Как настроить смартфоны и ПК. Информационный портал

Pentium 4 какой сокет. Пакеты трехмерного моделирования

[ Версия для печати ]

В принципе, очень многое из того, что есть в данном обзоре, уже ранее рассматривалось в не так давно опубликованных нами материалах - это и чипсеты SiS 735 , VIA Apollo KT266 и VIA P4X266 вкупе с новым чипсетом Intel i845 (Brookdale). Кроме того, присутствующему в этом обзоре Pentium 4 1.7 GHz также был посвящен отдельный большой материал . Однако все эти платформы в данном тестировании будут играть уже не основную роль, а лишь роль фона для настоящих "героев дня": Pentium 4 2 GHz "Willamette" (Socket 423) и Pentium 4 2 GHz "Willamette" (Socket 478).

Посмотрим на наших героев поближе:

Слева - Pentium 4 под Socket 478, а справа Pentium 4 под Socket 423


Габариты Pentium 4 под Socket 478 поражают воображение, особенно рядом со старым добрым i386DX:)


Новый Socket 478 выглядит очень изящно, как, впрочем, и кулер под новый сокет, по сравнению с системой охлаждения для Socket 423


Хотя процессор Pentium 4 под Socket 478 все равно существенно меньше кулера для него

Казалось бы, событие не столь эпохальное, как, скажем, выпуск первого Pentium 4, ведь ядро в новых процессорах все то же - Willamate (см. ). Однако мы уже не раз писали, что для процессоров этой платформы каждое повышение частоты является событием, потому что частота - это основной их козырь, это "альфа и омега" производительности основной платформы Intel. Впрочем… давайте сделаем небольшое лирическое отступление. В чем состоит суть соперничества между Intel и AMD? Какие задачи преследует каждая компания с помощью каких средств планирует их достигнуть? Следующая часть обзора в некотором роде претендует на попытку аналитического подхода к этим вопросам. Хотя после ее прочтения кому-то может показаться, что вопросов, наоборот, стало только больше:)

Intel Pentium 4 и AMD Athlon: аспекты противостояния

Ни для кого уже не является секретом, что от исхода идущих в данный момент процессорных войн в стане платформы x86, зависит не только благосостояние отдельных компаний и их ближайшего "дружественного окружения", но и во многом то, по каким путям развития двинется вся платформа в дальнейшем. И, разумеется, схлестнувшиеся в жестокой схватке процессорные гиганты и их продукты не могут отличаться исключительно количеством транзисторов в очередном процессоре и названии, написанном на его верхней части. Все намного серьезнее. С концептуальной точки зрения, противостояние Pentium 4 и Athlon можно разделить на несколько относительно независимых друг от друга аспектов. Что мы и сделаем.

1. Частота против оптимизированной архитектуры . Ни для кого не секрет, что Athlon за счет меньшей длины конвейера гораздо спокойнее реагирует на "хаотичный" код, содержащий большое количество условных переходов. Можно было бы сказать, что AMD тем самым поощряет неряшливых программистов, но мы все же воздержимся от такого смелого заявления:). Pentium 4 подчеркнуто игнорирует подобный способ увеличения быстродействия. Для процессора Intel главное - частота. Пусть придется вернуться, "пролетев" очередной поворот, главное - скорость на прямой. На самом деле по большому счету, оба пути хороши, и ни один не может претендовать на истину в последней инстанции. Да, для того чтобы опережать Athlon, Pentium 4 всегда должен превосходить его по частоте. Однако именно это мы и наблюдаем в течение всего времени с его выхода! Другое дело, что он должен опережать Athlon по частоте намного . Пока что в этом отношении наблюдается "баланс на грани", причем иногда (недавно имевшая место ситуация одновременного соседства на рынке Pentium 4 1.7 GHz и Athlon 1.4 GHz) - с явным недобором со стороны Intel. Как будет дальше, покажет только время.

2. RDRAM против DDR SDRAM . Многие вспомнят недавно вышедший обзор VIA P4X266 , и скажут, что с его выходом это противостояние уже утратило свою актуальность. Однако… Дело в том, что Pentium 4 и RDRAM по большому счету весьма неплохо подходят друг другу! Для тех, кто сомневается в предрасположенности Pentium 4 (по крайней мере, нынешнего его варианта) к памяти от Rambus, мы приведем простой пример: а почему, собственно, результирующая пропускная способность шины этого CPU эквивалентна именно 400 MHz? Почему не 266 или 532? А потому, что именно на PC800 RDRAM он изначально и рассчитывался. Все современные подвиды DDR SDRAM (исключая совершенно, пардон, "убитый" вариант в виде PC1600 200 MHz DDR), будут работать с Pentium 4 в асинхронном режиме. А асинхронность - злейший враг производительности, это вам любой профессионал в области hardware скажет.

3. Технологичность против технологических изысков . Athlon "Thunderbird" до сих пор производится по технологии 0,18 микрон. Pentium III-S и Pentium III-M уже производятся по 0.13 мкм техпроцессу и поставляются на рынок. Уже виден на горизонте новый Pentium 4 (с новым ядром "Northwood"), который будет производиться по 0,13-микронной технологии и новый Celeron, который также будет производиться с использованием 0.13 мкм техпроцесса. Athlon "Palomino" (Athlon 4, Athlon MP) производится опять-таки по 0,18-микронной технологии, но с медными проводниками. AMD выжимает из старого процесса все, что только может, Intel - просто переходит на тот, который позволяет гнать частоту без лишних изысков. Оно, в принципе, и понятно - по количеству и качеству оснащения заводов, с Intel по-прежнему не может соперничать ни один из производителей современных процессоров.

4. Дополнительные наборы команд . Intel встала на этот путь еще с появлением MMX, и далее успешно по нему продвигается - выход Pentium III ознаменовался приходом SSE, Pentium 4 - SSE2. AMD попыталась повторить успех MMX со своим набором 3DNow!, но, несмотря на разгоревшийся было у софтописателей оптимизм, все-таки в настоящий момент большее количество снова склоняется в пользу наборов мультимедиа-команд от Intel. Почему? Автор не является экспертом в области программирования, однако даже простого взгляда на список самих команд и их возможностей в разрезе "SSE2 vs. 3DNow! Professional" (последние степени совершенства от обеих компаний) - и то достаточно, чтобы убедиться в большей продвинутости набора от Intel. Между прочим, эту точку зрения косвенно подтвердила сама AMD, включив в 3DNow! Professional частичную поддержку SSE, а в разрабатываемый ей процессор следующего поколения - и попросту полную поддержку SSE2 (благо, лицензия от Intel получена уже довольно давно).

5. Маркетинговый аспект . Есть желающие возразить? Маркетинг - сильнейшее оружие на рынке, а именно рынок, в конце концов, и определяет победителя. Пользователь голосует кошельком, покупая компьютер на базе того или иного процессора, у него нет другого способа воздействия на ход событий. Точка зрения Intel проста, незамысловата… м-м-м… немного не соответствует строгой научности подхода:), но, тем не менее, вполне соответствует усредненной позиции рядового компьютеризованного обывателя: покупать будут процессор с большей тактовой частотой. То есть: если два процессора показывают одну и ту же производительность, но один работает на частоте 2 GHz, а второй - на частоте 1,4 GHz, то купят тот, который работает на частоте 2 GHz. Почему? А потому что гигагерцы, мегамили, килопаскали, и все прочее с различными "мега" и "гига" приставками - льстит покупателю просто на инстинктивном уровне. Можно сделать машину, развивающую скорость 200 км/ч, и с двигателем мощностью 200 лошадиных сил. Но 350 смотрится в паспорте намного круче:)

6. Ценовые войны . Опомнившись после трескучего провала первых экземпляров Pentium 4 "Willamette", которые своими запредельными ценами (в том числе не только на процессор, но и на готовые системы - не будем забывать про i850 и RDRAM) повергли мировую компьютерную общественность в легкий шок, больше Intel таких ошибок уже не делала. В конце концов, вполне хватает того, что RDRAM стоит намного дороже PC133 и PC2100 DDR, а это пока что все еще единственный тип памяти для компьютеров на базе Pentium 4 (плат на VIA P4X266 или i845 "Brookdale" реально на рынке еще нет). А пока Intel ничего не в силах сделать с памятью, она неуклонно понижает цены на сам Pentium 4, а с выходом 0,13-микронного Northwood они начнут падать еще быстрее. Фактически, сейчас компания вынуждена пользоваться всеми теми методами, которые давно уже применяла против нее AMD. А нам-то что? :) Чем больше "они" воюют - тем больше денег остается в кармане у нас. И если проскальзывающие слухи том, что Pentium 4 1.4 GHz скоро будет стоить менее $100 - действительно правда, то следует признать, что независимо от результатов этих войн и конечного победителя, пользователи оказываются от них в безусловном выигрыше.

Что ж, пожалуй, вполне достаточный список. Кому-то могло показаться, что мы намешали в одно рагу грешное с праведным, технологию с бизнесом, программирование и "железо". Да, наверное, так оно и есть. А что делать, если действительность именно такова?

Однако довольно теоретизирования. Сегодня мы имеем возможность сравнить производительность самых различных систем, которые объединены нами по одному основополагающему принципу: они либо претендуют на высочайшую производительность в своем классе, либо недавно объявлены, и их производительность еще достаточно малоизвестна, либо и то и другое сразу:) Для начала - о платах.

