Как настроить смартфоны и ПК. Информационный портал
  • Главная
  • Новости
  • Приборы сравнения метрология. Государственная метрологическая служба

Приборы сравнения метрология. Государственная метрологическая служба

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

ВВЕДЕНИЕ

Вся история человечества сопровождалась и сопровождается использованием измерений: без них невозможно ни одно научное открытие, изобретение. Еще М.В. Ломоносов писал: «Через геометрию вымеривать, через механику развешивать, через оптику высматривать». Измерения служат источником нашего научного знания. «В физике существует только то, что можно измерить» (Макс Планк).

Производство промышленной продукции сопровождается большим числом всевозможных измерений. Посредством измерений определяют соответствие изготовленных деталей и изделий в целом требованиям конструкторской документации. Подсчитано, что доля затрат на измерительную технику составляет не менее 15% затрат на оборудование в машиностроении и свыше 25% - в радиоэлектронике, самолетостроительной, химической и некоторых других отраслях промышленности.

Улучшение качества продукции в значительной степени обусловлено тем, насколько хорошо организована измерительная служба предприятия. Нельзя управлять тем или иным процессом без контроля его показателей.

Совершенствование техники измерений, проявляющееся в повышении точности измерений и в создании новых методов и приборов, способствует новым достижениям в науке.

Так, например, увеличение точности взвешивания на один знак привело к открытию в 1892-1984 гг. нового газа аргона, который до этого, ввиду неточности измерений, обнаружить не удавалось. Введение в экспериментальную практику микроскопа создало исключительные возможности для исследования микроорганизмов и привело к созданию микробиологии. Часто необходимость исследования тех или иных явлений вызывает необходимость создания новой, более совершенной аппаратуры. Новые открытия в науке, в свою очередь, приводят к совершенствованию техники измерений, а также к созданию новых приборов.

Первые попытки количественных исследований электрических явлений в природе потребовали создания для этой цели специальных измерительных приборов. Еще в 1744 г. М.И. Ломоносов высказал замечательную мысль о том, что «электричество взвешено быть может». С этой целью он совместно с Г.В. Рихманом создал первый в мире электроизмерительный прибор - «указатель электрической силы», имевший указатель и шкалу.

В дальнейшем по мере развития теории электричества были открыты новые законы, на основании которых разрабатывались новые методы измерений и приборы, совершенствовалась практика измерения.

До открытия радио А.С. Поповым измерение развивалось лишь в области постоянного тока и низкой частоты. Но уже в 1905 г. А.С. Попов предложил дифференциальный мостик для измерения малых емкостей, который был применен для учета влияния такелажа на работу судовых антенн. В этом же г. на заседании физического отделения Русского физико-химического общества он сделал доклад "Об определении длины волны и периода колебаний", в котором сообщил об изобретенном им резонансном волномере.

С появлением измерительных приборов и развитием методов измерений возникла новая область науки - метрология - как наука о точных измерениях.

Большой вклад в развитие отечественной метрологии внес Д.И. Менделеев, возглавивший в 1893 г. Главную палату мер и весов, в задачи которой входило не только хранение эталонов и обеспечение поверки по ним средств измерений, но и проведение научных исследований в области метрологии. Стали создаваться местные поверочные палаты.

Основоположником отечественной радиоизмерительной техники признан академик М.В. Шулейкин, организовавший в 1013 г. первую заводскую лабораторию по производству радиоизмерительных приборов. Большой вклад в развитие радиоизмерений внесен академиком Л.И. Мандельштамом, создавшим в начале XX века прототип современного электронного осциллографа.

Теоретической основой измерений является метрология - наука об измерениях, методах и средствах обеспечения их единства и способах достижения требуемой точности.

Понятие «измерение» встречается в различных науках (математике, физике, химии, психологии, экономике и др.), но в каждой из них оно может толковаться по-разному. В данном учебном пособии рассматриваются только задачи, относящиеся к измерениям физических величин в области радиоэлектроники.

К ним относятся:

· измерение параметров деталей или элементов, из которых состоит измеряемый объект;

· измерение режимов отдельных деталей, узлов и всего измеряемого объекта;

· градуировка или проверка градуировки шкал различных приборов;

· снятие характеристик, определяющих свойства приборов и устройств;

· определение искажений сигналов при их прохождении через различные устройства;

· измерение параметров модулированных сигналов;

· измерение напряженности электромагнитных полей, как полезных, так и мешающих;

· нахождение неисправностей в радиотехнической аппаратуре и определение их характера.

Кроме того, сюда можно отнести погрешности измерений, способы их учета и уменьшения, оценку результатов измерения.

1. ОСНОВНЫЕ ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ В ОБЛАСТИ МЕТРОЛОГИИ

В любой науке недопустимо произвольное толкование применяемых терминов. Терминологию в области метрологии регламентирует ГОСТ 16263-70 «ГСМ. Метрология. Термины и определения». Для каждого понятия устанавливается один стандартизованный термин, которому дается соответствующее определение.

Метрология - наука об измерениях, методах и средствах их единства и способах достижения требуемой точности. В связи с этим можно сформулировать основные задачи метрологии: теоретические вопросы обеспечения единства измерений и достижения требуемой точности; установление обязательных правил, требований и организационных мероприятий, направленных на достижение этих целей.

Различают теоретическую и законодательную метрологию.

Теоретическая метрология включает в себя разработку и совершенствование теоретических основ измерений и измерительной техники, научных основ обеспечения единства измерений в стране. Она включает в себя следующие основные проблемы:

развитие общей теории измерений и теории погрешностей, в том числе создание новых методов измерений и разработка способов исключения или уменьшения погрешностей;

· создание и совершенствование систем единиц физических величин;

· создание и совершенствование системы эталонов;

· создание и совершенствование научных основ передачи размеров единиц физических величин от эталонов к рабочим средствам измерений.

Законодательная метрология - раздел метрологии, включающий комплексы взаимосвязанных и взаимообусловленных общих правил, требований и норм, а также другие вопросы, требующие регламентации и контроля со стороны государства, направленные на обеспечение единства измерений и единообразие средств измерений. Ее основные задачи:

· создание и совершенствование системы государственных стандартов, которые устанавливают правила, требования и нормы, определяющие организацию и методику проведения работ по обеспечению единства и точности измерений;

· организация и функционирование соответствующей государственной службы.

Целью измерения является определение размера величины, причем результат измерений должен выражаться числом.

Возможное рабочее описание термина «измерение», согласующееся с нашей интуицией, звучит так: «Измерение - это получение информации». Одним из наиболее существенных аспектов измерения является сбор информации. Это означает, что результат измерения должен описывать то состояние или то явление в окружающем нас мире, которое мы измеряем. Хотя получение информации очевидно, оно является лишь необходимым, но не достаточным для определения измерения: когда кто-то читает учебник, он накапливает информацию, но не выполняет измерения. Второй аспект измерения состоит в том, что оно должно быть избирательным. Оно может снабдить нас сведениями только о том, что мы хотим измерить (об измеряемой величине) но ничего не говорит ни об одном из многих других состояний или явлений вокруг нас. Третий аспект состоит в том, что измерение должно быть объективным. Исход измерения не должен зависеть от наблюдателя. Любой наблюдатель должен извлекать из измерений одну и ту же информацию и приходить к одним и тем же выводам.

Измерение - это совокупность операций по применению технического средства, хранящего единицу физической величины, заключающуюся в сравнении (в явном или неявном виде) измеряемой величины с ее единицей с целью получения значения этой величины (или информации о нем) в форме, наиболее удобной для использования.

Физическая величина - характеристика одного из свойств физического объекта, общая в качественном отношении для многих физических объектов (физических систем, их состояний и происходящих в них процессов), но в количественном отношении индивидуальная для каждого объекта.

Процесс измерения заключается в сравнении измеряемой величины с некоторым ее значением, принятым за единицу.

Результатом измерения является число, показывающее отношение значения измеряемой величины к единице измерения.

Единицей измерения называют физическую величину с числовым значением «1», принятую за основание для сравнения с величинами того же рода. Единицы измерения подразделяются на основные и производные. Для возможности сравнения результатов измерений, выполненных в разное время и в разных местах, система единиц устанавливается в законодательном порядке (ГОСТ 8.417-81 ГСИ). У нас принята Международная система единиц (СИ), построенная на семи основных единицах: метр, килограмм, секунда, ампер, кандела, кельвин, моль. На основе данных величин образованы производные единицы СИ (таблица 1.1).

Таблица 1.1 - производные единицы СИ

м -1хкгхc-2

м -2хкгхc-2

м -2хкгхc-3

м 2хкгхc3хА-1

м -2хкгхc-3хА-2

м 2хкгхc-2хА-2

м -2хкг-1хc3хА2

м 2хкгхc-2хА-1

м2хкгхс-2хА-2

м-2хкдхср

Беккерель

В технике связи широко применяется внесистемная логарифмическая единица децибел (ДБ), при помощи которой определяются относительные значения усиления, ослабления, нелинейных искажений, неравномерности характеристик.

1 дБ равен 10 lg отношения двух одноименных энергетических величин (мощности, энергии) при P1/P2 = 101/10 = 1,259. Для «силовых» величин (напряжения, силы тока, напряженности поля) 1 дБ равен 20 lg их отношения, если U1/U2 = 101/20= 1,22.

Для выражения количественного различия между одноименными величинами используют понятие размер физической величины - количественное содержание в данном объекте свойства, соответствующего понятию «физическая величина». Размер величины существует объективно, независимо от того, знаем мы его или нет, можем его измерить или нет.

Размерность физической величины - выражение в форме степенного одночлена, составленного из произведений символов основных физических величин в различных степенях и отражающее связь данной физической величины с физическими величинами, принятыми в данной системе величин за основные, и с коэффициентом пропорциональности, равным единице.

Не всякая физическая величина может быть измерена, так как не всякая физическая величина допускает сравнение ее значений. Измеримой, величиной может быть лишь такая, из определения которой следуют понятия «больше» и «меньше» и возможность сравнения значений. Очевидно, что измеряемая величина может принимать значение «0».

Большинство физических величин удовлетворяют этим требованиям. Например, масса, длина, индуктивность, сопротивление и т.д. Но такая величина, как твердость, для возможности осуществления измерения требует особого определения. Действительно, если судить о твердости по тому, оставляют ли царапины на испытуемом предмете последовательно алмаз, корунд, топаз, кварц, полевой шпат и т.д., как это принято в минералогии, то такое определение твердости не содержит в себе необходимых элементов для осуществления измерения. Но определение Бринелля, согласно которому твердость оценивается по диаметру углубления в испытуемом предмете, получающегося при известных условиях, уже удовлетворяет требованиям измеримости.

Значение нуля для ряда случаев является условным. Например, при измерении степени нагретости тел мы вынуждены условиться о «начале отсчета» (нулевом значении) и, в сущности, измерять не температуру тела, а лишь условный температурный промежуток, разность температур.

Приведенное выше определение процесса измерения предполагает, что обязательным звеном этого процесса является единица измерения.

Все вышеизложенное предполагает узаконенность принятой терминологии и связанное с этим существование таких понятий, как единство измерений и единообразие средств измерений.

Единство измерений - состояние измерений, при котором их результаты выражены в узаконенных единицах и погрешности измерений известны с заданной вероятностью.

Единообразие средств измерений - состояние средств измерений, характеризующееся тем, что они проградуированы в узаконенных единицах и их метрологические свойства соответствуют нормам.

Для организации обеспечения единства измерений и единообразия средств измерений в стране создана метрологическая служба.

Метрологическая служба - сеть государственных и ведомственных органов и их деятельность, направленная на обеспечение единства измерений и единообразия средств измерений в стране. Эти органы осуществляют надзор за состоянием средств измерений и обеспечивают передачу размера единиц физических величин от эталонов к рабочим средствам измерений.

Всякое измерение необходимо предварительно обдумать, составить план проведения измерений. В связи с этим в теории измерений вводится такое понятие, как методика измерений.

Методика измерений - детально намеченный распорядок процесса измерений при выбранных схеме и комплексе приборов, включающий правила, последовательность операций, количество измерений и т.д. Применительно к одной и той же схеме измерений и данному комплексу аппаратуры возможны различные методики, и наоборот, для проведения измерений по одной методике можно использовать различные схемы измерений и аппаратуру.

В процессе измерений или установки параметров источников сигналов оператор снимает отсчеты или показания.

Отсчет - это число, указываемое индикатором прибора. В стрелочных приборах отсчет - это число, написанное у деления шкалы, на котором установилась стрелка; в цифровых - число, наблюдаемое на передней панели в виде светящихся цифр; иногда отсчетом является число, написанное у деления лимба, находящегося против визирной линии.

Показание - физическая величина, соответствующая отсчету. Показание получается в результате умножения отсчета на переводной множитель.

Например, если отсчет по шкале вольтметра 20 В, переключатель «Множитель» установлен против отметки 0,1, то показание прибора будет 2 В.

2. КЛАССИФИКАЦИЯ ИЗМЕРЕНИЙ

Информация, полученная в процессе измерений, называется измерительной.

По способу получения измерительной информации измерения делятся на прямые, косвенные, совокупные и совместные.

Прямое измерение - это измерение, при котором искомое значение физической величины находят непосредственно из опытных данных (например, измерение силы тока амперметром). Математически прямые измерения можно записать элементарной формулой

где Q - искомое (истинное) значение физической величины;

X - значение физической величины, найденное путем ее измерения и называемое результатом измерения.

Косвенное измерение - измерение, при котором искомое значение величины находят на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям. Косвенные измерения выражаются следующей формулой:

Q = F(X1 Х2,... Xm) (2.2)

где Х1 Х2, ... Хm - результаты прямых измерений величин, связанных известной функциональной зависимостью F с искомым значением измеряемой величины Q (например, при измерении сопротивления методом амперметра-вольтметра результатами прямых измерений являются напряжение и сила тока, а результатом косвенных измерений будет сопротивление, найденное по закону Ома).

Совокупные измерения - производимые одновременно измерения нескольких одноименных величин, при которых искомые значения величин определяют путем решения системы уравнений, получаемых при прямых измерениях различных сочетаний этих величин (например, определение массы отдельных гирь набора по известной массе одной из них).

Совместные измерения - проводимые одновременно измерения двух или нескольких неодноименных величин для определения зависимости между ними (например, снятие вольт-амперной характеристики диода).

Совокупные измерения основываются на известных уравнениях, отражающих произвольное комбинирование величин, а совместные - на уравнениях, отражающих существование связи между измеряемыми величинами.

Если измеряемая величина остается в процессе измерений постоянной, измерения называются статическими, если изменяется - динамическими. Динамические измерения могут быть непрерывными (если технические средства позволяют непрерывно следить за значениями измеряемой величины) и дискретными (если значения измеряемой величины фиксируются только в отдельные моменты времени).

По способу выражения результатов измерения подразделяются на абсолютные и относительные.

Абсолютное измерение - измерение, основанное на прямых измерениях одной или нескольких основных величин и (или) использовании значений физических констант. Результат измерений выражается непосредственно в единицах физической величины.

Относительное измерение - измерение отношения величины к одноименной величине, играющей роль единицы, или изменения величины по отношению к одноименной величине, принимаемой за исходную (например, определение коэффициента усиления как отношения напряжений на входе и выходе устройства). Величина, полученная в результате относительных измерений, может быть или безразмерной, или выраженной в относительных логарифмических единицах (бел, октава, декада) и других относительных единицах.

В зависимости от условий, определяющих точность результата, измерения делятся на три класса:

1). измерения максимально возможной точности, достижимой при существующем уровне техники:

· эталонные (достигается максимально возможная точность воспроизведения размера физической величины);

· измерения физических постоянных;

· астрономические;

2). контрольно-поверочные измерения - измерения, погрешность которых не должна превышать некоторого заданного значения. Для таких измерений применяются образцовые средства измерений, а сами измерения осуществляются в специальных лабораториях;

3). технические (рабочие) измерения - измерения, в которых погрешность результата измерения определяется характеристиками средства измерения. Средства измерений, применяемые для этой цели, называются рабочими.

В свою очередь, технические измерения подразделяются на эксплуатационные, применяемые для контроля действующей аппаратуры и выполняемые типовыми измерительными приборами заводского изготовления; производственные, проводимые в цехах и служащие для измерения параметров деталей, из которых собираются узлы и блоки аппаратуры; измерения режимов, устанавливаемых в блоках и узлах; снятия характеристик этих узлов и всего устройства в целом; измерения при монтаже, налаживании и настройке; измерения в приемосдаточных испытаниях готовых изделий, установок и объектов и выполняемые в основном типовыми измерительными приборами; лабораторные, производимые при научных исследованиях и разработках новых систем, устройств и приборов.

3. КЛАССИФИКАЦИЯ СРЕДСТВ ИЗМЕРЕНИЙ

Средство измерений - техническое средство (или их комплекс), предназначенное для измерений, имеющее нормированные метрологические характеристики, воспроизводящее и (или) хранящее единицу физической величины, размер которой принимается неизменным (в пределах установленной погрешности) в течение известного интервала времени.

По своему техническому и метрологическому назначению, согласно ГОСТ 16263-70 ГСИ, средства измерений подразделяются следующим образом:

· меры - средства измерений, предназначенные для воспроизведения физической величины заданного размера;

· измерительные приборы- средства измерений, предназначенные для получения измерительной информации в форме, доступной для непосредственного восприятия наблюдателем;

· измерительные преобразователи - средства измерений, предназначенные для выработки сигнала измерительной информации в форме, удобной для передачи, дальнейших преобразований, обработки и (или) хранения, но не поддающейся непосредственному восприятию наблюдателем.

Кроме того, совокупность различных средств измерений может образовывать:

· измерительные установки - совокупность расположенных в одном месте и функционально объединенных друг с другом средств измерений, предназначенных для выработки сигнала измерительной информации в форме, удобной для непосредственного восприятия наблюдателем;

· измерительные системы - совокупность средств измерений, предназначенных для выработки сигналов измерительной информации в форме, удобной для автоматической обработки, передачи и (или) использования в автоматических системах управления.

· По метрологическому назначению средства измерений подразделяются следующим образом:

· эталоны - средства измерений (или комплекс средств измерений), обеспечивающие определение, воспроизведение и хранение единицы физической величины с целью передачи размера единицы физической величины образцовым, а от них рабочим средствам измерений и утвержденные в качестве эталона в установленном порядке;

· образцовые средства измерений - меры, измерительные приборы или измерительные преобразователи, имеющие высокую точность и предназначенные для поверки и градуировки по ним других средств измерений, в установленном порядке утвержденные в качестве образцовых;

· рабочие - средства измерений, применяемые для измерений, не связанных с передачей размера единиц.

4. КЛАССИФИКАЦИЯ МЕТОДОВ ИЗМЕРЕНИ

Измерения базируются на определенных принципах.

Принцип измерения - совокупность физических явлений, на которых основаны измерения.

Метод измерения - совокупность использования принципов и средств измерений.

Различают два основных метода измерений: метод непосредственной оценки и метод сравнения.

Метод непосредственной оценки - метод измерения, при котором значение величины определяют непосредственно по отсчетному устройству измерительного прибора прямого действия. Иногда этот метод называют методом прямого преобразования.

Метод сравнения - метод измерения, при котором измеряемую величину сравнивают с величиной, воспроизводимой мерой.

Метод сравнения может реализовываться в следующих модификациях:

· нулевой метод (компенсационный) - метод, при котором результирующий эффект воздействия величин на прибор сравнения доводят до нуля;

· дифференциальный метод - метод, при котором формируют и измеряют разность измеряемой и известной величины, воспроизводимой мерой;

· метод совпадений- метод, при котором разность измеряемой и известной величины измеряют, используя совпадение отметок шкал или периодических сигналов;

· метод противопоставления - метод, при котором измеряемая и известная величины одновременно воздействуют на прибор сравнения, с помощью которого устанавливается соотношение между этими величинами.

В зависимости от метода измерений и свойств применяемых средств измерений все измерения могут выполняться либо с однократными, либо с многократными наблюдениями.

Здесь уместно также дать определение наблюдения и алгоритма измерения.

Наблюдение - это единичная экспериментальная операция, результат которой - результат наблюдения - всегда имеет случайный характер.

Алгоритм измерения - предписание о порядке выполнения операций, обеспечивающих измерение искомого значения физической величины.

5. КЛАССИФИКАЦИЯ ПОГРЕШНОСТЕЙ

Любое измерение всегда выполняется с некоторой погрешностью, которая вызывается несовершенством методов и средств измерений, непостоянством условий наблюдения, а также недостаточным опытом экспериментатора или особенностями его органов чувств.

Погрешность измерения - отклонение результата измерения X от истинного значения измеряемой величины Q: ? = X - Q.

Так как истинное значение физической величины Q на практике неизвестно,

при расчетах применяют так называемое действительное значение Хд, найденное экспериментально и настолько приближающееся к истинному, что может быть использовано вместо него.

В зависимости от характера проявления погрешности имеют следующие составляющие:

· случайная погрешность - погрешность, изменяющаяся случайным образом при повторных измерениях одной и той же величины (например, погрешность, возникающая в результате округления);

· систематическая погрешность - погрешность, остающаяся постоянной или закономерно изменяющаяся при повторных измерениях одной и той же величины (например, погрешность, появляющаяся из-за несоответствия действительного и номинального значения меры);

· грубая погрешность - погрешность, существенно превышающая ожидаемую при данных условиях.

Все эти погрешности проявляются одновременно.

В зависимости от характера влияния на результат измерения различают следующие погрешности:

· аддитивные - погрешности, значения которых не зависят от значения измерительной величины;

· мультипликативные - погрешности, значения которых изменяются с изменением измеряемой величины.

Эти погрешности могут быть и систематическими, и случайными одновременно.

В зависимости от источника возникновения погрешности классифицируются следующим образом:

· методические - погрешности, возникающие из-за несовершенства методов измерений и обработки их результатов. Как правило, это систематические погрешности;

· инструментальные (аппаратурные) - погрешности, которые определяются погрешностями применяемых средств измерений;

· внешние - погрешности, обусловленные отклонением одной или нескольких влияющих величин от нормальных значений (например, температуры, влажности, магнитных и электрических полей и т.д.). Эти погрешности носят систематический характер;

· субъективные (личные) - погрешности, обусловленные индивидуальными особенностями экспериментатора. Могут быть как систематическими, так и случайными.

