бесселевых функций известны следующие соотношения:

где - бесселева функция первого рода k - г o порядка от аргумента т. После подстановки (3.26) и (3.27) в (3.25) получаем

Таким образом, оказывается, что даже при синусоидальных ЧМ и ФМ получается теоретически безграничный спектр. Он состоит из несущей ω0 и двух боковых полос . Амплитуда несущей А010(т) при ЧМ и ФМ. в отличие от AM, зависит от модулирующего колебания. При некоторых значениях т она может быть вообще равна нулю (т =2, 3; 5,4). Амплитуда боковых частот равна . Однако практически ширина спектра ЧМ и ФМ сигналов ограничена.

Рис. 3.2. Спектр сигнала с угловой модуляцией

На рис. 3.2 приведен спектр сигнала с угловой модуляцией одним тоном при m=5. Как видим, амплитуды боковых частот быстро убывают с увеличением номера гармоники k . При k > m составляющие спектра малы и ими можно пренебречь. Практически ширина спектра сигнала при угловой модуляции равна F=2(m+l)Fm, где F т = частота модулирующего колебания.

Различие между ЧМ и ФМ проявляется только при изменении частоты модуляции Ω. При ЧМ т=, поэтому при m >>1 полоса практически не зависит от Fm . При ФМ b

при m>>1 ширина спектра будет равна F =2 ΔφfmFm т. е. она зависит от модулирующей частоты Fm . В этом и состоит различие в спектрах ЧМ и ФМ.

В случае малого индекса модуляции спектр ЧМ и ФМ сигналов, так же как и в случае AM, имеет только три составляющие:

Это непосредственно следует из (3.28), если учесть, что при m << l sin (msinΩt ) msinΩt , а cos (msinΩt ) 1.

Сравнение (3.6) и (3.29) показывает, что различие спектров сигналов при AM и угловой модуляции заключается только в сдвиге фазы колебания нижней боковой частоты на 180° относительно его положения при AM. Это различие существенно и иллюстрируется векторными диаграммами, изображенными на рис. 3.3.

Рис. 3.3. Векторные диаграммы: AM сигнала (а), ЧМ сигнала (ш<1) (б)

Однополосная угловая модуляция. Если функция - аналитическая:

то сигнал

также является аналитической функцией при . Он не содержит отрицательных частот, хотя и имеет бесконечный спектр в области положительных частот:

Выражение (3.30) определяет новый модулированный сигнал. Этот сигнал представляет собой вариант сигнала однополосной угловой модуляции. Для доказательства этого рассмотрим случай частотной модуляции одним тоном u (t ) = sinΩt . Для этого случая функция φ(t ) и ее преобразование Гильберта принимают вид:

Где индекс модуляции. Модулирующая функция при этом преобразуется к виду

, а модулированный сигнал

Отсюда видно, что спектр модулированного сигнала состоит из одной боковой полосы частот. Сигнал однополосной ЧМ можно получить из обычного ФМ сигнала путем преобразования Гильберта (например, посредством фазового сдвига на ) и модуляции амплитуды по экспоненциальному закону. Тогда ограничение такого сигнала в приемнике восстановит нижнюю боковую полосу частот и позволит применить для детектирования обычный дискриминатор.

3.3. Сигналы при дискретной модуляции

При дискретной модуляции закодированное сообщение u (t ), представляющее собой последовательность кодовых символов {}, преобразовывается в последовательность элементов сигнала {} . Последние отличаются от кодовых символов лишь электрическим представлением. В частном случае дискретная модуляция состоит в воздействии кодовых символов i } на переносчик f (t ). Такая дискретная модуляция аналогична непрерывной.

Посредством модуляции один из параметров переносчика изменяется по закону, определяемому кодом. При непосредственной передаче переносчиком может быть постоянный ток, изменяющимися параметрами которого являются величина и направление. Обычно же в качестве переносчика, как и при непрерывной модуляции, используется переменный ток (гармоническое колебание). В этом случае можно получить амплитудную (AM), частотную (ЧМ) и фазовую (ФМ) модуляции. Дискретную модуляцию часто называют манипуляцией, а устройство, осуществляющее дискретную модуляцию (дискретный модулятор), называют манипулятором или генератором сигналов.

На рис. 3.4 приведены графики сигналов при различных видах манипуляции. При AM символу 1 соответствует передача несущего колебания в течение времени (посылка), символу 0 - отсутствие колебания (пауза). При ЧМ передача несущего колебания с частотой соответствует символу 1, а передача колебания соответствует 0. При ФМ меняется фаза несущей на 180° при каждом переходе от 1 к 0 и от 0 к 1.

Рис. 3.4. Сигналы при различных видах дискретной модуляции

Наконец, в настоящее время применяется относительная фазовая модуляция (ОФМ). В отличие от ФМ, в системе ОФМ фаза несущего колебания изменяется на 180° при передаче символов 1 и остается неизменной при передаче символов 0.

При ОФМ манипуляция каждой данной посылки осуществляется относительно предыдущей. Очевидно, таким способом можно манипулировать (изменять) любой параметр несущего колебания: при изменении частоты получим относительную частотную манипуляцию (ОЧМ), при изменении амплитуды относительную амплитудную манипуляцию (ОАМ). Дельта-модуляция, о которой мы упоминали в § 1.6, также является одним из видов относительной манипуляции.

Рассмотрим спектры сигналов при некоторых видах дискретной модуляции. Будем полагать, что модуляция производится двоичным сообщением u (t ), представляющим собой периодическую последовательность прямоугольных импульсов с периодом .

Амплитудная манипуляция. Сигнал AM можно записать в виде

где периодическая функция u (t ) на интервале равна:

(3.33)

Представим u (t ) рядом Фурье

(3.34)

Тогда сигнал AM запишется в виде

(3.35)

Рис. 3.5. Спектр сигнала при амплитудной манипуляции

Спектр сигнала AM, построенный по ф-лам (3.35), показан на рис. 3.5. Он состоит из несущего колебания с амплитудой и двух боковых полос, спектральные составляющие которых имеют амплитуды

(3.36)

Огибающая спектра дискретного сигнала AM выражается формулой

(3.37)

т. е. представляет собой смещенный на частоту спектр одиночного импульсного сигнала u (t ).

Фазовая манипуляция. Сигнал ФМ можно записать в виде

Периодическая функция, определяющая закон изменения фазы на интервале , выражается формулой

(3.39)

Подстановка (3.39) в выражение (3.38) дает

Представим u (t ) рядом Фурье

Тогда сигнал ФМ запишется в виде

(3.40)

Рис. 3.6. Спектры сигналов при фазовой манипуляции

Спектр сигнала ФМ для различных значений девиаций фазы , построенной на основании ф-лы (3.40), показан на рис. 3.6. Он состоит из несущего колебания и двух боковых полос. Амплитуда несущего колебания зависит от : и при =- обращается в 0. Амплитуды спектральных составляющихв боковых полосах также зависят от . При увеличении от 0 до , как видно из рис. 3.6, амплитуда несущего колебания убывает до нуля, а амплитуды боковых частот увеличиваются.

Когда =- вся энергия сигнала ФМ содержится только в боковых полосах. Так же, как и при AM, огибающая дискретного спектра боковых частот представляет собой смещенный на частоту спектр одиночного импульсного сигнала u (t ), умноженный нa sin:

(3.41)

Аналогично определяется спектр сигнала при частотной манипуляция.

3.4. Сигналы при импульсной модуляции

В системах связи с импульсной модуляцией переносчиком Информации служит периодическая последовательность импульсов одинаковой формы

(3.42)

где U (t ) - нормированная функция, характеризующая форму импульса; A 0 - амплитуда импульса; - начало переднего фронта k -го импульса ; - период следования импульсов; - начало отсчета последовательности; - длительность k -го импульса, отсчитываемая на некотором заданном уровне.

3.7. Сигналы при различных видах импульсной модуляции

При модуляции один из параметров последовательности изменяется в соответствии с передаваемым сообщением (рис. 3.7). Так, при амплитудно-импульсной модуляции (АИМ) изменяется амплитуда импульса А:

(3.43)

Рис. 3.8. Параметры периодической последовательности прямоугольных импульсов

При широтно-импульсной модуляции (ШИМ) изменяется длительность импульса

(3.44)

где - максимальное отклонение фронта импульсов в одну сторону.

При фазовой импульсной модуляции (ФИМ) изменяется сдвиг

импульсов относительно тактовых точек .

При частотно-импульсной модуляции (ЧИМ) в соответствии с

передаваемым сообщением изменяется частота следования импульсов.

Так же, как и при ФИМ, импульсы сдвигаются относительно тактовых точек, но в другой закономерности. Различие между ФИМ и ЧИМ аналогично различию между ФМ и ЧМ синусоидального переносчика.

Периодическую последовательность прямоугольных импульсов

(рис. 3.8) можно записать в следующем виде:

Такую последовательность импульсов можно представить рядом Фурье. В соответствии с выражениями (2.67) и (2.68) имеем

,где ,

В нашем случае

(3.47)

(3.48)

где

Спектр амплитуд периодической последовательности прямоугольных импульсов приведен на рис. 3.9. Амплитуды спектральных компонент определяются значениями модуля спектральной плотности || (3.47) на гармониках частоты повторения . Форма огибающей частотного спектра периодической последовательности определяется формой отдельного импульса. С увеличением периода повторения интервал частот между соседними спектральными компонентами сокращается, их число растет, а амплитуда каждой компоненты уменьшается при сохранении постоянного соотношения между ними. При неограниченном увеличении периодическая последовательность вырождается в одиночный импульс, а линейчатый спектр становится сплошным.

Рис. 3.9. Спектр периодической последовательности прямоугольных импульсов

Спектр периодической последовательности радиоимпульсов получается из спектра последовательности видеоимпульсов переносом шкалы частот на несущую частоту и дополнением полученного спектра его зеркальным отображением.

При модуляции параметры, входящие в выражения (3.46) и (3.48), являются функциями времени:. Модулированная последовательность будет представлять теперь уже непериодическую функцию, деформированную относительно исходной:

или согласно (3.48)

Полученная формула определяет частотный спектр деформированной последовательности импульсов. Для получения спектров сигналов при различных видах модуляции в ф-лу (3.50) необходимо подставить соответствующее выражение модулированного параметра.