Спецификации плат

Плата Supermicro P4SBA EPoX 4T2A Intel D850MD Sample VIA P4X266 Reference ASUS A7V266 Abit KG7-RAID Chaintech 7SID Abit TH7-II RAID
Чипсет i845 (RG82845 (MCH) + 82801BA (ICH2) + 82802AB (FWH) i850 (82850 (MCH) + 82801 (ICH2) + 82802AB (FWH) VIA P4X266 (северный мост VT8753, южный мост VT8233) VIA KT266 (северный мост – VT8366, южный мост – VT8233) AMD 760 (северный мост AMD-761, южный мост VIA 686B) SiS 735 i850 (82850 (MCH) + 82801 (ICH2) + 82802AB (FWH)
Поддержка процессоров Socket 478, Intel Pentium 4 Socket 423, Intel Pentium 4 Socket 478, Intel Pentium 4 Socket 423, Intel Pentium 4 Socket 462, AMD Athlon & AMD Duron, FSB 200 & 266 MHz Socket 462, AMD Athlon & AMD Duron, FSB 200 & 266 MHz Socket 478, Intel Pentium 4
Память 3 слота DIMM SDR SDRAM 4 слота RIMM RDRAM 4 слота RIMM RDRAM 2 слота 2.5В DIMM DDR SDRAM 3 слота 2.5В DIMM DDR SDRAM 4 слота 2.5В DIMM DDR SDRAM 2 слота 2.5В DIMM DDR SDRAM 4 слота RIMM RDRAM
Разъем AGP С поддержкой режима AGP 4x и защелкой C поддержкой режима AGP 4x AGP Pro с поддержкой режима AGP4x С поддержкой режима AGP 4x С поддержкой режима AGP 4x и защелкой С поддержкой режима AGP 4x и защелкой
Слоты PCI 6 5 3 3 5 6 3 5
Слоты расширения AMR/ACR/CNR CNR CNR - - ACR - CNR CNR
Порты ввода/вывода Один порт для FDD, два послед-х и один паралл-й порты, порты для PS/2 мыши и клавиатуры - //- - //- - //- - //- - //- - //- - //-
USB 2 x USB порта на мат. плате, 1 разъем для 2 портов USB на заднюю или переднюю панель компьютера 4 x USB порта на мат. плате, 1 разъем для 2 портов USB на заднюю или переднюю панель компьютера 2 x USB порта на мат. плате 2 x USB порта на мат. плате, 2 разъема для 2 портов USB каждый на заднюю или переднюю панель компьютера 2 x USB порта на мат. плате, 1 разъем для 2 портов USB на заднюю или переднюю панель компьютера 2 x USB порта на мат. плате, 1 разъем для 2 портов USB на заднюю или переднюю панель компьютера 3 x USB порта на мат. плате, 1 разъем для 1 порта USB на заднюю или переднюю панель компьютера
Интегрир-й ATA100 IDE контроллер 2 канала ATA100 Bus Master IDE (с поддержкой до 4 ATAPI-устройств) -//- -//- -//- -//- -//- -//- -//-
Звук AC"97 codec, Crystal 4299-JO C-Media CMI8738/PCI-SX AC"97 codec, Analog Devices AD1885 AC"97 codec, VIA VT1611A C-Media CMI8738/PCI-6ch-LX, 6-канальный звук Нет AC"97 codec, Avance Logic ALC201A AC"97 codec, Avance Logic ALC200
Внешний IDE контроллер - - - - - HighPoint HPT370A - HighPoint HPT370A
Интегрир-й сетевой контроллер Нет Нет Есть Есть Нет Нет Нет Нет
BIOS 4-х мегабитный Flash EEPROM, AWARD Medallion BIOS v6.00PG, поддержка PnP, APM 1.2, DMI 2.1, ACPI 1.0, STR 4-х мегабитный Flash EEPROM, Phoenix BIOS ,поддержка PnP, APM 1.2, DMI 2.1, ACPI 1.0, STR 2-х мегабитный Flash EEPROM, AWARD MedallionBIOS v6.00, поддержка PnP, APM 1.2, DMI 2.1, ACPI 1.0, STR 2-х мегабитный Flash EEPROM, AWARD BIOS v6.00PG, поддержка PnP, APM 1.2, DMI 2.1, ACPI 1.0, STR 2-х мегабитный Flash EEPROM, AWARD BIOS v6.00PG, поддержка PnP, APM 1.2, DMI 2.1, ACPI 1.0, STR 4-х мегабитный Flash EEPROM, AWARD BIOS v6.00PG, поддержка PnP, APM 1.2, DMI 2.1, ACPI 1.0, STR
Форм-фактор, размеры ATX, 30.5x22 см ATX, 30.5x24.5 см mATX, 24.5x24 см ATX, 30.5x24.5 см ATX, 30.5x24.5 см ATX, 30.5x24.5 см mATX, 24.5x23 см ATX, 30.5x24.5 см

Теперь подробнее о каждой плате:

Supermicro P4SBA

Материнская плата от редко изменяющей Intel компании стала первой ласточкой, появившейся в нашей лаборатории. О компании Supermicro говорить не станем, она очень хорошо известна в своей нише - платы для высокопроизводительных рабочих станций и серверов. Платы отличаются высокой надежностью, но не всегда - высокой производительностью. Впрочем, на том поле, на котором играет компания, первое намного важнее.

Теперь же, поведав читателю о своеобразной миссии компании, перейдем собственно к плате. Она (что в данном случае работает на имидж стабильности) упакована в коробку обычного для компании дизайна. Коробку, надо заметить, весьма внушительного размера - тому причиной послужил достаточно неплохой набор аксессуаров, находящийся в комплекте с материнской платой, несмотря на то, что она еще не вышла в серийное производство. Из стандартной комплектации здесь можно обнаружить шлейф АТА66/100, кабель для подключения дисковода, полновесное руководство по настройке и установке платы на английском языке и компакт-диск с различным программным обеспечением, набор которого мы осветим чуть позже. А сейчас расскажу о том, что же необычного было найдено в коробке - там находилась планка с дополнительными портом USB на заднюю панель компьютера - мелочь, часто встречаемая с платами от других производителей, наконец-то появилась и в коробке от Supermicro. Также в коробке присутствует (что является более приятной и полезной вещью) кулер от Foxconn. Ранее мы также встречали кулера в коробках этой компании, и как видим, это становится доброй традицией. Теперь же опишем то, что нам досталось на компакт-диске.

Как обычно бывает, там оказались драйвера к различным версиям плат Supermicro, основанным на серии чипсетов i8xx от Intel, их описания в формате.pdf, впервые встречаемый нами на подобных дисках Adobe Acrobat Reader версии 5.0 для чтения этих файлов, программа для мониторинга и удаленного управления компьютером - Intel LANDesk Client Manager 6 (LDCM) и DirectX 8.0. Как видим - ничего лишнего, компания и здесь верна себе, не отвлекаясь на задачи привлечения клиентов путем бесплатной раздачи софта - как правило, клиентура у подобных компаний сформирована, и рекламой служат не громкие PR-акции, а келейные беседы сисадминов:)

Сама же плата не поражает каким-либо обилием функций - здоровый аскетизм в исполнении этой компании всем известен, ведь упор делается не на домашних пользователей, а на другой сектор рынка, где это изобилие зачастую вредно. Впрочем, плата не столь уж и обделена ими, но об этом расскажем чуть позже, при описании BIOS. На плате красуется надпись"Designed in USA", что, судя по всему, должно привлечь покупателя. И действительно, монтаж платы выполнен на высоком уровне, лишь чуть-чуть пострадало удобство работы с ней - разъемы CD-in размещены перед слотами PCI, что может затруднить доступ к ним. На плате применен разъем питания ATX, насчитывающий 24 контакта против 20 контактов у столь привычного нам разъема. Но это не помешало использовать нам обычный блок питания - надо лишь заметить, что блок питания желательно выбирать помощнее. На северном мосту (MCH, как его теперь называет Intel), размещен низкопрофильный радиатор. И действительно, нет смысла воздвигать гигантов на микросхему без встроенного видеоадаптера. На плате почти нет переключателей, их всего три, и все их функции незатейливы: очистка CMOS, включение/выключение встроенного аудиокодека, запрещение/разрешение возможности запуска компьютера с устройств PS/2. Все возможности по конфигурации системы скрыты в BIOS, к описанию которого мы и переходим.

Выбор его достаточно неожиданный - версия Medallion 6.00 от AWARD является экзотикой для плат этой компании, хотя мы и встречали платы с ним. В BIOS мы можем настроить тайминги памяти, отрегулировать работу шины AGP и, что было интересно в нашем случае, поменять коэффициент умножения процессора - дело в том, что мы получили инженерный образец процессора, где эта функция не была заблокирована. В принципе, выбор настроек небогат, но если посмотреть на коробку, и увидеть имя производителя платы, то легко станет понятен тот тон, с каким мы описываем их.

Короткое резюме о плате можно составить уже сейчас - более подробные выводы, как водится, мы вынесем на поверхность в грядущем обзоре плат на базе этого чипсета. А резюме таково - плат высококачественная, скорее всего не с самыми лучшими скоростными показателями (впрочем - кто знает…) и потрясающе стабильна - именно то, что мы привыкли ожидать от плат этой компании.

EPoX 4T2A

Популярность компании у нас растет как на дрожжах, и причиной тому не только рекламная компания, но и действительно отменное качество продукции. Качество, выражающееся не только в беспроблемной работе материнских плат, но и в отменных функциональных возможностях, также входящих в общее понятие "качество".

И на этот раз, пользователи, выбравшие коробку синего цвета с надписью "EPoX", как кажется, не прогадают. Но об этом позже - пока же о том, что лежит в симпатичной синей коробки, и органично дополняет плату. В коробке можно обнаружить следующее: руководство пользователя, выполненное в едином стилевом решении с коробкой, 80- и 40-жильные кабели для подключения IDE-устройств, кабель для дисковода, планка на заднюю панель компьютера с двумя дополнительными портами USB-портами, и компакт-диск с необходимым для работы платы программным обеспечением. Также на нем можно найти несколько часто необходимых программ - антивирусный пакет от Trend Micro Inc. - PCCillin 2000, Symantec Norton Ghost 6.03 для работы с жесткими дисками и "читалку" формата.pdf - Adobe Acrobat Reader.

Также в число программ вошли и некоторые утилиты: для разгона процессора из Windows - Boostek, и несколько утилит для мониторинга системы - собственно от EPoX, от VIA, и от Winbond. Вроде бы немного - у других производителей бывает и больше программ на диске (а иногда и на дисках), но все необходимое для работы есть.

На текстолите традиционного зеленого цвета не оказалось привычного по другим платам этого производителя индикатора кодов POST - несомненно жаль, тем более что размеры платы вроде бы позволяют установить его. Из особенностей платы можно отметить установку звукового чипа от C-Media и наличие защелки на слоте AGP. Первоначально, видимо, разъем должен был быть конструктива AGP Pro, о чем свидетельствует напоминание на плате об использовании задней части разъема, но почему-то на плате был установлен обычный разъем. Аудиовходы CD-in и AUX-in находятся перед слотами PCI и AGP - не самое удобное место, ведь при вставленных в эти слоты картах расширения доступ к нему будет затруднен, в остальном же к разводке претензий нет. В цепях питания ядра процессора применены 12 LowESR конденсаторов - 8 по 2200 uF и 4 по 1500 uF каждый, этого с лихвой хватает для обеспечения стабильной работы платы в нестандартных режимах. На плате есть несколько переключателей - самый интересный из них для нас заключал в себе возможность задавать базовую частоту процессора - 100, 103, 105, 108, 110, 115, 118, 120, 122, 125 и 133. Что странно, в BIOS Setup этой функции нет (странно не само по себе, а в отношении плат этой компании).

Сам же BIOS, основанный на версии 6.00 от AWARD, заключает в себе достаточно большой выбор настроек - есть несколько настроек работы памяти, шины AGP и т.д. Также плата порадует оверклокеров, находящихся в поиске платы с неплохим разгонным потенциалом - можно менять напряжение процессора с шагом 0.025 В, напряжение шины AGP с шагом 0.1 В и памяти с тем же шагом в 0.1 В.

Плата, наглядно подтвердившая право EPoX считаться одним из лучших производителей материнских плат. Она займет достойное место как в высокопроизводительном компьютере, так и в надежном сервере.

Intel M850MD

Принято начинать описание платы с пары слов о компании-производителя. Но на этот раз и говорить-то нечего - имя столь известно, а история компании исследовалась не единожды чуть ли не с микроскопом, так что заниматься плагиаторством не будем и перейдем сразу к повествованию об особенностях сего изделия.

К сожалению, поведать многое не сможем, ибо продукт попал к нам на стол "гол как сокол". То есть отсутствовала как коробка, так и весь стандартный комплект. Но все же, к нам в лабораторию попала предсерийный образец - поэтому и отношение к нему не будет слишком суровым. Впрочем, думается, не ошибемся, если скажем что дизайн коробки будет обычным - лишнее подтверждение стабильности, а набор аксессуаров - минимален.