6. ПОГРЕШНОСТИ СРЕДСТВ ИЗМЕРЕНИЙ

Погрешность средств измерений - это отличие показания измерительного прибора от действительного значения измеряемой величины. Она включает в себя в общем случае систематическую и случайную составляющие.

ГОСТ 8.009-84 ГСИ «Нормируемые метрологические характеристики средств измерений» предусматривает следующие показатели точности средств измерений:

· предел, математическое ожидание и среднеквадратическое отклонение опускаемой систематической составляющей погрешности;

· предел допускаемого среднеквадратического отклонения и автокорреляционная функция или спектральная плотность случайной составляющей погрешности.

Погрешности средств измерений могут быть представлены в следующих формах:

· абсолютная погрешность - разность между измеренным X и истинным Q значением измеряемой величины:

В этом случае в результат измерения вводится поправка - значение величины, одноименной с измеряемой, прибавляемое к полученному при измерении значению величины с целью исключения систематической погрешности:

· относительная погрешность - отношение абсолютной погрешности к истинному значению измеряемой величины

Часто в технике измерений пользуются таким понятием, как точность измерений - характеристика качества измерения, отражающая близость их результатов к истинному значению, измеряемой величины. Количественно это величина, обратная модулю относительной погрешности измерения

· приведенная погрешность - отношение абсолютной погрешности к некоторому нормирующему значению ХN

В данном случае XN - условно принятая величина, которая может принимать различные значения в зависимости от типа шкалы. В случае, когда шкала прибора равномерна и «0» находится в начале шкалы (самый распространенный в технике измерений случай), в качестве XN принимают предел измерения.

Если «0» находится в середине равномерной шкалы, то в качестве Xn используют сумму модулей пределов измерения, а если шкала не имеет нуля (например, медицинский термометр), то нормирующее значение принимают равным разности модулей пределов измерения. Сложнее обстоит дело с неравномерными шкалами, т.е. такими шкалами, у которых одному и тому же промежутку соответствуют разные значения измеряемой величины. В этом случае за нормирующее значение принимают либо разность модулей пределов равномерных участков шкалы, либо длину шкалы в миллиметрах. Последний случай вносит определенные трудности, так как в этом случае значение измеренной физической величины необходимо привести к размерности длины.

Значения погрешностей устанавливаются для нормальных условий, т.е. таких условий применения средств измерений, при которых влияющие на процесс измерения величины имеют значения, указанные в соответствующих стандартах на средства измерения данного вида. В качестве нормальных общепринятыми являются следующие условия: температура окружающей среды (20±5) °С, относительная влажность воздуха (65±15) %, атмосферное давление (100000 ± 4000) Па. На значение погрешности оказывают влияние также положение приборов, электромагнитные поля, стабильность внешних условий и т.д.

Погрешность, свойственная средствам измерения, находящимся в нормальных условиях, называется основной погрешностью.

Отклонение внешних условий от нормальных приводит к изменению погрешностей, и тогда возникает погрешность, называемая дополнительной.

Основная погрешность средства измерений нормируется заданием пределов допускаемой основной и дополнительной погрешностей, т.е. той наибольшей погрешностью средства измерений (без учета знака), при которой оно может быть признано годным и допущено к применению. Способы нормирования пределов допускаемых погрешностей измерения регламентируются ГОСТ 8.009-84 ГСИ и ГОСТ 8.401-80 ГСИ.

В зависимости от характера изменения погрешности в пределах диапазона, а также от условий применения средства измерения данного вида погрешности средств измерений нормируются следующим образом: с

а) в виде абсолютной погрешности:

Одним значением

где a=const, для аддитивной погрешности;

Для мультипликативной погрешности;

Таблицей?п для разных уровней (или диапазонов);

б) в виде относительной погрешности:

Одним значением для аддитивной погрешности;

Значением для мультипликативной погрешности;

где Хк - конечное значение диапазона. Значения q, с, d выбираются из ряда

(1; 1,5;2;2,5;4;5;6)х10n (6.5)

где n=+1,0,-1,-2,...;

Если диапазон измерения включает ноль, то в этом случае относительная погрешность стремится к бесконечности, и основную погрешность средства измерения нормируют приведенной погрешностью

В зависимости от пределов допускаемой погрешности все средства измерения делятся на классы точности (таблица 6.1).

Класс точности средства измерения - это обобщенная характеристика средства измерения, определяемая пределами допускаемых основной и дополнительной погрешностей, а также другими свойствами средства измерения, влияющими на точность, значения которой устанавливаются в стандартах на отдельные виды средств измерений.

Значение класса точности также выбирается из ряда (6.5).

Способ обозначения класса точности определяется формой выражения основной погрешности.

Таблица 6.1 - Примеры обозначения класса точности

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

7 СИСТЕМАТИЧЕСКИЕ ПОГРЕШНОСТИ ИЗМЕРЕНИЙ

7.1 Классификация систематических погрешностей

Систематическими называются погрешности, не изменяющиеся с течением времени или являющиеся не изменяющимися во времени функциями определенных параметров. Их отличительный признак состоит в том, что они могут быть предсказаны и, следовательно, почти полностью устранены введением соответствующих поправок.

Систематические аддитивные погрешности, например, могут возникать от постороннего груза на чашке весов, от неточной установки прибора на «0» перед измерением, от термо ЭДС. в цепях постоянного тока. Для их устранения в приборах имеется корректор нуля. Систематические мультипликативные погрешности - это, например, изменение коэффициента усиления усилителя, изменение жесткости мембраны датчика манометра или пружинки прибора, опорного напряжения на цифровом вольтметре.

В зависимости от причин возникновения систематические погрешности подразделяются на инструментальные, внешние, личные, а также погрешности метода.

Инструментальные погрешности вызываются процессами старения тех или иных деталей аппаратуры (разрядка источников питания; старение резисторов, конденсаторов; деформация механических деталей, усадка бумажной ленты в самопишущих приборах и т.д.). Их особенность состоит в том, что они могут быть скорректированы введением соответствующей поправки лишь в заданный момент времени, а далее вновь непредсказуемо возрастают. Вследствие этого требуется непрерывное повторение коррекции, тем более частое, чем меньше должно быть их остаточное значение.

По характеру проявления систематические погрешности делятся на постоянные и переменные.

Постоянные систематические погрешности в процессе измерения не изменяют величину и знак, а поэтому их очень трудно обнаружить в результатах измерений. Внешне они себя никак не проявляют и могут долгое время оставаться незамеченными. Единственный способ их избежать - это поверка прибора путем повторной аттестации по образцовым мерам или сигналам.

Переменные систематические погрешности или монотонно изменяют свою величину (прогрессивные погрешности), или меняются периодически (периодические: погрешности). Все остальные виды систематических погрешностей принято называть погрешностями, изменяющимися по сложному закону.

Наличие систематических погрешностей искажает результаты измерений. Их отсутствие определяет правильность измерений (или правильность средств измерений).

Правильность измерений (средств измерений) - качество измерений (средств измерений), отражающее близость к нулю систематических погрешностей.

Задача обеспечения правильности измерений - это обнаружение систематических погрешностей с последующей их полной или частичной компенсацией.

7.2 Обнаружение систематических погрешностей

Основная трудность - обнаружение систематических погрешностей и определение их величины и знака. Необходимо проводить специальные экспериментальные исследования. Часто пользуются графиком последовательности значений случайных отклонений результатов наблюдений, содержащих систематические погрешности, от средних арифметических. Суть этого эксперимента состоит в следующем. Находят п результатов измерений Х1, Х2, ... Хп, их среднее значение

и отклонения результатов измерений от их среднего значения Vi=Xi-X. На основании этих данных строится график последовательности Vi в зависимости от номера наблюдений. Вид графика зависит от характера систематической погрешности.

Если Vi резко изменяется при изменении условий наблюдений (рисунок 7.1), то данные результаты содержат постоянную систематическую погрешность, зависящую от условий наблюдений. Из анализа графика следует, что первые четыре точки получены в одних условиях (одним прибором), остальные шесть в других. Следовательно, какой-то из приборов вносит постоянную систематическую погрешность.

Если Vi монотонно убывает (рисунок 7.2), то это означает, что в результатах измерения присутствует прогрессивная убывающая систематическая погрешность. Этот способ обнаружения пригоден в случае, когда случайные составляющие погрешности намного меньше систематических. Кроме того, графики позволяют только обнаружить систематическую погрешность, не давая сведений об ее значении. Количественная оценка ее находится по результатам специальных исследований, методика проведения которых зависит от характера эксперимента и источников погрешностей. Например, если поверка прибора проводилась по образцовой мере, то измерение разности между средним значением измеряемой величины и значением меры производится с точностью, определяемой погрешностью аттестации меры и случайными погрешностями измерения.

Это будет постоянная составляющая систематической погрешности измерения.

Размещено на http://www.allbest.ru/

7.3 Способы уменьшения систематических погрешностей и введение поправок

7.3.1 До начала измерений необходимо

· тщательно устанавливать нули и проводить калибровку (например, калибровку развертки осциллографа с помощью кварцевого калибратора длительности);

· поверять рабочие средства измерений с определением абсолютного значения и знака систематической погрешности (поправок);

· прогревать приборы в течение времени, указанного в инструкции по эксплуатации;

· при сборке схем применять короткие соединительные провода, особенно при измерениях на высоких частотах;

· правильно размещать измерительные приборы. При этом следует обращать внимание на установку приборов в рабочее положение (вертикальное или горизонтальное, в соответствии со знаками, нанесенными на корпусе приборов) и на взаимное положение приборов, исключающее связь между ними через электромагнитное поле; удалить их от нагретых предметов, сильных источников электрических и магнитных полей;

· применять экранировку и термостатирование приборов.

7.3.2 В процессе измерений устранить систематические погрешности или отдельные их составляющие можно следующими способами

· способ замещения. В данном случае измеряемая величина замещается образцовой Мерой, находящейся в тех же условиях, что и измеряемая величина;

· способ компенсации погрешности по знаку. В этом случае измерение или отсчет измеряемой величины производятся дважды, так чтобы не известная по величине, но известная по природе погрешность входила в результат с противоположными знаками. Полусумма отсчетов свободна от систематических погрешностей. В качестве примера можно привести способ устранения погрешности частотомера, возникающей из-за наличия люфта механизма перестройки, когда перестройка осуществляется один раз со стороны меньших делений отсчетной шкалы, а второй - со стороны больших делений;

· способ симметричных наблюдений. Измерения проводят последовательно через одинаковые интервалы изменения аргумента. За окончательный результат принимается среднее значение любой пары симметричных наблюдений относительно середины интервала измерений. Так часто производится измерение температуры, времени, давления и т.п.;

· способ рандомизации, т.е. перевод систематических погрешностей в случайные. Пусть имеется n однотипных приборов с систематическими погрешностями одинакового происхождения. От прибора к прибору погрешность меняется случайным образом. Следовательно, можно произвести измерения разными приборами и усреднить результаты измерений.

7.3.3 После проведения измерений: при обработке результатов могут быть исключены систематические погрешности с известными значениями и знаками

Для этого в неисправленные результаты наблюдений вводятся поправки q или поправочные множители. Результаты измерений после внесения поправок называются исправленными.

Поправка - это значение величины, одноименной с измеряемой, прибавляемое к полученному при измерении значению величины для исключения систематической погрешности:

Поправочный множитель - число, на которое умножается результат измерения с целью исключения систематической погрешности:

При этом необходимо помнить, что поправка исключает аддитивную систематическую погрешность, а поправочный множитель - мультипликативную.. Поправка и поправочный множитель определяются при поверке или специальными исследованиями.

7.4 Суммирование неисключенных систематических погрешностей

Систематические погрешности, которые остаются в результатах измерения после проведения операций обнаружения, оценки и исключения, называются неисключенными систематическими погрешностями.

При определении границы результирующей неисключенной систематической погрешности ее отдельные составляющие рассматриваются как случайные величины. Если известно, что распределение составляющих неисключенной систематической погрешности нормальное, то

где - значение неисключенной составляющей систематической погрешности;

m - количество неисключенных систематических погрешностей.

Если данных о виде распределения нет, то

Размещено на http://www.allbest.ru/

При Рд=0,95 коэффициент k=1,l. При Рд=0,99 k зависит от числа неисключеных систематических погрешностей m. Если m>4, то k=1,4.

При m?4 поступают следующим образом. Находят отношение

где?"ci - составляющая систематической погрешности, наиболее отличающаяся по своему значению от остальных;

?”сi- составляющая систематической погрешности, по своему значению наиболее приближающаяся к?"сi . Затем по графику зависимости k от 1, приведенному на рисунке 7.3, находят значение k. При косвенных измерениях неисключенные систематические погрешности суть частные неисключенные систематические погрешности косвенного измерения:

8. РАСПРЕДЕЛЕНИЯ СЛУЧАЙНЫХ ВЕЛИЧИН И ИХ ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ

Вследствие того, что результат измерения X содержит случайную погрешность, он сам является случайной величиной, так как X=Q+?.

Основной характеристикой любой случайной величины является функция распределения вероятностей, которая устанавливает связь между возможными значениями случайной величины и вероятностями их появления при многократных измерениях.

Существуют две формы представления случайной величины: интегральная и дифференциальная.

Интегральной функцией распределения результатов наблюдения является функция. F(X) - вероятность того, что результат наблюдения окажется меньше некоторого текущего значения х: F(X)=P{X

Размещено на http://www.allbest.ru/

Основным свойством этой функции является следующее: вероятность того, что случайная величина принимает значения в интервале {х1 х2}, равна разности значений функции на концах интервала: P{xi

Если x2-x1= ?x то одинаковым приращениям?х соответствуют различные значения приращения вероятности?F(x). Тогда плотность распределения вероятностей случайной величины, или плотность вероятностей, будет иметь следующий вид:

Это дифференциальная форма представления F(x). В интегральной форме

Вероятность попадания случайной величины в интервал (х1 х2) будет равна интегралу от плотности распределения вероятности:

Так как?=X-Q, то переход от законов распределения вероятностей результатов наблюдений к законам распределения вероятностей погрешностей сводится к замене х на? в вышеприведенных формулах.

погрешность измерение установка

9. СЛУЧАЙНЫЕ ПОГРЕШНОСТИ ИЗМЕРЕНИЙ

9.1 Источники возникновения случайных погрешностей

Случайными называются не определенные по своей величине и природе погрешности, в появлении которых не наблюдается какой-либо закономерности.

Случайные погрешности обнаруживаются при многократных измерениях искомой величины, так как результаты отдельных измерений отличаются друг от друга даже в тех случаях, когда повторные измерения проводятся одинаково тщательно и, казалось бы, при одних и тех же условиях. Другими словами, случайные погрешности неизбежны, и поэтому действительное значение Хд находится с некоторым приближением. К случайным погрешностям можно отнести, например, погрешности отсчета за счет параллакса (в приборах, не снабженных зеркальной шкалой). В зависимости от расположения глаза наблюдателя конец стрелки кажется расположенным над той или иной точкой шкалы, т.е. фактически полученный отсчет зависит от расположения глаза (рисунок 9.1).

Размещено на http://www.allbest.ru/

Правильным отсчетом надо считать точку шкалы, на которую проецируется стрелка при условии, что луч зрения (от зрачка к стрелке) перпендикулярен плоскости шкалы. Следовательно, отсчет производится в точке а", смещенной на некоторую величину по отношению к истинной точке а. В какую сторону и какой величины будет параллакс - зависит от случая. Но насколько в среднем велика погрешность - это зависит от конструкции прибора: чем меньше отношение расстояния h между стрелкой и шкалой к общей ширине шкалы, тем меньше будет в среднем погрешность. Следовательно, проектировщик обязан заранее учитывать ее и принимать конструктивные меры для уменьшения до допустимой величины.

К случайной относится также глазомерная погрешность, возникающая при определении на глаз доли деления. При конструировании обычно считают, что человек, имеющий необходимый навык, ошибается в отсчете на глаз не более чем на 1/10 деления. Это при условии, что шкала удовлетворяет определенным требованиям:

1). деления не слишком мелки - не менее 1,5 мм;

2). штрихи четкие, не размытые;

3). толщина штрихов и визирной черты или нити, толщина конца стрелки удобная; обычно рекомендуют толщину штриха около 0,15 мм;

4). цвет шкалы такой, чтобы штрихи четко выделялись;

5). в ночных условиях должно быть обеспечено достаточное освещение шкалы.

Погрешность (глазомерная или от параллакса), выраженная в процентах, будет тем меньше, чем крупнее шкала (т.е. чем меньше цена мелкого деления).

В качестве примера случайной погрешности можно также привести температурную погрешность, т.е. изменение показаний прибора в связи с тем, что окружающая температура отличается от нормальной, при которой была произведена градуировка шкалы. Для данного прибора можно заранее определить, на сколько изменяется показание при определенном повышении температуры. Следовательно, ее можно исключить путем учета поправки.

В большинстве случаев случайные погрешности нельзя исключить опытным путем, но их влияние на результат измерения может быть теоретически учтено применением при обработке результатов измерений теории вероятностей и математической статистики.

Нормальное распределение случайной погрешности (распределение Гаусса) подчиняется уравнению

где - вероятность получения погрешностей (частота появления случайной погрешности).

Функции распределения достаточно полно могут быть определены своими числовыми характеристиками, к которым относятся начальные и центральные моменты.

Начальным моментом к-порядка является математическое ожидание случайной величины степени к:

В большинстве случаев начальный момент 1-порядка совпадает с истинным значением измеряемой величины.

Центральный момент к-порядка - математическое ожидание к-й степени центрированной случайной величины (т.е. разности между значением случайной величины и ее математическим ожиданием). Применительно к измерениям центрированная случайная величина будет случайной погрешностью:

X-M[X]=X-Q (9.3)

Центральным моментом 2-порядка будет дисперсия результатов наблюдений:

Это рассеяние результатов наблюдений относительно математического ожидания. Недостаток такого представления погрешности измерения заключается в том, что она имеет размерность квадрата измеряемой величины. Поэтому на практике используют значение среднеквадратичного отклонения результата измерения

В отличие от результатов измерения, числовые характеристики функции распределения являются детерминированными, а не случайными. Следовательно, чтобы найти точные значения, необходимо произвести бесконечно большое число наблюдений. Отсюда возникает задача определения приближенных значений, полученных в некотором количестве независимых наблюдений. В математической статистике такие приближенные значения, выраженные одним числом, называются точечными оценками. Любая точечная оценка, вычисленная на основе опытных данных, представляет собой случайную величину, зависящую от самого оцениваемого параметра и от числа опытов. Распределение оценки зависит от распределения исходной случайной величины. Оценки классифицируются следующим образом:

· состоятельные, когда при увеличении числа наблюдений они приближаются к значению оцениваемого параметра;

· несмещенные, если математическое ожидание равно оцениваемому параметру;

· эффективные, если ее дисперсия меньше дисперсии любой другой оценки этого параметра.

9.2 Точечные оценки числовых характеристик измеряемой величины

Пусть имеется выборка из n измеряемых величин Х1 Х2, ... Хп. Результаты измерений содержат только случайные погрешности. Требуется найти оценку истинного значения измеряемой величины и параметр, характеризующий степень рассеяния наблюдений в данной выборке.

9.2.1 Оценка истинного значения измеряемой величины

При симметричных законах распределения вероятностей истинное значение измеряемой величины совпадает с ее математическим ожиданием, а оценкой математического ожидания является среднее арифметическое результатов отдельных наблюдений:

9.2.2 Оценка среднеквадратического отклонения (с.к.о.) результата наблюдений

Если известно математическое ожидание случайной величины, то с.к.о. равно

Если математическое ожидание неизвестно, то по результатам выборочных наблюдений можно найти лишь оценку математического ожидания X. Это будет оценка состоятельная, но смещенная.

Несмещенная оценка будет иметь вид

9.2.3 Оценка с.к.о. результата измерения

Полученная выше оценка истинного значения измеряемой величины X является случайной величиной, рассеянной относительно Q. С.к.о. будет иметь следующий вид

Эта величина характеризует рассеяние среднего арифметического значения X результатов п наблюдений измеряемой величины относительно ее истинного значения.

9.3 Оценка с.к.о. результата косвенного измерения

Все сказанное выше относится к оценке с.к.о. результата прямого измерения. Для оценки с.к.о. результата косвенного измерения поступают следующим образом. Пусть результат измерений представляет собой функцию от m переменных Q = F(X1,X2,..,Xm). Находят частные погрешности результата измерения

где оценки с.к.о. результата прямого измерения i-и величины.

С.к.о. результата косвенного измерения находится по формуле

где Rij - коэффициент корреляции, показывающий степень статистической связи между частными погрешностями измерения.

10. КЛАССИФИКАЦИЯ ИЗМЕРИТЕЛЬНЫХ ПРИБОРОВ

Изо всего многообразия методов и средств измерений рассмотрим только те, которые широко используются для измерения характеристик электрических сигналов и параметров радиотехнических цепей при контроле технического состояния различных радиоэлектронных устройств. Применяемые для этой цели средства измерений можно условно разделить на две группы: электромеханические и электронные измерительные приборы.

Подобные документы

    Теоретические основы и главные понятия метрологии. Методы нормирования метрологических характеристик средств измерений, оценки погрешностей средств и результатов измерений. Основы обеспечения единства измерений. Структура и функции метрологических служб.

    учебное пособие , добавлен 30.11.2010

    Исследование понятий "сходимость" и "воспроизводимость измерений". Построение карты статистического анализа качества конденсаторов методом средних арифметических величин. Анализ основных видов погрешностей измерений: систематических, случайных и грубых.

    контрольная работа , добавлен 07.02.2012

    Статическая характеристика преобразования. Зависимость между выходным и входным информационными параметрами измеряемой величины. Порог чувствительности. Цена деления. Диапазон измерений. Погрешность меры и закономерность проявления погрешностей.