Для примера найдем спектр при АИМ. При модуляции одним тоном u (t )= sinΩ (t ) и A = A 0 (1+ msinΩt ); остальные параметры последовательности неизменны:

После подстановки этих значений в (3.50) и несложных тригонометрических преобразований для частотного спектра АИМ сигнала получаем

На рис. 3.10 приведен график спектра АИМ сигнала. Сравнение его с рис. 3.9 показывает, что при АИМ модулируется по амплитуде каждая составляющая спектра немодулированной последовательности импульсов как изолированная «несущая». В спектре содержится низкочастотное модулирующее сообщение u (t ) с частотой Ω, следовательно, демодуляция при АИМ может быть осуществлена с помощью фильтра нижних частот, пропускающего низкочастотное колебание u (t ).

Аналогично определяется спектр и для других видов импульсной модуляции. Для вычисления спектра при ФИМ в (3.50) необходимо подставить выражение (3.45), определяющее изменение положения импульса в соответствии с передаваемым сообщением, а при ШИМ - выражение (3.44), определяющее изменение длительности импульса.

При импульсно-кодовой модуляции (ИКМ) передача отдельных значений сигнала сводится к передаче определенных групп импульсов. Эти группы передаются друг за другом через относительно большие промежутки времени по сравнению с длительностью отдельных импульсов. Каждая кодовая группа импульсов представляет собой регулярный непериодический сигнал, спектр которого может быть вычислен на основании преобразований Фурье обычным образом.

Рис. 3.10. Спектр АИМ сигнала

Ширина спектра последовательности импульсов практически не зависит от частоты повторения и определяется, главным образом, шириной спектра одного импульса. При наличии модуляции любого вида спектр расширяется незначительно за счет боковых частот крайних составляющих спектра немодулированных импульсов. Поэтому рабочая полоса частот, занимаемая импульсными сигналами, практически не зависит от вида модуляции и определяется длительностью и формой импульса.

3.5. Энергетический спектр модулированных сигналов

До сих пор мы рассматривали модуляцию несущего колебания детерминированным процессом u (t ), который отображает определенное сообщение или отдельную его реализацию. Совокупность же возможных сообщений представляет собой некоторый случайный процесс. Так, при передаче речи или музыки статистические свойства передаваемых сообщений очень близки к свойствам нормального случайного процесса. Важнейшими характеристиками колебания, модулированного случайным процессом, являются функция корреляции и энергетический спектр.

Следует подчеркнуть, что модулированный сигнал является нестационарным случайным процессом даже тогда, когда модулирующие процессы (сообщения) стационарны. Энергетический спектр нестационарного случайного процесса определяется посредством двукратного усреднения - по множеству и по времени. Сначала определяется усредненная по времени корреляционная функция, а затем обратным преобразованием Фурье - искомый энергетический спектр.

Рассмотрим случай, когда передаваемое сообщение u (t ) представляет собой стационарный процесс с u (t )=0, а переносчик - гармоническое колебание .

При амплитудной модуляции

s (t ) = А0 cos ω 0 t ,

где m - среднеквадратическое значение коэффициента модуляции. Функция корреляции модулированного сигнала

где Bu (t ) - функция корреляции передаваемого сообщения u (t ). Как видим, функция B (t , τ) зависит от времени, что указывает на нестационарность модулированного сигнала. После усреднения по времени получаем

Применяя к В (τ) преобразование Фурье (2.84), находим энергетический спектр сигнала при AM

Таким образом, спектр модулированного по амплитуде гармонического колебания случайным процессом состоит из несущего колебания с частотой и смещенного на спектра передаваемого сообщения u (t ).

Сигнал при угловой модуляции (ЧМ и ФМ) можно записать в общем виде

s (t ) = А0 cos ,

При ФМ , а при ЧМ.Здесь и - среднеквадратические значения девиации соответственно фазы и частоты.

Функция корреляции модулированного сигнала

При усреднении по времени первое слагаемое обращается в нуль. Второе слагаемое не зависит от времени t поэтому

Обозначим разность и по известной формуле представим косинус суммы двух углов в виде

Средние по множеству значения косинуса и синуса можно найти, если известен закон распределения вероятностей сообщения u (t ). Если u (t ) подчиняется нормальному закону, то , являющееся линейным преобразованием от u (t ), также будет иметь нормальное распределение с нулевым средним значением и дисперсией . Легко убедиться, что в этом случае:

Таким образом, усредненная по времени функция корреляции сигнала при угловой модуляции

(3.54)

Дисперсию процесса можно выразить через функцию корреляции или энергетический спектр сообщения u (t ). Действительно.

где - функция корреляции процесса . При , поэтому ; при ЧМ , где , поэтому . Далее можно определить энергетический спектр модулированного сигнала путем преобразования Фурье (2.81) от функции (3.54).

3.6. Модуляция шумовой несущей

В качестве переносчика можно использовать не только периодические колебания, но и узкополосный случайный процесс. Такие переносчики также находят практическое применение. Например, в оптических системах связи, в которых используется некогерентное излучение, сигнал, по существу, представляет собой узкополосный гауссов шум.

Согласно (2.36) узкополосный случайный процесс можно представить как квазигармоническое колебание

с медленно изменяющимися огибающей и фазой . При амплитудной модуляции в соответствии с передаваемым сообщением изменяется огибающая U (t ), при фазовой модуляции - фаза и при частотной - мгновенная частота .

Рассмотрим амплитудную модуляцию шумовой несущей. Выражение для модулированной несущей в этом случае можно записать в виде

y (t ) = f (t ), (3.57)

где f (t ) - переносчик, u (t ) - модулирующая функция (видеосигнал), m - коэффициент модуляции.

Предполагается, что модулирующий процесс u (t ) также представляет собой стационарный нормальный процесс со средним значением, равным нулю u (t ) = 0. Процессы f (t ) и u (t ) независимы. При этих ограничениях функция корреляции модулированной по амплитуде шумовой несущей будет

Теперь находим энергетический спектр

Первый интеграл дает энергетический спектр шумовой несущей . Для второго интеграла на основании теоремы о спектре произведения имеем

Окончательно спектр модулированной несущей будет равен:

Таким образом, спектр модулированной по амплитуде шумовой несущей получается суперпозицией спектра несущей и свертки этого спектра со спектром передаваемого сообщения, сдвинутого в область высоких частот на величину .Аналогично определяются функция корреляции и энергетический спектр при ФМ и ЧМ.

Применение «шумовых» сигналов позволяет ослабить влияние замираний в каналах с многолучевым распространением радиоволн. Поясним это на простейшем примере. Пусть на вход приемника поступают сигналы двух лучей и сдвигом на τ . время т. Мощность результирующего сигнала, определяемая за достаточно большое время Т,

где - функция корреляции сигнала, Р0 - его средняя мощность. Функция корреляции шума быстро убывает с увеличением т и тем быстрее, чем шире его спектр. Следовательно, при достаточно большой ширине спектра можно считать 0 и , т. е. средняя мощность принятого сигнала, несмотря на замирания, остается примерно постоянной.

3.7. Шумоподобные сигналы

Применение в качестве переносчика реализаций реального шума связано с определенными трудностями, которые возникают при формировании и приеме таких сигналов. Поэтому на практике нашли применение шумоподобные сигналы. Эти сигналы не являются случайными. Они формируются по определенному алгоритму. Однако их статистические свойства близки к свойствам шума: энергетический спектр почти равномерный, а функция корреляции имеет узкий основной пик и небольшие боковые выбросы. Шумоподобные и шумовые сигналы относятся к типу широкополосных сигналов (TF >>1).

В настоящее время известны методы формирования шумоподобных сигналов, которые при большой базе 2TF позволяют независимо воспроизводить их на приемном и передающем концах и отвечают требованиям синхронизации этих сигналов.

Широкое применение находят дискретные сигналы, которые строятся следующим образом. Информационная посылка длительностью Т разбивается на N бинарных элементов длительностью (рис. 3.11). Такое разбиение позволяет получить сигнал длительностью Т с полосой - и значением базы 2 TF . Последовательности бинарных элементов образуют коды, которые выбираются так, чтобы обеспечить заданные свойства сигнала. С помощью модуляции или гетеродинирования формируется высокочастотный сигнал, который передается по каналу. Часто при этом используется модуляция фазы на два положения: 0 и π

Функция корреляции дискретных сигналов при достаточно большом значении числа элементов N имеет главный максимум, сосредоточенный в области , и боковые лепестки, имеющие сравнительно малый уровень (рис. 3.11). Эта функция сильно напоминает функцию автокорреляции отрезка шума с полосой F . Отсюда и произошло название шумоподобные сигналы.

В системах связи, в которых используются шумоподобные (составные) сигналы, каждый элемент сообщения передается не одним, а несколькими элементами сигнала, несущими (повторяющими) одну и ту же информацию. Число N может достигать нескольких сотен и даже тысяч. Как будет показано в дальнейшем, это позволяет реализовать накопление сигнала, обеспечивающее высокую помехоустойчивость даже в том случае, когда уровень сигнала ниже уровня помех.

Рис. 3.11. Принцип построения сложного широкополосного сигнала

Обширный класс дискретных сигналов строится на основе линейных рекуррентных последовательностей. Эти сигналы имеют хорошие корреляционные свойства и сравнительно несложную практическую реализацию. Структура сигналов имеет случайный характер, хотя способ их формирования вполне регулярен. Непрерывные ФМ сигналы, построенные на основе рекуррентных последовательностей, могут иметь почти идеальную автокорреляционную функцию.

Среди линейных рекуррентных последовательностей особое место занимают псевдослучайные М -последовательности Хаффмена. Они представляют собой совокупность N периодически повторяющихся символов , каждый из которых может принимать одно из двух значений: +1 или -1. Это значение определяется взятым с противоположным знаком произведением значений двух или большего числа (но всегда четного) предыдущих сигналов

и . Почти каждому целому числу п соответствует несколько чисел k , при которых по правилу (3.60) образуется последовательность.