Плата не стала "гением инженерной мысли" - этого было сложно ожидать, зная о формате платы, ограничивающем полет той самой мысли. Надо заметить, что не только это стало ограничением - сказывается тут и ориентация компании на корпоративных заказчиков, которым лишние "бирюльки" ни к чему. А теперь - ближе к телу пациента.

У платы удачная разводка - сказывается мастерство инженеров R&D департамента, почти все функциональные элементы расположены в удобных для доступа местах - лишь аудиовходы могут перекрываться расположенными поверх них платами PCI. Говорить о качестве монтажа, как кажется, излишне - компания не позволит опорочить свое имя такими вещами. На плате есть несколько нераспаянных элементов - так, нет на ней слота CNR, место под который отведено слева от 3-го разъема PCI. Впрочем, плата не оставляет впечатления недоделки - все выполнено аккуратно, как уже упоминалось выше. На плате есть несколько перемычек - и самая интересная из них, несомненно - та, которая позволяет войти нам в конфигурационное меню BIOS. Ведь не секрет, что на платах от Intel нет практически никаких возможностей по конфигурации системы. Здесь же с помощью этой перемычки мы можем изменить коэффициент умножения процессора, сбросить пароли и т.д.

BIOS же сделан на основе Phoenix BIOS и имеет интерфейс очень схожий с версией Medallion от AWARD, и это не удивительно - компании слились в одну, и, соответственно пользуются наработками друг друга. В нем есть несколько настроек - из самого интересного стоит отметить возможность вручную распределять прерывания по слотам PCI (и это - на плате mATX!), просмотреть ход загрузки платы в виде списка случившихся событий и включить либо выключить фирменную технологию "Intel Rapid BIOS Boot", которая несколько быстрее позволяет пройти процедуру POST. Очень небогато, что и говорить - но ждать чего-то другого от компании, диктующей свои условия индустрии просто глупо.

Плата обыкновенна для Intel - не очень быстра, но обладает хорошей стабильностью. Вполне подойдет тому, кто хотел бы купить компьютер и забыть о проблемах с ним.

VIA P4X266 Reference board

Плата уже описывалась нами в статье , рассказывающей о чипсете VIA P4X266, но для удобства читателей мы еще раз приведем ее описание. Это - reference-плата от VIA. Заметим, что инженеры компании постарались, чтобы их детище произвело сильное впечатление - красная PCB для reference board это что-то новенькое:). В остальном же продукт выглядит достаточно аскетично - 3 PCI, 1 AGP, 2 DDR DIMM. На плате установлен разъем под "большой" Pentium 4 (Socket 423), однако по поступающим к нам сведениям производители системных плат планируют модели в основном с Socket 478.

Настройки BIOS не отличаются какими-либо изысками и описывать их отдельно не имеет смысла. Общее впечатление от платы - типичная reference board т.е. продукт, главной задачей которого является демонстрация работоспособности и стабильности чипсета. Такая плата должна проходить все, даже самые тяжелые тесты, до конца (с чем она, собственно и справилась "на ура"), а не показывать выдающуюся производительность.

ASUS A7V266

Этот первый представитель семейства плат ASUS, основанного на чипсете KT266 от компании VIA, задержался с выходом. Практически все конкуренты уже давно анонсировали платы на этом чипсете, а вот крупнейший производитель материнских плат в мире ждал. Возможно, что тому виной было желание не выпускать сырой продукт - так посмотрим же, что из этого вышло. Плата, попавшая в нашу лабораторию, являлась предпродажным образцом. И говорить о какой либо комплектации было бы не совсем верно - ведь сравнивать сырое мясо и котлету сложно и неверно. Но все же стоит отметить, что в комплекте мы нашли документацию, пусть и распечатанную на принтере - но все же она была. Также в коробке красного цвета были уложены кабель ATA100, кабель для дисковода и CD-R диск. На нем находился стандартный набор программ от ASUSTeK - драйвера к плате, Adobe Acrobat Reader 4.05, антивирусная программа PC-Cillin2000 v. 7.0 от Trend Micro, Power Player SE 5.0, PowerDVD Trial 3.0, VideoLive Mail 4.0 от CyberLink, программа 3Deep для настройки цветовой гаммы в играх, а также программы от самой компании ASUS - скринсейвер, ASUS Update (программа обновления BIOS из среды Windows) и ASUS PCProbe - утилита мониторинга за состоянием системы.

Мы не оговорились, говоря "первый из семейства" - на плате есть не распаянные микросхема и разъемы. На этом месте должны находиться контроллер IDE RAID от Promise с сопутствующими этому решению разъемами ATA100. Так же, как и у плат компании Chaintech, применено внешнее звуковое решение - чип от C-Media с возможностью вывода звука по 6 каналам. Но здесь нет в комплекте планки на заднюю панель, и посредством драйверов выходами центрального и задних каналов становятся разъемы Line-In и Mic-In. Плата, несмотря на свой младенческий (если можно так выразится) статус, не представляла собой сделанный на коленке объект исследования - нет на ней часто встречающихся в таких изделиях навесных элементов, пайка выполнена явно в заводских условиях. Единственным минусом является неудобное положение разъем для подключения кабеля дисковода - он расположен сзади 4 и 5 слотов PCI, и тянущийся через весь корпус шлейф явно не послужить наилучшей циркуляции воздуха. Случай же с полноразмерной PCI-картой рассматривать ныне нет смысла - они почти сошли на нет. Ничего особенного, в сравнении с конкурентами, не представляют усилия инженеров компании по улучшению цепей питания ядра процессора - 4 конденсатора по 3300 uF и 3 по 1500 uF каждый. Присутствуют на плате и ставшие обычными в последнее время для продукции этой компании разъемы SMARTCARD и AFPANEL - первый для подключения считывателя смарт-карт, второй же для подключения описанной нами ранее ASUS iPanel . На плате достаточно много перемычек, а наибольший интерес собой представляют 4 блока переключателей - с их помощью можно задать базовую частоту процессора, коэффициент умножения и напряжение питания ядра процессора. С помощью же четвертого мы можем выбрать тип процессора - Athlon, Duron или Athlon 4 (Palomino). Большинство же настроек скрываются в BIOS Setup платы.

Он выполнен на версии Medallion 6.00 от AWARD - типичный выбор для ASUSTeK. И уж в нем-то душа может разгуляться на всю катушку - огромный выбор режимов работы памяти, шин AGP и PCI, ручное распределение прерываний по слотам и т.д. и т.п. Присутствуют и все возможности технологии "Jumper Free" - именно такое наименование получила когда-то возможность изменять большое количество характеристик системы из BIOS Setup"a в версии от ASUSTeK. Есть такие возможности, как: изменение напряжения ядра процессора (1.525 - 1.85 В, шаг 0.025 В), изменение коэффициента умножения (x5 - x13), изменение частоты FSB (100 - 227 MHz (!) с шагом 1 MHz). Очень неплохо, но все же - уже стало стандартом, тем более для ASUS.

Плата имя ASUSTeK не опозорила, влилась в поток, исходящий с конвейеров компании и стала еще одним ориентиром для других производителей.

Abit KG7-RAID

Компания Abit достаточно долгое время почивает на лаврах добытых в прошлом побед - ничего же нового на данный момент в технологическом плане нет. Впрочем, это не мешает компании выпускать неплохие платы. И этим словам есть подтверждение - плата, побывавшая в нашей лаборатории. Она стала еще одним ярким представителем чипсета AMD-760. Внутреннее тестирование выявило, что плата является одним из лидеров на данный момент, поэтому мы и осмелились включить ее в данный обзор на правах представителя этого чипсета.

В коробке ставшего уже привычным дизайна темных тонов лежали помимо собственно материнской платы два кабеля ATA66/100, кабель для подключения дисковода, планка на заднюю панель компьютера с двумя дополнительными портами USB, компакт-диск с программным обеспечением, дискета с драйверами для IDE RAID и руководство пользователя, выполненное с использованием нового дизайна. Интересно заметить, что в нем можно найти помимо описания настройки и установки платы еще и большое количество рекламы мультимедийной продукции компании - акустических систем, видеокарт и т.д.

На компакт-диске не очень большой выбор программ - есть проигрыватель DVD дисков - WinDVD, Hardware Doctor для мониторинга системы, Adobe Acrobat Reader и набор программ от компании Buzzsoft - SoftCard Manager, SoftCopier, SoftPostCard, SoftBulkEmail. Также есть утилита для низкоуровневого форматирования жестких дисков от AWARD. Негусто, но даже немного забавно - набор оригинален.

Сама же плата не выглядит столь аскетично - есть на ней IDE RAID от HighPoint и достаточно большой выбор настроек. Но обо все по порядку. Разводка не самая удачная - разъемы IDE RAID и дисковода расположены прямо за слотами PCI, что во-первых может создать некоторые трудности при установке длинномерных плат в эти слоты, а во-вторых явно не улучшит циркуляцию воздуха внутри корпуса. На плате нет встроенного звукового контроллера, от чего мы уже начинаем потихонечку отвыкать. Зато есть IDE RAID на базе микросхемы HPT370A - в результате чего мы имеем два лишних ATA100 канала, а также можем построить RAID уровней 0, 1, 0+1, тем самым повысив либо производительность, либо увеличив надежность дисковой подсистемы. На северном мосту чипсета находится радиатор с вентилятором - особой нужды в нем нет, но все же это может повысить стабильность платы при экстраординарном разгоне системы. Для этих же целей служат 6 конденсаторов по 4700 uF и 2 по 2200 uF каждый. Переключателей на плате не то чтобы мало, можно сказать что их почти что нет - всего один для очистки содержимого CMOS. Все функции по настройке платы находятся BIOS - а чего еще можно было ожидать от платы этого производителя?

Он основан на версии 6.00 от AWARD и содержит тьму-тьмущую настроек. Естественно, что в нем есть подпункт SoftMenu III - в нем можно изменять частоту FSB от 100 до 200 MHz с шагом в 1 MHz, можно вручную задать соотношение частот FSB, SDRAM и PCI - 4:4:1 либо 3:3:1, изменить напряжения, подаваемые на ядро процессора, чипсет и память. Как и во всех материнских платах на этом чипсете, есть огромный выбор настроек памяти и шины AGP - только у одних он чуть поменьше, а у других, как в нашем случае - побольше. Еще же здесь есть просто громаднейшее подменю с настройками чипсета - оно не влезает даже полностью на экран! Что не маловажно, на этой плате можно вручную распределить прерывания по слотам PCI.

Что и сказать - просто огромнейшие возможности предоставляет эта плата для пользователя, любящего покопаться с настройками ради увеличения скорости работы. Но не стоит увлекаться - от этого может пострадать стабильность платы, которая на номинальных частотах работает очень даже прилично.

Chaintech 7SID

Компания несколько лет назад шагала впереди планеты всей - ее платы чуть ли не каждый день ниспровергали былых чемпионов с вершин производительности, завоевывая все новые вершины скорости. Но вслед за взлетом последовал спад - и сейчас платы этой компании причисляют к середнячкам. Посмотрим же на представителя чипсета SiS 735 от этой компании - так ли он хорош, как его достаточно далекие предшественники?