    презентация , добавлен 22.10.2013

    Нормирование метрологических характеристик средств измерений. Их класс точности - обобщенная характеристика данного типа средств, выражаемая пределами допускаемых основной и дополнительных погрешностей. Специальные формулы их нормирования по ГОСТу.

    презентация , добавлен 19.07.2015

    Классификация погрешностей по характеру проявления (систематические и случайные). Понятие вероятности случайного события. Характеристики случайных погрешностей. Динамические характеристики основных средств измерения. Динамические погрешности измерений.

    курсовая работа , добавлен 18.04.2015

    Сведения о методах и видах измерений. Описание теории и технологической схемы процесса искусственного охлаждения. Метрологическое обеспечение процесса. Выбор и обоснование системы измерений, схема передачи информации. Расчет погрешностей измерения.

    курсовая работа , добавлен 29.04.2014

    Определение значения мощности электрического тока в результате косвенных измерений путем оценки величины сопротивления, напряжения и погрешностей. Оценка стоимости аккредитации базового органа по сертификации продукции и испытательной лаборатории.

    курсовая работа , добавлен 15.02.2011

    Общая характеристика объектов измерений в метрологии. Понятие видов и методов измерений. Классификация и характеристика средств измерений. Метрологические свойства и метрологические характеристики средств измерений. Основы теории и методики измерений.

    реферат , добавлен 14.02.2011

    Классификация погрешностей измерений: по форме представления, по условиям возникновения, в зависимости от условий и режимов измерения, от причин и места возникновения. Характерные грубые погрешности и промахи. Измерения и их погрешности в строительстве.

    курсовая работа , добавлен 14.12.2010

    Общие вопросы основ метрологии и измерительной техники. Классификация и характеристика измерений и процессы им сопутствующие. Сходства и различия контроля и измерения. Средства измерений и их метрологические характеристики. Виды погрешности измерений.

Основные метрологические характеристики измерительных устройств

Приборы контроля параметров технологических процессов

Вопросами теории измерений, средствами обеспечения их единства и способами достижения необходимой точности занимается наука метрология .

Метрология определяет измерение как познавательный процесс, за­ключающийся в нахождении соотношения между измеряемой величиной и другой величиной, условно принятой за единицу измерения. Так, если к - измеряемая величина, а - единица измерения, a т - числовое значение измеряемой величины в принятой единице, то

к = та. (2.1)

Это уравнение является основным уравнением измерения.

В теории измерений различают: прямые, косвенные, совокупные и совместные измерения.

Прямые измерения , характеризуемые равенством (2.1), заключаются в непосредственном сравнении измеряемой величины с единицей измерения при помощи меры или измерительного прибора со шкалой, выраженной в этих единицах. Большую часть физических величин определяют не путем непосредственных измерений, а с помощью вычислений, пользуясь из­вестными функциональными зависимостями.

Измерения, при которых искомую измеряемую величину определяют вычислениями по результатам прямых измерений, связанных с искомой величиной известной функциональной зависимостью, называют косвенны­ми измерениями . При этом значение измеряемой величины определяют по формуле

Q = f(A,B,C, ...,), (2.2)

где A, B, C - значения величин, полученные при прямых измерениях. Приме­рами косвенных измерений могут служить: определение объема тела по пря­мым измерениям его геометрических размеров, расхода вещества, протекаю­щего в трубопроводе, по перепаду давлений на дроссельном устройстве и т.п.

Совокупными измерениями называют такие, при которых искомые значения величин находят с помощью системы уравнений, получаемых при прямых измерениях различных сочетаний этих величин.

Совместными измерениями называются производимые одновременно измерения двух или нескольких неодноименных величин для нахождения зависимости между ними.

2.1. Характеристика средств измерения

В состав измерительной аппаратуры входят меры, измерительные приборы и вспомогательные устройства . По назначению меры и измерительные приборы бывают образцовыми и рабочими .

Образцовые меры и измерительные приборы служат для воспроизве­дения и хранения единиц измерения, а также для градуировки и поверки рабочих измерительных устройств.

Рабочие меры и измерительные приборы предназначены для прямого или косвенного сравнения измеряемых величин с соответствующими еди­ницами измерения или мерами и разделяются на две группы - лаборатор­ные и технические. Лабораторные меры и измерительные приборы харак­теризуются установленной точностью, и при их применении в результат измерения следует вносить поправки в соответствии с паспортными дан­ными, а также учитывать влияние внешних факторов. Для технических мер и измерительных приборов точность принимается заранее заданной, и в ре­зультат измерения, который считается точным в установленных техниче­скими условиями или государственными стандартами пределах нормируе­мых метрологических характеристик, не требуется вносить какие-либо по­правки.

В общем случае под измерительным прибором понимается средство измерения, предназначенное для выработки сигналов измерительной ин­формации в форме, доступной для непосредственного восприятия наблю­дателем. По способу выдачи информации измерительные приборы могут быть показывающими или регистрирующими , а при наличии устройств сигнализации - сигнализирующими.

Метрологические характеристики измерительных устройств, опреде­ляющие достоверность получаемой информации, т.е. главную функцию средств измерений, служат основными критериями их качества. В число нормируемых метрологических характеристик средств измерений входят следующие показатели:

1. Пределы измерения (в виде номинальной статической характери­стики, наименьшей цены деления неравномерной шкалы измерительного устройства, выходного кода или номинальной цены единицы измерения).

2. Нормы точности измерения (погрешности средств измерения, ди­намические характеристики, чувствительность, стабильность и вариация показаний и т.д.).

3. Виды, способы, выражения и методы нормирования погрешностей.

4. Методы аттестации и испытаний.

Под номинальной статической характеристикой средства измерения понимается функциональная зависимость выходного сигнала (перемеще­ние отсчетного устройства и т.п.) от измеряемого параметра А (выходного сигнала) при заданных внешних условиях и в установившемся состоянии системы. Статическая характеристика будет линейной лишь в случае по­стоянства дифференциальной чувствительности S для всего рабочего диа­пазона значений А, когда

S = = = const (2 3)

Минимальное значение X 0 измеряемой величины, которое способно вызвать наименьшее заметное перемещение указателя или изменение вы­ходной величины, называется порогом чувствительности .

Под постоянной прибора понимается число единиц измерения, на ко­торое надо умножить отсчет (число, определяемое положением отсчетного устройства) для получения показания в определенных единицах измере­ния. В большинстве измерительных приборов отсчетные устройства вы­полнены в виде шкалы и указателя. Шкала представляет собой совокуп­ность отметок, расположенных вдоль какой-либо линии. Начало и конец шкалы, соответствующие нижнему и верхнему пределам измерения, опре­деляют диапазон измерения. Инерционность средств измерений в процессе перехода параметра от одного установившегося значения к другому оце­нивается динамическими характеристиками, такими, как постоянная вре­мени, время установления показаний и т.п. Важными характеристиками измерительных устройств являются погрешности.

Погрешностью из­мерительного устройства называется разность между результатом из­мерения X некоторой величины и ее действительным значением Х 0:

А = X - Х 0 , (2.4)

где А - есть основная количественная характеристика измерения, называе­мая абсолютной погрешностью . Относительная погрешность , равная от­ношению абсолютной погрешности к действительному значению измеряе­мой величины, выражается в процентах:

δ = 100/Хо

В связи с этим погрешно­сти измерительных устройств могут быть классифицированы так:

статические и динамические , в зависимости от условий и режимов эксплуатации;

систематические, случайные и грубые , в зависимости от характера их проявления и возможностей устранения.

Статической погрешностью называется погрешность, возникающая при установившемся значении измеряемой величины и неизменных внеш­них условиях.

Динамической погрешностью называется погрешность, возникающая при изменении измеряемой величины и внешних воздействий.

Систематическими погрешностями называются постоянные по вели­чине и знаку или изменяющиеся по определенному закону погрешности, повторяющиеся при многократных измерениях. Систематические погреш­ности определяются путем многократных измерений одной и той же вели­чины при постоянных прочих условиях и устраняются посредством регу­лировочных устройств или введением коррекции с помощью специальных элементов. Систематические погрешности подразделяют на прогресси­рующие и периодические. Прогрессирующими называются непрерывно возрастающие или убывающие погрешности. К ним относятся погрешно­сти от износа деталей, контактов и т.п. Периодическими называются по­грешности, изменяющиеся по величине и знаку, возникающие при функ­ционировании измерительных устройств.

Случайные погрешности представляют собой погрешности, неопреде­ленным образом изменяющиеся по величине и знаку. Они определяют точность измерительного устройства. По случайным погрешностям произ­водится оценка точности как самих измерительных устройств, так и мето­дов измерения. Вследствие случайной погрешности истинное значение из­меряемой величины неизвестно, поэтому при подсчете случайных погреш­ностей за измеренное значение принимают среднее арифметическое X из полученных N измерений Xi,

2.1. Информационная характеристика процесса измерения

Всякое измерение можно рассматривать как цепь преобразований из­меряемой величины до тех пор, пока результат измерений не будет пред­ставлен в том виде, который требовалось получить.

Процесс измерения характеризуется передачей информации о значе­нии измеряемой величины от одного носителя ее к другому, т.е. преобра­зованием информации о значении измеряемой величины в результат изме­рений. Это означает, что в информационном аспекте измерение можно рассматривать как процесс приема и преобразования информации от изме­ряемой величины в целях получения количественного результата путем сравнения с принятой шкалой или единицей измерения в форме, наиболее удобной для дальнейшего использования ее человеком и машиной.

Для ус­тановления связи между точностью измерений и количеством получаемой при измерениях информации используют основные положения теории ин­формации. При этом под термином "информация " понимают совокупность сведений о каком-либо объекте, процессе или явлении, в общем случае - о физической системе.

Задачей получения информации является устранение неопределенности в наших представлениях о состоянии некоторой физи­ческой системы и установление количественных закономерностей, связан­ных с получением, обработкой и хранением информации.

Таким образом, получение любой информации, в том числе и измери­тельной, теория информации рассматривает как устранение некоторой не­определенности, а количество информации рассматривается как разность ситуации до и после получения данного сообщения. В настоящее время, по мнению специалистов, развивающих и использующих информационную теорию измерительных устройств, использование методов теории инфор­мации обеспечит более эффективную оценку качества приборов.

2.2. Надзор за измерительной техникой

Обеспечение единства измерений и поддержания в надлежащем со­стоянии средств измерений во всех отраслях народного хозяйства осуще­ствляется единой метрологической службой страны, возглавляемой Гос­стандартом РФ и состоящей из государственной метрологической службы и ведомственных метрологических служб. Государственная метрологиче­ская служба имеет ряд научно-исследовательских институтов и управле­ний Госстандарта РФ. В ведении последних находятся территориальные центры метрологии и стандартизации, межобластные, областные (краевые) и межрайонные лаборатории государственного надзора за стандартами и измерительной техникой.

Основными задачами государственной метрологической службы яв­ляются: - осуществление государственного надзора за измерительной тех­никой,

Разработка нормативно-технических документов государственной системы обеспечения единства измерений (ГСИ) и контроль за их выпол­нением,

Создание и совершенствование эталонной базы и парка образцо­вых средств измерений,

ГСИ представляет собой ком­плекс установленных государственными стандартами правил, положений, требований и норм, определяющих организацию и методику работ по оценке и обеспечению точности измерений. Эти стандарты регламентиру­ют: единицы физических величин, методы и средства воспроизведения этих единиц и передачи их размеров рабочим средствам измерений, спосо­бы выражения нормируемых метрологических характеристик средств из­мерений и показателей точности результатов измерений; требования к ме­тодике выполнения измерений; порядок и методику проведения государст­венных испытаний, поверки и ревизии средств измерений.

Одной из основных обязанностей государственной метрологической службы является обеспечение государственного надзора за измерительной техникой. Надзору подлежат: производство, состояние, эксплуатация и ре­монт мер и измерительных приборов, а также деятельность ведомственных метрологических служб. Органы Госстандарта РФ имеют право запрещать выпуск в обращение средств измерений, не соответствующих требованиям государственных стандартов и технических условий, изымать из обраще­ния непригодные меры и измерительные приборы, производить обязатель­ную государственную поверку средств измерений, производить государст­венные испытания и аттестацию новых измерительных приборов.

Все ме­ры и измерительные приборы, предназначенные для серийного производ­ства и выпуска в обращение, подвергаются государственным испытаниям. В процессе испытаний устанавливается соответствие приборов запросам народного хозяйства, современному уровню измерительной техники и тре­бованиям стандартов. При положительных результатах государственных испытаний приборов Госстандарт РФ разрешает их производство и выпуск в обращение и включает в государственный реестр.

Для обеспечения необходимой точности измерений установлен опре­деленный порядок организации и проведения поверки средств измерений. Все средства измерений подлежат государственной или ведомственной поверке.

Государственной поверке, выполняемой системой Госстандарта РФ, подвергаются средства измерения, применяемые в органах государствен­ной метрологической службы, исходные образцовые приборы, используе­мые в органах ведомственных метрологических служб, а также рабочие средства измерений, применяемые для учета и взаимных расчетов, обеспе­чения техники безопасности охраны окружающей среды и здоровья насе­ления. Перечень рабочих средств измерений, подлежащих обязательной государственной поверке, и периодичность этой поверки для отдельных групп приборов устанавливаются Госстандартом РФ.

Ведомственная поверка осуществляется органами ведомственных метрологических служб отдельных предприятий, организаций и учрежде­ний, имеющих разрешение органов Госстандарта РФ на проведение пове­рочных работ. Этой поверке подлежат все средства измерений, используе­мые в народном хозяйстве, не охватываемые государственной поверкой. Поверка средств измерений проводится в соответствии с требованиями Го­сударственных стандартов, инструкций и методических указаний Госстан­дарта РФ к методам и средствам поверки. Приборы, признанные в резуль­тате поверки не отвечающими своему классу точности или неисправными, не допускаются к дальнейшему применению до устранения выявленных недостатков. На приборы, признанные годными, наносятся клейма или вы­писываются свидетельства. При необходимости ограничить доступ к меха­низмам приборов. После их поверки корпуса приборов пломбируются.

При участии в государственных комиссиях по приемке вновь смонтированного и реконструированного технологического оборудования взрывопожаро­опасных производств с наличием средств автоматики работникам пожар­ной охраны необходимо обращать внимание на выполнение требований соответствующих нормативных документов Госстандарта по поверке при­боров и их клеймению. Это снижает возможность взрывопожароопасных ситуаций на объектах, а в случае пожара и взрыва приборы, прошедшие поверку, будут объективно отражать предаварийную ситуацию и ход раз­вития аварии, приведшей к пожару.

ПРИБОРЫ КОНТРОЛЯ ПАРАМЕТРОВ ТЕХНОЛОГИЧЕСКИХ

ПРОЦЕССОВ

3.1. Контрольно-измерительные приборы температуры

Для измерения температуры используют изменение какого-либо фи­зического свойства тела, однозначно зависящего от его температуры и лег­ко поддающегося измерению.

К числу свойств, положенных в основу работы приборов для измере- ния температуры, относятся: объемное расширение тел, изменение давле­ния вещества в замкнутом объеме, возникновение термоэлектродвижущей силы, изменение электрического сопротивления проводников и полупро­водников, интенсивность излучения нагретых тел и др.

В зависимости от физических свойств, на которых основано действие приборов для измерения температуры, различают:

1. Термометры расширения, построенные по принципу измене­ния объема жидкости или линейных размеров твердых тел при изменении температуры. Применяются для измерения температуры от -190 до +500 0 С.

2. Манометрические термометры, основанные на изменении давления жидкости, газа или пара в замкнутом объеме при изменении тем­пературы. Применяются для измерения температур от -120 до +600 0 С.

3. Термоэлектрические пирометры (термопары), прин­цип действия которых основан на возникновении электродвижущей силы при изменении температуры одного из спаев замкнутой цепи разнородных термоэлектродов. Применяются для измерения температуры от -200 до +2000 0 С.

4. Термометры сопротивления, основанные на изменении электрического сопротивления проводника или полупроводника при изме­нении температуры. Применяются для измерения температуры от -200 до +650 0 С.

5. Пирометры излучения, работающие по принципу изменения интенсивности излучения нагретых тел в зависимости от изменения тем­пературы. Применяются для измерения температур от +600 до +6000 0 С.

3.2. Контрольно-измерительные приборы давления

Давление определяется отношением силы, равномерно распределен­ной по площади и нормальной к ней, к размеру этой площади. В зависимо­сти от измеряемой величины приборы для измерения давления делятся на:

манометры - для измерения средних и больших избыточных давлений;

вакуумметры - для измерения средних и больших разрежений;

мановакуумметры - для измерения средних и больших давлений и разрежений;

напоромеры - для измерения малых избыточных давлений;

тягомеры - для измерения малых разрежений;

тягонапоромеры - для измерения малых избыточных давлений и

разрежений;

дифманометры - для измерения разности перепада давлений;

барометры - для измерения атмосферного давления.

По принципу действия различают следующие приборы для измерения давления: жидкостные, пружинные, поршневые, электрические радиоак­тивные.

Жидкостные приборы. В этих приборах измеряемое давление или разрежение уравновешивается гидростатическим давлением столба рабо­чей жидкости, в качестве которой применяются ртуть, вода, спирт и др.

Пружинные приборы. Измеряемое давление или разрежение уравно­вешивается силами упругого противодействия различных чувствительных элементов (трубчатой пружины, мембраны, сильфона и т.п.), деформация которых, пропорциональная измеряемому параметру, передается посред­ством системы рычагов на стрелку или перо прибора.

Поршневые манометры. Давление определяется по значению на­грузки, действующей на поршень определенной площади, перемещаемый в заполненном маслом цилиндре; поршневые манометры имеют высокие классы точности, равные 0,02; 0,05; 0,2 .

Электрические приборы. Действие этих приборов основано на изме­рении электрических свойств (сопротивление, емкость, индуктивность и т.п.) некоторых материалов при воздействии на них внешнего давления.

Пьезоэлектрические приборы. В этих приборах используется пьезо­электрический эффект, заключающийся в возникновении электрических зарядов на поверхности некоторых кристаллов (кварца, сегнетовой соли, турмалина) при приложении к ним силы в определенном направлении.

Радиоактивные приборы. Давление определяется изменением сте­пени ионизации или степени поглощения у-лучей при изменении плотно­сти вещества.

3.3. Контрольно-измерительные приборы уровня

Уровнемеры для жидкостей по принципу действия делятся на указа­тельные стекла, поплавковые, гидростатические, электрические и радиоак­тивные.

Указательные или уровнемерные стекла представляют собой вер­тикально расположенную стеклянную трубку, в которой жидкость, как в сообщающихся сосудах, устанавливается на той же высоте, что и в аппара­те. Указательные стекла применяются для местного измерения уровня в аппаратах.

Поплавковые уровнемеры. В этих приборах чувствительным эле­ментом является поплавок с меньшим (плавающий) или большим (по­гружной) удельным весом, чем жидкость. Изменение уровня жидкости в аппарате вызывает перемещение поплавка, которое при помощи системы рычагов, тяг и тросов передается указателю, движущемуся по шкале, или вторичному прибору для отсчета, записи.

Гидростатические уровнемеры служат для измерения гидростатиче­ского давления столба жидкости, уровень которой определяется. Различа­ют гидростатические пьезометрические и дифманометрические уровнеме­ры. Действие гидростатических пьезометрических уровнемеров основано на использовании давления воздуха или газа, барботирующего через слой жидкости с измеряемым уровнем при изменении последнего.

Действие гидростатических дифманометрических уровнемеров осно­вано на определении уровня по давлению столба измеряемой жидкости, которое уравновешивается давлением постоянного столба жидкости.

Электрические уровнемеры. Наиболее широко распространены уровнемеры емкостные и омические.

В электрических емкостных уровнемерах чувствительным элементом является конденсатор, обкладки которого располагаются с противополож­ных сторон вертикальной трубки из диэлектрика, соединенной с аппаратом подобно сообщающимся сосудам. Если одной обкладкой конденсатора яв­ляется электрод, то другой - стенка аппарата. При изменении уровня жид­кости емкость конденсатора, включенного в одно из плеч моста перемен­ного тока, изменяется, и на вход вторичного прибора подается сигнал, пропорциональный величине измеряемого уровня.

Действие электрических омических уровнемеров, применяемых для определения уровня электропроводных жидкостей, основано на измерении сопротивления между электродами соответствующей формы, введенными в жидкость. При этом сопротивление слоя жидкости между электродом и корпусом или между двумя электродами зависит от высоты уровня жидко­сти в аппарате.

Радиоактивные уровнемеры. Измерение уровня жидкости основано на измерении интенсивности поглощения у-частиц при изменении уровня жидкости.

3.4. Контрольно-измерительные приборы расхода

Объемным расходом g называют объемное количество вещества V, которое протекает через поперечное сечение трубопровода в единицу времени т,


где р - плотность вещества, кг/м 3 .

Приборы, предназначенные для измерения расхода, называются рас - ходомерами, а измеряющие количество вещества, которое протекает через поперечное сечение трубопровода в течение отрезка времени, - счетчиками.

По принципу действия расходомеры можно разделить на расходомеры переменного и постоянного перепадов давлений, переменного уровня.

Расходомеры переменного перепада давлений. Действие этих при­боров основано на возникновении перепада давлений на установленном внутри трубопровода сужающемся устройстве постоянного сечения. Раз­ность статических давлений до и после сужающегося устройства (перепад давлений), измеряемая дифференциальным манометром, зависит от расхо­да протекающего вещества и может служить мерой расхода.

Расходомеры постоянного перепада давлений (ротаметры). Дейст­вие этих приборов основано на перемещении чувствительного элемента (поплавка), установленного в вертикальной конической трубке; через нее снизу подается вещество, расход которого измеряется. При изменении рас­хода жидкости, газа или пара поплавок перемещается вверх и изменяется проходное отверстие трубки. Высота подъема поплавка функционально связана с расходом. При этом перепад давления на поплавке при переме­щении его вдоль оси трубки остается практически постоянным.

Расходомеры переменного уровня. Действие этих приборов основа­но на изменении высоты уровня жидкости в сосуде при непрерывном по­ступлении и свободном истечении ее из сосуда.