Из выражения (3.63) следует, что число N является максимальным периодом бесконечной последовательности Хаффмена. Могут образоваться также последовательности меньшего периода. Максимальное число различных последовательностей максимального периода для любого п равно:

(3.64)

где - функция Эйлера.

Бинарные псевдослучайные последовательности Хаффмена обладают рядом замечательных свойств. Нормированная функция автокорреляции в непрерывном режиме работы имеет главный максимум, равный единице, и одинаковые по величине боковые лепестки, равные . Функция взаимной корреляции для различных последовательностей равна -1/М. В импульсном режиме работы уровень боковых лепестков не превышает величины . Различные последовательности при заданном п отличаются как порядком чередования символов +1 и -1, так и максимальным значением боковых лепестков. При этом можно указать последовательность, у которой максимальный уровень боковых лепестков будет наименьшим среди возможных последовательностей для заданного п. Генерирование псевдослучайных последовательностей Хаффмена сравнительно просто осуществляется с помощью регистров сдвига.

Кроме сигналов Хаффмена, практическое применение находят и другие виды дискретных сигналов. Можно указать сигналы ПэлиПлоткина, последовательность символов Лежандра, коды Баркера, многофазные коды Фрэнка . Возможны, наконец, различные варианты составных сигналов.

В радиолокации широко применяются сигналы с линейным изменением частоты внутри импульса (ЛЧМ). Объясняется это тем,. что сигналы ЛЧМ имеют хорошие корреляционные свойства и прием их легко может быть осуществлен с помощью согласованных фильтров.

Шумоподобный сигнал может подвергаться всем известным способам модуляции. При амплитудной модуляции изменяются амплитуды всех его элементов. При частотной модуляции варианты сигнала отличаются средней частотой, при фазовой - разностью фаз между элементами двух посылок.

Специфическим видом модуляции, свойственным только широкополосным системам связи, является структурная модуляция или модуляция по форме сигнала. В этом случае в качестве вариантов сигнала используются колебания, построенные из одинаковых элементов, но с разным взаимным расположением этих элементов. Например, двоичную передачу можно осуществить с помощью сигналов вида:

Аналогично строятся многопозиционные широкополосные системы со структурной модуляцией. В этом случае используется ансамбль шумополобных сигналов . При этом, конечно, различие между этими сигналами должно быть достаточным для их разделения на приеме. С этой точки зрения большой интерес представляют противоположные и ортогональные сигналы.

Вопросы для повторения

1. Изобразите векторные диаграммы AM и ЧМ сигналов.

2. Определите среднюю мощность AM сигнала.

3. При каком виде модуляции ширина спектра сигнала минимальна? Чему она равна? Чему равна ширина спектра ЧМ сигнала?

4. Перечислите основные виды дискретной модуляции. Поясните принцип ОФМ.

5. Докажите, что при спектр сигнала при фазовой манипуляции ничем не отличается от спектра сигнала при балансной модуляции.

6. Назовите основные виды импульсной модуляций. Поясните их принцип.

7. Чем в основном определяется ширина спектра сигнала при импульсной модуляции?

8. Поясните принцип модуляции шумовой несущей.

9. Изобразите графически смещение спектра при шумовой и гармонической несущих.

10. Поясните принцип построения дискретных шумоподобных сигналов. Приведите примеры.

11. Является ли дискретная псевдослучайная последовательность случайным процессом? В чем ее сходство с шумом?

12. Как осуществляется модуляция шумоподобных сигналов?

Фильтрация сигналов на фоне помех.

1. Задачи и методы фильтрации

Электрическим фильтром называется пассивный четырехполюсник пропускающий электрические сигналы некоторой полосы частот без существенного ослабления или с усилением, а колебания вне этой полосы частот - с большим ослаблением. Такие устройства применяются для выделения полезных сигналов на фоне помех. Задача фильтрации формулируется следующим образом.

Если на вход линейного фильтра поступает смесь сигнала и помехи

то проблема состоит в том, как наилучшим образом выделить сигнал их этой смеси, т.е. как создать оптимальный фильтр. Известными считаются статические характеристики (т.е. спектр или корреляционная функция)

функции х(t), представляющей собой смесь сигнала и помехи. Искомой является периодическая функция оптимального фильтра.

Задача об оптимальной фильтрации решается по-разному в зависимости от того смысла, который вкладывается в понятие оптимальности. Рассмотрим три наиболее важных случаи оптимальной фильтрации.

1. Форма сигнала известна. От фильтра требуется только сохранение полученного сообщения, заключенного в сигнале, т.е. сохранение неискаженным помехой информационного параметра сигнала и не требуется сохранение формы. Такая задача может быть поставлена при фильтрации сигналов, форма которых известна на приемной стороне (например, обнаружение сигнала в радиотелеграфии и радиолокации). Фильтр при этом называют оптимальным, если в некоторый момент времени t 0 на его выходе обеспечивается максимальное отношение сигнала к среднеквадратическому значению напряжения шума. Такой фильтр может быть интегратором, поскольку речь идет о типовом значении полезного сигнла. При этом он должен лучше пропускать те частоты, на которых больше интенсивность спектральных составляющих сигнала и меньше интенсивность помех.

Для передаточной функции только оптимального фильтра теория дает следующие выражения:

(2)

где а - некоторая постоянная;

- величина, комплексно сопряженная амплитудному спектру сигнала;

Спектр мощности помехи.

В случае помехи с равномерным спектром частная характеристика оптимального фильтра с точностью до постоянного множителя совпадает с амплитудным спектром сигнал:

Отсюда специфическое название подобных оптимальных фильтров - согласованные фильтры (т.е. согласованные с сигналом).

Например, при приеме сигнала в виде передаточной повторяющихся импульсов, спектр каждого из которых состоит из отдельных узких полос (см. рис.), фильтр должен пропускать лишь эти полосы.

Рассматриваемый сигнал пройдет через такой фильтр без искажений, а мощность помехи уменьшится, т.к. она будет складываться из мощностей лишь тех спектральных составляющих помехи, которые попадут в полосу прозрачности фильтра. Такой фильтр для приема последовательностей импульсов получил название гребенчатого фильтра. Его применение приводит к тем большему увеличению превышения сигнала над помехой, чем уже полоса прозрачности фильтра. В свою очередь полосы прозрачности могут быть сделаны тем более узкими, чем больше характер последовательности приближается к периодическому закону (в этом случае полосы спектра превращается в линии). Но приближение к периодическому сигналу, т.е. достаточно многократное его повторение, эквивалентное увеличению длительности сигнала. Таким образом, согласованная фильтрация повышает помехоустойчивость как бы за счет увеличения длительности полезного сигнала.

2. Форма сигнала неизвестна, а от фильтра требуется ее сохранения. Например, фильтрация после детектора должна обеспечивать наилучшее воспроизведение на фоне шума не одного или нескольких параметров сигнала, а всего сигнала S(t). В этом случае в качестве критерия оптимальности (точности воспроизведения сигнала) удобно принять среднеквадратичнную ошибку, т.е. средний квадрат уклонения воспроизведенного сигнала от периодического. если сигнал и помеха являются независимыми и стационарными случайными процессами, то частотная характеристика такого оптимального фильтра, обеспечивающего минимальную среднеквадратичную ошибку, определяется спектрами мощности сигналом Р С  и помехи G П .

(4)

Фильтр ослабляет те спектральные составляющие, которые сильней поражены помехой, и для которых больше отношение G П / Р С  А на тех частотах, где помеха отсутствует G П 

3. Выделение длительного периодического сигнала из его смеси с помехой может быть осуществлено путем исследования функции корреляции этой смеси. Корреляционный фильтр, осуществляющий такое исследование, содержит блок переключения и блок усреднения (интегратор).

При взаимокорреляционной фильтрации, когда фильтр, располагая образцом сигнала, определяет функцию взаимной корреляции между принятой смесью X(t) и образцом сигнала S(t) (в данном случае речь идет только о констатации факта наличия сигнала):

Если сигнал и помеха некоррелированы, то и напряжения будет свидетельствовать о наличие сигнала в смеси.

Автокорреляционная фильтра используется при отсутствии определенных сведений о форме сигнала. Фильтр в этом случае определяет автокорреляционную функцию смеси:

При отсутствии корреляции между сигналом и помехой последние два слагаемых исчезнут. Что касается оставшихся двух слагаемых, то первое из них может носить черты периодичности, т.к. является автокорреляционной функцией сигнала близкого к периодическому, а второе обращается в ноль, если сдвиг больше интервала корреляции помехи  П. Таким образом, при достаточно большом сдвиге  и времени усреднения Т наличие напряжения K C . C () на выходе коррелятора свидетельствует о наличии периодического сигнала в смеси.

Однако реальные сигналы связи не являются периодическими и ограничены некоторой длительностью  с. Следовательно, при  с автокорреляционная функция сигнала становится равной нулю (см. рис.). С другой стороны, интервал корреляции помехи  П возрастает тем больше, чем большему ограничению подвергается спектр помехи в фильтре, поскольку помеха приобретает характер периодичности. При оптимальной фильтрации до коррелометра  П может превысить  с и корреляционная фильтрация не даст никакого эффекта.

Таким образом, автокорреляционная фильтрация эффективна только в том случае, если  с > П, т.е. при широкой полосе пропускания фильтровых цепей и достаточно длительных сигналов. Повышение помехоустойчивости сигнала по длительности над помехой.

2. Согласованная фильтрация заданного сигнала

2.1. Методика анализа .

Для задачи обнаружения сигнала в шумах наибольшее распространение получил критерий максимума отношения сигнал-шум (помеха) на выходе фильтра. Фильтры, отвечающие этому критерию, называются согласованными.

Требования к фильтру, максимизирующему отношение сигнал-помеха, можно сформулировать следующим образом. Пусть на вход фильтра подается аддитивная смесь сигнала. S(t) и шума Сигнал полностью известен. Это означает, что заданы его форма и положение на оси времени. Шум представляет собой вероятностный процесс с заданными статистическими характеристиками. Требуется синтезировать фильтр, обеспечивающий получение на выходе наибольшего возможного отношения пикового значения сигнала к среднеквадратичному значению шума. При этом не ставится условие сохранения формы сигнала, т.к. для обнаружения его в шумах форма значения не имеет.