Плата, попавшая к нам в лабораторию, не была серийным образцом - и поэтому в полной мере относится к ней как к законченному продукту нельзя, тем не менее, она неплохо зарекомендовала себя в тестах, что делает честь инженерам компании.

В коробке с надписью "VIA Chipset Inside" - неизбежные издержки того, что плата еще не выпущена в продажу:), мы увидели кабель ATA66/100, кабель для подключения дисковода, отксеренную страничку с описанием переключателей и расположением различных разъемов на плате, а также диск CD-R, на котором находилось необходимое программное обеспечение. Но диск, к нашему удивлению, содержал в себе нормальный инсталлятор вместо просто набора драйверов - судя по всему, появление платы на прилавках магазинов не за горами. На сайте же компании можно найти упоминание о диске "Value Pack 2000", который будет находиться в комплекте с платой и содержать набор бесплатных программ.

Теперь же к самой плате. Малышка (а именно таковой она показалась нам на фоне остальных плат) несет на себе привычный набор функциональных компонент. Помимо такой привычной вещи, как интегрированный звуковой контроллер, имеющий разъем для фронтальной панели с аудиовыходами, есть еще и разъем для подключения считывателя смарт-карт. В остальном же плата обычна - в меру удобна (если можно так назвать платы этого форм-фактора), несет на себе 11 конденсаторов с емкость 2200 uF каждый для обеспечения стабильной работы платы, и имеет небольшой набор переключателей. Одним из них мы задаем частоту процессора и памяти - 100/100, 100/133 и 133/133 MHz, другим разрешаем возможность включения компьютера с помощью мыши или клавиатуры с разъемами PS/2, а с помощью третьего же сможем очистить при надобности CMOS.

Все остальные функции скрыты в BIOS. Он выполнен на основе версии 6.00 от AWARD и имеет в своем арсенале достаточно большое количество настроек - можно неплохо настроить тайминги памяти, поработать над производительностью шины AGP, вручную распределить прерывания по слотам PCI. К сожалению, ничего нельзя сделать для "бесплатного апгрейда" - разгона процессора, но поскольку на плате был прошит один из первых, не до конца отточенных BIOS, то в будущем можно надеяться на исправление этого недостатка программистами компании.

"Мал, да удал" - так хочется охарактеризовать этот продукт. Есть несколько недостатков - форм-фактор, отсутствие возможностей разгона системы. Но в качестве платы для высокопроизводительного домашнего компьютера, она наверняка подойдет.

Abit TH7-II RAID

Плата очень похожа на свою сестру - TH7, поэтому и описания их схожи. Компания известна прежде всего своим имиджем первопроходца в деле разгона процессоров и достойном оснащении своей продукции помогающими рукам оверклокера инструментарием для этого. Не стала исключением и эта плата - на фоне других плат из этого обзора она достаточно выгодно смотрится, исключая лишь плату от EPoX.

Серийный экземпляр, попавший на наш прозекторский стол, был упакован в обычную для Abit коробку темных тонов. В чреве этой картонной оболочки мы нашли руководство пользователя на английском языке, шлейф ATA66/100, кабель для подключения дисковода, планку на заднюю панель компьютера с Game-портом, заглушка для задней панели компьютера, два модуля C-RIMM, дополнительный термистор и диск с программным обеспечением.

Набор программ на диске несколько изменился в сравнении с тем, который был на них не так давно - есть проигрыватель DVD дисков - WinDVD, Hardware Doctor (назначение ясно из названия - мониторинг системы), Adobe Acrobat Reader и целый набор программ от компании Buzzsoft - SoftCardManager, SoftCopier, SoftPostCard, SoftBulkEmail и утилита для низкоуровневого форматирования жестких дисков от Award. Что же, маловато - но выбор пользователя в основном решают не эти программы, а сама плата.

А касательно же самой платы можно сказать следующее - она удобна. Пожалуй только аудиовходы могут помешать насладиться ей - но, по большому счету, это мелочь. Плата, стала первой для новой технологии "Abit Engineered", уже достаточно широко разрекламированной компанией. Поясню - в ее рамках предусматривается наличие на плате двух семисегментных светодиодов для отображения хода загрузки компьютера, наличие кнопок включения и перезагрузки (Reset) на самой плате в дополнение к обычным, и нанесение на оборотную сторону платы полосок из припоя, именуемых "overclocking stripes". Помимо этого рядом с кнопками на плате расположены четыре светодиода - они отображают наличие питания на плате, наличие 5 В напряжения, работу жесткого диска и последний из них загорается при перезагрузке компьютера. Также ко всему вышеизложенному для увеличения стабильности работы при разгоне установлены 5 конденсаторов по 4700 uF и 10 по 2200 uF - по этому показателю плата является явным фаворитом нашего обзора. На плате можно найти места под нераспаянные микросхемы сетевого и FireWire-адаптеров - поэтому в комплекте с платой поставляется нестандартная заглушка на заднюю панель и планка с game-портом. Применение на плате IDE RAID - неплохой и достаточно дешевый способ поднять производительность дисковой подсистемы. На плате находятся несколько переключателей - в том числе для включения/выключения функции SoftMenu и очистки CMOS. Все же остальные настройки скрыты в BIOS.

Он основан на версии 6.00PG от AWARD и несет в себе традиционную технологию SoftMenu - с помощью которой и производится разгон процессора. Здесь можно поменять частоту работы памяти (300 или 400 MHz), с шагом в 1 MHz настроить частоту работы FSB (от 90 до 156 MHz), изменить коэффициент умножения процессора и поменять напряжение, подаваемое на ядро процессора. Также в BIOS Setup можно настроить работу шины AGP и вручную распределить по слотам PCI прерывания - остальные же функции стандартны для большинства материнских плат и описывать их нет надобности.

Ярко выраженная оверклокерская окраска данной материнской платы, тем не менее не мешает ей работать стабильно на номинальных и немного превышающие их частотах. Впрочем, "Полную гарантию может дать только Сбербанк".

Ну а теперь перейдем к самому "вкусному" - к собственно тестам описанных выше систем на быстродействие в популярных программах. Но для начала опишем те условия, в которых проходило это тестирование.

Аппаратное и программное обеспечение

  • Процессоры
    • 1.5 GHz Intel Pentium 4, Socket 423
    • 1.7 GHz Intel Pentium 4, Socket 423
    • 2.0 GHz Intel Pentium 4, Socket 423
    • 2.0 GHz Intel Pentium 4, Socket 478
  • Материнские платы
    • EPoX 4T2A (i850, Socket 423)
    • Intel D850MD Sample (i850, Socket 478)
    • Abit TH7-II RAID (i850, Socket 478)
    • VIA P4X266 Reference Board (VIA P4X266, Socket 423)
    • Supermicro P4SBA (i845, Socket 478)
    • ASUS A7V266 (VIA KT266, Socket 462)
    • Abit KG7-RAID (AMD-760, Socket 462)
    • Chaintech 7SID (SiS 735, Socket 462)
  • Память
    • 2 x 128 MB PC800 RDRAM RIMM, Samsung
    • 256 MB PC133 SDRAM DIMM, Tonicom ACTRAM, CL2
    • 256 MB PC2100 DDR SDRAM DIMM, Mushkin, CL2
  • Прочее
    • Видеокарта Leadtek Winfast GeForce3
    • Винчестер Seagate Barracuda ATA III, ST340824A, 7200 rpm, 40Gb
    • CD-ROM ASUS 50x
  • Программное обеспечение
    • Windows 2000 Professional SP1
    • NVIDIA Detonator v12.40 (Vsync=Off)
    • BapCo & MadOnion SYSmark 2001
    • idSoftware Quake III Arena v1.17 demo001.dm3
    • MadOnion 3DMark 2001
    • Ziff&Davis Business Winstone 2001
    • Ziff&Davis Content Creation Winstone 2001
    • SPECViewPerf 6.1.2
    • 3DStudio MAX 3.1
    • Expendable, demo version
    • Unreal Tournament v4.36

Кроме того, в некоторых диаграммах присутствует также "Pentium 4 2.2 GHz". Похоже, гнать каждый новый процессор до предела его возможностей становится у нас традицией:) Естественно, результаты этой системы нельзя воспринимать как тестирование еще не вышедшего официально Pentium 4 2.2 GHz - ведь разгон производился с помощью увеличения частоты FSB. Также, как вы, наверное, заметите, в некоторых диаграммах соответствующие столбики остались пустыми - увы, разогнанный процессор некоторые тесты попросту не прошел.

Зачем мы это делаем? Ну, а давайте подойдем к вопросу немного с другой стороны - а почему бы, собственно, и не сделать, если есть возможность? Некоторое представление о производительности грядущих Pentium 4 эти результаты все равно дают, пусть и приблизительное. Ну а нам ради вас немного дополнительно потрудиться никогда не жалко:) Тесты производительности

3DMark 2001

Мы приводим в диаграммах только результаты тестирования при низкой детализации для игровых тестов Cars, Dragothic, и Lobby, а также общий балл, который присваивает сам тест 3DMark 2001. Дело в том, что результаты для тестов с высокой детализацией и игрового теста Nature просто-напросто не подходят для сравнения производительности процессоров и чипсетов. Так, тесты с высокой детализацией, демонстрируют ту же картину, только с уменьшенной "контрастностью", а тест Nature просто-напросто отказывается реагировать на изменение частоты процессора или смену чипсета - видимо, все в данном случае решающее значение приобретает производительность видеосистемы.

Кстати, мы и в дальнейшем будем кое в каких диаграммах действовать подобным "волюнтаристским" методом - просто чтобы не засорять материал ненужными деталями. Если один из элементов диаграммы иллюстрирует последовательность одинаковых результатов, продемонстрированных всеми без исключения системами, то, значит, этот подтест с точки зрения исследования производительности процессоров и чипсетов не представляет никакого интереса, не так ли?

Как видно из первой диаграммы, наибольшую производительность в тесте 3DMark 2001демонстрируют системы на базе i850 + Pentium 4 2 GHz. Ближе всего к их производительности подошла конфигурация на базе платы ASUS A7V266 (VIA KT266) + Athlon 1.4 GHz. VIA P4X266 лишь немного отстал от i850, а вот i845 - в самом хвосте. Результаты разогнанного Pentium 4 2.2 GHz обсуждать немного некорректно, однако они все же дают некоторое представление о дальнейшей масштабируемости систем на базе этого процессора - да, масштабируемость, несомненно, есть, и довольно неплохая. Можно предположить (предположить!), что с увеличением частоты "штатных" моделей, производительность Pentium 4 будет расти и далее. А вот i845 - в самом хвосте. Что ж, PC133 SDRAM таки дает себя знать…

Диаграмма с fps в игровых тестах дает довольно забавную картину: если в Cars и Lobby общая схема распределения производительности между процессорами и чипсетами примерно соответствует результатам на диаграмме с общим баллом (3DMarks), то результаты в Dragothic вызывают небольшое недоумение - да системы на, Pentium 4 по-прежнему впереди, но их производительность между собой практически не различается! Один из возможных вариантов с нашей точки зрения может выглядеть так: на самом деле Dragothic, как и исключенные нами подтесты, не зависит от производительности процессора и подсистемы памяти, но зато он зависит от факта наличия поддержки определенных команд этим процессором. Напомним, что ни SSE, ни SSE2, обычные Athlon не поддерживают.