Существуют и другие виды расходомеров, действие которых основано на некоторых физических закономерностях (изменении электрических па­раметров, теплоотдачи к потоку, уменьшении интенсивности ультразвука или радиоактивного излучения в зависимости от расхода).


3.5. Автоматический уравновешенный мост

Уравновешенный мост предназначен для непрерывного измерения, записи и регулирования температуры. Он работает в комплекте с термо­метрами сопротивлений стандартных градуировок, т.е. имеет соответствие заданного предела измерения - градуировки термометра сопротивлений. Это означает, что каждому прибору соответствует определенная группа термометров сопротивлений единой градуировки. Сущность действия тер­мометров сопротивления основана на зависимости его электрического со­противления от температуры.

Принципиальная измерительная схема рассматриваемого прибора - мостовая. Измерения неэлектрических величин электрическими методами очень широко распространены в электротехнике и автоматике. Мостовой измерительной схемой пользуются более 100 лет, а возможность измере­ния

Под условием равновесия подразумевается такое соотношение сопро­тивлений моста, при которой на вершинах измерительной диагонали раз­ность потенциалов U bd = 0 ив цепи измерения отсутствует выходной сиг­нал. Состоянию U bd = 0 соответствует равенство падений напряжений со­ответственно в прилежащих плечах, т.е.

Ui = U4 и U2 = U3. (3.1)

По закону Ома

Ui = I1R1; U2 = I1R2; U3 = I2R3; U4 = I2R4. (3.2)

Подставляя в равенство падений напряжений (3.1) их значения, выра­женные через токи и сопротивления (3.2), и поделив почленно, получаем:

I1R1/I1R2 = WI2R3 (3.3)

или, сократив значения токов I 1 и I 2 , имеем равенство:

R1R3 = R2R4, (3.4)

которое называется классическим условием равновесия мостовой схемы, читаемое так: "Если произведения сопротивлений противолежащих плеч мостовой схемы равны между собой, то на вершинах измерительной диа­гонали отсутствует разность потенциалов". Этот метод называется нуле- вымметодом измерения сопротивлений.

Принципиальная схема равновесного моста приведена на рис. 3.2.


Медный или платиновый термометр сопротивления R t , электрическое сопротивление которого должно быть измерено, включается в одно из плеч

моста при помощи соединительных проводов, имеющих сопротивления R. Другие плечи моста состоят из постоянных манганиновых сопротивлений Rmt и переменного калиброванного сопротивления реохорда R p , выполнен­ного также из манангина. К одной диагонали моста подведено питание по­стоянного или переменного тока, в другую включен нуль-индикатор. При равновесии моста удовлетворяется равенство:

R\Rt = R2R4, (3.5)

откуда с учетом сопротивлений реохорда запишем:

(Rx+rx)Rt = (R2+r2)R4. (3.6)

В этом случае разность потенциалов между точками bd равна нулю, ток не протекает через нуль-гальванометр и его стрелка установится на ну­левой отметке. При изменении температуры электрическое сопротивление термометра сопротивления изменится и мост разбалансируется. Чтобы восстановить равновесие, необходимо при постоянных сопротивлениях Ri, R 2 и R 4 изменить величину сопротивления реохорда, переместив его под­вижный контакт.

Таким образом, если откалибровать сопротивление реохорда, то по положению его движка при равновесии моста можно судить о величине сопротивления R 1 , следовательно, об измеряемой температуре.


Рис. 3.3. Принципиальная схема электронного равновесного моста

электрическое сопротивление. Измерительный мост, состоящий из посто­янных и переменных сопротивлений (R 1 , R 2 и R 4) и питающийся напряже­нием (6,3 В) от одной из обмоток силового трансформатора, разбалансиру­ется, и в диагонали моста между точками b и d появится напряжение неба­ланса U bd . Последнее подается на вход электронного усилителя (ЭУ), где усиливается по напряжению и мощности, затем поступает на реверсивный двигатель РД и приводит в движение его ротор. Вращаясь в ту или иную сторону, в зависимости от знака разбаланса, ротор реверсивного двигателя перемещает механически с ним связанные движок реохорда R p , стрелку и перо по шкале прибора до тех пор, пока измерительный мост не придет в состояние равновесия. Напряжение на входе электронного усилителя (ЭУ) в этом случае станет равным нулю, электродвигатель РД остановится, а прибор покажет измеряемую температуру.

Точность показаний прибора зависит от подгонки сопротивлений про­водов, соединяющих термометр сопротивления с автоматическим равно­весным мостом. Для подгонки сопротивлений соединительных проводов до градуировочного значения служат сопротивления R y и R" y величиной до 2,5 Ом каждое. При градуировке приборов сопротивление каждого прово­да, идущего от термометра до прибора, принято (2,5+0,01) Ом. Если сопро­тивление каждого провода будет меньше 2,5 Ом, то в соединительную ли­нию последовательно включается добавочное сопротивление, дополняю­щее сопротивление каждого провода до 2,5 Ом.

В производственных условиях термометр сопротивления может нахо­диться на значительном удалении от вторичного прибора, при колебаниях температуры среды величина их сопротивления будет изменяться, что приведет к дополнительной погрешности в показаниях автоматического равновесного моста. Для устранения погрешности применяется трехпро­водная схема соединений термометра сопротивления с вторичным прибо­ром, заключающаяся в том, что точка с (рис. 3.4) переносится непосредст­венно к термометру сопротивления. При таком соединении сопротивление

провода R прибавляется к плечу измерительного моста, а сопротивление

R к плечу с постоянным сопротивлением. Тогда условие равновесия мос­товой схемы будет иметь вид:

(R1+rR1)(Rt+R l)) = (R2+rR 2 +R^)R4. (3.7)

Измерительная схема автоматического равновесного моста может также питаться от сухой батареи постоянного тока или от аккумулятора с напряжением 1,2-1,5 В. В таком случае электронный усилитель прибора должен иметь вибропреобразователь для преобразования сигнала небалан­са постоянного тока в переменный с целью его последующего усиления.

В связи с этим равновесные мосты постоянного тока применяются при возможном появлении в измерительной цепи различных наводок (на­пример, при монтаже термометра сопротивления в электропечах или мес­тах с большими магнитными полями). Кроме того, мосты постоянного тока используют в тех случаях, когда по условиям эксплуатации приборов и пожарной безопасности их питание осуществляется маломощными источ­никами постоянного тока.

Конструктивно автоматический самопишущий равновесный мост представляет собой стационарный прибор, все узлы которого размещены внутри стального корпуса. Запись показаний осуществляется на диаграмм­ной бумаге, перемещаемой синхронным двигателем.

Промышленность выпускает показывающие и записывающие на дис­ковой диаграмме автоматические равновесные мосты, показывающие и за­писывающие на ленточной диаграмме мосты КСМ2, КСМ3, КСМ4, пока­зывающие мосты с вращающейся шкалой и другие модификации. Принци­пиальные схемы их подобны рассмотренной схеме автоматического равно­весного моста и отличаются только конструкцией отдельных узлов.

Однако рассмотренный выше тип электронного прибора имеет и ряд недостатков:

малый диапазон измерения температуры (до 600 0 С);

термометр сопротивления, устанавливаемый в технологических аппаратах, должен размещаться в объеме продукта;

вторичный прибор не имеет специальных средств взрывозащиты и ус­танавливается только в помещениях КИПиА.

3.6. Автоматический потенциометр

Автоматический потенциометр предназначен для измерения, записи и регулирования температуры. Работает он в комплекте с термопа­рами стандартных градуировок, применяется для измерения температур от -200 до + 2000 0 С. В качестве конструкционных материалов для электро­дов термопары используются: железо-копель, копель-алюмель, хромель- алюмель, платина-платинородий и др. Зависимость термоэлектродвижу­щей силы (ТЭДС) от изменения температуры носит линейный характер.

В электронных потенциометрах применяется потенциометрический (компенсационный) метод измерения, который основан на уравновешива­нии (компенсации) измеряемой ТЭДС известной разностью потенциалов, образованной вспомогательным источником питания.

Из принципиальной схемы (рис. 3.5) видно, что термопара подключе­на так, что ее ток на участке Rад идет в том же направлении, что и от ис­точника питания Б, а разность потенциалов между точкой А и любой про­межуточной точкой Д пропорциональна сопротивлению Rад.

Передвигая подвижный контакт Д, при условии, что Eju < Еб, можно найти такое его положение, при котором ток в цепи термопары будет равен 0, т.е. ТЭДС термопары может быть измерена значением падения напря­жения на участке сопротивления RAд. Схема такого вида широко использу­ется для измерения температуры в переносных приборах.

Недостаток рассмотренной схемы состоит в том, что ТЭДС зависит от постоянства тока в цепи реохорда.

Варьирование рабочего тока в цепи реохорда может вносить погреш­ности в результаты измерения. Установка необходимой величины рабочего тока и контроль его постоянства производят также компенсационным ме­тодом (рис. 3.6).

Схема имеет три цепи:

цепь источника тока (источник тока Б, установочное сопротивление, постоянное сопротивление, реохорд с подвижным контактом Д);

цепь нормального элемента (нормальный элемент НЭ, постоянное со­противление, измерительный прибор ИП);

цепь термопары (термопара ТП, измерительный прибор ИП, часть пе­ременного сопротивления реохорда).

В режиме контроля переключатель устанавливают в положение К, подключая нормальный элемент к концам сопротивления Rh.3 (ЭДС источ­ника питания Б направлена навстречу ЭДС нормального элемента). При снижении величины рабочего тока его регулируют установочным сопро­тивлением и добиваются такого положения, при котором разность потен­циалов на концах сопротивления Rh.3 не станет равна ЭДС нормального элемента. Ток в цепи измерительного прибора станет равным нулю. Если R ycT не удается установить рабочий ток, то батарею заменяют. В режиме измерения переключатель устанавливают в положение И, подключая тем самым термопару последовательно с нормальным элементом, реохордом в точке А и подвижным контактом Д. ТЭДС термопары в этом случае будет направлена в противоположную сторону ЭДС источника Б. Перемещая контакт Д, находят такое его положение, при котором разность потенциа­лов между точкой А и контактом Дреохорда равна ТЭДС термопары.

В приборах серии ГСП питание измерительной схемы осуществляется стабилизированным источником, что упрощает конструкцию и эксплуата­цию.

Метрология – наука об измерениях, методах и средствах обеспечения их единства и способа достижения требуемой точности.

Измерение – нахождение значения физической величины опытным путем с помощью специальных технических средств и выражение полученного результата в принятых единицах.

Признаки измерения :

    Наличие физической величины

    Требуется проведение опыта

    Наличие средства измерения

    Числовое значение физической величины

Средство измерения – такое измерительное средство, которое обладает нормированными техническими характеристиками.

Физическая величина – свойство, общее в качественном отношении для многих физических объектов, процессов или явлений, но индивидуальная в количественном отношении.

Действительное значение физической величины – значение, которое удовлетворяет в данном случае потребительским задачам.

Классификация ФВ .

    Может совершать работу: активные, пассивные

    Детерминированные, случайные

    Аналоговые – ФВ, которая имеет бесконечное множество значений в заданном диапазоне; квантованные

    Во времени: непрерывные, дискретные

Виды измерений .

По признаку получения результата :

    Прямые – измерения, при которых искомое значение определяется непосредственно в ходе эксперимента

    Косвенное – используется известная функциональная зависимость между результатами измеренными прямым способом и искомой ФВ

    Совместные – производится одновременное измерение нескольких разноименных ФВ для нахождения зависимости между ними

    Совокупные – измерения, когда происходит одновременное измерение нескольких одноименных ФВ для определения искомых значений другой ФВ

По признаку изменения во времени :

    Статические – измерение значения некоторой ФВ, значение которой неизменно в течение времени использования результата

    Динамические

По признаку кратности измерения :

    Однократные

    Многократные

По признаку точности

    Равноточные – обеспечиваются неизменные условия проведения, одни и те же средства измерения

    Неравноточные – различные по уровню точности средства измерения.

Информация – сведения, уменьшающие априорную неопределенность об объекте.

Сигнал измерительной информации – сигнал, параметры которого функционально связаны с измеряемой величиной.

Информационный аспект измерения: получение любого СИИ – цепочка преобразований сигналов.

.

Средство измерения – технические средства, обладающие нормированными метрологическими характеристиками.

Носителем ФВ является сигнал.

Сигнал – это физический процесс протекающий во времени.

Интегральные характеристики :

- коэффициент амплитуды

- формы

- усиления

- синусоидальный

1,1,1 – меандр

- пилообразный

Классификация средств измерения .

    Меры – средства измерения, воспроизводящие ФВ заданного размера

    Измерительные преобразователи – средства измерения, которые выдают СИИ в форме удобной для передачи, хранения, обработки, но неудобной для непосредственного восприятия наблюдателем. Термопара. Электрическую величину в электрическую (трансформатор). Не электрическую в электрическую. Генераторные (термопара). Параметрические (термометр сопротивления) не генерируют сигнал, для работы требуется дополнительный источник питания. Датчик – конструктивно оформленный измерительный преобразователь.

    Измерительные приборы – средства измерения, вырабатывающие СИИ в форме, удобной для непосредственного восприятия наблюдателем. Аналоговые, цифровые. Выходная величина аналогового есть непрерывная функция входной величины. В зависимости от возможности сохранности результата разделяются на показывающие и регистрирующие. В зависимости от места установки выделяют стационарные и переносные.

    Измерительные установки – совокупность конструктивно и функционально объединенных средств измерения и вспомогательных устройств, предназначенная для рационального построения измерительного эксперимента.

    Измерительная система – совокупность конструктивно и функционально объединенных средств измерения и вспомогательных устройств, предназначенная для автоматического сбора измерительной информации от ряда объектов с последующей передачей, обработкой, хранением.

К – коммутатор

ПНК – преобразователь напряжение-код

КС – канал связи

М – модулятор

ДМ – демодулятор

Методы измерений .

В зависимости от использования меры :

    Метод непосредственной оценки – в процессе измерения меры не участвуют, результат получается непосредственно на отсчетном устройстве средства измерения. Мера используется опосредованно – при изготовлении прибора.

    Методы сравнения – мера непосредственно участвует в процессе измерения

Нулевой метод .

НИ – нуль индикатор

Ех – измеряемое напряжение

U0 – образцовая мера

Метод заключается в том, что разность измеряемой величины и величины, воспроизводимой мерой, в процессе измерения сводится к 0, что и фиксируется НИ. Результат равен значению меры. Мостовые измерительные приборы. При высокой точности меры метод позволяет получить результат измерения с высокой точностью.

Дифференциальный метод .

Разность измеряемой величины и величины, воспроизводимой мерой, измеряется с помощью средства измерения. Результат получается как сумма значения меры и показаний средства измерения. Данный метод позволяет получать результат измерения с высокой точностью при использовании средства измерения сравнительно невысокой точности.

Δ – абсолютная погрешность вольтметра.

Метод замещения .

Происходит поочередное измерение измеряемой величины и величины, воспроизводимой мерой. Значение неизвестной величины определяется по этим двум измерениям. Обладает достаточной точностью в случае, если объект измерения примерно равен мере.

Погрешности измерений .

Погрешность – количественная характеристика

Точность – качественная характеристика, отражающая близость к нулю погрешности.

Классификация.

По способу выражения :


По месту (причине) возникновения :

    Методическая – из-за неадекватности принятой модели объекта измерения

    Инструментальная – приборная погрешность самого средства измерения

По характеру изменения :

    Систематическая – постоянна или изменяется по известному закону

    Случайная – изменяется по законам случайных чисел. Для ее нахождения используются элементы теории вероятности, статистические измерения

    Промахи – субъективная погрешность оператора

По способу воздействия окружающей среды на средство измерения :

    Основная – возникает при нормальных условиях эксплуатации средства измерения

    Дополнительная – в условиях, отличных от нормальных

По характеру изменения во времени :

    Статические – возникают при измерении постоянной во времени величины

    Динамические – при измерении сигнала, изменяющегося во времени

По связи с измеренной величиной :

    Аддитивная – не зависит от измеряемой величины

    Мультипликативная – зависит от измеряемой величины

Характеристики средств измерений .

Неметрологические – характеристики, которые не влияют на точность результата измерения (вес, размер, цвет).

Метрологические – влияют на точность (входное сопротивление, емкость, трение и т.д.)

Основные метрологические характеристики :

    Номинальная статическая функция преобразования – зависимость между информационными параметрами входного и выходного сигнала. Вводится для типа средства измерения.

    Действительная функция преобразования (уравнение преобразования) – реальная характеристика преобразования. В виде функциональной зависимости, таблицы входных и выходных значений, функции в координатах.

    Чувствительность – отношение приращения выходной величины к вызвавшему это приращение приращения входной величины.

    Порог чувствительности (разрешающая способность) – минимальное значение входной величины, которое может быть обнаружено по изменению выходной величины.

    Постоянная прибора – отношение некоторого значения измеряемой величины к показанию прибора в делениях.

    Цена деления – разность между соседними отметками шкалы, причем, если эта разность есть величина постоянная, то шкала равномерная.

    Диапазоны показаний – разность между максимальным и минимальным значениями.

    Диапазоны измерений – область на шкале средства измерения, в которой определены (заданы) метрологические характеристики – рабочий диапазон

    Характеристики средства измерения, влияющие на измерительную цепь.

    Погрешности средства измерения. Основная, дополнительная. Аддитивная, мультипликативная.

Нормирование погрешности средства измерения .

Класс точности средства измерения – основная интегральная метрологическая характеристика средства измерения, дающая предел основной погрешности. В некоторых случаях класс точности задает и дополнительные погрешности, и другие метрологические характеристики. Значение класса точности выбирают из некоторого числового ряда:

У электронных осциллографов класс точности отражает другую величину.

Нормирование – задание номинальной характеристики для данного типа средства измерения и допускаемых отклонений для данного результата.

Тип средства измерения – совокупность средств измерений одного и того же назначения, основанная на одном и том же принципе, имеющие одинаковую конструкцию и выполненные по одной технологической документации.

Способ нормирования погрешности средства измерения зависит от характера абсолютной погрешности данного средства.

Погрешность имеет аддитивный характер .

при равномерной шкале.

с галочкой снизу. При неравномерной шкале.

Мультипликативный характер погрешности .

в кружочке.

Смешанный характер погрешности .

Поверка – это выяснение соответствия данного средства измерения своему классу точности.

Нормирование дополнительной погрешности .

Нормирование дополнительной погрешности сводится к заданию коэффициента влияния или функции влияния.

Электромеханические приборы .

Это приборы, в которых электрическая энергия измеряемого сигнала преобразуется в механическую энергию подвижной части прибора.

Измерительная цепь – служит для преобразования электрической энергии входного сигнала в электрическую же энергию (масштабирование)

Измерительный механизм – для преобразования электрической энергии в механическую движения подвижной части.

Отсчетное устройство – для визуализации.

Классификация электромеханических приборов .

    По виду измеряемой величины (ток, напряжение, сопротивление, мощность, частота, фаза)

    По роду электрического сигнала

    По способу создания противодействующего момента (механический – пружина, логометрический – за счет дополнительной катушки, создающей встречное магнитное поле)

    По способу успокоения подвижной части (магнитно-индукционный, воздушный, жидкостный)

    По типу измерительного механизма (магнито-электрический, электро-магнитный, электро-динамический, электро-статический, индукционный, ферро-динамический)

Магнито-электрические приборы.

Магнитные полюсные наконечники, неподвижный сердечник, рамка с током, противодействующая пружинка.

Поле в зазоре равномерное.

Достоинства :


Недостатки :

    Низкая перегрузочная способность

    Невозможность работы на переменном токе

    Относительная сложность производства

Приборы на основе МЭИМ .

Амперметры.

Вольтметры.

Омметры .

Последовательная схема.

Влияние источника питания на результат измерения убирается с помощью магнитного шунта, встроенного в конструкцию ИМ, который влияет на магнитное поле для компенсации напряжения питания.

Параллельная схема.

Достоинства:

    Высокая точность

    Высокая надежность

Недостаток: зависимость от напряжения питания.

Возможно построение комбинированных приборов (тестеров), измеряющих одновременно напряжение, ток, сопротивление, (индуктивность, емкость). На основе МЭИМ строятся также такие высокочувствительные приборы, как гальванометры, а также приборы для измерения на переменном напряжении.

Электронные аналоговые приборы и преобразователи .

Средства измерения, в которых преобразование сигнала измерительной информации производится с помощью аналоговых электронных устройств. Выходной сигнал таких средств измерения является непрерывной функцией входного сигнала. Используются для измерения всех видов электрических сигналов: напряжение, ток, сопротивление, фаза, частота…

Электронные вольтметры – средства измерения, в которых измеряемое напряжение преобразуется в постоянный ток, который измеряется МЭИМ.

Характеристики:

    Широкий диапазон измеряемых значений напряжения, от 10^-9 В на постоянном токе до 10^3 В на переменном токе.

    Высокая чувствительность за счет использования входных усилителей

    Большое входное сопротивление

    Широкий частотный диапазон измеряемого напряжения от 0 до 10^8 Гц

Неравномерность АЧХ не должна превышать ±3 дБ относительно опорной.

Электронные вольтметры подразделяются на :

    Постоянного тока

    Переменного тока

    Универсальные (также измеряют дополнительные величины)

    Импульсные

    Селективные

Электронные вольтметры постоянного напряжения .

Входной делитель, Усилитель постоянного тока, Измерительный механизм.

Обладают высокой чувствительностью.

Особенности:


При
появляется дрейф нулевого уровня.

Для увеличения чувствительности используется модулятор, демодулятор.

Функцию модулятора и демодулятора выполняют аналоговые ключи, которые управляются генератором синхронно. Позволяет получать величину коэффициента усиления до ~10^5. Зависит от полярности.

Вольтметры переменного тока .

В зависимости от преобразователя:

    Амплитудных значений

    Средних значений

    Действующих значений

Пиковые детекторы – преобразователи в вольтметрах амплитудных значений.

Пиковый детектор с открытым входом.

Происходит подзаряд конденсатора положительной полуволной, отрицательная полуволна не пропускается диодом. Для минимизации пульсаций подбирают время заряда-разряда конденсатора

Пиковый детектор с закрытым входом.