Для уяснения сути согласованной фильтрации сначала рассмотрим наиболее простой случай, когда на входе фильтра с равномерной АЧХ имеется лишь один полезный сигнал S(t) с известным спектром . Требуется найти ФЧХ фильтра, при которой обеспечивается максимализация типа сигнала на выходе фильтра. Такая постановка задачи равносильна задаче максимизации пика сигнала при заданной энергии входного сигнала, поскольку спектральная плотность S() полностью определяет его энергию и не меняется фильтром, а любое изменение фазовых соотношений в спектре тем более не меняет энергии сигнала. Равенство S вх (ω)= S вых (ω) означает, что , т.е. ≠ К(ω).

Представим выходной сигнал в виде:

(4)

где - передаточная функция (5) четырехполюсника с искомой ФЧХ и равномерной АЧХ К 0 =соnst.

Таким образом

(6)

Основываясь на очевидном неравенстве

(7)

и учитывая, что , можно составить следующее неравенство:

(8)

Это неравенство определяет верхний предел мгновенного значения колебания S ВЫХ (t) при заданном спектре входного сигнала. Максимизация пика выходного колебания получается при обращении неравенства (8) в равенство, а для этого необходимо, как это следует из сопоставления выражения (6) и (8), обеспечить определенное соотношение между фазовой характеристикой фильтра  к () и фазовой характеристикой спектра  s () входного сигнала.

Допустим, что выходной сигнал достигает максимума в момент t 0 (пока еще неопределенный). Тогда выражение (6) дает

а условие обращения неравенства (8) в равенство сводится к следующему:

Это соотношение называют условием компенсации начальных фаз в спектре сигнала, поскольку первое слагаемое в правой части (10) компенсирует фазовую характеристику  s () входного спектра S(j). В результате прохождения сигнала через фильтр с фазовой характеристикой  к () сложение всех компонентов спектра, скорреëированных по фазе, образует пик выходного сигнала в момент t=t 0 .

Соотношение (11) показывает, что только при линейной фазовой характеристике S вых имеет пик, т.к. cosnw 1 (t-t 0)=1 при t=0

Связь между фазовой характеристикой  s (), компенсирующей ее характеристикой [- s ()] и полной фазовой характеристикой фильтра  к ()=-[ s ()+wt 0 ] видна из следующего рисунка. После прохождения через фильтр спектр выходного сигнала будет иметь фазовую характеристику.

Нелинейность фазовой характеристики φ s означает, что гармоники задерживаются по-разному и следовательно не могут образовать max в момент t 0 . При линейной фазовой характеристике в момент t 0 все гармоники имеют одинаковую фазу, поскольку гармоническая функция Cosnw 1 (t-t 0), при t=t 0 , всегда обращается в единицу.

Поскольку для образования пика требуется использование всей энергии сигнала, а это возможно не ранее окончания действия входного сигнала, задержка t 0 не может быть меньше, чем полная длительность сигнала.

Введем теперь помеху на входе фильтра. При равномерном энергетическом спектре помехи (белый шум) W()=W 0 =const - фильтр с равномерной АЧХ неприменим, т.к. мощность помехи на выходе достигает очень большой величины.

1. Вводные замечания

2. Модели сигналов и помех

Библиографический список

1. Вводные замечания

В процессе приема сигналов на вход приемного устройства поступает либо смесь сигнала и помехи, либо помеха. Оптимальное приемное устройство обнаружения на первичном этапе обработки должно наилучшим образом вынести решение о принятом сигнале, т.е. определить, присутствует или отсутствует сигнал, какой тип сигнала присутствует (на втором этапе обработки), оценить значение того или иного параметра (амплитуды, длительности, времени прихода, направление прихода и т.д.). Сформулированная задача может решаться при априорно неизвестных моделях сигналов и помех, при неизвестных (мешающих) параметрах или неизвестных распределениях сигналов и помех. Основная цель заключается в синтезе оптимальной структуры приемного устройства. Синтезированная структура чаще всего практически нереализуема, однако ее эффективность является потенциальной и дает верхнюю границу эффективности любых практически реализуемых структур.

Синтез оптимальных процедур обработки сигналов и помех может производиться с использованием различных методов оптимизации:

1. Использование корреляционной теории:

а) критерий максимума отношения сигнал/помеха;

б) критерий минимума среднеквадратической ошибки.

2. Использование теории информации для максимизации пропускной способности системы. Главное направление – построение наилучших методов кодирования.

Применение теории статистических решений.

Задача оптимизации может быть решена только при наличии критерия, который задается разработчиком системы.

Чтобы воспользоваться теорией статистических решений при синтезе оптимальных приемных устройств, необходимо иметь математические модели сигналов и помех. Эти модели должны включать описание формы сигнала (если она известна). Статистические характеристики и характер взаимодействия сигнала и помехи вплоть до n-мерных плотностей вероятностей.

Теория статистических решений имеет следующие составные части:

1) теорию проверки статистических гипотез:

а) двухальтернативные задачи обнаружения или распознавания сигналов;

б) многоальтернативные задачи при различении многих сигналов на фоне помех;

2) теорию оценки параметров, если эти параметры составляют счетное множество;

3) теорию оценки процесса, который необходимо выделить из входной смеси с минимальной ошибкой.

Постановка задачи синтеза оптимального приемного устройства и ее решение существенным образом зависят от объема априорных (доопытных) сведений о характеристиках сигналов и помех. По объему априорных данных различают задачи с полной априорной определенностью (детерминированный сигнал и помеха с полностью известными вероятностными характеристиками), с частичной априорной определенностью (имеются известные параметры сигнала и помехи) и с априорной неопределенностью (известны лишь некоторые сведения о классах сигналов и помех) . Следует заметить, что эффективность разработанных обнаружителей и измерителей параметров существенно зависит от объема априорной информации.

Следует заметить, что, если о сигналах и помехах ничего неизвестно (полностью отсутствует информация о них), то такая задача не может быть решена.

2. Модели сигналов и помех

Сигнал – это процесс, служащий для передачи информации или сообщения. Остальные процессы, воспринимаемые приемным устройством вместе с сигналом, являются помехами.

Сигналы классифицируются по объему априорных сведений:

а) детерминированные сигналы (неслучайные);

б) детерминированные по форме сигналы со случайными параметрами (квазислучайные);

в) псевдослучайные, шумоподобные сигналы (они близки по свойствам к случайным процессам, но генерируются детерминированным образом и при воспроизведении полностью повторяются);

г) случайные сигналы.

В зависимости от характера изменения во времени сигналы подразделяются на дискретные и непрерывные. Дискретные сигналы используются в цифровых устройствах, в радиолокации. Непрерывные (континуальные) – в телефонии, радиовещании, телевидении и т.д. В последнее время дискретные сигналы используются и в цифровом телевидении и радиовещании.

Каждый сигнал может быть охарактеризован по степени сложности в зависимости от величины, называемой базой сигнала: B = F∙T, где F – эффективная ширина спектра сигнала; Т – эффективная длительность сигнала. Если B » 1, то сигнал называется простым, при B >> 1 – сложным сигналом. Сложные сигналы получают либо из совокупности простых сигналов, либо с помощью модуляции. К сложным сигналам могут быть отнесены шумовые и шумоподобные сигналы. У таких сигналов , где Т – эффективная длительность сигнала (когда сигнал эквивалентен по энергии сигналу с прямоугольной формой); – интервал корреляции процесса.

В различных системах, как правило, излучают радиосигналы, отличающиеся по виду модуляции: амплитудно-модулированные, частотно-модулированные, фазомодулированные, сигналы с импульсными видами модуляции; манипулированные (по амплитуде, частоте, фазе и совмещенные) сигналы.

В радиолокации чаще всего излучается последовательность радиоимпульсов.

Упрощенная структура РЛС представлена на рис. 1, где использованы следующие обозначения: РПУ – радиопередающее устройство; РПрУ – радиоприемное устройство; АП – антенный переключатель; s0(t) – зондирующий сигнал; s(t) – отраженный сигнал; А – антенна; О – обнаруживаемый объект; V – скорость сканирования антенны. Облучение пространства производится периодическим зондирующим сигналом.

Импульс отражается от объекта обнаружения и возвращается с задержкой к антенне РЛС. Задержка определяется расстоянием между РЛС и объектом. Интенсивность отраженного сигнала зависит от эффективной поверхности рассеяния (ЭПР) объекта и условий распространения радиосигнала. В РЛС одна и та же антенная система используется при передаче и приеме сигналов. Интенсивность облучения объекта зависит от формы диаграммы направленности антенны и угла между направлением на объект и направлением максимального коэффициента направленного действия. При сканировании антенной системы (механическом или электронном вращении диаграммы направленности) огибающая пачки импульсов отраженного сигнала повторяет форму диаграммы направленности (рис. 1). В режиме сопровождения объекта огибающая пачки импульсов может иметь прямоугольную форму.


При обзоре время облучения ограничено, и принимаемый сигнал представляет собой ограниченную по времени пачку радиоимпульсов. Модуляция по амплитуде импульсов в пачке определяется не только формой диаграммы направленности, но и скоростью V обзора, от нее зависит и число импульсов в пачке. Обычно огибающая пачки – детерминированная функция, поскольку вид диаграммы направленности и скорость обзора известны.

Запаздывание отраженного сигнала зависит от дальности r до объекта – , где c – скорость распространения радиоволны в пространстве. При распространении сигнал ослабляется относительно излученного в 106 – 1010 раз по напряжению. Кроме того, изменение угла между направлением максимума диаграммы направленности антенны и объектом и поворот объекта за время облучения приводит к случайным изменениям амплитуды импульсов принимаемого сигнала. За счет радиальной скорости объекта Vr изменяется и частота отраженного сигнала (доплеровский эффект), при этом приращение частоты несущего колебания . Изменяются параметры сигнала в канале связи и во входных трактах приемной системы.