Quake III

Безусловная победа всех систем на базе Pentium 4… за исключением конфигурации на базе i845. Intel очень сильно любит тест в Quake III для демонстрации преимущества Pentium 4, однако в случае с i845 даже этот любимец дал досадный прокол. Почему? Как нам кажется, прежде всего потому, что "the best" в Quake III является не собственно сам Pentium 4, а именно Pentium 4 в сочетании с адекватной частоте процессора производительностью подсистемы памяти. А вот P4X266 в принципе весьма неплох! - не настолько, насколько i850 + RDRAM, конечно же, но все же, все же… Особенно если вспомнить о ценах на RDRAM и PC2100 DDR:)

Ziff-Davis Winstone 2001

А вот в этом тесте самая быстрая система на базе Athlon показывает примерно такую же производительность как Pentium 4 2 GHz, но… в комбинации с VIA P4X266 + PC2100 DDR SDRAM! А в тесте Content Creation Winstone, Athlon даже выиграл у любого "штатного" Pentium 4. Что ж так? А между тем, все понятно. Athlon, как образец существенно усовершенствованной "старой" архитектуры, гораздо меньше чем Pentium 4 проигрывает от неоптимизированного, изобилующего "труднопредсказуемыми" переходами кода. Кроме того, системы на базе Athlon оснащены PC2100 DDR. Видимо, приложения, включенные в состав Winstone 2001, как раз и содержат в большинстве такой код.

Выигрыш P4X266 у i850 - продолжение той же "темы": PC2100 DDR, как и любая SDRAM, обладает гораздо меньшей латентностью, чем Rambus DRAM, и в подобных условиях обеспечивает Pentium 4 лучшие условия для работы. И опять довольно низкие результаты у Brookdale (i845), хоть он тоже использует низколатентную PC133 SDRAM. Все-таки низкая латентность - это еще не все, пропускная способность тоже кое-что значит.

SPEC ViewPerf

Мы не будем делать большого события из выигрыша одной системы по отношению к другой на мизерные проценты. Поэтому можно сказать, что в AWadvs и MedMCAD системы на базе Athlon 1.4 GHz и Pentium 4 2 GHz показывают примерно одинаковую производительность. DDR-система на основе VIA P4X266 практически везде немного отстает от своих аналогов на i850, но это отставание нельзя назвать существенным.

А вот в IBM Data Explorer (DX-06), Pentium 4 вырывается вперед. Data Explorer ориентирован в основном на математические вычисления, причем именно на интенсивную вычислительную математику, поэтому здесь частота работы процессорного ядра имеет решающее значение. Что же касается i845, то даже Intel солидарна в оценке этого чипсета с тестами от SPEC - ну не планируется на Brookdale создавать high-end систем, на которых будут исполняться серьезные приложения, олицетворением которых и является тест ViewPerf!

3DStudio MAX

Pentium 4 2 GHz показывает "нормальный" (т.е. не сильно отстающий от Athlon 1.4 GHz результат) явно за счет более высокой частоты. Это подтверждается и абсолютным выигрышем в данном подтесте разогнанного Pentium 4 2.2 GHz. В целом, можно сказать, что этот тест олицетворяет собой то "концептуальное противостояние", один из аспектов которого мы упомянули в начале статьи: более высокая частота против хорошо оптимизированной под данный тип задачи архитектуры процессорного ядра. В данном случае штатному двухгигагерцевому процессору Intel не хватило частотного преимущества чтобы выиграть у самого быстрого на текущий момент времени AMD Athlon.

А вот практически одинаковые результаты, показанные системами на основе i850 и VIA P4X266, да и не сильно отставшая от них система на i845, четко демонстрируют то, что подсистема памяти в 3DStudio MAX нагружается не сильно, наибольшее значение имеет именно вычислительная мощь CPU.

Expendable

Замечательный, даже мы бы сказали "классический" пример приложения, на котором у Pentium 4 нет ну просто-таки никаких шансов на выигрыш даже в обозримом будущем. Даже разогнанный Pentium 4 2.2 GHz не изменяет общей картины: все, чего ему удалось достичь - это немного приблизиться к результатам Athlon 1.4 GHz. Даже ничего не зная о Expendable (а мы-то знаем, что на самом деле все обстоит именно так), чрезвычайно легко предположить основную причину проигрыша процессора Intel: "хаотичный" код, который чрезвычайно нелюбим процессором с длинным конвейером. Ну что еще можно сказать? Да, есть такие приложения. Либо они "вымрут" если производители ПО начнут учитывать существование такого процессора как Pentium 4 со всеми его специфическими особенностями внутренней архитектуры… либо будут появляться по-прежнему, если этот CPU не приобретет большой популярности. Делать в данном случае прогнозы - дело тяжкое и неблагодарное, поэтому ограничимся просто констатацией факта.

Unreal Tournament

Считая основными героями данного обзора именно новые Pentium 4 2 GHz, в комментариях к результатам Unreal Tournament мы можем просто ограничиться констатацией факта: производительность самых мощных процессоров Intel и AMD примерно равна, с небольшим преимуществом последнего. И опять (как и практически везде ранее) в хвосте "плетется" Brookdale. Low-end чипсет для low-end систем, что уж тут поделаешь… :)

SYSmark 2001

Пожалуй, единственный тест, где недавно нами "пожуренный" i845 в одном из подтестов даже обогнал все системы на базе процессора AMD. О Pentium 4 на i850 и P4X266 и говорить нечего - они выигрывают, и с впечатляющим отрывом. SYSmark 2001 - яркий образец высокой концентрации приложений "новой волны", в которых поддержка SSE/SSE2 присутствует чуть ли не в качестве обязательного параметра, и это, как легко заметить из диаграммы, дает вполне определенный (и легко предсказуемый!) результат. Причем разогнанный Pentium 4 2.2 GHz показывает - дальше "старым" процессорным архитектурам в подобных приложениях будет еще хуже:)

Масштабируемость

Как мы и обещали в прошлой статье о чипсете VIA P4X266, здесь мы приводим результаты масштабируемости систем:

Quake III 640x480x16 3Dmark 2001, 3Dmarks SYSmark 2001, Internet Content SYSmark 2001, Office Productivity
EPoX 4T2A (i850) Pentium 4 2 GHz / 1.5 GHz 242,9 / 206,7
1,175
5849 / 5417
1,078
222 / 172
1,291
179 / 142
1,261
VIA P4X266 (reference) Pentium 4 2 GHz / 1.5 GHz 229,9 / 194,1
1,184
5724 / 5411
1,058
213 / 166
1,283
171 / 138
1,239

Как говорится - "ничего особенно страшного". В целом, масштабируемость в большинстве случаев немного лучше у систем на базе i850, но главное не в том. Главное - в том, что она присутствует в обеих случаях, нельзя утверждать, что системы на базе VIA P4X266 + Pentium 4 + PC2100 DDR существенно проигрывают в этом акспекте i850 + Pentium 4 + PC800 RDRAM. Что ж, приятно, что наши (и не только наши) опасения не оправдались. Выводы

Производительность

Чуда не произошло, но произошло знаменательное во многих отношениях событие - теперь уже можно говорить о том, что Pentium 4 лидирует по производительность в большем количестве тестов. Да, это так. Наращивание частоты с одной стороны, и благосклонность многих производителей ПО с другой, дают свой эффект. Конечно, гладко еще далеко не все, и говорить о безоговорочной победе - рано. Скорее можно говорить о восстановлении паритета. Однако учитывая то, что у Intel уже стоит на пороге и ждет дозволения войти:) 0,13-микронный процесс, мы можем предполагать еще бОльшие темпы роста частоты работы Pentium 4 в самое ближайшее время, поэтому, похоже, догонять скоро придется уже AMD. По идее, только выпуск Athlon 1.5 GHz или даже 1.7 GHz может помочь этой компании восстановить имевшую место ранее ситуацию со сравнительной производительностью верхних моделей процессоров.

Ценовой аспект - настоящее

Увы, если с производительностью у Pentium 4 все в принципе замечательно (имея в виду двухгигагерцевую модель), то с ценой всего компьютера в сборе на данный момент времени все еще наблюдаются большие проблемы. Пока что единственной платформой, которая реально присутствует на рынке для Pentium 4, является чипсет Intel i850 в комбинации с Rambus DRAM. Если даже не принимать во внимание то, в каком положении на текущий момент находится сама компания-родитель этой памяти, стоимость RIMM даже с учетом определенных подвижек в сторону удешевления, все равно существенно превосходит и PC133 SDRAM, и PC2100 DDR. Поэтому сейчас (подчеркнем - именно сейчас) покупка системы на базе Pentium 4, все еще является проблематичной для экономного пользователя.

Ценовой аспект - будущее?

Однако все не так плохо. Ведь есть VIA P4X266, хоть "есть" он и с определенными проблемами, вызванными отношением Intel к этому чипсету. Кроме того, нечто подобное (Pentium 4 + DDR SDRAM) обещают нам и ALi (Aladdin-P4, образцы есть уже сейчас, начало поставок планируется на октябрь 2001) и SiS (SiS 645, анонсированный 9 августа 2001, и, похоже, уже доступный всем желающим). Также скоро компания начнет активно продвигать на рынок Pentium 4 "Nothwood" (Socket 478, 0,13 микрон, L2 cache 512 KB), который, судя по анонсам от Intel, будет отличаться весьма привлекательной ценой при еще бОльших чем сейчас частотах, а главное, с вдвое увеличенным размером кэша второго уроня. Так что в плане соотношения цена/производительность (при условии отказа от RDRAM и уменьшения стоимости самого процессора), ситуация с системами на базе Pentium 4 может весьма круто измениться в самое ближайшее время. Чего мы этому процессору и пожелаем - ибо производительность он уже сейчас демонстрирует весьма неплохую, а наличие на рынке двух сильных игроков всегда лучше для конечного пользователя, чем безраздельное господство одного.

С одной стороны, время в IT-индустрии летит настолько быстро, что не успеваешь замечать новые продукты и технологии, а с другой… ну-ка, вспомним — сколько лет мы не видели нового ядра от Intel? Не старого с переделками: тут частоту FSB подняли, там виртуальную многопроцессорность с серверного процессора на десктопный перенесли (на самом деле — просто разрешили последнему честно рассказать, что она у него есть), но действительно полностью нового? Если не с нуля разработанного, то хотя бы не латаного, а заново по тем же лекалам сшитого, но с другими рюшечками и по последней моде? А ведь целых два года, оказывается! Даже с хвостиком небольшим. И все это время горячие головы рассуждали на излюбленную тему: а каким же оно будет, новое ядро? Чего только не предсказывали — вплоть до полной анафемы архитектуре NetBurst и воцарения сплошного Banias на декстопной платформе. Правда (как часто бывает), оказалась менее сказочной: новое ядро оказалось честным и последовательным продолжателем Northwood. Разумеется, с некоторыми архитектурными нововведениями, но стремления «до основанья, а затем…» в нем не прослеживается. Поэтому чисто эмоционально Prescott можно оценивать по-разному: кто-то похвалит инжереров Intel за последовательность и целеустремленность, кто-то, наоборот — посетует на отсутствие свежих идей. Однако эмоции — личное дело каждого, мы же обратимся к фактам. Теория

Основные изменения в ядре (Prescott vs. Northwood)

Для начала мы предлагаем вам небольшую табличку, в которой сведены воедино наиболее существенные различия между ядрами Prescott и Northwood во всем что касается «железа» (а точнее — кремния, и прочих «минеральных составляющих»).