Из-за градуировки в действующих значениях
, коэффициент амплитуды синусоидального сигнала. Если не синусоидальный сигнал, то

Вольтметры средних значений .

Усилитель переменного напряжения, преобразователь.

Увеличение входного напряжения увеличивает чувствительность и уменьшает влияние нелинейности входных диодов преобразователя (за счет перехода в область линейной зависимости)

для несинусоидального сигнала.

Для усиления сигнала используют квадратирующие устройства.

. Шкала у таких приборов квадратичная.

Универсальные вольтметры .

На основе пиковых детекторов с закрытым входом.

Постоянное напряжение: 0.1÷600В

Переменное напряжение: 1÷600В

Сопротивление: 10Ом÷100Мом

Импульсные вольтметры.

Для измерения амплитуды сигналов различной формы.

Особенности:


Шкала градуируется в амплитудных значениях. Пиковый детектор с закрытым входом.

Селективные вольтметры .

Для измерения действующих значений напряжения в некоторой полосе частот или действующего значения определенных гармоник.

Пропускает одну частоту. Действующее значение сигнала для реального вольтметра. Невысокая точность 6÷15% основная погрешность. 0.1мкВ÷1В. 10Гц÷100кГц.

Электронно-лучевой осциллограф .

Для визуального наблюдения, измерения и регистрации электрических сигналов.

Особенности:

    Широкий частотный диапазон

    Высокая чувствительность

    Большое входное сопротивление

Электронно-лучевая трубка.

К – катод: эмиссия электронов.

А1, А2 – аноды.

А1 – фокусировка: толщина линии

А2 – ускоряющий анод.

УГО – усилитель горизонтального отклонения. УВО – вертикального.

А3 – измерение импульсных сигналов большой скважности.

Характеристики :

    Чувствительность

    Полоса пропускания

    Длительность послесвечения – время между прекращением действия луча и моментом, когда яркость достигнет 1% от первоначальной

    Рабочая площадь экрана: геометрические размеры и нелинейность отклонения луча.

Обобщенная структура осциллографа .

ВД – входной делитель – масштабирование входного сигнала

ПУ – пусковое устройство – пуск канала вертикального отклонения

ЛЗ – линия задержки – для задержки входного сигнала на некоторое время, время срабатывания ГР

ВУ – выходной усилитель – для формирования сигнала, управляющего непосредственно пластинами вертикального отклонения.

УВО – усилитель вертикального отклонения

КА – калибратор амплитуд – генератор прямоугольных импульсов с известными значениями амплитуды и частоты. Таким образом, при калибровке устанавливаются нормированные значения амплитуды и частоты, по которым осуществляется настройка коэффициентов отклонения и развертки.

КД – калибратор длительности

БС – блок синхронизации – для получения устойчивой картинки, для чего частота ГР делается переменной

ГР – генератор развертки – формирование пилообразного сигнала

УГО – усилитель горизонтального отклонения

Нормировка погрешности .

4 класса точности: 1(3%), 2(5%), 3(10%), 4(12%) – для Ко и Кд.

Эта погрешность нормируется, когда на вход осциллографа подаются нормированные сигналы (меандр или синус).

Если период наблюдаемого сигнала кратен частоте ГР, то видим стационарную картинку. Для компенсации времени сдвига используется ЛЗ.

Ждущая и автоматическая синхронизация: в режиме ждущей ГР запускается только одновременно с приходом наблюдаемого сигнала.

Закрытый вход – проходит только переменная составляющая, Открытый – постоянная тоже.

Цифровые измерительные устройства .

Это устройства, автоматически вырабатывающие дискретные сигналы цифровой информации и показания представляются в цифровом виде.

Вырабатывает цифровой код в соответствии с измеряемой величиной, при этом непрерывная аналоговая величина квантуется по уровню и дискретизируется во времени.

Дискретизация во времени – преобразование, при котором значение величины отличается от 0 и совпадает с соответствующим значением измеряемой величины только в определенные моменты времени. Промежутки между этими значениями – шаг дискретизации.

Квантование по уровню – преобразование, при котором непрерывная аналоговая величина принимает фиксированные, квантованные значения. Эти значения – уровни квантования или кванты.

Важной характеристикой является правило отождествления измеряемой величины и уровней квантования.

Основные методы преобразования непрерывной величины в код .

Метод последовательного счета – обладает максимальным временем измерения, но самый дешевый.

Метод последовательного приближения – каждый следующий шаг – половина предыдущего.

Метод считывания – одновременное сравнение измеряемой величины со всеми уровнями квантования сразу. Время измерения самое маленькое, но дорогой.

Классификация ЦИУ .

По способу преобразования :

    последовательного счета

    последовательного приближения

    считывания

По виду измеряемой величины

По способу усреднения измеряемой величины :

    мгновенных значений

    усредняющие (интегрирующие)

По режиму работы :

    циклического действия (по жесткой программе)

    следящие – отслеживают изменения квантующей величины на некоторое значение

ЦИУ=АЦП+ОУ, ЦП=ЦАП+АЦП

Основные метрологические характеристики ЦИУ.

Статические :

    погрешность дискретности (квантования)

    чувствительности

    реализации уровней квантования

    от действия помех

Погрешность дискретности .

Погрешность квантования – методическая. Систематическая – мат ожидание.

Погрешность чувствительности . Возникает в следствии неидеальности сравнивающего устройства.

Погрешность от реализации уровней квантования .

Δд – методическая; Δч, Δр – инструментальная

Если смещение уровней квантования зависит от номера уровня, то погрешность
.

Погрешность, возникающая при квантовании временного интервала. При измерении временного интервала используются квантующие импульсы известной частоты.

Погрешности от временного сдвига старт- и стоп-импульсов относительно квантующего.

Старт-импульс синхронизируют с половиной периода квантующего импульса.

Класс точности c/d.

Время-импульсный цифровой вольтметр .

Измеряемое Uxпреобразуется во временной интервалTx, который в свою очередь измеряется путем квантования импульсами стабильной частотыf0 и подсчетом этих импульсов за времяtxпреобразуется в код.

Угол наклона Ukили скорость его формирования известны.

Источник погрешностей ВИЦВ.

Динамические погрешности ЦИУ .

- динамическая погрешность первого рода, обусловлена апериодическими свойствами входной цепи.

Пусть преобразование аналоговой величины в квантованную происходит методом последовательного счета.
определяется временем преобразования.

Где М1 – модуль максимум первой производной сигнала – скорость его изменения.

МИНИСТЕРСТВО ПУТЕЙ СООБЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ (МИИТ)

Кафедра электротехники, метрологии и электроэнергетики

Г.Г. Рябцев, И.В. Семенов

УТВЕРЖДЕНО редакционно-издательским советом университета

МЕТРОЛОГИЧЕСКИЕ ХАРАКТЕРИСТИКИ ЭЛЕКТРОМЕХАНИЧЕСКИХ ИЗМЕРИТЕЛЬНЫХ ПРИБОРОВ НЕПОСРЕДСТВЕННОЙ ОЦЕНКИ

Методические указания к лабораторной работе по метрологии для студентов электротехнических специальностей

Москва - 2004

УДК 621.317.39(075.8)

Рябцев Г.Г. Семенов И.В. Метрологические характеристики электромеханических измерительных приборов непосредственной оценки: Методические указания к лабораторной работе. – М.: МИИТ, 2004. – 24 с..

Даны краткие теоретические сведения о метрологических характеристиках электромеханических измерительных приборов непосредственной оценки, приведены примеры расчета характеристик приборов и выбора приборов для измерений с учетом особенностей измеряемых им электрических величин.

© Московский государственный университет путей сообщения (МИИТ), 2004

1. ЦЕЛЬ РАБОТЫ

Исследование метрологических характеристик электромеханических приборов непосредственной оценки.

2. КРАТКИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ Электромеханический прибор непосредственной оценки – это

прибор, в котором отсчет результата измерения проводят непосредственно по шкале, отградуированной в единицах измеряемой прибором величины.

Метрологические характеристики – это характеристики прибора,

определяющие его пригодность для измерения определенной физической величины в заданном диапазоне ее значений и с заданной точностью.

Метрологические характеристики средств измерений разделяют на статические и динамические.

Статические характеристики определяют свойства прибора при измерении имустановившихся значений искомой величины. К статическим характеристикам прибора относятся: функция преобразования, диапазоны показаний и измерений, чувствительность, цена деления шкалы, входное сопротивление, потребляемая мощность и класс точности.

Динамические характеристики определяют свойства прибора при измерении имизменяющихся во времени величин . К динамическим характеристикам относятся: амплитудно-частотная характеристика, переходная характеристика и динамическая погрешность прибора.

2.1. Функция преобразования прибора

Функция преобразования (или уравнение) прибора – это зависимость выходного сигнала прибораот величины измеряемого им

входного сигнала

Для электромеханических измерительных приборов непосредственной оценки – это зависимость угла α отклонения (в делениях шкалы прибора) стрелки отсчетного устройства прибора от уровня X измеряемой им величины.

α = f (X ).

Функции преобразования приборов представляют в виде аналитических зависимостей, графиков, таблиц. Функция преобразования прибора служит для построения градуировочной характеристики его шкалы. Идеальная функция преобразования представляет собой линейную зависимость (при этом шкала прибора равномерная, что обеспечивает более точный отсчет результата измерения).

2.2. Диапазон показаний и диапазон измерений прибора

Диапазон показаний – это область значений шкалы прибора, ограниченнаяначальной иконечной отметками шкалы.

Диапазон измерений – это область значений измеряемой величины, в

пределах которой нормированыдопускаемые пределы погрешности

В приборах с линейной функцией преобразования и равномерной шкалой диапазон показаний и диапазон измерений совпадают.

В приборах с нелинейной функцией преобразования и неравномерной шкалой диапазон измерений отмечают на шкале точками или сплошной линией, проведенной под отметками шкалы (рис. 1).

Наименьшее значение измеряемой величины в диапазоне измерения называют нижним пределом измерения, а наибольшее значение – верхним пределом измерения.

X max

α max

2.3. Чувствительность прибора

Чувствительность измерительного прибора характеризует способность прибора реагировать на изменения входного сигнала. Чувствительность определяется из уравнения преобразования и представляет собой отношение изменения сигнала Δα навыходе прибора к изменениюX сигнала навходе прибора

Чувствительность приборов с неравномерной шкалой имеет различные значения в различных точках шкалы и для каждой ее точки определяется отношением (2).

2.4. Цена деления шкалы прибора

Цена деления шкалы стрелочного измерительного прибора – это разность значений величин, соответствующих двум соседним отметкам шкалы, онаопределяет масштаб отсчетного устройства прибора.

Цена деления равномерной шкалы определяется как отношение

верхнего

X max

измеряемой

прибором

величины

соответствующему числу делений α max его шкалы

С =

X max

α max

Например, для миллиамперметра из п. 2.3. цена деления составит С = 1 mA .

Цена деления неравномерной шкалы прибора определяется в каждой ее точке как разность значений измеряемой величины, соответствующих двум соседним отметкам шкалы.

2.5. Входное сопротивление и потребляемая мощность прибора

Входное сопротивление и потребляемаямощность определяют

степень влияния измерительного прибора на режим работы

электрической цепи , в которой производится измерение. Например, чем меньше входное сопротивление вольтметра, тем сильнее уменьшается

падение напряжения на участке цепи, параллельно которому подключен этот вольтметр, так как уменьшается эквивалентное сопротивление цепи, определяемое параллельно соединенным сопротивлением участка цепи и вольтметра. Следовательно, вольтметры должны иметь как можнобольшее сопротивление. В отличие от вольтметров,амперметры должны иметь как можноменьшее входное сопротивление, так как они включаются в электрическую цепь последовательно и увеличивают сопротивление этой цепи, в результате чего ток в ней уменьшается.

Входное сопротивление прибора указывают в его паспорте, а если оно не указано, то его определяют расчетным путем.

Для расчета входного сопротивления вольтметра используют верхний предел U max измеряемого им напряжения и соответствующее ему значениеI max протекающего по вольтметру тока (ток полного отклонения).

Для расчета входного сопротивления амперметра используют верхний предел I max измеряемого им тока и соответствующее ему падение напряженияU max на амперметре. Значения тока полного отклонения для вольтметров и падения напряжения для амперметров указывают в их паспортах, а в некоторых типах приборов (в том числе М2038 и АВО-5М1) они указаны на шкале. По указанным значениям входное сопротивление

приборов рассчитывается по закону Ома

U max

I max

Входные сопротивления электромеханических вольтметров лежат в пределах от нескольких единиц до десятков тысяч Ом, а амперметров – от сотых до десятых долей Ом.

Максимальное значение потребляемой прибором мощности находят по указанным выше значениям его тока и напряжения

P max= U max× I max,

или по пределу измеряемой прибором величины и его входному сопротивлению. Например, для вольтметра

U max2

V . max

R V. вх

и для амперметра

× R

A. вх

A . max

Потребляемая

мощность

электромеханических

приборов

незначительна (от сотых долей –

до единиц Ватт). Лучшим считается

прибор с меньшим значением потребляемой мощности.

Для омметров входное сопротивление и потребляемую мощность не устанавливают, так как омметрами измеряют сопротивление обесточенной цепи. Следовательно, омметры не потребляют мощность из цепи, в которой проводятся измерения, и указанные характеристики для них не имеют смысла.

2.6. Класс точности прибора

Класс точности определяет гарантированные границы , за пределы которых не выходит погрешность прибора в установленном для него диапазоне измерений.

Класс точности К Т электромеханических стрелочных измерительных приборов нормируют в виде процентного отношения пределаD X max

(гарантированных границ ) абсолютной погрешности прибора к

нормирующему значению X НОРМ его шкалы

КТ

D X max

× 100%.

X НОРМ

Нормирующим значением X НОРМ для приборов с равномерной шкалой служитверхний предел измеряемой прибором величины, а для приборов с

неравномерной шкалой – длина еерабочей части , т.е. длина участка между отметками шкалы, соответствующими диапазону измерений прибора.

Для электромеханических стрелочных измерительных приборов установлены следующие цифры классов точности: 0,05; 0,1; 0,2; 0,5 (для лабораторных приборов) и 1; 1,5; 2,5; 4 (для технических приборов).

Цифра класса точности прибора указывается на его шкале. Для приборов с равномерной шкалой эта цифра указывается без каких либо знаков (кружков, квадратов, звездочек), например, 2,5. Для приборов с неравномерной шкалой цифра класса точности подчеркивается ломаной

линией, например, 2,5 .

По формуле (9) класса точности прибора проводят оценку предельно допустимого значения егоабсолютной погрешности. Такая оценка необходима для определения погрешности результата измерения, выполняемого прибором, а также для выбора прибора, обеспечивающего требуемую точность измерений.

Расчет предела абсолютной погрешности прибора с равномерной шкалой проводитсянепосредственно по формуле (9) класса точности, а для приборов снеравномерной шкалой по формуле (9) сначала определяетсяпогрешность приборав единицах (мм)длины шкалы , а затем по ней ицене деления шкалы рассчитывается абсолютная погрешность в единицах измеряемой величины.

Пример 1. Определить предел I max абсолютной погрешности амперметра, который имеет равномерную шкалу, верхний предел измеряемого токаI max = 5 A и класс точностиК Т = 1 .

Решение 1. Прибор имеет равномерную шкалу, следовательно, нормирующим значением в формуле (9) его класса точности является верхний предел измеряемого тока I max = 5 A .

Предел абсолютной погрешности амперметра находится непосредственно из формулы (9)

DI max = ±К Т × I max = ±1 × 5 = ±0,05 A .

Пример 2. Определить предел D R max абсолютной погрешности омметра с неравномерной шкалой в трех ее точках (начале, середине и конце шкалы), если диапазон измерений прибора лежит в пределах от 3 до 300 кОм, длина рабочего участка шкалы (т.е. между отметками 3 и 300)

составляет L Р = 60 мм , класс точностиК Т = 2,5 , цена деления (в мм) шкалы в

начале, середине и конце рабочего участка шкалы соответственно равна,

и С

Решение 2. По формуле (9) класса точности омметра определяется

предел D L msx

его абсолютной погрешности, выраженной в единицах длины

К Т× L P

Предел D R max абсолютной погрешности омметра

единицах

измеряемой величины (т.е. в кОм) находится по значению

D L msx и цене

С деления шкалы прибора в соответствующей точке шкалы

DR = DL ×C = ±

K T× L P× C

Отсюда находим

2,5 × 60× 0,1

= ± 0,15кОм ;

max.н

2,5 × 60× 1

= ± 0,15кОм ;

max.н

2,5 × 60× 10

= ± 0,15кОм .

max.н

Пример 3. Определить пределы абсолютной D I max и относительной

δ max

погрешностей результата измерения тока амперметром,

у которого


9. Средства измерений и их характеристики

В научной литературе средства технических измерений делят на три большие группы. Это: меры, калибры и универсальные средства измерения, к которым относятся измерительные приборы, контрольно-измерительные приборы (КИП), и системы.

1. Мера представляет собой такое средство измерений, которое предназначается для воспроизведения физической величины положенного размера. К мерам относятся плоскопараллельные меры длины (плитка) и угловые меры.

2. Калибры представляют собой некие устройства, предназначение которых заключается в использовании для контролирования и поиска в нужных границах размеров, взаиморасположения поверхностей и формы деталей. Как правило, они подразделяются на: гладкие предельные калибры (скобы и пробки), а также резьбовые калибры, к которым относятся резьбовые кольца или скобы, резьбовые пробки и т. п.

3. Измерительный прибор, представленный в виде устройства, вырабатывающего сигнал измерительной информации в форме, понятной для восприятия наблюдателей.

4. Измерительная система, понимаемая как некая совокупность средств измерений и неких вспомогательных устройств, которые соединяются между собой каналами связи. Она предназначена для производства сигналов информации измерений в некой форме, которая подходит для автоматической обработки, а также для трансляции и применения в автоматических системах управления.

5. Универсальные средства измерения, предназначение которых находится в использовании для определения действительных размеров. Любое универсальное измерительное средство характеризуется назначением, принципом действия, т. е физическим принципом, положенным в основу его построения, особенностями конструкции и метрологическими характеристиками.

При контрольном измерении угловых и линейных показателей применяют прямые измерения, реже встречаются относительные, косвенные или совокупные измерения. В научной литературе среди прямых методов измерений выделяют, как правило, следующие:

1) метод непосредственной оценки, представляющий собой такой метод, при котором значение величины определяют по отсчетному устройству измерительного прибора;

2) метод сравнения с мерой, под которым понимается метод, при котором данную величину возможно сравнить с величиной, воспроизводимой мерой;

3) метод дополнения, под которым обычно подразумевается метод, когда значение полученной величины дополняется мерой этой же величины с тем, чтобы на используемый прибор для сравнения действовала их сумма, равная заранее заданному значению;

4) дифференциальный метод, который характеризуется измерением разности между данной величиной и известной величиной, воспроизводимой мерой. Метод дает результат с достаточно высоким показателем точности при применении грубых средств измерения;

5) нулевой метод, который, по сути, аналогичен дифференциальному, но разность между данной величиной и мерой сводится к нулю. Причем нулевой метод обладает определенным преимуществом, поскольку мера может быть во много раз меньше измеряемой величины;

6) метод замещения, представляющий собой сравнительный метод с мерой, в которой измеряемую величину заменяют известной величиной, которая воспроизводится мерой. Вспомним о том, что существуют и нестандартизованные методы. В эту группу, как правило, включают следующие:

1) метод противопоставления, подразумевающий под собой такой метод, при котором данная величина, а также величина, воспроизводимая мерой, в одно и то же время действуют на прибор сравнения;

2) метод совпадений, характеризующийся как метод, при котором разность между сравниваемыми величинами измеряют, используя совпадение меток на шкалах или периодических сигналов.

10. Классификация средств измерения

Средство измерения (СИ) – это техническое средство или совокупность средств, применяющееся для осуществления измерений и обладающее нормированными метрологическими характеристиками. При помощи средств измерения физическая величина может быть не только обнаружена, но и измерена.

Средства измерения классифицируются по следующим критериям:

1) по способам конструктивной реализации;

2) по метрологическому предназначению.

По способам конструктивной реализации средства измерения делятся на:

1) меры величины;

2) измерительные преобразователи;

3) измерительные приборы;

4) измерительные установки;

5) измерительные системы.

Меры величины – это средства измерения определенного фиксированного размера, многократно используемые для измерения. Выделяют:

1) однозначные меры;

2) многозначные меры;

3) наборы мер.

Некоторое количество мер, технически представляющее собой единое устройство, в рамках которого возможно по-разному комбинировать имеющиеся меры, называют магазином мер.

Объект измерения сравнивается с мерой посредством компараторов (технических приспособлений). Например, компаратором являются рычажные весы.

К однозначным мерам принадлежат стандартные образцы (СО). Различают два вида стандартных образцов:

1) стандартные образцы состава;

2) стандартные образцы свойств.

Стандартный образец состава или материала – это образец с фиксированными значениями величин, количественно отражающих содержание в веществе или материале всех его составных частей.

Стандартный образец свойств вещества или материала – это образец с фиксированными значениями величин, отражающих свойства вещества или материала (физические, биологические и др.).

Каждый стандартный образец в обязательном порядке должен пройти метрологическую аттестацию в органах метрологической службы, прежде чем начнет использоваться.

Стандартные образцы могут применяться на разных уровнях и в разных сферах. Выделяют:

1) межгосударственные СО;

2) государственные СО;

3) отраслевые СО;

4) СО организации (предприятия).

Измерительные преобразователи (ИП) – это средства измерения, выражающие измеряемую величину через другую величину или преобразующие ее в сигнал измерительной информации, который в дальнейшем можно обрабатывать, преобразовывать и хранить. Измерительные преобразователи могут преобразовывать измеряемую величину по-разному. Выделяют:

1) аналоговые преобразователи (АП);

2) цифроаналоговые преобразователи (ЦАП);

3) аналого-цифровые преобразователи (АЦП). Измерительные преобразователи могут занимать различные позиции в цепи измерения. Выделяют:

1) первичные измерительные преобразователи, которые непосредственно контактируют с объектом измерения;

2) промежуточные измерительные преобразователи, которые располагаются после первичных преобразователей. Первичный измерительный преобразователь технически обособлен, от него поступают в измерительную цепь сигналы, содержащие измерительную информацию. Первичный измерительный преобразователь является датчиком. Конструктивно датчик может быть расположен довольно далеко от следующего промежуточного средства измерения, которое должно принимать его сигналы.