При отражении сигнала от объекта происходит изменение поляризации падающей волны. Эти изменения зависят от формы объекта и могут быть использованы при распознавании объектов.

Построить модель сигнала, которая учитывала бы все эти влияния и изменения сложно, поэтому учитывают только часть рассмотренных изменений.

Основные модели сигналов

а) Детерминированный сигнал:

Все параметры сигнала: амплитуда А, закон ее изменения во времени S0(t), частота w0 и закон изменения начальной фазы во времени известны, т.е. огибающая S(t) и фаза являются детерминированными функциями времени.

б) Одиночный сигнал со случайной амплитудой и фазой

где А, j, t – случайные параметры.

Случайные параметры задаются плотностями вероятности. Распределение амплитуд А чаще всего полагают релеевским

,


где s2 – дисперсия флюктуаций амплитуды.

Начальная фаза j и задержка t распределены равномерно, т.е.

где Т – период зондирования, определяемый максимальной однозначной дальностью действия РЛС.

Функции s0(t) и – детерминированные.

Для движущихся объектов локации к несущей частоте w0 добавляется доплеровский сдвиг , где – случайная величина, знак которой зависит от направления перемещения объекта в радиальном направлении относительно РЛС.

в) Нефлюктуирующая пачка радиоимпульсов

где ; функция H2(t) – функция, обусловленная формой диаграммы направленности (рис. 2б); Т0 – период следования импульсов в пачке; К = const.

г) Флюктуирующая пачка импульсов:

– дружно-флюктуирующая пачка – амплитуды радиоимпульсов в пачке неизменны, но изменяются независимо от пачки к пачке, что соответствует медленному изменению ЭПР отражающего объекта во времени или изменению параметров канала распространения электромагнитной волны и т.д. (рис. 2);

– быстро-флюктуирующая пачка – амплитуды радиоимпульсов изменяются в пачке от импульса к импульсу независимо (рис. 3).

В зависимости от характера изменения начальной фазы колебаний от импульса к импульсу в пачке различают когерентные и некогерентные пачки радиоимпульсов. Когерентная пачка может быть образована путем вырезания импульсов из непрерывного стабильного гармонического колебания. Начальные фазы в этом случае или одинаковы во всех радиоимпульсах пачки, или изменяются по известному закону. Некогерентная пачка состоит из радиоимпульсов с независимо-изменяющейся начальной фазой.

Помехи разделяются на естественные (неорганизованные) и искусственные (организованные), внутренние и внешние.

По способу образования помехи могут быть пассивными и активными. Естественные пассивные помехи создаются отражениями от местных предметов (в радиолокации) и земной поверхности, растительности и т.д.; отражениями от метеорных следов и атмосферных неоднородностей (в радиосвязи на УКВ).

Активные помехи имеют самостоятельный источник, в то время как пассивные помехи обусловлены излучением зондирующего сигнала. По характеру изменения во времени помехи бывают флюктуационные (гладкие) и импульсные.

В качестве помех могут быть случайные, шумоподобные или детерминированные процессы. Из всех помех наибольшее воздействие на подавляемую РЛС оказывает белый (широкополосный) шум с нормальным распределением, поскольку он имеет наибольшую информационную емкость.

Чаще всего в качестве моделей помех используется их описание с помощью статистических характеристик. Наиболее полной характеристикой является n-мерная плотность вероятности. Однако в некоторых частных, но очень важных случаях помеха может быть охарактеризована одномерной или двумерной плотностями вероятности.

Сигналы и помехи могут быть представлены в виде некоторых множеств в частотно-временной системе координат (рис. 4).

Каждый сигнал или помехи занимают по осям w и t определенные отрезки, зависящие от полосы частот Dw и длительности t. Чем больше Dw и t, тем эффективнее помеха с точки зрения подавления сигнала. Наилучшей помехой является белый шум, который заполняет всю плоскость w, t, и обладает наибольшими дезинформационными свойствами. Если шум узкополосный, то он занимает ограниченную площадь, поскольку имеет неравномерную спектральную плотность мощности. От такой помехи можно избавиться, перестроив несущую частоту w0 сигнала.

Для пространственно-временных сигналов и помех используются дополнительные координаты: угол места и азимут. И тогда источники помех могут быть точечными по угловым координатам или распределенные в конкретных секторах.


Геометрическое представление сигналов и помех связано с введением многомерного пространства выборок и широко используется в теории сигналов . Пусть имеется реализация x(t) случайного процесса X(t). В соответствии с теоремой Котельникова эта реализация может быть представлена в виде дискретных отсчетов xi = x(iDt). Число этих отсчетов (единичных измерений) – N, совместно они образуют выборку X размером N – , i – номер измерения в выборке X. Если представим n-мерное пространство, в котором на каждой оси координат отложим соответствующие по номеру измерения, то вся выборка будет соответствовать точке этого пространства или вектору, конец которого лежит в этой точке. Длина вектора в данном пространстве может быть представлена так:

.

Эта величина называется нормой вектора в эвклидовом пространстве. В пространстве Хемминга норма выражается иначе:

Если и , то в пределе переходим к бесконечному пространству , в котором норма определяется так

.

Для реальных процессов и имеет размерность величины x.

Все указанные пространства линейны, и для них определены операции сложения элементов множества и умножения элемента на число. Причем обе эти операции удовлетворяют условиям коммутативности, ассоциативности и дистрибутивности.

Среди линейных пространств можно выделить метрические пространства, для которых существует метрика , т.е. норма разности векторов, которая больше или равна нулю. Метрика (расстояние) обладает следующими свойствами:

а) ; б) ; в) ,

где x, y, z – элементы пространства.

Для эвклидова конечно-мерного пространства –

,

для непрерывного пространства аналогично

.

Важным является понятие скалярного произведения. Оно характеризует собой проекцию одного вектора на другой и определяется в так:

,

т.е. сумма произведений одноименных проекций векторов на оси координат. В непрерывном пространстве : , причем скалярное произведение всегда не больше произведения норм векторов (неравенство Шварца).

Угол между векторами определяется так

.

Если определить норму через скалярное произведение, то говорят, что норма порождена скалярным произведением, а пространство, отвечающее такому произведению, называется гильбертовым.

Введем понятие случайного вектора. Случайный вектор – это такой вектор, координаты которого есть случайные величины. Этот вектор в пространстве выборок не занимает какого-либо фиксированного положения. Его конец может оказаться в той или иной области пространства с известной вероятностью, которую можно подсчитать, зная совместное распределение случайных величин . Конец вектора можно представить себе не как определенную точку, а как облако, переменная плотность которого выражает вероятность нахождения конца вектора в данном элементе объема пространства. Геометрически это облако отображается гиперсферой в n-мерном пространстве (рис. 5).

Элементарный объем в пространстве выборок . Вероятность попадания конца вектора в этот объем будет равна

где – плотность вероятности случайного процесса X(t).

Если гиперсфера имеет размеры W, то попаданию точки в эту гиперсферу соответствует вероятность

где – проекции гиперсферы W на оси координат системы.

Это выражением может быть записано в векторной форме

.

Если распределены по нормальному закону с одинаковой дисперсией каждой их независимых компонент, то вероятность попасть в элементарный объем пространства выборок равна

,

где – расстояние от начала системы координат до элемента .

В данном случае облако имеет сферическую форму. При различных дисперсиях облако вытягивается вдоль тех осей, которым соответствуют единичные измерения с большей дисперсией.

Если даны два случайных процесса x и h, то косинус угла между их векторами соответствует нормированному коэффициенту взаимной корреляции. Геометрически он характеризует проекцию единичных векторов одного на другой. Если x = h, то – линейная зависимость, если же они перпендикулярны, то – показывает полное отсутствие коррелированности. В этом случае векторы ортогональны, а процессы некоррелированы.

Для нормальных процессов некоррелированность означает и независимость, поскольку для них иной случайной зависимости, кроме линейной, не существует. Доказывается такое утверждение подстановкой коэффициента корреляции, равного нулю, в двумерную нормальную плотность вероятности. В результате такой подстановки плотность вероятности преобразуется к произведению одномерных плотностей вероятности, что является необходимым и достаточным условием статистической независимости двух случайных величин, входящих в систему.

3. Вероятностные характеристики случайных процессов

1. Наиболее полными вероятностными характеристиками случайных процессов (СП) являются различные виды распределений вероятностей мгновенных значений, среди которых основное применение получили интегральная функция распределения вероятностей и плотность вероятности.

Для ансамбля реализаций СП (рис. 6) одномерная интегральная функция распределения определяется как вероятность того, что мгновенные значения реализаций не превысят некоторый фиксированный уровень x в момент времени t.

Аналогично определяется n-мерная интегральная функция распределения как вероятность совместного выполнения неравенств:

Виды одномерной интегральной функции распределения для различных процессов показаны на рис. 8.

В отличие от интегральных функций распределения случайных величин, эта характеристика СП в общем случае (для нестационарных СП) зависит от времени.

Так же как и для случайных величин, (положительная определенность), при x2 > x1 (интегральная функция является неубывающей), (ограниченность).


Хотя интегральная функция распределения вероятности определена и для непрерывных, и для дискретных процессов, большее распространение получила плотность вероятности, определенная только для непрерывных СП.

Одномерная плотность вероятности определяется как производная от интегральной функции по аргументу x:

.

Для n-мерной плотности в соответствии с (1) имеем:

Из представления производной в виде предела отношения конечных приращений можно сделать вывод, что плотность вероятности характеризует относительную частоту пребывания мгновенных значений в элементарном интервале Dx.

На рис. 7 приведены графики плотности вероятности для реализаций различной формы.

Аналогичное рассмотрение n-мерной плотности вероятности позволяет интерпретировать ее как вероятность того, что значение функции находятся в пределах n коридоров Dx или, иначе, что реализация примет заданную форму (рис. 8).

Свойства плотности вероятности:

– положительная определенность – ;

– свойство симметрии – значения плотности вероятности не меняются при перестановке аргументов;

– свойство нормировки ;

– свойство согласованности (число интегралов в правой части равно n – m)


– плотность вероятности меньшего порядка вычисляется путем интегрирования по «лишним» аргументам;

– размерность плотности вероятности обратна размерности случайной величины.