Остается только добавить, что новое ядро содержит 125 миллионов транзисторов (куда там бедному Northwood с его 55 миллионами!), и его площадь равна 112 кв. мм (немного меньше площади Northwood — 146/131 кв. мм, в зависимости от ревизии). Произведя несложный арифметический подсчет, видим, что увеличив количество транзисторов в ~2,3 раза, за счет нового техпроцесса инженерам Intel удалось, тем не менее, уменьшить площадь ядра. Правда, не так значительно — «всего» в 1,3 (1,2) раза.

Что же касается технологии «напряженного» (некоторые предпочитают термин «растянутый») кремния — то она, если объяснять на пальцах, довольно проста: с целью увеличения расстояния между атомами кремния, он помещается на подложку, расстояние между атомами у которой больше. В результате, для того чтобы «хорошо усесться», атомам кремния приходится растягиваться по предложенному формату. Выглядит это примерно вот так:

Ну а понять, почему электронам проще проходить через напряженный кремний, вам поможет вот этот простенький рисунок:

Как видите, геометрическая ассоциация в данном случае вполне уместна: путь электрона просто становится короче.

Ну а теперь рассмотрим гораздо более интересные отличия: в логике ядра. Их тоже немало. Однако для начала будет нелишним напомнить об основных особенностях архитектуры NetBurst как таковой. Тем более что не так уж и часто мы это делали в последнее время.

Немного предыстории

Итак, одним из основных отличий ядер, разработанных в рамках архитектуры NetBurst, сама компания Intel считает уникальную особенность, выражающуюся в разделении собственно процесса декодирования x86-кода во внутренние инструкции, исполняемые ядром (uops), и процедуры их выполнения. Между прочим, такой подход породил в свое время немало споров относительно корректности подсчета стадий конвейера у Pentium 4: если подходить к данному процессору с классической точки зрения (эпохи до-NetBurst), то стадии декодера следует включать в общий список. Между тем, официальные данные Intel о длине конвейера процессоров Pentium 4 содержат информацию исключительно о количестве стадий конвейера исполняющего блока, вынося декодер за его рамки. С одной стороны — «крамола!», с другой — это объективно отражает особенность архитектуры, поэтому Intel в своем праве: она же ее и разработала. Спорить, можно, разумеется, до посинения, однако… какая, собственно, разница? Главное — понимать суть подхода. Не нравится вам, что декодер исключен? Ну так прибавьте его стадии к «официальным» — и получите искомую величину конвейера по классической схеме, вместе с декодером.

Таким образом, основная идея NetBurst — асинхронно работающее ядро, в котором декодер инструкций работает независимо от Execution Unit. С точки зрения Intel, существенно бо льшая, чем у конкурентов, частота работы ядра, может быть достигнута только при асинхронной модели т.к. если модель синхронная, то расходы на синхронизацию декодера с исполняющим блоком возрастают пропорционально частоте. Именно поэтому вместо обычного L1 Instructions Cache, где хранится нормальный x86-код, в архитектуре NetBurst применяется Execution Trace Cache, где инструкции хранятся уже в декодированном виде (uops). Trace — это и есть последовательность uops.

Также в историческом экскурсе хотелось бы окончательно развеять мифы, связанные с излишне упрощенной формулировкой, согласно которой ALU у Pentium 4 работает на «удвоенной частоте». Это и так… и не так. Однако для начала взглянем на условную блок-схему процессора Pentium 4 (уже Prescott):

Легко заметить, что ALU состоит из нескольких частей: в нем присутствуют блоки Load / Store, Complex Instructions, и Simple Instructions. Так вот: с удвоенной скоростью (0,5 такта на операцию) обрабатываются лишь те инструкции, что поддерживаются исполняющими блоками Simple Instructions. Блок ALU Complex Instructions, исполняющий команды, отнесенные к сложным — наоборот, может тратить до четырех тактов на исполнение одной инструкции.

Вот, собственно, и все, что хотелось бы напомнить относительно внутреннего устройства процессоров сконструированных на базе архитектуры NetBurst. Ну а теперь перейдем к нововведениям в самом свежем NetBurst-ядре — Prescott.

Увеличение длины конвейера

Вряд ли это изменение можно назвать усовершенствованием — ведь общеизвестно, что чем длиннее конвейер, тем бо льшие накладные расходы вызывает ошибка механизма предсказания ветвлений, и, соответственно, уменьшается средняя скорость выполнения программ. Однако, видимо, другого способа увеличить разгонный потенциал ядра, инженеры Intel найти не смогли. Пришлось прибегнуть к непопулярному, но проверенному. Итог? Конвейер Prescott увеличен на 11 стадий, соответственно, общее их количество равняется 31. Честно говоря, мы намеренно вынесли эту «приятную новость» в самое начало: фактически, описание всех последующих нововведений можно условно назвать «а вот теперь мы вам расскажем, как инженеры Intel боролись с последствиями одного-единственного изменения, чтобы оно окончательно не угробило производительность»:).

Усовершенствования в механизме предсказания ветвлений

В основном, тонкий тюнинг коснулся механизма предсказания переходов при работе с циклами. Так, если ранее по умолчанию обратные переходы считались циклом, то теперь анализируется длина перехода, и исходя из нее механизм пытается предсказать: цикл это, или нет. Также было обнаружено, что для ветвей с определенными типами условных переходов, независимо от их направления и расстояния, использование стандартного механизма предсказания ветвлений чаще всего неактуально — соответственно, теперь в этих случаях он не используется. Однако кроме теоретических изысканий, инженеры Intel не побрезговали и голой эмпирикой т.е. просто-напросто отслеживанием эффективности работы механизма предсказания ветвлений на примере конкретных алгоритмов. С этой целью было исследовано количество ошибок механизма предсказания ветвлений (mispredictions) на примерах из теста SPECint_base2000, после чего по факту были внесены изменения в алгоритм с целью их уменьшения. В документации приводятся следующие данные (количество ошибок на 100 инструкций):

Подтест SPECint_base2000 Northwood (130 nm) Prescott (90 nm)
164.gzip 1.03 1.01
175.vpr 1.32 1.21
176.gcc 0.85 0.70
181.mcf 1.35 1.22
186.crafty 0.72 0.69
197.parser 1.06 0.87
252.eon 0.44 0.39
253.perlbmk 0.62 0.28
254.gap 0.33 0.24
255.vortex 0.08 0.09
256.bzip2 1.19 1.12
300.twolf 1.32 1.23

Ускорение целочисленной арифметики и логики (ALU)

В ALU был добавлен специализированный блок для исполнения инструкций shift и rotate, что позволяет теперь исполнять данные операции на «быстром» (двухскоростном) ALU, в отличие от ядра Northwood, где они исполнялись в блоке ALU Complex Instructions, и требовали бо льшего количества тактов. Кроме того, ускорена операция целочисленного умножения (integer multiply), ранее исполнявшаяся в блоке FPU. В новом ядре для этого выделен отдельный блок.

Также есть информация о присутствии некоторого количества мелких усовершенствований, позволяющих увеличить скорость обработки инструкций FPU (и MMX). Впрочем, ее мы лучше проверим в практической части — при анализе результатов тестов.

Подсистема памяти

Разумеется, одним из основных плюсов нового ядра являются увеличенные размеры L1-кэша данных (в 2 раза т.е. до 16 килобайт) и кэша второго уровня (также в 2 раза т.е. до 1 мегабайта). Однако есть и еще одна интересная особенность: в ядро введена специальная дополнительная логика, обнаруживающая page faults в инструкциях software prefetch. Благодаря этому нововведению, инструкции software prefetch теперь имеют возможность осуществлять не только предвыборку данных, но и предвыборку page table entries т.е., другими словами, prefetch умеет не останавливаться на загруженной странице, но еще и обновлять страницы памяти в DTLB. Разбирающиеся в вопросе наверняка заметят на этом примере, что Intel внимательно следит за отзывами программистов, пусть даже и не кается прилюдно по поводу каждого обнаруженного ими негативного фактора, влияющего на производительность.

Новые инструкции (SSE3)

Кроме всего прочего, в Prescott добавлена поддержка 13 новых инструкций. Назван этот набор, по устоявшейся традиции, SSE3. В их числе присутствуют команды преобразования данных (x87 to integer), работы с комплексной арифметикой, кодирования видео (правда, всего одна), новые команды, предназначенные для обработки графической информации (массивов вершин), а также две инструкции, предназначенные для синхронизации потоков (явно последствия появления Hyper-Threading). Впрочем, о SSE3 мы в скором времени выпустим отдельную статью, поэтому рассматривать возможности данного набора в этом материале воздержимся, чтобы не портить излишней популяризацией серьезную и интересную тему.

Ну а теперь, пожалуй, довольно с нас теории и спецификаций. Попытаемся, как говорилось в одном известном анекдоте, «вместе со всем этим взлететь»:). Тестирование

Конфигурации стендов и ПО

Тестовый стенд

  • Процессоры:
    • AMD Athlon 64 3400+ (2200 МГц), Socket 754
    • Intel Pentium 4 3,2 ГГц «Prescott» (FSB 800/HT), Socket 478
    • Intel Pentium 4 2,8A ГГц «Prescott» (FSB 533/нет HT), Socket 478
    • Intel Pentium 4 3,4 ГГц «Northwood» (FSB 800/HT), Socket 478
    • Intel Pentium 4 3,2 ГГц «Northwood» (FSB 800/HT), Socket 478
  • Материнские платы:
    • ABIT KV8-MAX3 (версия BIOS 17) на чипсете VIA K8T800
    • ASUS P4C800 Deluxe (версия BIOS 1014) на чипсете Intel 875P
    • Albatron PX875P Pro (версия BIOS R1.00) на чипсете Intel 875P
  • Память:
    • 2x512 МБ PC3200 DDR SDRAM DIMM TwinMOS (тайминги 2-2-2-5)
  • Видеокарта: Manli ATI Radeon 9800Pro 256 МБ
  • Жесткий диск: Western Digital WD360 (SATA), 10000 об/мин



Pentium 4 2,8A ГГц «Prescott»
Единственный Prescott с частотой FSB 533 МГц
и без поддержки Hyper-Threading