Обязательными свойствами измерительного преобразователя являются нормированные метрологические свойства и вхождение в цепь измерения.

Измерительный прибор – это средство измерения, посредством которого получается значение физической величины, принадлежащее фиксированному диапазону. В конструкции прибора обычно присутствует устройство, преобразующее измеряемую величину с ее индикациями в оптимально удобную для понимания форму. Для вывода измерительной информации в конструкции прибора используется, например, шкала со стрелкой или цифроуказатель, посредством которых и осуществляется регистрация значения измеряемой величины. В некоторых случаях измерительный прибор синхронизируют с компьютером, и тогда вывод измерительной информации производится на дисплей.

В соответствии с методом определения значения измеряемой величины выделяют:

1) измерительные приборы прямого действия;

2) измерительные приборы сравнения.

Измерительные приборы прямого действия – это приборы, посредством которых можно получить значение измеряемой величины непосредственно на отсчетном устройстве.

Измерительный прибор сравнения – это прибор, посредством которого значение измеряемой величины получается при помощи сравнения с известной величиной, соответствующей ее мере.

Измерительные приборы могут осуществлять индикацию измеряемой величины по-разному. Выделяют:

1) показывающие измерительные приборы;

2) регистрирующие измерительные приборы.

Разница между ними в том, что с помощью показывающего измерительного прибора можно только считывать значения измеряемой величины, а конструкция регистрирующего измерительного прибора позволяет еще и фиксировать результаты измерения, например посредством диаграммы или нанесения на какой-либо носитель информации.

Отсчетное устройство – конструктивно обособленная часть средства измерений, которая предназначена для отсчета показаний. Отсчетное устройство может быть представлено шкалой, указателем, дисплеем и др. Отсчетные устройства делятся на:

1) шкальные отсчетные устройства;

2) цифровые отсчетные устройства;

3) регистрирующие отсчетные устройства. Шкальные отсчетные устройства включают в себя шкалу и указатель.

Шкала – это система отметок и соответствующих им последовательных числовых значений измеряемой величины. Главные характеристики шкалы:

1) количество делений на шкале;

2) длина деления;

3) цена деления;

4) диапазон показаний;

5) диапазон измерений;

6) пределы измерений.

Деление шкалы – это расстояние от одной отметки шкалы до соседней отметки.

Длина деления – это расстояние от одной осевой до следующей по воображаемой линии, которая проходит через центры самых маленьких отметок данной шкалы.

Цена деления шкалы – это разность между значениями двух соседних значений на данной шкале.

Диапазон показаний шкалы – это область значений шкалы, нижней границей которой является начальное значение данной шкалы, а верхней – конечное значение данной шкалы.

Диапазон измерений – это область значений величин в пределах которой установлена нормированная предельно допустимая погрешность.

Пределы измерений – это минимальное и максимальное значение диапазона измерений.

Практически равномерная шкала – это шкала, у которой цены делений разнятся не больше чем на 13 % и которая обладает фиксированной ценой деления.

Существенно неравномерная шкала – это шкала, у которой деления сужаются и для делений которой значение выходного сигнала является половиной суммы пределов диапазона измерений.

Выделяют следующие виды шкал измерительных приборов:

1) односторонняя шкала;

2) двусторонняя шкала;

3) симметричная шкала;

4) безнулевая шкала.

Односторонняя шкала – это шкала, у которой ноль располагается в начале.

Двусторонняя шкала – это шкала, у которой ноль располагается не в начале шкалы.

Симметричная шкала – это шкала, у которой ноль располагается в центре.

Измерительная установка – это средство измерения, представляющее собой комплекс мер, ИП, измерительных приборов и прочее, выполняющих схожие функции, используемые для измерения фиксированного количества физических величин и собранные в одном месте. В случае, если измерительная установка используется для испытаний изделий, она является испытательным стендом.

Измерительная система – это средство измерения, представляющее собой объединение мер, ИП, измерительных приборов и прочее, выполняющих схожие функции, находящихся в разных частях определенного пространства и предназначенных для измерения определенного числа физических величин в данном пространстве.

По метрологическому предназначению средства измерения делятся на:

1) рабочие средства измерения;

2) эталоны.

Рабочие средства измерения (РСИ) – это средства измерения, используемые для осуществления технических измерений. Рабочие средства измерения могут использоваться в разных условиях. Выделяют:

1) лабораторные средства измерения, которые применяются при проведении научных исследований;

2) производственные средства измерения, которые применяются при осуществлении контроля над протеканием различных технологических процессов и качеством продукции;

3) полевые средства измерения, которые применяются в процессе эксплуатации самолетов, автомобилей и других технических устройств.

К каждому отдельному виду рабочих средств измерения предъявляются определенные требования. Требования к лабораторным рабочим средствам измерения – это высокая степень точности и чувствительности, к производственным РСИ – высокая степень устойчивости к вибрациям, ударам, перепадам температуры, к полевым РСИ – устойчивость и исправная работа в различных температурных условиях, устойчивость к высокому уровню влажности.

Эталоны – это средства измерения с высокой степенью точности, применяющиеся в метрологических исследованиях для передачи сведений о размере единицы. Более точные средства измерения передают сведения о размере единицы и так далее, таким образом образуется своеобразная цепочка, в каждом следующем звене которой точность этих сведений чуть меньше, чем в предыдущем.

Сведения о размере единицы предаются во время проверки средств измерения. Проверка средств измерения осуществляется с целью утверждения их пригодности.

11. Метрологические характеристики средств измерений и их нормирование

Метрологические свойства средств измерения – это свойства, оказывающие непосредственное влияние на результаты проводимых этими средствами измерений и на погрешность этих измерений.

Количественно-метрологические свойства характеризуются показателями метрологических свойств, которые являются их метрологическими характеристиками.

Утвержденные НД метрологические характеристики являются нормируемыми метрологическими характеристиками Метрологические свойства средств измерения подразделяются на:

1) свойства, устанавливающие сферу применения средств измерения:

2) свойства, определяющие прецизионность и правильность полученных результатов измерения.

Свойства, устанавливающие сферу применения средств измерения, определяются следующими метрологическими характеристиками:

1) диапазоном измерений;

2) порогом чувствительности.

Диапазон измерений – это диапазон значений величины, в котором нормированы предельные значения погрешностей. Нижнюю и верхнюю (правую и левую) границу измерений называют нижним и верхним пределом измерений.

Порог чувствительности – это минимальное значение измеряемой величины, способное стать причиной заметного искажения получаемого сигнала.

Свойства, определяющие прецизионность и правильность полученных результатов измерения, определяются следующими метрологическими характеристиками:

1) правильность результатов;

2) прецизионность результатов.

Точность результатов, полученных некими средствами измерения, определяется их погрешностью.

Погрешность средств измерения – это разность между результатом измерения величины и настоящим (действительным) значением этой величины. Для рабочего средства измерения настоящим (действительным) значением измеряемой величины считается показание рабочего эталона более низкого разряда. Таким образом, базой сравнения является значение, показанное средством измерения, стоящим выше в поверочной схеме, чем проверяемое средство измерения.

Q n =Q n ?Q 0 ,

где AQ n – погрешность проверяемого средства измерения;

Q n – значение некой величины, полученное с помощью проверяемого средства измерения;

Нормирование метрологических характеристик – это регламентирование пределов отклонений значений реальных метрологических характеристик средств измерений от их номинальных значений. Главная цель нормирования метрологических характеристик – это обеспечение их взаимозаменяемости и единства измерений. Значения реальных метрологических характеристик устанавливаются в процессе производства средств измерения, в дальнейшем во время эксплуатации средств измерения эти значения должны проверятся. В случае, если одна или несколько нормированных метрологических характеристик выходит из регламентированных пределов, средство измерения должно быть либо немедленно отрегулировано, либо изъято из эксплуатации.

Значения метрологических характеристик регламентируются соответствующими стандартами средств измерения. Причем метрологические характеристики нормируются раздельно для нормальных и рабочих условий применения средств измерения. Нормальные условия применения – это условия, в которых изменениями метрологических характеристик, обусловленными воздействием внешних факторов (внешние магнитные поля, влажность, температура), можно пренебречь. Рабочие условия – это условия, в которых изменение влияющих величин имеет более широкий диапазон.

12. Метрологическое обеспечение, его основы

Метрологическое обеспечение, или сокращенно МО, представляет собой такое установление и использование научных и организационных основ, а также ряда технических средств, норм и правил, нужных для соблюдения принципа единства и требуемой точности измерений. На сегодняшний день развитие МО движется в направлении перехода от существовавшей узкой задачи обеспечения единства и требуемой точности измерений к новой задаче обеспечения качества измерений Смысл понятия «метрологическое обеспечение» расшифровывается по отношению к измерениям (испытанию, контролю) в целом. Однако данный термин применим и в виде понятия «метрологическое обеспечение технологического процесса (производства, организации)», которое подразумевает МО измерений (испытаний или контроля) в данном процессе, производстве, организации. Объектом МО можно считать все стадии жизненного цикла (ЖЦ) изделия (продукции) или услуги, где жизненный цикл воспринимается как некая совокупность последовательных взаимосвязанных процессов создания и изменения состояния продукции от формулирования исходных требований к ней до окончания эксплуатации или потребления. Нередко на этапе разработки продукции для достижения высокого качества изделия производится выбор контролируемых параметров, норм точности, допусков, средств измерения, контроля и испытания. А в процессе разработки МО желательно использовать системный подход, при котором указанное обеспечение рассматривается как некая совокупности взаимосвязанных процессов, объединенных одной целью. Этой целью является достижение требуемого качества измерений. В научной литературе выделяют, как правило, целый ряд подобных процессов:

1) установление номенклатуры измеряемых параметров, а также наиболее подходящих норм точности при контроле качества продукции и управлении процессами;

2) технико-экономическое обоснование и выбор СИ, испытаний и контроля и установление их рациональной номенклатуры;

3) стандартизация, унификация и агрегатирование используемой контрольно-измерительной техники;

4) разработка, внедрение и аттестация современных методик выполнения измерения, испытаний и контроля (МВИ);

5) поверка, метрологическая аттестация и калибровки КИО или контрольно-измерительного, а также испытательного оборудования, применяемого на предприятии;

6) контроль за производством, состоянием, применением и ремонтом КИО, а также за точным следованием правил метрологии и норм на предприятии;

7) участие в процессе создания и внедрения стандартов предприятия;

8) внедрение международных, государственных, отраслевых стандартов, а также иных нормативных документов Госстандарта;

9) проведение метрологической экспертизы проектов конструкторской, технологической и нормативной документации;

10) проведение анализа состояния измерений, разработка на его основе и проведение различных мероприятий по улучшению МО;

11) подготовка работников соответствующих служб и подразделений предприятия к выполнению контрольно-измерительных операций.

Организация и проведение всех мероприятий МО является прерогативой метрологических служб. В основе метрологического обеспечения лежат четыре пласта. Собственно, они и носят в научной литературе аналогичное название – основы. Итак, это научная, организационная, нормативная и техническая основы. Особое внимание хотелось бы обратить на организационные основы метрологического обеспечения. К организационным службам метрологического обеспечения относят Государственную метрологическую службу и Ведомственную метрологическую службу.

Государственная метрологическая служба, или сокращенно ГМС несет ответственность за обеспечение метрологических измерений в России на межотраслевом уровне, а также проводит контрольные и надзорные мероприятия в области метрологии. В состав ГМС входят:

1) государственные научные метрологические центры (ГНМЦ), метрологические научно-исследовательские институты, отвечающие согласно законодательной базе за вопросы применения, хранения и создания государственных эталонов и разработку нормативных актов по вопросам поддержания единства измерений в закрепленном виде измерений;

2) органы ГМС на территории республик, входящих в состав РФ, органы автономных областей, органы автономных округов, областей, краев, городов Москвы и Санкт-Петербурга.

Основная деятельность органов ГМС направлена на обеспечение единства измерений в стране. Она включает создание государственных и вторичных эталонов, разработку систем передачи размеров единиц ФВ рабочим СИ, государственный надзор за состоянием, применением, производством, ремонтом СИ, метрологическую экспертизу документации и важнейших видов продукции, методическое руководство МС юридических лиц. Руководство ГМС осуществляет Госстандарт.

Ведомственная метрологическая служба, которая согласно положениям Закона «Об обеспечении единства измерений» может быть создана на предприятии для обеспечения МО Во главе ее должен находиться представитель администрации, обладающий соответствующими знаниями и полномочиями При проведении мероприятий в сферах, предусмотренных ст 13 указанного Закона, создание метрологической службы является обязательным. В числе подобных сфер деятельности можно назвать:

1) здравоохранение, ветеринария, охрана окружающей среды, поддержание безопасности труда;

2) торговые операции и взаиморасчеты между продавцами и покупателями, в которые включаются, как правило, операции с использованием игровых автоматов и других устройств;

3) государственные учетные операции;

4) оборона государства;

5) геодезические и гидрометеорологические работы;

6) банковские, таможенные, налоговые и почтовые операции;

7) производство продукции, поставляемой по контрактам для нужд государства в согласии с законодательной базой РФ;

8) контролирование и испытания качества продукции для обеспечения соответствия обязательным требованиям государственных стандартов РФ;

9) сертификация товаров и услуг в обязательном порядке;

10) измерения, проводимые по поручению ряда госорганов: суда, арбитража, прокуратуры, государственных органов управления РФ;

11) регистрационная деятельность, связанная с национальными или международными рекордами в сфере спорта. Метрологическая служба государственного органа управления подразумевает в своем составе следующие компоненты:

1) структурные подразделения главного метролога в составе центрального аппарата госоргана;

2) головные и базовые организации метрологических служб в отраслях и подотраслях, назначаемые органом управления;

3) метрологическая служба предприятий, объединений, организаций и учреждений.

Другим важнейшим разделом МО являются его научные и методические основы. Так, основным компонентом данных основ становятся Государственные научные метрологические центры (ГНМЦ), которые создаются из состава находящихся в ведении Госстандарта предприятий и организаций или их структурных подразделений, выполняющих различные операции по вопросам создания, хранения, улучшения, применения и хранения госэталонов единиц величин, а, кроме того, разрабатывающих нормативные правила для целей обеспечения единства измерений, имея в своем составе высококвалифицированные кадры. Присвоение какому-либо предприятию статуса ГНМЦ, как правило, не влияет на форму его собственности и организационно-правовые формы, а означает лишь причисление их к группе объектов, обладающих особенными формами господдержки. Основными функциями ГНМЦ являются следующие:

1) создание, совершенствование, применение и хранение госэталонов единиц величин;

2) проведение прикладных и фундаментальных научно-исследовательских и конструкторских разработок в сфере метрологии, в число которых можно включить и создание различных опытно-экспериментальных установок, исходных мер и шкал для обеспечения единства измерений;

3) передача от госэталонов исходных данных о размерах единиц величин;

4) проведение государственных испытаний средств измерений;

5) разработка оборудования, требующегося для ГМС;

6) разработка и совершенствование нормативных, организационных, экономических и научных основ деятельности, направленной на обеспечение единства измерений в зависимости от специализации;

7) взаимодействие с метрологической службой федеральных органов исполнительной власти, организаций и предприятий, обладающих статусом юридического лица;

8) обеспечение информацией по поводу единства измерений предприятий и организаций

9) организация различных мероприятий, связанных с деятельностью ГСВЧ, ГСССД и ГССО;

10) проведение экспертизы разделов МО федеральных и иных программ;

11) организация метрологической экспертизы и измерений по просьбе ряда государственных органов: суда, арбитража, прокуратуры или федеральных органов исполнительной власти;

12) подготовка и переподготовка высококвалифицированных кадров;

13) участие в сопоставлении госэталонов с эталонами национальными, наличествующими в ряду зарубежных государств, а также участие в разработке международных норм и правил.

Деятельность ГНМЦ регламентируется Постановлением Правительства Российской Федерации от 12.02.94 г. № 100.

Важным компонентом основы МО являются, как было сказано выше, методические инструкции и руководящие документы, под которыми подразумеваются нормативные документы методического содержания, разрабатываются организациями, подведомственными Госстандарту Российской Федерации. Так, в сфере научных и методических основ метрологического обеспечения Госстандарт России организует:

1) проведение научно-исследовательских мероприятий и опытно-конструкторских работ в закрепленных областях деятельности, а также устанавливает правила проведения работ по метрологии, стандартизации, аккредитации и сертификации, а также по госконтролю и надзору в подведомственных областях, осуществляет методическое руководство этими работами;

2) осуществляет методическое руководство обучением в областях метрологии, сертификации и стандартизации, устанавливает требования к степени квалификации и компетентности персонала. Организует подготовку, переподготовку и повышение квалификации специалистов.

13. Погрешность измерений

В практике использования измерений очень важным показателем становится их точность, которая представляет собой ту степень близости итогов измерения к некоторому действительному значению, которая используется для качественного сравнения измерительных операций. А в качестве количественной оценки, как правило, используется погрешность измерений. Причем чем погрешность меньше, тем считается выше точность.

Согласно закону теории погрешностей, если необходимо повысить точность результата (при исключенной систематической погрешности) в 2 раза, то число измерений необходимо увеличить в 4 раза; если требуется увеличить точность в 3 раза, то число измерений увеличивают в 9 раз и т. д.

Процесс оценки погрешности измерений считается одним из важнейших мероприятий в вопросе обеспечения единства измерений. Естественно, что факторов, оказывающих влияние на точность измерения, существует огромное множество. Следовательно, любая классификация погрешностей измерения достаточно условна, поскольку нередко в зависимости от условий измерительного процесса погрешности могут проявляться в различных группах. При этом согласно принципу зависимости от формы данные выражения погрешности измерения могут быть: абсолютными, относительными и приведенными.

Кроме того, по признаку зависимости от характера проявления, причин возникновения и возможностей устранения погрешности измерений могут быть составляющими При этом различают следующие составляющие погрешности: систематические и случайные.

Систематическая составляющая остается постоянной или меняется при следующих измерениях того же самого параметра.

Случайная составляющая изменяется при повторных изменениях того же самого параметра случайным образом. Обе составляющие погрешности измерения (и случайная, и систематическая) проявляются одновременно. Причем значение случайной погрешности не известно заранее, поскольку оно может возникать из-за целого ряда неуточненных факторов Данный вид погрешности нельзя исключить полностью, однако их влияние можно несколько уменьшить, обрабатывая результаты измерений.

Систематическая погрешность, и в этом ее особенность, если сравнивать ее со случайной погрешностью, которая выявляется вне зависимости от своих источников, рассматривается по составляющим в связи с источниками возникновения.

Составляющие погрешности могут также делиться на: методическую, инструментальную и субъективную. Субъективные систематические погрешности связаны с индивидуальными особенностями оператора. Такая погрешность может возникать из-за ошибок в отсчете показаний или неопытности оператора. В основном же систематические погрешности возникают из-за методической и инструментальной составляющих. Методическая составляющая погрешности определяется несовершенством метода измерения, приемами использования СИ, некорректностью расчетных формул и округления результатов. Инструментальная составляющая появляется из-за собственной погрешности СИ, определяемой классом точности, влиянием СИ на итог и разрешающей способности СИ. Есть также такое понятие, как «грубые погрешности или промахи», которые могут появляться из-за ошибочных действий оператора, неисправности СИ или непредвиденных изменений ситуации измерений. Такие погрешности, как правило, обнаруживаются в процессе рассмотрения результатов измерений с помощью специальных критериев. Важным элементом данной классификации является профилактика погрешности, понимаемая как наиболее рациональный способ снижения погрешности, заключается в устранении влияния какого-либо фактора.

14. Виды погрешностей

Выделяют следующие виды погрешностей:

1) абсолютная погрешность;

2) относительна погрешность;

3) приведенная погрешность;

4) основная погрешность;

5) дополнительная погрешность;

6) систематическая погрешность;

7) случайная погрешность;

8) инструментальная погрешность;

9) методическая погрешность;

10) личная погрешность;

11) статическая погрешность;

12) динамическая погрешность.

Погрешности измерений классифицируются по следующим признакам.

По способу математического выражения погрешности делятся на абсолютные погрешности и относительные погрешности.

По взаимодействию изменений во времени и входной величины погрешности делятся на статические погрешности и динамические погрешности.

По характеру появления погрешности делятся на систематические погрешности и случайные погрешности.

Абсолютная погрешность – это значение, вычисляемое как разность между значением величины, полученным в процессе измерений, и настоящим (действительным) значением данной величины.

Абсолютная погрешность вычисляется по следующей формуле:

Q n =Q n ?Q 0 ,

где AQ n – абсолютная погрешность;

Q n – значение некой величины, полученное в процессе измерения;

Q 0 – значение той же самой величины, принятое за базу сравнения (настоящее значение).

Абсолютная погрешность меры – это значение, вычисляемое как разность между числом, являющимся номинальным значением меры, и настоящим (действительным) значением воспроизводимой мерой величины.

Относительная погрешность – это число, отражающее степень точности измерения.

Относительная погрешность вычисляется по следующей формуле:


где?Q – абсолютная погрешность;

Q 0 – настоящее (действительное) значение измеряемой величины.

Приведенная погрешность – это значение, вычисляемое как отношение значения абсолютной погрешности к нормирующему значению.

Нормирующее значение определяется следующим образом:

1) для средств измерений, для которых утверждено номинальное значение, это номинальное значение принимается за нормирующее значение;

2) для средств измерений, у которых нулевое значение располагается на краю шкалы измерения или вне шкалы, нормирующее значение принимается равным конечному значению из диапазона измерений. Исключением являются средства измерений с существенно неравномерной шкалой измерения;

3) для средств измерений, у которых нулевая отметка располагается внутри диапазона измерений, нормирующее значение принимается равным сумме конечных численных значений диапазона измерений;

4) для средств измерения (измерительных приборов), у которых шкала неравномерна, нормирующее значение принимается равным целой длине шкалы измерения или длине той ее части, которая соответствует диапазону измерения. Абсолютная погрешность тогда выражается в единицах длины.