Наиболее широко в радиотехнике используются следующие распределения.

1. Нормальной (гауссово) распределение (рис. 9):

,

где m – математическое ожидание; s – среднеквадратическое отклонение (СКО).

Для нормального распределения характерна симметрия относительно математического ожидания и большие значения случайной величины встречаются значительно реже малых:

.

2. Равномерное распределение (рис. 10):

Экспоненциальное распределение (рис. 11):

4. Распределение Рэлея (распределение огибающей узкополосного нормального СП):

2. Распределения вероятностей, хотя и является наиболее употребимыми в теории характеристиками, не всегда доступны для экспериментального определения и во многих случаях слишком громоздки в теоретических исследованиях. Более простыми являются числовые характеристики СП, определяемые как некоторые функционалы от плотности вероятности. Наиболее широко из них используются моментные функции, определяемые как среднее значение различных степенных преобразований СП.

Начальные одномерные моменты определяются в виде

. (3)

Особое значение имеют первый начальный момент – математическое ожидание и второй начальный момент

.

сигнал случайный помеха прием

Физический смысл этих характеристик: среднее значение и средняя мощность СП, выделяемая на сопротивлении в 1 Ом, соответственно (если СП есть напряжение, стационарное по постоянной составляющей и мощности). Второй начальный момент характеризует степень разбросанности случайной величины относительно начала координат. Размерность математического ожидания совпадает с размерностью величины x (для x в виде напряжения – вольты), а размерность m2 – с размерностью квадрата величины x.

В случае стационарных СП моменты не зависят от времени, для нестационарных могут быть функциями времени (в зависимости от типа не-стационарности), что поясняется рис. 13.

Центральные моменты определяются аналогично начальным моментам, но для центрированного процесса :

. (4)

Поэтому всегда .

Второй центральный момент – дисперсия СП – определяется в виде

и характеризует степень разбросанности значений относительно математического ожидания или, иначе, среднюю мощность переменной составляющей процесса, выделяемой на сопротивлении в 1 Ом. Очевидна связь между начальными и центральными моментами:


, в частности .

Отметим, что третий центральный момент (p = 3 в (4)) характеризует асимметрию распределения вероятностей (для симметричных плотностей вероятности ), а четвертый (p = 4) – степень остроты вершины плотности вероятности.

Рассмотрим пример вычисления одномерных моментов распределения.

ПРИМЕР 1. Процесс с треугольной симметричной плотностью вероятности виден на экране осциллографа в виде шумовой дорожки с размахом от -2 до +4 В. При выключенной развертке яркость вертикальной линии в центре экрана равномерна. Оценить математическое ожидание и дисперсию процесса.

Решение примера 1. Сведения о форме распределения и его границах позволяет записать аналитическое выражение для плотности вероятности (рис. 14).

При этом максимальное значение плотности вероятности fm, достигаемое при x=1 В, определяется из условия нормировки, т.е. равенства площади треугольника единице:

,


Такое симметричное треугольное распределение называют также законом Симпсона.

В соответствии с определениями математическое ожидание и дисперсия равны

.

Однако удобнее вычислить вначале второй начальный момент


тогда = 6 В2.

Смешанные начальные моменты определяются соотношением

Смешанные центральные моменты определяются аналогично, но с заменой x в формуле (5) на центрированное значение .

Ввиду того, что значения x в смешанных моментах определяются в различные моменты времени, появляется возможность оценки статистической взаимозависимости значений процессов, разделенных заданными интервалами. Наиболее важным является простейший из смешанных моментов, отображающий линейную статистическую взаимозависимость и называется корреляционной и ковариационной функцией:

Как видно из определения, размерность корреляционной функции определяется размерностью квадрата величины x (для напряжения – В2).

Для стационарного СП корреляционная функция зависит только от разности :

.

Следует заметить, что при t = 0 максимальное значение K(0) = s2.

На рис. 15 приведены примеры реализаций процессов с разными корреляционными функциями.

Кроме функционалов на основе степенных функций (моментов) возможны и другие типы функционалов в качестве статистических характеристик СП. Важнейшим среди них является функционал, основанный на экспоненциальном преобразовании и называемый характеристической функцией

. (7)

Нетрудно заметить, что данное выражение представляет преобразование Фурье от плотности вероятности, отличающееся от обычного лишь знаком в показателе экспоненты.

Поэтому можно записать и обратное преобразование, позволяющее по характеристической функции восстановить плотность вероятности:

.

Соответственно для n-мерного случая имеем

Основные свойства характеристической функции состоят в следующем:

– свойство нормировки ;

– свойство симметрии ;

– свойство согласованности

– определение характеристической функции суммы независимых случайных величин

Как видно из анализа перечисленных свойств, различные преобразования характеристической функции проще плотности вероятности. Простая связь также между характеристической функцией и моментами плотности вероятности.

Пользуясь определением характеристической функции (7), продифференцируем ее k раз по аргументу u:

.

Можно заметить, что операция дифференцирования намного проще, операция интегрирования при определении моментов плотности вероятности.

ПРИМЕР 2. Может ли существовать процесс с характеристической функцией прямоугольной формы?

Решение примера 2. На рис. 16 представлена характеристическая функция прямоугольной формы (а) и соответствующая ей плотность вероятности (б).


Так как характеристическая функция является преобразованием Фурье от плотности вероятности, то ее обратное преобразование Фурье должно обладать всеми свойствами плотности вероятности. В данном случае

График плотности вероятности представлен на рис. 16б.

Как видно из выражения для f(x) и рисунка, полученная плотность вероятности не удовлетворяет условию положительной определенности (), следовательно, процесс с заданной характеристической функцией не может существовать.

4. Энергетические характеристики случайных процессов

К энергетическим характеристикам СП относят корреляционную функцию, спектральную плотность мощности и непосредственно связанные с ними параметры СП.

В разделе 2 было дано определение корреляционных функций как смешанных центральных моментов второго порядка соответственно автокорреляционной и взаимнокорреляционной функций, т.е.

.

Основные свойства автокорреляционной функции:

– свойство симметрии , для стационарных процессов – четность ;

– свойство ограниченности , для стационарных процессов ;

– свойство неограниченного убывания с ростом аргумента (для эргодических процессов) ;

– свойство положительной определенности интеграла

;

– размерность соответствует квадрату размерности случайного процесса.

Это свойство следует из определения спектральной плотности мощности (для случайных напряжений и тока через сопротивление 1 Ом), которое будет приведено ниже.

Для взаимнокорреляционной функции аналогично можно записать:

; ;

; .

Ввиду ограниченности корреляционной функции частот используют нормированные корреляционные функции


; ,

причем ; .

Для более компактного описания свойств случайного процесса вводят понятие интервала корреляции, определяющего интервал времени, на котором существует связь между значениями процесса.

Основные определения интервала корреляции:

– интегральный (для положительно определенных корреляционных функций) . Геометрически он характеризует ширину основания прямоугольника, равновеликого по площади функции k(t) при t > 0 (рис. 17а);

– абсолютный интервал корреляции (в отличие от предыдущего может использоваться для знакопеременных функций ) (рис. 17б);

– квадратичный интервал корреляции ;

– максимальный интервал корреляции (на уровне a) (рис. 18)

.


Обычно уровень a выбирается исходя из рассматриваемой задачи и имеет значения 1/e; 0,1; 9,05; 0,01 и т.д.

Последнее определение не является более произвольным, чем предыдущие, так как выбор конкретного вида функционала протяженности произволен и определяется удобством математического решения конкретной задачи. Практически этот интервал корреляции используется в радиоизмерениях для определения интервала, вне которого случайные величины в сечениях случайного процесса можно считать некоррелированными. Достоверность такого предположения определяется выбором уровня a.

Большое значение в статистической радиотехнике имеют спектральные характеристики СП. При этом используются различные интегральные преобразования процесса вида

.

При исследовании линейных систем с постоянными параметрами особое значение имеет ядро преобразования вида , так как отклик линейных систем на гармоническое воздействие также является гармоническим.

Преобразование Фурье от k-й реализации СП дает также случайную функцию частоты, зависящую от номера реализации:

.

В условиях реального наблюдения можно получить лишь текущий спектр реализации за интервал наблюдения T

.

Приведенные выражения в существенной степени формальны, так как для многих СП условия применимости преобразования Фурье не выполняются, и интеграл не сходится к какому-либо определенному пределу.

Определим квадрат модуля спектральной плотности k-й реализации

Предполагая процесс стационарным и центрированным, заменяя и производя статистическое усреднение по множеству реализаций, определим:

.

Разделив обе части полученного равенства на T и беря предел , получим

.

Поясним физический смысл этой характеристики. Учитывая теорему Релея

,

определим ; ;

;

; .

Таким образом, спектральная плотность мощности или энергетический спектр – это усредненная по всем реализациям функция распределения мощности по частотам.

Следовательно, спектральная плотность мощности и корреляционная функция связаны преобразованием Фурье (теорема Винера – Хинчина):

(9)

Полагая t = 0, получим

.

Учитывая свойство четности корреляционной функции, запишем

,

.

В полученных формулах G(w) определялась для положительных значений круговой частоты w, причем G(w) = G(–w). В отличие от такого «двухстороннего» математического спектра, введем односторонний физический спектр:

Тогда формулы теоремы Винера – Хинчина примут вид:

(10)

Часто используется нормированная спектральная плотность мощности

.

Из определения G(w) следуют методы его экспериментального определения (рис. 19). А именно: измеряется квадратичным прибором среднеквадратическое отклонение процесса в узкой полосе (с помощью полосового фильтры с прямоугольной АЧХ), возводится в квадрат, а затем делится на эту полосу Dfэ (полоса такая, что S(f0) » const в пределах Dfэ) (рис. 20).

Рис. 19 Рис. 20

Для одиночного колебательного контура , где Q – добротность контура, следовательно


.

Спектральная плотность мощности не отражает фазовой структуры сигнала. Две совершенно разные зависимости могут иметь одинаковую спектральную плотность мощности.

Поскольку G(w) и K(t) связаны преобразованием Фурье, для них справедливы основные теоремы о спектрах.