Pentium 4 3,4 ГГц «Northwood»
Просто еще один Northwood…

Системное ПО и драйверы устройств

  • Windows XP Professional SP1
  • DirectX 9.0b
  • Intel Chipset Installation Utility 5.0.2.1003
  • VIA Hyperion 4.51
  • VIA SATA Driver 2.10a
  • Silicon Image Driver 1.1.0.52
  • ATI Catalyst 3.9
Плата ABIT KV8-MAX3 ASUS P4C800 Deluxe Albatron PX875P Pro
Чипсет VIA K8T800 (K8T800 + VT8237) Intel 875 (RG82004MC + FW82801ЕB) Intel 875 (RG82875 + FW82801ЕB)
Поддержка процессоров Socket 754, AMD Athlon 64 Socket 478, Intel Pentium 4, Intel Celeron
Разъемы памяти 3 DDR 4 DDR 4 DDR
Слоты расширения AGP/ 5 PCI AGP Pro/ 5 PCI AGP/ 5 PCI
Порты ввода/вывода 1 FDD, 2 PS/2 1 FDD, 2 COM, 1 LPT, 2 PS/2 1 FDD, 2 COM, 1 LPT, 2 PS/2
USB 4 USB 2.0 + 2 разъема по 2 USB 2.0 2 USB 2.0 + 3 разъема по 2 USB 2.0
FireWire 1 порт + 2 разъема на 2 порта (планка в комплекте), Texas Instruments TSB43AB23 1 порт + 1 разъем на 1 порт (нет планки в комплекте), VIA VT6307 —
Интегрированный в чипсет ATA-контроллер ATA133 + SATA RAID (0, 1) ATA100 + SATA ATA100 + SATA
Внешний ATA-контроллер Silicon Image Sil3114CT176 (SATA RAID 0, 1, 0+1, Spare) Promise PDC20378 (ATA133+SATA RAID 0, 1, 0+1) —
Звук AC"97-кодек Avance Logic ALC658 AC"97-кодек Analog Devices AD1985 AC"97-кодек Avance Logic ALC655
Сетевой контроллер 3Com Marvell 940-MV00 (Gigabit Ethernet) 3Com Marvell 920-MV00 (Fast Ethernet)
I/O-контроллер Winbond W83627HF-AW Winbond W83627THF-A Winbond W83627THF
BIOS 4 Мбит Award BIOS v6.00PG 4 Мбит AMI BIOS v2.51 3 Мбит Phoenix AwardBIOS v6.00
Форм-фактор, размеры ATX, 30,5x24,5 см ATX, 30,5x24,5 см ATX, 30,5x24,5 см
Средняя текущая цена (количество предложений) Н/Д(0) Н/Д(0) Н/Д(0)

В завершение описания, хотелось бы разъяснить алгоритм подбора участников тестирования. С одной стороны, полностью исключить из тестов процессоры AMD было бы неправильно, ведь эта платформа — основной конкурент Intel, как сейчас, так и в обозримом будущем. С другой стороны — совмещать в одной статье сравнение двух поколений Pentium 4 с процессорами другого производителя, означало бы не сравнить толком ни то, ни другое. Поэтому мы решили в первом материале, посвященном Prescott, пойти на определенный компрормисс: во-первых, полностью исключить всевозможные «экстремальные» варианты в виде Pentium 4 eXtreme Edition и Athlon 64 FX, во-вторых же, взять в качестве представителя альтернативной платформы только один, но быстрый из обычных десктопных процессоров AMD: Athlon 64 3400+.

Да и то, по большому счету, его результаты здесь приводятся лишь в качестве опции. В этом материале нас более всего интересует сравнение нового ядра Intel со старым. Если кто-то желает получить одновременно информацию о том, как производительность Prescott соотносится с ближайшим конкурентом — что ж, она представлена на диаграммах. Комментарии? Пожалуй, они просто излишни. Вы сами в этом убедитесь. Зная, какова производительность Prescott и Northwood, работающих на одинаковой частоте, и то, как соотносятся производительность Northwood и топовых процессоров AMD (а этот вопрос мы уже неоднократно освещали) — вы знаете вполне достаточно для того, чтобы самостоятельного сделать все остальные выводы.

Кроме того, хотелось бы разъяснить наличие на диаграммах двух столбиков для Prescott 3,2 ГГц. Дело просто в том, что мы решили… подстраховаться. Всем известно, что с выходом процессора на другом ядре, среди производителей системных плат сразу же начинается суматоха с обновлением BIOS, всяческих microcode update, и прочего «железно-ориентированного» ПО. Нам показалось логичным использовать такой ресурс нашей тестовой лаборатории как «официально Prescott-ready» системные платы максимально полно, чтобы уберечься от возможных последствий некорректной работы конкретной модели. Впрочем, как вы увидите далее, опасения оказались напрасными: в большинстве случаев новый процессор вел себя на обеих платах совершенно одинаково.

Все характеристики Prescott 2,8A ГГц программа
CPU-Z определяет вполне корректно:
как наличие SSE3, так и шину 533 МГц

Разумеется, не ошиблась она и в случае с
Prescott 3,2E ГГц

Низкоуровневые тесты в CPU RightMark

Для начала, мы решили проверить функционирование нового ядра в двух режимах — традиционно самом лучшем для процессоров Pentium 4 и самом худшем: SSE/SSE2 и MMX/FPU. Начнем с вычислительного блока (Math Solving).

Результаты неутешительные. Новое ядро медленнее старого, более того — в режиме MMX/FPU его отставание даже больше, чем при использовании SSE/SSE2. Делаем первый вывод: если что-то в FPU и «подкручивали», то явно в CPU RightMark используются другие команды. Ну а что у нас с рендерингом?

Во-первых, рассмотрим варианты работы модуля рендеринга в однопоточном и двухпоточном режимах с максимальной производительностью (SSE/SSE2). Картина достаточно интересная: если используется один поток — преимущество Prescott минимально, а больший по частоте Northwood его легко обгоняет. Однако стоит нам задействовать Hyper-Threading, как Prescott тут же резко вырывается вперед, причем настолько, что обгоняет всех других участников. Возникает впечатление, что некая работа над ядром в плане улучшения обработки параллельно выполняющихся потоков, была проведена, и заключалась она не только в расширении набора команд. Посмотрим теперь, как себя ведут те же процессоры в режиме MMX/FPU.

Абсолютно аналогичная картина. Причем если сопоставить ее с предыдущей — хорошо видно, что тщательность анализа себя оправдала: если бы, к примеру, мы ограничились рассмотрением лучшего (двухпотокового) результата, можно было бы ошибочно сделать вывод о том, что ядро Prescott быстрее в плане исполнения инструкций, причем даже в режиме MMX/FPU. Сейчас же хорошо видно, что быстродействие возросло исключительно благодаря оптимизации использования ресурсов виртуальных CPU.

Тесты в реальных приложениях

Перед тем как начать рассмотрение результатов тестов в реальных приложениях, сделаем небольшое вводное разъяснение. Дело в том, что процессор Pentium 4 на ядре Prescott с частотой 3,4 ГГц, к сожалению, до сих пор для нас недоступен, поэтому то, что вы видите на диаграммах под названием "Virtual" Prescott 3,4 ГГц — это не более чем аппроксимация результатов Prescott 3,2 ГГц, рассчитанная исходя из идеальных условий роста производительности пропорционально частоте. Кто-то может заметить, что это слишком топорный подход. Дескать, намного корректнее было бы, к примеру, разогнать имеющийся Prescott 3,2 ГГц с помощью выставления большей частоты FSB, или хотя бы выстроить кривую аппроксимации по трем точкам: Prescott 2,8 ГГц -> 3,0 ГГц -> 3,2 ГГц. Разумеется, так было бы корректнее. Однако «на всякого мудреца довольно простоты», и… просто обратите внимание на то, какие поправки вносит в общую картину наличие на диаграммах даже «идеального» Prescott 3,4 ГГц (а реальный будет либо таким же, либо медленнее — третьего не дано). Рискуя навлечь на себя немилось преждевременным разглашением тайны, скажем сразу: да практически никаких. Где ядро Prescott выигрывает — там это и так видно. А где проигрывает — не помогают ему даже идеализированные 3,4 ГГц…

Работа с графикой

Самые предсказуемые результаты у Northwood 3,4 ГГц (немного лучше, чем у Northwood 3,2 ГГц) и Prescott 2.8 ГГц (отсутствие поддержки Hyper-Threading сразу же выбросило его в аутсайдеры). Prescott 3,2 ГГц пытается быть хотя бы наравне с одночастотным Northwood, но у него не получается даже это. Ну а наш «виртуальный Prescott 3,4 ГГц», в свою очередь, не смог обогнать реальный Northwood 3,4 ГГц — что тоже естественно. C другой стороны, можно заметить, что все процессоры кроме Prescott 2,8 ГГц почти равны. Вряд ли это будет аргументом для апгрейда на Prescott, но хотя бы не станет существенным доводом против его покупки для тех, кто задумывается над приобретением новой системы.

В Lightwave ситуация аналогичная, только Prescott отстает еще больше. Здесь уместно будет вспомнить, что Lightwave (судя по сравнению результатов 6-й ветки с 7-й), затачивался под Pentium 4 очень тщательно и скрупулезно. Можно предположить, что именно поэтому он оказался так чувствителен к малейшим архитектурным изменениям в ядре. Также отметим, что впервые протестированный нами в этой программе Athlon 64 3400+ демонстрирует пусть и не лучший, но вполне приличный результат.

Для Photoshop в современных процессорных архитектурах, видимо, самым главным параметром является размер кэша. Мы уже неоднократно обращали внимание на то, что эта программа весьма «кэшелюбива», и результаты Prescott это подтверждают.

Кодирование медиаданных

Вообще, поскольку мы тестируем новую (или существенно модифицированную, если вам так больше нравится) архитектуру — то для нас любое приложение может стать маленьким открытием. По сути, сейчас количество даже важнее качества, потому что нам просто необходимо набрать как можно больше данных о том, как старые (еще не оптимизированные под Prescott) программы ведут себя с новым процессорным ядром. Вот, тот же LAME: оказывается, для него Prescott по всем статьям новый процессор — результаты совершенно не ложатся на то, что мы ранее знали про Northwood. Правда, они стали хуже. Что ж, бывает. Продолжаем коллекционировать…

Ogg Encoder демонстрирует практически идентичную картину: Prescott существенно проигрывает всем остальным процессорам без исключения, несмотря на удвоенный кэш данных первого уровня и L2. Остается предположить, что виновато увеличение длины конвейера при оставшемся неизменным объеме Trace Caсhe.

Даже тяготеющий к архитектуре NetBurst кодек DivX невзлюбил новое ядро. Не то что бы очень сильно, но все-таки оно ему не понравилось. Впрочем, тут есть определенная надежда на SSE3 — разработчики DivX просто обожают различные оптимизации (во всяком случае, судя по анонсам), поэтому весьма велик шанс, что единственная и неповторимая инструкция, предназначенная для ускорения кодирования видео, найдет свое место в будущем релизе данного кодека. Однако это все в будущем, а пока — увы…

А вот результаты XviD мы опять не приводим по причине совершенно невообразимого «фортеля», который в очередной раз выкинула эта нежно нами любимая программа. Дело в том, что прирост производительности Prescott по отношению к Northwood в ней составил… 232% ! Такие тесты, пардон, мы использовать просто отказываемся. Похоже, что их результаты могут зависеть вообще от чего угодно…

Ну, вот и первая победа. Впрочем, возвращаясь к теме о предпочтениях различного ПО, можно заметить, что Windows Media Video 9 весьма неплохо поддерживает Hyper-Threading, а данные низкоуровневых тестов показали, что эффективность задействования виртуальных CPU в случае с новым ядром возрастает. Похоже, что это первый положительный результат, достигнутый за счет качественного, а не количественного изменения в Prescott. Во всех предыдущих случаях он «выезжал» исключительно за счет большого объема кэша…

Очень, очень интересный результат. Mainconcept MPEG Encoder, которому мы пеняли за «корявую» работу с Hyper-Threading при кодировании в формат MPEG1 — вполне адекватно работает с виртуальными процессорами, если они эмулируются Prescott, а не Northwood! Впору даже задуматься: быть может, программисты не виноваты, просто «затык» был в процессорном ядре, которое некорректно распараллеливало потоки? Вполне возможно, по крайней мере, глядя на результаты Prescott, понимаешь, что и это предположение имеет право на жизнь. C другой стороны вполне неплохо себя показал Prescott 2,8A ГГц, про Hyper-Threading и слыхом не слыхавший. Забавная ситуация. Пожалуй, мы находимся на пороге интересного открытия: напрашивается предположение, что вся «оптимизация работы Hyper-Threading в Prescott» сводится всего лишь к тому… что этой технологии в Northwood не хватало объема кэша, чтобы развернуться в полную силу!