Погрешность измерения включает в себя инструментальную погрешность, методическую погрешность и погрешность отсчитывания. Причем погрешность отсчитывания возникает по причине неточности определения долей деления шкалы измерения.

Инструментальная погрешность – это погрешность, возникающая из-за допущенных в процессе изготовления функциональных частей средств измерения ошибок.

Методическая погрешность – это погрешность, возникающая по следующим причинам:

1) неточность построения модели физического процесса, на котором базируется средство измерения;

2) неверное применение средств измерений.

Субъективная погрешность – это погрешность возникающая из-за низкой степени квалификации оператора средства измерений, а также из-за погрешности зрительных органов человека, т. е. причиной возникновения субъективной погрешности является человеческий фактор.

Погрешности по взаимодействию изменений во времени и входной величины делятся на статические и динамические погрешности.

Статическая погрешность – это погрешность, которая возникает в процессе измерения постоянной (не изменяющейся во времени) величины.

Динамическая погрешность – это погрешность, численное значение которой вычисляется как разность между погрешностью, возникающей при измерении непостоянной (переменной во времени) величины, и статической погрешностью (погрешностью значения измеряемой величины в определенный момент времени).

По характеру зависимости погрешности от влияющих величин погрешности делятся на основные и дополнительные.

Основная погрешность – это погрешность, полученная в нормальных условиях эксплуатации средства измерений (при нормальных значениях влияющих величин).

Дополнительная погрешность – это погрешность, которая возникает в условиях несоответствия значений влияющих величин их нормальным значениям, или если влияющая величина переходит границы области нормальных значений.

Нормальные условия – это условия, в которых все значения влияющих величин являются нормальными либо не выходят за границы области нормальных значений.

Рабочие условия – это условия, в которых изменение влияющих величин имеет более широкий диапазон (значения влияющих не выходят за границы рабочей области значений).

Рабочая область значений влияющей величины – это область значений, в которой проводится нормирование значений дополнительной погрешности.

По характеру зависимости погрешности от входной величины погрешности делятся на аддитивные и мультипликативные.

Аддитивная погрешность – это погрешность, возникающая по причине суммирования численных значений и не зависящая от значения измеряемой величины, взятого по модулю (абсолютного).

Мультипликативная погрешность – это погрешность, изменяющаяся вместе с изменением значений величины, подвергающейся измерениям.

Надо заметить, что значение абсолютной аддитивной погрешности не связано со значением измеряемой величины и чувствительностью средства измерений. Абсолютные аддитивные погрешности неизменны на всем диапазоне измерений.

Значение абсолютной аддитивной погрешности определяет минимальное значение величины, которое может быть измерено средством измерений.

Значения мультипликативных погрешностей изменяются пропорционально изменениям значений измеряемой величины. Значения мультипликативных погрешностей также пропорциональны чувствительности средства измерений Мультипликативная погрешность возникает из-за воздействия влияющих величин на параметрические характеристики элементов прибора.

Погрешности, которые могут возникнуть в процессе измерений, классифицируют по характеру появления. Выделяют:

1) систематические погрешности;

2) случайные погрешности.

В процессе измерения могут также появиться грубые погрешности и промахи.

Систематическая погрешность – это составная часть всей погрешности результата измерения, не изменяющаяся или изменяющаяся закономерно при многократных измерениях одной и той же величины. Обычно систематическую погрешность пытаются исключить возможными способами (например, применением методов измерения, снижающих вероятность ее возникновения), если же систематическую погрешность невозможно исключить, то ее просчитывают до начала измерений и в результат измерения вносятся соответствующие поправки. В процессе нормирования систематической погрешности определяются границы ее допустимых значений. Систематическая погрешность определяет правильность измерений средств измерения (метрологическое свойство).

Систематические погрешности в ряде случаев можно определить экспериментальным путем. Результат измерений тогда можно уточнить посредством введения поправки.

Способы исключения систематических погрешностей делятся на четыре вида:

1) ликвидация причин и источников погрешностей до начала проведения измерений;

2) устранение погрешностей в процессе уже начатого измерения способами замещения, компенсации погрешностей по знаку, противопоставлениям, симметричных наблюдений;

3) корректировка результатов измерения посредством внесения поправки (устранение погрешности путем вычислений);

4) определение пределов систематической погрешности в случае, если ее нельзя устранить.

Ликвидация причин и источников погрешностей до начала проведения измерений. Данный способ является самым оптимальным вариантом, так как его использование упрощает дальнейший ход измерений (нет необходимости исключать погрешности в процессе уже начатого измерения или вносить поправки в полученный результат).

Для устранения систематических погрешностей в процессе уже начатого измерения применяются различные способы

Способ введения поправок базируется на знании систематической погрешности и действующих закономерностей ее изменения. При использовании данного способа в результат измерения, полученный с систематическими погрешностями, вносят поправки, по величине равные этим погрешностям, но обратные по знаку.

Способ замещения состоит в том, что измеряемая величина заменяется мерой, помещенной в те же самые условия, в которых находился объект измерения. Способ замещения применяется при измерении следующих электрических параметров: сопротивления, емкости и индуктивности.

Способ компенсации погрешности по знаку состоит в том, что измерения выполняются два раза таким образом, чтобы погрешность, неизвестная по величине, включалась в результаты измерений с противоположным знаком.

Способ противопоставления похож на способ компенсации по знаку. Данный способ состоит в том, что измерения выполняют два раза таким образом, чтобы источник погрешности при первом измерении противоположным образом действовал на результат второго измерения.

Случайная погрешность – это составная часть погрешности результата измерения, изменяющаяся случайно, незакономерно при проведении повторных измерений одной и той же величины. Появление случайной погрешности нельзя предвидеть и предугадать. Случайную погрешность невозможно полностью устранить, она всегда в некоторой степени искажает конечные результаты измерений. Но можно сделать результат измерения более точным за счет проведения повторных измерений. Причиной случайной погрешности может стать, например, случайное изменение внешних факторов, воздействующих на процесс измерения. Случайная погрешность при проведении многократных измерений с достаточно большой степенью точности приводит к рассеянию результатов.

Промахи и грубые погрешности – это погрешности, намного превышающие предполагаемые в данных условиях проведения измерений систематические и случайные погрешности. Промахи и грубые погрешности могут появляться из-за грубых ошибок в процессе проведения измерения, технической неисправности средства измерения, неожиданного изменения внешних условий.

15. Качество измерительных приборов

Качество измерительного прибора – это уровень соответствия прибора своему прямому предназначению. Следовательно, качество измерительного прибора определяется тем, насколько при использовании измерительного прибора достигается цель измерения.

Главная цель измерения – это получение достоверных и точных сведений об объекте измерений.

Для того чтобы определить качество прибора, необходимо рассмотреть следующие его характеристики:

1) постоянную прибора;

2) чувствительность прибора;

3) порог чувствительности измерительного прибора;

4) точность измерительного прибора.

Постоянная прибора – это некоторое число, умножаемое на отсчет с целью получения искомого значения измеряемой величины, т. е. показания прибора. Постоянная прибора в некоторых случаях устанавливается как цена деления шкалы, которая представляет собой значение измеряемой величины, соответствующее одному делению.

Чувствительность прибора – это число, в числителе которого стоит величина линейного или углового перемещения указателя (если речь идет о цифровом измерительном приборе, то в числителе будет изменение численного значения, а в знаменателе – изменение измеряемой величины, которое вызвало данное перемещение (или изменение численного значения)).

Порог чувствительности измерительного прибора – число, являющееся минимальным значением измеряемой величины, которое может зафиксировать прибор.

Точность измерительного прибора – это характеристика, выражающая степень соответствия результатов измерения настоящему значению измеряемой величины. Точность измерительного прибора определяется посредством установления нижнего и верхнего пределов максимально возможной погрешности.

Практикуется подразделение приборов на классы точности, основанное на величине допустимой погрешности.

Класс точности средств измерений – это обобщающая характеристика средств измерений, которая определяется границами основных и дополнительных допускаемых погрешностей и другими, определяющими точность характеристиками Классы точности определенного вида средств измерений утверждаются в нормативной документации. Причем для каждого отдельного класса точности утверждаются определенные требования к метрологическим характеристикам Объединение установленных метрологических характеристик определяет степень точности средства измерений, принадлежащего к данному классу точности.

Класс точности средства измерений определяется в процессе его разработки. Так как в процессе эксплуатации метрологические характеристики как правило ухудшаются, можно по результатам проведенной калибровки (поверки) средства измерений понижать его класс точности.

16. Погрешности средств измерений

Погрешности средств измерений классифицируются по следующим критериям:

1) по способу выражения;

2) по характеру проявления;

3) по отношению к условиям применения. По способу выражения выделяют абсолютную и относительную погрешности.

Абсолютная погрешность вычисляется по формуле:

?Q n =Q n ?Q 0 ,

где ? Q n – абсолютная погрешность проверяемого средства измерения;

Q n – значение некой величины, полученное с помощью проверяемого средства измерения;

Q 0 – значение той же самой величины, принятое за базу сравнения (настоящее значение).

Относительная погрешность – это число, отражающее степень точности средства измерения. Относительная погрешность вычисляется по следующей формуле:


где ? Q – абсолютная погрешность;

Q 0 – настоящее (действительное) значение измеряемой величины.

Относительная погрешность выражается в процентах.

По характеру проявления погрешности подразделяют на случайные и систематические.

По отношению к условиям применения погрешности подразделяются на основные и дополнительные.

Основная погрешность средств измерения – это погрешность, которая определяется в том случае, если средства измерения применяются в нормальных условиях.

Дополнительная погрешность средств измерения – это составная часть погрешности средства измерения, возникающая дополнительно, если какая-либо из влияющих величин выйдет за пределы своего нормального значения.

17. Метрологическое обеспечение измерительных систем

Метрологическое обеспечение – это утвержение и использование научно-технических и организационных основ, технических приборов, норм и стандартов с целью обеспечения единства и установленной точности измерений. Метрологическое обеспечение в своем научном аспекте базируется на метрологии.

Можно выделить следующие цели метрологического обеспечения:

1) достижение более высокого качества продукции;

2) обеспечение наибольшей эффективности системы учета;

3) обеспечение профилактических мероприятий, диагностики и лечения;

4) обеспечение эффективного управления производством;

5) обеспечение высокого уровня эффективности научных работ и экспериментов;

6) обеспечение более высокой степени автоматизации в сфере управления транспортом;

7) обеспечение эффективного функционирования системы нормирования и контроля условий труда и быта;

8) повышение качества экологического надзора;

9) улучшение качества и повешение надежности связи;

10) обеспечение эффективной системы оценивания различных природных ресурсов.

Метрологическое обеспечение технических устройств – это

совокупность научно-технических средств, организационных мероприятий и мероприятий, проводимых соответствующими учреждениями с целью достижения единства и требуемой точности измерений, а также установленных характеристик технических приборов.

Измерительная система – средство измерения, представляющее собой объединение мер, ИП, измерительных приборов и другое, выполняющих схожие функции, находящихся в разных частях определенного пространства и предназначенных для измерения определенного числа физических величин в данном пространстве.

Измерительные системы используются для:

1) технической характеристики объекта измерений, получаемой путем проведения измерительных преобразований некоторого количества динамически изменяющихся во времени и распределенных в пространстве величин;

2) автоматизированной обработки полученных результатов измерений;

3) фиксирования полученных результатов измерений и результатов их автоматизированной обработки;

4) перевода данных в выходные сигналы системы. Метрологическое обеспечение измерительных систем подразумевает:

1) определение и нормирование метрологических характеристик для измерительных каналов;

2) проверку технической документации на соответствие метрологическим характеристикам;

3) проведение испытаний измерительных систем для установления типа, к которому они принадлежат;

4) проведение испытаний для определения соответствия измерительной системы установленному типу;

5) проведение сертификации измерительных систем;

6) проведение калибровки (проверки) измерительных систем;

7) обеспечение метрологического контроля над производством и использованием измерительных систем.

Измерительный канал измерительной системы – это часть измерительной системы, технически или функционально обособленная, предназначенная для выполнения определенной завершающейся функции (например, для восприятия измеряемой величины или для получения числа или кода, являющегося результатом измерений этой величины). Разделяют:

1) простые измерительные каналы;

2) сложные измерительные каналы.

Простой измерительный канал – это канал, в котором используется прямой метод измерений, реализующийся посредством упорядоченных измерительных преобразований.

В сложном измерительном канале выделяют первичную часть и вторичную часть. В первичной части сложный измерительный канал является объединением некоторого числа простых измерительных каналов. Сигналы с выхода простых измерительных каналов первичной части применяются для косвенных, совокупных или совместных измерений или для получения пропорционального результату измерений сигнала во вторичной части.

Измерительный компонент измерительной системы – это средство измерений, обладающее отдельно нормированными метрологическими характеристиками. Примером измерительного компонента измерительной системы может послужить измерительный прибор. К измерительным компонентам измерительной системы принадлежат также аналоговые вычислительные устройства (устройства, выполняющие измерительные преобразования). Аналоговые вычислительные устройства принадлежат к группе устройств с одним или несколькими вводами.

Измерительные компоненты измерительных систем бывают следующих видов.

Связующий компонент – это технический прибор или элемент окружающей среды, применяющиеся в целях обмена сигналами, содержащими сведения об измеряемой величине, между компонентами измерительной системы с минимально возможными искажениями. Примером связующего компонента может послужить телефонная линия, высоковольтная линия электропередачи, переходные устройства.

Вычислительный компонент – это цифровое устройство (часть цифрового устройства), предназначенное для выполнения вычислений, с установленным программным обеспечением. Вычислительный компонент применяется для вычи

сления результатов измерений (прямых, косвенных, совместных, совокупных), которые представляют собой число или соответствующий код, вычисления производятся по итогам первичных преобразований в измерительной системе. Вычислительный компонент выполняет также логические операции и координирование работы измерительной системы.

Комплексный компонент – это составная часть измерительной системы, представляющая собой технически или территориально объединенную совокупность компонентов Комплексный компонент завершает измерительные преобразования, а также вычислительные и логические операции, которые утверждены в принятом алгоритме обработки результатов измерений для других целей.

Вспомогательный компонент – это технический прибор, предназначенный для обеспечения нормального функционирования измерительной системы, но не принимающий участия в процессе измерительных преобразований.

Согласно соответствующим ГОСТам метрологические характеристики измерительной системы должны быть в обязательном порядке нормированы для каждого измерительного канала, входящего в измерительную систему, а также для комплексных и измерительных компонентов измерительной системы.

Как правило, изготовитель измерительной системы определяет общие нормы на метрологические характеристики измерительных каналов измерительной системы.

Нормированные метрологические характеристики измерительных каналов измерительной системы призваны:

1) обеспечивать определение погрешности измерений с помощью измерительных каналов в рабочих условиях;

2) обеспечивать эффективный контроль над соответствием измерительного канала измерительной системы нормированным метрологическим характеристикам в процессе испытаний измерительной системы. В случае, если определение или контроль над метрологическими характеристиками измерительного канала измерительной системы не могут осуществляться экспериментальным путем для всего измерительного канала, нормирование метрологических характеристик проводится для составных частей измерительного канала. Причем, объединение этих частей должно представлять собой целый измерительный канал

Нормировать характеристики погрешности в качестве метрологических характеристик измерительного канала измерительной системы можно как при нормальных условиях использования измерительных компонентов, так и при рабочих условиях, для которых характерно такое сочетание влияющих факторов, при котором модуль численного значения характеристик погрешности измерительного канала имеет максимально возможное значение. Для большей эффективности для промежуточных сочетаний влияющих факторов также нормируются характеристики погрешностей измерительного канала. Данные характеристики погрешности измерительных каналов измерительной системы необходимо проверять посредством их расчета по метрологическим характеристикам компонентов измерительной системы, представляющих собой в целом измерительный канал. Причем рассчитанные значения характеристик погрешности измерительных каналов могут и не проверяться экспериментальным путем. Но тем не менее в обязательном порядке должен осуществляться контроль метрологических характеристик для всех составных частей (компонентов) измерительной системы, нормы которых являются исходными данными в расчете.

Нормированные метрологические характеристики комплексных компонентов и измерительных компонентов должны:

1) обеспечивать определение характеристик погрешности измерительных каналов измерительной системы при рабочих условиях применения с использованием нормированных метрологических характеристик компонентов;

2) обеспечивать осуществление эффективного контроля над данными компонентами в процессе испытаний, проводимых с целью установления типа, и поверке соответствия нормированным метрологическим характеристикам. Для вычислительных компонентов измерительной системы, в случае, если их программное обеспечение не учитывалось в процессе нормирования метрологических характеристик, нормируются погрешности вычислений, источником которых является функционирование программного обеспечения (алгоритм вычислений, его программная реализация). Для вычислительных компонентов измерительной системы могут также нормироваться другие характеристики, при условии учета специфики вычислительного компонента, которая может воздействовать на характеристики составляющих частей погрешности измерительного канала (характеристики составляющей погрешности), если составляющая погрешность возникает из-за использования данной программы обработки результатов измерений.

Техническая документация по эксплуатации измерительной системы должна включать в себя описание алгоритма и программы, работающей в соответствии с описанным алгоритмом. Данное описание должно позволять рассчитывать характеристики погрешности результатов измерений с использованием характеристик погрешности составной части измерительного канала измерительной системы, расположенной перед вычислительным компонентом.

Для связующих компонентов измерительной системы нормируются два вида характеристик:

1) характеристики, обеспечивающие такое значение составляющей погрешности измерительного канала, вызванной связующим компонентом, которым можно пренебречь;

2) характеристики, позволяющие определить значение составляющей погрешности измерительного канала, вызванной связующим компонентом.

18. Выбор средств измерений

При выборе средств измерений в первую очередь должно учитываться допустимое значение погрешности для данного измерения, установленное в соответствующих нормативных документах.

В случае, если допустимая погрешность не предусмотрена в соответствующих нормативных документах, предельно допустимая погрешность измерения должна быть регламентирована в технической документации на изделие.

При выборе средств измерения должны также учитываться:

1) допустимые отклонения;

2) методы проведения измерений и способы контроля. Главным критерием выбора средств измерений является соответствие средств измерения требованиям достоверности измерений, получения настоящих (действительных) значений измеряемых величин с заданной точностью при минимальных временных и материальных затратах.

Для оптимального выбора средств измерений необходимо обладать следующими исходными данными:

1) номинальным значением измеряемой величины;

2) величиной разности между максимальным и минимальным значением измеряемой величины, регламентируемой в нормативной документации;

3) сведениями об условиях проведения измерений.

Если необходимо выбрать измерительную систему, руководствуясь критерием точности, то ее погрешность должна вычисляться как сумма погрешностей всех элементов системы (мер, измерительных приборов, измерительных преобразователей), в соответствии с установленным для каждой системы законом.

Предварительный выбор средств измерений производится в соответствии с критерием точности, а при окончательном выборе средств измерений должны учитываться следующие требования:

1) к рабочей области значений величин, оказывающих влияние на процесс измерения;

2) к габаритам средства измерений;

3) к массе средства измерений;

4) к конструкции средства измерений.

При выборе средств измерений необходимо учитывать предпочтительность стандартизированных средств измерений.

19. Методы определения и учета погрешностей

Методы определения и учета погрешностей измерений используются для того, чтобы:

1) на основании результатов измерений получить настоящее (действительное) значение измеряемой величины;

2) определить точность полученных результатов, т. е. степень их соответствия настоящему (действительному) значению.

В процессе определения и учета погрешностей оцениваются:

1) математическое ожидание;

2) среднеквадратическое отклонение.

Точечная оценка параметра (математического ожидания или среднеквадратического отклонения) – это оценка параметра, которая может быть выражена одним числом. Точечная оценка является функцией от экспериментальных данных и, следовательно, сама должна быть случайной величиной, распределенной по закону, зависящему от закона распределения для значений исходной случайной величины Закон распределения значений точечной оценки будет зависеть также от оцениваемого параметра и от числа испытаний (экспериментов).

Точечная оценка бывает следующих видов:

1) несмещенная точечная оценка;

2) эффективная точечная оценка;

3) состоятельная точечная оценка.

Несмещенная точечная оценка – это оценка параметра погрешности, математическое ожидание которой равно этому параметру.

Эффективная точечная оценка – это точечная оценка. дисперсия которой меньше, чем дисперсия другой какой угодно оценки этого параметра.

Состоятельная точечная оценка – это оценка, которая при увеличении числа испытаний стремится к значению параметра, подвергающегося оценке.

Основные методы определения оценок:

1) метод максимального правдоподобия (метод Фишера);

2) метод наименьших квадратов.

1. Метод максимального правдоподобия основывается на идее, что сведения о действительном значении измеряемой величины и рассеивании результатов измерений, полученные путем многократных наблюдений, содержатся в ряде наблюдений.

Метод максимального правдоподобия состоит в поиске оценок, при которых функция правдоподобия проходит через свой максимум.

Оценки максимального правдоподобия – это оценки сред-неквадратического отклонения и оценки истинного значения.

Если случайные погрешности распределены по нормальному закону распределения, то оценка максимального правдоподобия для истинного значения представляет собой среднее арифметическое результатов наблюдений, а оценка дисперсии является средним арифметическим квадратов отклонений значений от математического ожидания.

Преимущества оценок максимального правдоподобия заключается в том, что данные оценки:

1) несмещенные асимптотически;

2) асимптотически эффективные;

3) асимптотически распределены по нормальному закону.

2. Метод наименьших квадратов состоит в том, что из определенного класса оценок берут ту оценку, у которой минимальная дисперсия (самую эффективную). Из всех линейных оценок действительного значения, где присутствуют некоторые постоянные, только среднее арифметическое сводит к наименьшему значению дисперсии. В связи с этим при условии распределения значений случайных погрешностей по нормальному закону распределения оценки, полученные с использованием метода наименьших квадратов, идентичны оценкам максимального правдоподобия. Оценка параметров с помощью интервалов проводится посредством нахождения доверительных интервалов, в пределах которых с заданными вероятностями располагаются действительные значения оцениваемых параметров.