Ширина спектра определяется так же, как и интервал корреляции.

Эффективная (или неудачное название – энергетическая) ширина спектра

.

Определяют также ширину спектра на уровне a: .

Рассмотрим связь интервала корреляции и ширины спектра.

Так как , а , то

. (11)

Таким образом, произведение – порядка единицы.

Различают широкополосные и узкополосные процессы (рис. 22а и б).


Для узкополосных процессов . Поскольку для узкополосных случайных процессов значение спектральной плотности мощности при нулевой частоте всегда равно нулю (или очень близко к нему), то корреляционная функция является всегда знакопеременной и ее площадь равна нулю (из теоремы Винера – Хинчина).

Один из широко распространенных в теории широкополосных процессов – белый шум с равномерным спектром . Его корреляционная функция равна

.

Противоположный случай – узкополосный процесс – квазидетерминированный СП с дискретным спектром

где x1, x2 – случайные величины, не зависящие от t, .

Функция X(t) представляет собой гармоническое колебание со случайной амплитудой и фазой , распределение которого не зависит от времени. Этот процесс будет стационарным лишь при и при . Тогда зависит только от t, причем x1 и x2 некоррелированы.

В этом случае ;

. (рис. 23)

Для стационарных СП X(t) и Y(t) вводят также взаимную спектральную плотность мощности

;

; ;

; .

Взаимная спектральная плотность мощности двух процессов комплексная, если взаимная корреляционная функция нечетная, действительная часть такой спектральной плотности четная, а мнимая – нечетная функция: .

Для суммы стационарных и стационарно-связанных процессов существует соотношение

.

5. Узкополосные случайные процессы

Важность этих процессов для статистической радиотехники требуют более подробного их рассмотрения.

Для более подробного анализа определим огибающую и фазу узкополосного случайного процесса (УСП). Часто огибающую определяют по формуле

, (12)

где – сопряженный с по Гильберту процесс. Применяя преобразование Гильберта к исходному выражению для УСП, получаем . Точность выражения иногда может вызывать сомнение, поскольку только для гармонических колебаний равенство (12) несомненно. Определим, насколько параметры УСП влияют на точность этой формулы.

Используя известные соотношения для комплексной амплитуды аналитического сигнала , получим


И . (13)

Применяя преобразование Гильберта к исходному выражению для УСП и используя составляющие (13) комплексной огибающей, можно записать

Разложим функции и в подынтегральных выражениях в ряд Тейлора в окрестности точки x=t и почленно проинтегрируем. Получим

где Q(t) – остаточное слагаемое, характеризующее отброшенную часть суммы. Подставив в выражение (14) и , получим

Из формулы (15) видно, что если можно пренебречь функцией Q(t), то сопряженный по Гильберту УСП имеет такую же огибающую, что и исходный УСП.

Из таблиц определенных интегралов известно:


С учетом этих выражений формулу для Q(t) можно записать:

Считаем, что полоса огибающей равна , поэтому вторые производные по своим значениям не превосходят . Поэтому можно полагать, что

.

Следовательно:

.

Отсюда видно, что для УСП функции u(t) и u1(t) имеют одинаковую огибающую с погрешностью, зависящей от отношения ширины спектра к его средней частоте. Для узкополосных случайных процессов обязательным является выражение , следовательно, огибающая удовлетворяет требованиям, которые к ней предъявляются в соответствии с определением УСП, т.е. является касательной в точках, соответствующих максимальным значениям УСП (или вблизи от них), и имеет общие значения с ним в точках касания. Степень «близости» точки касания к максимальному значению зависит от того же отношения .

Фаза однозначно определяется известными соотношениями для представления комплексного числа в показательной форме.

Графически УСП можно представить в виде вектора, вращающегося с угловой скоростью , длина вектора медленно меняется во времени так же, как и фазовый угол . Исходный УСП является проекцией вектора на горизонтальную ось. Если всю систему координат заставить вращаться с той же угловой скоростью, но в противоположном направлении, то та же проекция будет огибающей .

Если исходный УСП является нормальным, то и также являются нормальными случайными процессами. Если УСП u(t) нормален, стационарен, имеет нулевое среднее значение и функцию корреляции , то и также имеют нулевые средние значения и корреляционную функцию . В то же время и взаимно некоррелированы, а так как они нормальны, то и взаимно независимы. Сомножитель является огибающей корреляционной функции .

Огибающая и фаза узкополосного случайного процесса. Плотности вероятности огибающей и фазы УСП можно получить, совершая преобразования, которые были использованы для их получения. Эти преобразования показывают, что огибающая и фаза являются независимыми. СВ как в совпадающие, так и в несовпадающие моменты времени. Одномерная плотность вероятности огибающей (в один момент времени) подчиняется закону Рэлея, а плотность вероятности фазы равномерна в пределах от до .

Сложные преобразования показывают, что центрированная корреляционная функция огибающей приближенно равна квадрату огибающей корреляционной функции исходного УСП. Спектральная плотность мощности огибающей имеет два слагаемых: дельта-функцию, соответствующую постоянной составляющей огибающей, и спектральную плотность флюктуационной составляющей, которая является преобразованием Фурье от квадрата огибающей корреляционной функции исходного УСП.

Если СП является суммой узкополосного нормального процесса и синусоиды со случайной начальной фазой, то мгновенные значения синусоиды распределены по закону арксинуса, сумма – по бимодальному закону, соответствующему свертке нормального закона и закона арксинуса. После применения тех же преобразований, что и для узкополосного нормального СП, получим для огибающей распределение Райса

,

где , А0 – амплитуда синусоидального сигнала; – среднеквадратическое отклонение шума.

При распределение Райса переходит в распределение Рэлея.

При больших отношениях , т.е. при А0 >> 1 (отношение сигнал/шум), распределение Райса может быть аппроксимировано нормальным распределением с математическим ожиданием, равным А0.

6. Временные характеристики случайных процессов

Во многих случаях, особенно при экспериментальных исследованиях, вместо ансамбля есть лишь одна реализация. Тогда усреднение производится по времени и при некоторых условиях дает результаты, близкие к усреднению по множеству.

Простейший вариант усреднения состоит в определении среднего арифметического значения. Выделим в отрезке реализации СП длительностью T n дискретных отсчетов с интервалом между ними Dt,

Среднее арифметическое значение определим известным образом:

Умножим числитель и знаменатель этого выражения на Dt:

.

При Dt ® 0 и n ® ¥ сумма перейдет в интеграл, описывающий временное усреднение реализации (обозначается чертой сверху или в данном пособии: ) или функции от нее:

. (16)

В общем виде можно записать операцию (16) с помощью оператора временного усреднения ST:

.

Для того чтобы результат не зависел от длительности отрезка T, возьмем предел при T ® ¥:

.

При экспериментальных исследованиях выполнение условия T ® ¥ невозможно, но достаточно выполнения условия .

Часто начало реализации и начало времени интегрирования не совпадают, поэтому оператор правильнее записать в виде оператора текущего среднего:

. (17)

Используется также симметричная форма этого оператора:

. (18)

Частотные характеристики операторов (4.17) и (4.18) равны соответственно:

, ,

т.е. отличаются лишь фазовым множителем .

Практически часто используется оператор экспоненциального сглаживания, реализуемый с помощью интегрирующей RC-цепи в форме

и имеющий характеристику

.

Производя временное усреднение некоторой функции g, лежащей в основе какой-либо вероятностной характеристики, получим соответствующую временную характеристику. В частности, дисперсия, полученная временным усреднением, равна

;


Временная корреляционная функция –

.

Аналогами распределений вероятностей являются величины относительного времени пребывания реализации ниже некоторого уровня и в интервале уровней (рис. 25).

Аналог интегральной функции распределения вероятностей – относительное время пребывания реализации ниже некоторого уровня (рис. 25а):

; .

Аналог плотности вероятности – относительное время пребывания реализации в интервале Dx на уровне x (рис. 25б):

;

.


Процессы, для которых временные характеристики сходятся в некотором смысле к вероятностным при T ® ¥, называются эргодическими. Различают два вида сходимости.

Последовательность случайных величин сходится по вероятности к случайной величине x, если для любого e > 0

.

Сходимость с вероятностью 1 (или почти всюду) определяется следующим образом:

.


Сходимость в среднем определяется из условия:

,

в частности, сходимость в среднеквадратическом –

.

Из сходимости почти всюду следует сходимость по вероятности, а из сходимости в среднеквадратическом также следует сходимость по вероятности.

Часто имеет место не эргодичность процесса, а эргодичность по отношению к математическому ожиданию, корреляционной функции или иной вероятностной характеристике.

7. Особенности нестационарных случайных процессов

Нестационарные СП, в отличие от стационарных, составляют столь широкий класс, что в нем трудно выделить свойства, относящиеся ко всему классу. Одним из таких свойств, лежащих в основе определения нестационарности, является зависимость вероятностных характеристик этих процессов от времени.

В частности,

,

.

Пример процесса, существенно нестационарного по математическому ожиданию, приведен на рис. 26а, по дисперсии – на рис. 26б.

Нестационарность по математическому ожиданию хорошо описывается моделью аддитивного нестационарного процесса:

X(t) = Y(t) + j(t),

где Y(t) – стационарный СП; j(t) – детерминированная функция.

Нестационарность по дисперсии описывается моделью мультипликативного нестационарного процесса: X(t) = Y(t)·j(t).

Простейшие примеры нестационарности по моментным функциям в более общем виде описываются зависимостями вероятностных распределений от времени.

Более сложным является отображение нестационарности в рамках многомерных (и даже двумерных) вероятностных характеристик. Наиболее широко используются корреляционные и спектральные характеристики. Поскольку корреляционная функция нестационарного СП зависит от двух моментов времени, спектр нестационарного процесса не может быть определен столь однозначно, как в стационарном случае. Существует несколько определений спектра нестационарных процессов:

а) двойной по частоте спектр или биспектр:

. (19)

В случае стационарного процесса и соотношение (19) переходит в теорему Винера – Хинчина. Биспектр (19) трудно физически интерпретировать и использовать при анализе цепей, хотя он отображает всю информацию о частотных свойствах процесса;

б) мгновенный частотно-временной спектр.

Заменим в переменные следующим образом: , t = t1 – t2 и выполним преобразование Фурье от корреляционной функции по аргументу t:

. (20)

Мгновенный спектр (20) зависит как от частоты, так и от времени и при медленной нестационарности имеет наглядную физическую интерпретацию как изменение «обычной» спектральной плотности мощности во времени (рис. 27);

в) усредненная спектральная плотность мощности

,

где .

Этот спектр не отображает динамики процесса, но дает представление о среднем распределении дисперсии процесса по частоте;

г) аппаратурный спектр определяется как среднее значение дисперсии процесса на выходе узкополосного фильтра с импульсной реакцией h(t):

Этот спектр допускает аппаратурное определение, но использование его в теории достаточно трудоемко.

Решение примера Рассмотрим пример нестационарного СП, имеющего плотность вероятности, выраженную функцией

где ; a0 = 1 1/В; k = 2 1/Вс.

Необходимо найти математическое ожидание процесса и нарисовать ориентировочно возможный вид реализации процесса.

Для решения задачи прежде всего определим незаданную функцию А(t) из условия нормировки:

Отсюда A(t) = a(t).

Поскольку процесс нестационарный, его математическое ожидание может зависеть от времени и в данном случае равно

Учитывая известное значение определенного интеграла

при

где – гамма-функция, , получим

.

Возможный вид реализаций процесса, не противоречащий виду распределения, приведен на рис. 28.


На рис. 28 штриховой линией показано изменение математического ожидания процесса.

8. Классификация случайных процессов

Классификация в любой науке служит для упорядочения объектов исследования, а значит, и используемых методов анализа и синтеза. В ряде случаев удачная, логически оправданная и естественная классификация процесса помогает вскрыть новые закономерности (например, периодическая система Менделеева, классификация звезд на основе диаграммы Герцшпрунга – Рассела в астрономии и т.д.).

Классификация производится по каким-либо признакам. Наиболее существенными признаками для СП являются зависимости их вероятностных характеристик от времени и номера реализации.

Обозначим через q(l) произвольную вероятностную характеристику;

– оператор усреднения по множеству;

– оператор усреднения по времени.

Если одновременно используется усреднение и по множеству, и по времени, то получаемая при этом оценка вероятностной характеристики (l) имеет такой вид:

,

где l – аргумент вероятностной характеристики (частота в спектральной плотности мощности; интервал в корреляционной функции).

Истинное значение оценки вероятностной характеристики получается с помощью предельного перехода при неограниченном возрастании числа реализаций N и их длительностей T, т.е.

.

Характеристику, полученную усреднением и по множеству, и по времени, будем называть средней вероятностной характеристикой. Если же усреднение производится только по множеству, то получается t – текущая вероятностная характеристика:

только по времени – k-текущая вероятностная характеристика:

В зависимости от видов получаемых характеристик СП можно классифицировать таким образом:

– (k, l) = (l) – однородный процесс, т.е. получаемая характеристика не зависит от номера реализации;

– (t, l) = (l) – стационарный процесс, т.е. получаемая характеристика не зависит от начала отсчета времени;

– (t, l) = (k, l) = (l) – эргодический случайный процесс.

Схематично процессы могут быть представлены в виде множеств, изображенных на рис. 29.

Приведенная укрупненная классификация, конечно, не является исчерпывающей, поэтому используется классификация по многим другим признакам.

По виду областей существования и значений случайной функции СП делятся на непрерывные (непрерывные области существования и значений – рис. 30а), дискретные (непрерывное множество значений аргумента и дискретное множество значений – рис. 30б), непрерывные случайные последовательности (дискретная область существования и непрерывная область значений – рис. 30в) и дискретные случайные последовательности (дискретная функция дискретного аргумента – рис. 30г).

По виду распределений вероятностей различают процессы с конечной и бесконечной областями значений, с симметричной и несимметричной плотностью вероятности, гауссовы (нормальные) и негауссовы.


По корреляционной связи значений различают коррелированные и некоррелированные СП, по виду спектра – широкополосные и узкополосные СП, по характеру временной связи – периодические, непериодические и почти периодические.

По виду нестационарности процессы делятся на аддитивные, мультипликативные, стационарные на интервале (квазистационарные), со стационарными приращениями, периодически нестационарные, с быстрой и медленной нестационарностью и т.д.

Выбор признаков классификации определяется характером решаемой задачи.

Рассмотрим пример классификации СП.

Решение примера 4. Охарактеризовать процесс X(t) в отношении стационарности, однородности и эргодичности, если процесс представлен моделью:


где А – случайная амплитуда с рэлеевским распределением; – случайная величина с равномерным распределением на интервале [–p, p]; 0 = const.

Выборочные реализации процесса X(t) представлены на рис. 31.

Из рис. 31 и аналитического представления квазидетерминированного процесса X(t) очевидно, что его вероятностные характеристики (например, математическое ожидание, дисперсия, плотность вероятности и т.д.) не зависят от времени, т.е. процесс является стационарным. В то же время каждая из реализаций характеризуется своей дисперсией, поэтому процесс неоднороден и не является эргодическим, т.е. его характеристики нельзя оценить по одной реализации.

ПРИМЕР 5. По заданной графически функции распределения стационарного случайного колебания (рис. 32) определить плотность вероятности и изобразить возможный вид реализации этого процесса.


Решение примера 5. Плотность вероятности связана с функцией распределения через производную, поэтому на первом участке u от -6 до -3 В производная, характеризующая тангенс угла наклона к оси u равна 0,4/3 = 0,13 1/В. При u = 1 В имеет скачок на 0,3, поэтому в плотности вероятности есть d-функция с площадью, равной величине скачка. На участке от 3 до 7 В также имеет постоянный наклон, равный 0,3/6 = 0,05 1/В. Полученная плотность вероятности представлена на рис. 3 Для проверки вычислений необходимо найти площадь, ограниченную плотностью вероятности (условие нормировки): .

mu = == –0,325 В.

Второй начальный момент – m2u = 48,9 В2.

Дисперсия – = 48,5 – 0,105625 » 48,4 В2.

Реализация длительностью Т, судя по виду плотности вероятности на разных интервалах времени, должна иметь горизонтальные участки на уровне +1 В, суммарная длительность которых должна составлять Т/ На участках от -6 до -3 В и от +1 до +7 В в реализации имеются наклонные прямые линии со случайным наклоном, что соответствует неизменным значениям плотности вероятности. На первом участке мгновенные значения реализации находятся 0,4Т, а на втором – 0,3Т.

Возможный вид реализации представлен на рис. 34.

ПРИМЕР 6. На рис. 35 представлена реализация случайного процесса. Изобразить приближенно плотность вероятности и функцию распределения. Рассчитать (также приближенно) математическое ожидание, среднеквадратическое значение (СКЗ) и среднеквадратическое отклонение (СКО).

Решение примера 6. Для определения плотности вероятности необходимо в соответствии с ее определением рассчитать вероятности следующих событий:

Соответствия мгновенных значений уровню -10 мА (вероятность р1);

Нахождения мгновенных значений реализации в интервале от -10 до -4 мА (вероятность р2);

Соответствия мгновенных значений уровню -4 мА (вероятность р3);

Нахождения мгновенных значений реализации в интервале от -4 до + 8 мА (вероятность р4);

Соответствия мгновенных значений уровню + мА В (вероятность р5);

Нахождения мгновенных значений реализации в интервале от +8 до +10 мА (вероятность р6).

Для нахождения перечисленных вероятностей необходимо посчитать интервал времени, в течение которого происходили эти события, а затем поделить найденные интервалы на длительность реализации, составляющую 25 мс (см. рис. 35). В результате получим частоты событий (оценку вероятностей). Результаты расчетов представлены в табл. 1.

Таблица 1

Вероятность

вероятности

Для расчета значений плотности вероятности в интервалах (-10, -4) мА, (-4, + 8) мА и (+8, +12) мА необходимо полученные вероятности разделить на соответствующие интервалы, предполагая на этих участках постоянную плотность вероятности, так как мгновенные значения в их пределах меняются по линейному закону (рис. 35). Результаты расчетов представлены на рис. 36.

Математическое ожидание равно:

мА

(в предположении стационарности заданного реализацией СП по математическому ожиданию).

Второй начальный момент –

m2i = 36,08 мА2

(в предположении стационарности заданного реализацией СП по второму начальному моменту).

Дисперсия –

= 36,08 – 0,1024 » 35,98 мА2

(в предположении стационарности заданного реализацией СП по дисперсии).

Следовательно, СКЗ = » 6,01 мА; СКО = » 6,0 мА.


Библиографический список

1. Гоноровский, И.С. Радиотехнические цепи и сигналы [Текст] / И.С. Гоноровский. – М. : Радио и связь, 2006. – 608 с.

1. Манжос, В.Н. Теория и техника обработки радиолокационной информа-ции на фоне помех [Текст] / Я.Д. Ширман, В.Н. Манжос. – М. : Радио и связь, 2011. – 416 с.

2. Жовинский, В.Н. Инженерный экспресс-анализ случайных процессов [Текст] / А.Н. Жовинский, В.Н. Жовинский. – М. : Энергия, 2009. – 112 с.

3. Царьков, Н.М. Многоканальные радиолокационные измерители [Текст] / Н.М. Царьков. – М. : Сов. радио, 2010. – 192 с.

2. Математические основы современной радиоэлектроники [Текст] / И.А. Большаков [и др.]. – М. : Сов. радио, 2009. – 208 с.

3. Федосов, В.П. Статистическая радиотехника [Текст] : конспект лекций / В.П. Федосов, В.П. Рыжов. – Таганрог: Изд-во ТРТИ, 2008. – 76 с.

4. Фомичев, К.И. Моноимпульсная радиолокация [Текст] / А.И. Леонов, К.И. Фомичев. – М. : Сов. радио, 2010. – 370 с.

5. Гнеденко, Б.Н. Курс теории вероятности [Текст] / Б.Н. Гнеденко. – М. : Физматгиз, 2011. – 203 с.

Лучшие статьи по теме