Доверительная граница случайного отклонения – это число, представляющее собой длину доверительного интервала, разделенную пополам.

При достаточно большом количестве испытаний доверительный интервал существенно уменьшается. Если увеличивается число испытаний, то допустимо увеличить число доверительных интервалов.

Обнаружение грубых погрешностей

Грубые погрешности – это погрешности, намного превышающие предполагаемые в данных условиях проведения измерений систематические и случайные погрешности. Промахи и грубые погрешности могут появляться из-за грубых ошибок в процессе проведения измерения, технической неисправности средства измерения, неожиданного изменения внешних условий. Для того чтобы исключить грубые погрешности, рекомендуется до начала измерений приближенно определить значение измеряемой величины.

В случае, если при проведении измерений выясняется, что результат отдельного наблюдения сильно отличается от других полученных результатов, нужно обязательно установить причины такого отличия. Результаты, полученные с резким отличием, можно отбросить и повторно измерить данную величину. Однако в некоторых случаях отбрасывание таких результатов может вызвать ощутимое искажение рассеивания ряда измерений. В связи с этим рекомендуется не отбрасывать необдуманно отличающиеся результаты, а дополнять их результатами повторных измерений.

Если необходимо исключить грубые погрешности в процессе обработки полученных результатов, когда уже нельзя скорректировать условия проведения измерений и провести повторные измерения, то применяются статистические методы.

Общий метод проверки статистических гипотез позволяет выяснить, присутствует ли в данном результате измерений грубая погрешность.

20. Обработка и представление результатов измерения

Обычно измерения являются однократными. При обычных условиях их точности вполне достаточно.

Результат однократного измерения представляется в следующем виде:

где Y i – значение i – го показания;

I – поправка.

Погрешность результата однократного измерения определяется при утверждении метода проведения измерений.

В процессе обработки результатов измерений используются различные виды закона распределения (нормальный закон распределения, равномерный закон распределения корреляционный закон распределения) измеряемой величины (в данном случае она рассматривается как случайная).

Обработка результатов прямых равноточных измерений Прямые измерения – это измерения, посредством которых непосредственно получается значение измеряемой величины Равноточными или равнорассеянными называют прямые, взаимно независимые измерения определенной величины, причем результаты этих измерений могут быть рассмотрены как случайные и распределенные по одному закону распределения.

Обычно при обработке результатов прямых равноточных измерений предполагается, что результаты и погрешности измерений распределены по нормальному закону распределения.

После снятия расчетов вычисляется значение математического ожидания по формуле:


где x i – значение измеряемой величины;

n – количество проведенных измерений.

Затем, если систематическая погрешность определена, ее значение вычитают из вычисленного значения математического ожидания.

Потом вычисляется значение среднеквадратического отклонения значений измеряемой величины от математического ожидания.

Алгоритм обработки результатов многократных равноточных измерений

Если известна систематическая погрешность, то ее необходимо исключить из результатов измерений.

Вычислить математическое ожидание результатов измерений. В качестве математического ожидания обычно берется среднее арифметическое значений.

Установить величину случайной погрешности (отклонения от среднего арифметического) результата однократного измерения.

Вычислить дисперсию случайной погрешности. Вычислить среднеквадратическое отклонение результата измерения.

Проверить предположение, что результаты измерений распределены по нормальному закону.

Найти значение доверительного интервала и доверительной погрешности.

Определить значение энтропийной погрешности и энтропийного коэффициента.

21. Поверка и калибровка средств измерений

Калибровка средств измерений – это комплекс действий и операций, определяющих и подтверждающих настоящие (действительные) значения метрологических характеристик и (или) пригодность средств измерений, не подвергающихся государственному метрологическому контролю.

Пригодность средства измерений – это характеристика, определяющаяся соответствием метрологических характеристик средства измерения утвержденным (в нормативных документах, либо заказчиком) техническим требованиям Калибровочная лаборатория определяет пригодность средства измерений.

Калибровка сменила поверку и метрологическую аттестацию средств измерений, которые проводились только органами государственной метрологической службы. Калибровка, в отличие от поверки и метрологической аттестации средств измерений, может осуществляться любой метрологической службой при условии, что у нее есть возможность обеспечить соответствующие условия для проведения калибровки. Калибровка осуществляется на добровольной основе и может быть проведена даже метрологической службой предприятия.

Но тем не менее метрологическая служба предприятия обязана выполнять определенные требования. Основное требование к метрологической службе – обеспечение соответствия рабочего средства измерений государственному эталону, т. е. калибровка входит в состав национальной системы обеспечения единства измерений.

Выделяют четыре метода поверки (калибровки) средств измерений:

1) метод непосредственного сравнения с эталоном;

2) метод сличения при помощи компьютера;

3) метод прямых измерений величины;

4) метод косвенных измерений величины.

Метод непосредственного сличения с эталоном средства

измерений, подвергаемого калибровке, с соответствующим эталоном определенного разряда практикуется для различных средств измерений в таких сферах, как электрические измерения, магнитные измерения, определение напряжения, частоты и силы тока. Данный метод базируется на осуществлении измерений одной и той же физической величины калибруемым (поверяемым) прибором и эталонным прибором одновременно. Погрешность калибруемого (поверяемого) прибора вычисляется как разность показаний калибруемого прибора и эталонного прибора (т. е. показания эталонного прибора принимаются за настоящее значение измеряемой физической величины).

Преимущества метода непосредственного сличения с эталоном:

1) простота;

2) наглядность;

3) возможность автоматической калибровки (поверки);

4) возможность проведения калибровки с помощью ограниченного количества приборов и оборудования.

Метод сличения с помощью компьютера осуществляется с использованием компаратора – специального прибора, посредством которого проводится сравнение показаний калибруемого (поверяемого) средства измерений и показаний эталонного средства измерений. Необходимость использования компаратора обусловливается невозможностью провести непосредственное сравнение показаний средств измерений, измеряющих одну и ту же физическую величину. Компаратором может быть средство измерения, одинаково воспринимающее сигналы эталонного средства измерения и калибруемого (поверяемого) прибора. Преимущество данного метода в последовательности во времени сравнения величин.

Метод прямых измерений величины используется в случаях, когда есть возможность провести сравнение калибруемого средства измерения с эталонным в установленных пределах измерений. Метод прямых измерений базируется на том же принципе, что и метод непосредственного сличения. Различие между этими методами состоит в том, что при помощи метода прямых измерений осуществляется сравнение на всех числовых отметках каждого диапазона (поддиапазона).

Метод косвенных измерений используется в случаях, когда настоящие (действительные) значения измеряемых физических величин невозможно получить посредством прямых измерений или когда косвенные измерения выше по точности, чем прямые измерения. При использовании данного метода для получения искомого значения сначала ищут значения величин, связанных с искомой величиной известной функциональной зависимостью. А затем на основании этой зависимости находится расчетным путем искомое значение. Метод косвенных измерений, как правило, используется в установках автоматизированной калибровки (поверки).

Для того чтобы передача размеров единиц измерений рабочим приборам от эталонов единиц измерений осуществлялась без больших погрешностей, составляются и применяются поверочные схемы.

Поверочные схемы – это нормативный документ, в котором утверждается соподчинение средств измерений, принимающих участие в процессе передачи размера единицы измерений физической величины от эталона к рабочим средствам измерений посредством определенных методов и с указанием погрешности. Поверочные схемы утверждают метрологическое подчинение государственного эталона, разрядных эталонов и средств измерений.

Поверочные схемы разделяют на:

1) государственные поверочные схемы;

2) ведомственные поверочные схемы;

3) локальные поверочные схемы.

Государственные поверочные схемы устанавливаются и действуют для всех средств измерений определенного вида, использующихся в пределах страны.

Ведомственные поверочные схемы устанавливаются и действуют на средства измерений данной физической величины, подлежащие ведомственной поверке. Ведомственные поверочные схемы не должны вступать в противоречие с государственными поверочными схемами, если они установлены для средств измерений одних и тех же физических величин Ведомственные поверочные схемы могут быть установлены при отсутствии государственной поверочной схемы. В ведомственных поверочных схемах возможно непосредственно указывать определенные типы средств измерений.

Локальные поверочные схемы используются метрологическими службами министерств и действуют также и для средств измерений предприятий, им подчиненных. Локальная поверочная схема может распространяться на средства измерений, использующиеся на определенном предприятии Локальные поверочные схемы в обязательном порядке должны отвечать требованиям соподчиненности, утвержденным государственной поверочной схемой. Составлением государственных поверочных схем занимаются научно-исследовательские институты Госстандарта Российской Федерации Научно-исследовательские институты Госстандарта являются обладателями государственных эталонов.

Ведомственные поверочные схемы и локальные поверочные схемы представляются в виде чертежей.

Государственные поверочные схемы устанавливаются Госстандартом РФ, а локальные поверочные схемы – метрологическими службами либо руководителями предприятий.

В поверочной схеме утверждается порядок передачи размера единиц измерений одной или нескольких физических величин от государственных эталонов рабочим средствам измерений. Поверочная схема должна содержать по меньшей мере две ступени передачи размера единиц измерений.

На чертежах, представляющих поверочную схему, должны присутствовать:

1) наименования средств измерений;

2) наименования методов поверки;

3) номинальные значения физических величин;

4) диапазоны номинальных значений физических величин;

5) допустимые значения погрешностей средств измерений;

6) допустимые значения погрешностей методов поверки.

22. Правовые основы метрологического обеспечения. Основные положения Закона РФ «Об обеспечении единства измерений»

Единство измерений – это характеристика измерительного процесса, означающая, что результаты измерений выражаются в установленных и принятых в законодательном порядке единицах измерений и оценка точности измерений имеет надлежащую доверительную вероятность.

Главные принципы единства измерений:

1) определение физических величин с обязательным использованием государственных эталонов;

2) использование утвержденных в законодательном порядке средств измерений, подвергнутых государственному контролю и с размерами единиц измерения, переданными непосредственно от государственных эталонов;

3) использование только утвержденных в законодательном порядке единиц измерения физических величин;

4) обеспечение обязательного систематического контроля над характеристиками эксплуатируемых средств измерений в определенные промежутки времени;

5) обеспечение необходимой гарантированной точности измерений при применении калиброванных (поверенных) средств измерений и установленных методик выполнения измерений;

6) использование полученных результатов измерений при обязательном условии оценки погрешности данных результатов с установленной вероятностью;

7) обеспечение контроля над соответствием средств измерений метрологическим правилам и характеристикам;

8) обеспечение государственного и ведомственного надзора за средствами измерений.

Закон РФ «Об обеспечении единства измерений» был принят в 1993 г. До принятия данного Закона нормы в области метрологии не были регламентированы законодательно На момент принятия в Законе присутствовало много новшеств начиная от утвержденной терминологии и заканчивая лицензированием метрологической деятельности в стране В Законе были четко разграничены обязанности государственного метрологического контроля и государственного метрологического надзора, установлены новые правила калибровки, введено понятие добровольной сертификации средств измерений.

Основные положения.

Прежде всего цели закона состоят в следующем:

1) осуществление защиты законных прав и интересов граждан Российской Федерации, правопорядка и экономики РФ от возможных негативных последствий, вызванных недостоверными и неточными результатами измерений;

2) помощь в развитии науке, технике и экономике посредством регламентирования использования государственных эталонов единиц величин и применения результатов измерений, обладающих гарантированной точностью. Результаты измерений должны быть выражены в установленных в стране единицах измерения;

3) способствование развитию и укреплению международных и межфирменных отношений и связей;

4) регламентирование требований к изготовлению, выпуску, использованию, ремонту, продаже и импорту средств измерений, производимых юридическими и физическими лицами;

5) интеграция системы измерений Российской Федерации в мировую практику.

Сферы приложения Закона: торговля; здравоохранение; защита окружающей среды; экономическая и внешнеэкономическая деятельность; некоторые сферы производства, связанные с калибровкой (поверкой) средств измерений метрологическими службами, принадлежащими юридическим лицам, проводимой с применением эталонов, соподчиненных государственным эталонам единиц величин.

В Законе законодательно утверждены основные понятия:

1) единство измерений;

2) средство измерений;

3) эталон единицы величины;

4) государственный эталон единицы величины;

5) нормативные документы по обеспечению единства измерений;

6) метрологическая служба;

7) метрологический контроль;

8) метрологический надзор;

9) калибровка средств измерений;

10) сертификат о калибровке.

Все определения, утвержденные в Законе, базируются на официальной терминологии Международной организации законодательной метрологии (МОЗМ).

В основных статьях закона регламентируется:

1) структура организации государственных органов управления обеспечением единства измерений;

2) нормативные документы, обеспечивающие единство измерений;

3) установленные единицы измерения физических величин и государственные эталоны единиц величин;

4) средства измерений;

5) методы измерений.

Закон утверждает Государственную метрологическую службу и другие службы, занимающиеся обеспечением единства измерений, метрологические службы государственных органов управления и формы осуществления государственного метрологического контроля и надзора.

В Законе определяются виды ответственности за нарушения Закона.

В Законе утверждается состав и полномочия Государственной метрологической службы.

В соответствии с Законом создан институт лицензирования метрологической деятельности с целью защиты законных прав потребителей. Правом выдачи лицензии обладают только органы Государственной метрологической службы.

Установлены новые виды государственного метрологического надзора:

1) за количеством отчуждаемых товаров;

2) за количеством товаров в упаковке в процессе их расфасовки и продажи.

В соответствии с положениями Закона увеличивается область распространения государственного метрологического контроля. В нее добавились банковские операции, почтовые операции, налоговые операции, таможенные операции, обязательная сертификация продукции.

В соответствии с Законом вводится основанная на добровольном принципе Система сертификации средств измерений, осуществляющая проверку средств измерений на соответствие метрологическим правилам и требованиям российской системы калибровки средств измерений.

23. Метрологическая служба в России

Государственная метрологическая служба Российской Федерации (ГМС) является объединением государственных метрологических органов и занимается координированием деятельности по обеспечению единства измерений. Существуют следующие метрологические службы:

1) Государственная метрологическая служба;

2) Государственная служба времени и частоты и определения параметров вращения Земли;

3) Государственная служба стандартных образцов состава и свойств веществ и материалов;

4) Государственная служба стандартных справочных данных о физических константах и свойствах веществ и материалов;

5) метрологические службы государственных органов управления Российской Федерации;

6) метрологические службы юридических лиц. Руководит всеми вышеуказанными службами Государственный комитет Российской Федерации по стандартизации и метрологии (Госстандарт России).

Государственная метрологическая служба содержит:

1) государственные научные метрологические центры (ГНМЦ);

2) органы ГМС на территории субъектов РФ. Государственная метрологическая служба включает также центры государственных эталонов, специализирующиеся на различных единицах измерения физических величин.

Государственная служба времени и частоты и определения параметров вращения Земли (ГСВЧ) занимается обеспечением единства измерений времени, частоты и определения параметров вращения Земли на межрегиональном и межотраслевом уровнях. Измерительную информацию ГСВЧ используют службы навигации и управления самолетами, судами и спутниками, Единая энергетическая система и др.

Государственная служба стандартных образцов состава и свойств веществ и материалов (ГССО) занимается созданием и обеспечением применения системы стандартных образцов состава и свойств веществ и материалов. В понятие материалов включаются:

1) металлы и сплавы;

2) нефтепродукты;

3) медицинские препараты и др.

ГССО занимается также разработкой приборов, предназначенных для сравнения характеристик стандартных образцов и характеристик веществ и материалов, производимых разными типами предприятий (сельскохозяйственными, промышленными и др.) с целью обеспечения контроля.

Государственная служба стандартных справочных данных о физических константах и свойствах веществ и материалов (ГСССД) занимается разработкой точных и достоверных данных о физических константах, свойствах веществ и материалов (минерального сырья, нефти, газа и пр.). Измерительную информацию ГСССД используют различные организации, занимающиеся проектировкой технических изделий с повышенными требованиями к точности. ГСССД публикует справочные данные, согласованные с международными метрологическими организациями.

Метрологические службы государственных органов управления Российской Федерации и метрологические службы юридических лиц могут быть созданы в министерствах, на предприятиях, в учреждениях, зарегистрированных как юридическое лицо, с целью проведения разного рода работ по обеспечению единства и надлежащей точности измерений, для обеспечения метрологического контроля и надзора.

24. Государственная система обеспечения единства измерений

Государственная система обеспечения единства измерений создана с целью обеспечить единство измерений в пределах страны. Государственная система обеспечения единства измерений реализуется, координируется и управляется Госстандартом Российской Федерации. Госстандарт Российской Федерации является государственным органом исполнительной власти в сфере метрологии.

Система обеспечения единства измерений выполняет следующие задачи:

1) обеспечивает охрану прав и законодательно закрепленных интересов граждан;

2) обеспечивает охрану утвержденного правопорядка;

3) обеспечивает охрану экономики.

Указанные задачи система обеспечения единства измерений выполняет посредством устранения негативных последствий недостоверных и неточных измерений во всех сферах жизнедеятельности человека и общества с использованием конституционны норм, нормативных документов и постановлений правительства Российской Федерации.

Система обеспечения единства измерений действует согласно:

1) Конституции Российской Федерации;

2) Закону РФ «Об обеспечении единства измерений»;

3) Постановлению Правительства Российской Федерации «Об организации работ по стандартизации, обеспечению единства измерений, сертификации продукции и услуг»;

4) ГОСТу Р 8.000–2000 «Государственная система обеспечения единства измерений».

Государственная система обеспечения единства измерений включает в себя:

1) правовую подсистему;

2) техническую подсистему;

3) организационную подсистему.

Главными задачами Государственной системы обеспечения единства измерений являются:

1) утверждение эффективных способов координирования деятельности в сфере обеспечения единства измерений;

2) обеспечение научно-исследовательской деятельности, направленной на разработку более точных и совершенных методик и способов воспроизведения единиц измерения физических величин и передачи их размеров от государственных эталонов рабочим средствам измерений;

3) утверждение системы единиц измерения физических величин, допускаемых к использованию;

4) установление шкал измерений, допускаемых к использованию;

5) утверждение основополагающих понятий метрологии, регламентация используемых терминов;

6) утверждение системы государственных эталонов;

7) изготовление и усовершенствование государственных эталонов;

8) утверждение методов и правил передачи размеров единиц измерения физических величин от государственных эталонов рабочим средствам измерений;

9) проведение калибровки (поверки) и сертификации средств измерений, на которые не распространяется сфера действия государственного метрологического контроля и надзора;

10) осуществление информационного освещения системы обеспечения единства измерений;

11) совершенствование государственной системы обеспечения единства измерений.

Правовая подсистема – это совокупность связанных между собой актов (утвержденных законодательно и подзаконных), имеющих одни и те же цели и утверждающих согласованные между собой требования к определенным, связанным между собой объектам системы обеспечения единства измерений.

Техническая подсистема – это совокупность:

1) международных эталонов;

2) государственных эталонов;

3) эталонов единиц измерения физических величин;

4) эталонов шкал измерений;

5) стандартных образцов состава и свойств веществ и материалов;

6) стандартных справочных данных о физических константах и свойствах веществ и материалов;

7) средств измерений и других приборов, используемых для метрологического контроля;

8) зданий и помещений, предназначенных специально для проведения измерений высокой точности;

9) научно-исследовательских лабораторий;

10) калибровочных лабораторий.

Организационная подсистема включает в себя метрологические службы.

25. Государственный метрологический контроль и надзор

Государственный метрологический контроль и надзор (ГМКиН) обеспечивается Государственной метрологической службой для проверки соответствия нормам законодательной метрологии, утвержденным Законом РФ «Об обеспечении единства измерений», государственными стандартами и другими нормативными документами.

Государственный метрологический контроль и надзор распространяется на:

1) средства измерений;

2) эталоны величин;

3) методы проведения измерений;

4) качество товаров и другие объекты, утвержденные законодательной метрологией.

Область применения Государственного метрологического контроля и надзора распространяется на:

1) здравоохранение;

2) ветеринарную практику;

3) охрану окружающей среды;

4) торговлю;

5) расчеты между экономическими агентами;

6) учетные операции, осуществляемые государством;

7) обороноспособность государства;

8) геодезические работы;

9) гидрометеорологические работы;

10) банковские операции;

11) налоговые операции;

12) таможенные операции;

13) почтовые операции;

14) продукцию, поставки которой осуществляются по государственным контрактам;

15) проверку и контроль качества продукции на выполнение обязательных требований государственных стандартов Российской Федерации;

16) измерения, которые осуществляются по запросам судебных органов, прокуратуры и других государственных органов;

17) регистрацию спортивных рекордов государственного и международного масштабов.

Необходимо отметить, что неточность и недостоверность измерений в непроизводственных сферах, таких как здравоохранение, могут повлечь за собой серьезные последствия и угрозу безопасности. Неточность и недостоверность измерений в сфере торговых и банковских операций, например, могут вызвать огромные финансовые потери как отдельных граждан, так и государства.

Объектами Государственного метрологического контроля и надзора могут являться, например, следующие средства измерений:

1) приборы для измерения кровяного давления;

2) медицинские термометры;

3) приборы для определения уровня радиации;

4) устройства для определения концентрации окиси углерода в выхлопных газах автомобилей;

5) средства измерений, предназначенные для контроля качества товара.

В Законе Российской Федерации установлено три вида государственного метрологического контроля и три вида государственного метрологического надзора.

Виды государственного метрологического контроля:

1) определение типа средств измерений;

2) поверка средств измерений;

3) лицензирование юридических и физических лиц, занимающихся производством и ремонтом средств измерений. Виды государственного метрологического надзора:

1) за изготовлением, состоянием и эксплуатацией средств измерений, аттестованными методами выполнения измерений, эталонами единиц физических величин, выполнением метрологических правил и норм;

2) за количеством товаров, которые отчуждаются в процессе торговых операций;

3) за количеством товаров, расфасованных в упаковки любого вида, в процессе их фасовки и продажи.

Лучшие статьи по теме