И снова можно порадоваться за новое ядро: в Mainconcept MPEG Encoder не только пропал «глюк» с кодированием MPEG1, но и преобразование в MPEG2 стало работать существенно быстрее. Имея в виду результаты предыдущих тестов, можно почти однозначно утверждать, что основным виновником торжества является улучшенная работа Hyper-Threading (и не забываем о том, за счет чего она могла стать лучше — если наши предположения верны). Что самое интересное — не понадобились даже специальные команды для управления потоками из набора SSE3, процессор сам отлично разобрался (поддержку SSE3 в данной версии кодировщика предполагать не приходится — она вышла довольно давно).

А вот Canopus ProCoder просто почти ничего не заметил. В принципе, небольшая разница в производительности присутствует, и она даже в пользу Prescott. Но, по сути, это копейки, мелочь. Учитывая «кэшелюбивость» ProCoder, можно даже сказать так: весь большой кэш, судя по всему, ушел на компенсацию других недостатков нового ядра. Он просто вытянул Prescott на ту же высоту, что и Northwood, но, увы — не более.

Архивирование

Традиционно, мы протестировали 7-Zip как со включенной поддержкой многопоточности, так и без нее. Ожидаемый эффект достигнут в этой программе не был: не заметно, чтобы многопоточность на Prescott давала намного больший эффект, чем на Northwood. Да и вообще — особой разницы между старым и новым ядром не видно. Похоже, что мы наблюдаем упомянутый выше эффект: все, что смогли сделать количественные показатели Prescott (объемы кэша L1 Data и L2) — это компенсировать его же удлиненный конвейер.

К слову: один из немногих тестов, где хоть как-то видна разница между платами. В остальном — все та же картина: Prescott и Northwood одинаковой частоты идут рядом, практически не отличаясь по скорости. Пессимисты скажут: «плохо», оптимисты: «могло быть и хуже»:). Мы — просто промолчим…

Игры

Картина во всех трех играх схожая, поэтому особенно расписываться нет нужды: Prescott все же медленнее. Правда, ненамного.

Обобщая результаты

Что ж, если делать какие-то выводы на основании тех тестов, что присутствуют в статье, то ситуация выглядит следующим образом: ядро Prescott в целом медленнее Northwood. Иногда это удается компенсировать бо льшим объемом кэша, вытянув производительность на уровень старого ядра. Ну а если программа особенно чувствительна к объему L2, Prescott даже способен выиграть. Кроме того, несколько улучшилась эффективность Hyper-Threading (но похоже, что причина снова кроется в увеличении объема L2-кэша). Соответственно, если программа умеет использовать обе сильные стороны нового ядра — большой кэш и виртуальную многопроцессорность — то выигрыш получается ощутимым. В целом же, производительность Prescott примерно такая же, как у Northwood, а применительно с старому, неоптимизированному ПО — даже более низкая. Ожидаемой революции, увы, не получилось. С другой стороны… а был ли мальчик? Но об этом — ниже.

Что же касается Prescott 2,8A ГГц с 533-мегагерцевой системной шиной и без поддержки Hyper-Threading, то как раз тут все предельно ясно. Во-первых, для Intel это просто очень хороший способ сделать хотя бы что-то из тех экземпляров, которые в «настоящем Prescott"овском» режиме банально не заработали. Этакий «Celeron среди Prescott"ов» (хотя будет, судя по всему, на базе этого ядра и официальный Celeron). Во-вторых — отсутствие Hyper-Threading скорее всего свидетельствует о принципиальном нежелании Intel видеть HT на устаревшей, низкоскоростной шине. Действительно: единственным представителем 533 МГц FSB + HT так и остался первый процессор с поддержкой этой технологии — Pentium 4 3,06 ГГц. Да и то по вполне понятной, извиняющей его причине: не было еще на тот момент CPU с 800-мегагерцевой шиной.

Таким образом, да простят нам инженеры Intel эту вольность, Pentium 4 2,8A ГГц — это «как бы не Prescott». А просто сравнительно недорогой (другим его выпускать нельзя — не купит ведь никто…), но высокочастотный Pentium 4. И совершенно неважно, на каком он сделан ядре, не в этом суть. Честно говоря, было искушение его в этот материал вообще не включать, но потом мы решили поступить наоборот: дать ему один раз «засветиться», и более к данному чу дному процессору не возвращаться. Из простого сравнения одночастотных ядер Prescott и Northwood понятно, что без Hyper-Threading Prescott 2.8 ГГц даже с Pentium 4 2.8C (800 МГц FSB + HT) по усредненным показателям производительности соперничать не сможет. Версии

Да, именно «версии», а не «выводы». Слишком неоднозначным получился этот материал. Проще было бы ограничиться анализом диаграмм и сделать напрашивающийся, лежащий на поверхности вывод: «если новое не быстрее (а то и медленнее) старого — значит, оно хуже». Списать, так сказать, в расход. Однако самый простой ответ — не всегда самый правильный. Поэтому мы решили коснуться аналитики, и рассмотреть выход Prescott в исторически-рыночной перспективе. Получилось, что ответов на вопрос «в чем для Intel состоит смысл выпуска Pentium 4 на ядре Prescott?» на самом деле несколько, и каждый из них можно логично аргументировать.

Версия первая или Большая ошибка

Почему бы и нет? Жила-была компания Intel, и появилась у нее идея: сделать процессорное ядро, ориентированное не на максимальный КПД (если рассматривать КПД как соотношение производительности к частоте), а на легкую масштабируемость. Дескать, если наши 2000 МГц проигрывают 1000 МГц от конкурента — не беда, догоним частоту до 4 ГГц и оставим всех позади. Между прочим, с чисто инженерной точки зрения, это вполне адекватное решение. Не все ли равно? Пользователя-то (грамотного) все равно интересуют не мегагерцы, а производительность, какая ему разница, за счет чего она достигается? Главное чтобы масштабируемость оказалась именно такой, какую предполагалось достичь. И вот, выясняется, что с масштабируемостью начались большие проблемы. Догнали до 3,4 ГГц, остановились… и пришлось придумывать новое ядро, у которого КПД еще ниже… и неизвестно, какими темпами будет расти у него частота… и так далее. Напомним, что это версия. Рассмотрим ее внимательнее в сопоставлении с реальными фактами.

Факт, свидетельствующий в пользу данной версии — рост частоты Pentium 4 за прошедший 2003 год. Все-таки 200 МГц, да еще и по отношению к такой «частотолюбивой» архитектуре как NetBurst — явно мало. Однако… как общеизвестно, рассматривать какой-то факт в отрыве от других — не очень хорошая практика. Был ли смысл в активном наращивании частоты Pentium 4 в прошлом году? Вроде бы нет… Основной конкурент решал другие вопросы — у него новая архитектура, новое ядро, ему нужно наладить массовое производство процессоров на базе этого ядра, обеспечить им соответствующую обвязку в виде чипсетов, системных плат, программного обеспечения, в конце концов! Поэтому один из вариантов ответа на вопрос «почему практически не росла частота (и производительность) Pentium 4 в 2003 году» звучит просто: не было особого смысла ее наращивать. Ни догонять, ни перегонять — вроде некого. Стало быть, можно особенно не торопиться.

Получить ответ на главный вопрос мы, увы, пока не можем: как будет «гнаться» новое ядро? Пока что, если судить по внешним признакам, фактов, подтверждающих хорошую масштабируемость Prescott — нет. Впрочем, равно как и опровергающих ее. Анонсированы 3,4-гигагерцевые версии как Prescott, так и Northwood. Northwood 3,4 ГГц, наверное, будет последним процессором на этом ядре (хотя, официальных подтверждений этого предположения нет). А то, что Prescott стартовал с 3,4 ГГц, а не с 3,8 или 4,0 тоже легко объяснимо: зачем прыгать через ступеньки? Подводя итог: версия «Большой ошибки», в принципе, имеет право на существование. Но если частота (а еще точнее, — производительность) Prescott будет быстро расти, это однозначно подтвердит ее несостоятельность.

Версия вторая или Переходное ядро

Ни для кого не секрет, что иногда производителю требуется выпустить некое устройство, достаточно ординарное само по себе (в другой ситуации совершенно не заслуживающее звания релизного продукта). Но в том-то и дело, что выпуск данного устройства необходим для продвижения на рынок других, анонсируемых одновременно с ним или чуть позже. Таким был Pentium 4 Willamette, вряд ли достойный звания «хорошего и быстрого процессора», однако явно обозначивший факт перехода одного из самых крупных игроков на процессорном рынке, на новое ядро, и под конец своего существования сменивший «промежуточный» Socket 423 на «долгоиграющий» Socket 478. Что, если аналогичная роль уготована Prescott?

Уже всем известно, что с выходом Grantsdale-P, нас ждет появление еще одного процессорного разъема для Pentium 4 (Socket T / Socket 775 / LGA775), и поначалу устанавливаться в него будут именно CPU на ядре Prescott. Лишь впоследствии Pentium 4 «Tejas» начнет постепенно их замещать. И тут вполне логично задаться вопросом: а насколько быстро будет происходить это замещение? Поскольку мы все равно лишь выдвигаем версии, ограничивать свою фантазию не будем, и предположим, что Intel желает этот процесс максимально ускорить. С помощью чего? Скорее всего — оставив Socket 478 мирно почивать в нижних строчках на диаграммах производительности, и сделав Socket 775 символом обновленной, мощной и скоростной платформы для Pentium 4. Тогда все становится ясно: Prescott нужен для того, чтобы на рынке присутствовал процессор, способный работать как в платах с разъемом Socket 478, так и с новым Socket 775. Tejas же, если наши предположения верны, будет устанавливаться только в Socket 775, и станет, таким образом, могильщиком как для Prescott, так и для устаревшей платформы Socket 478. Логично? Нам кажется, что да. В таком случае, правдоподобно смотрится и следующее предположение: жизнь Prescott’у уготована весьма недолгая…

Версия третья или «Кто с мечом к нам придет…»

Не секрет, что соперничество между двумя основными конкурентами — Intel и AMD, почти всегда строилось на противопоставлении двух основных аргументов. Intel: «наши процессоры — самые быстрые!», AMD: «зато у наших лучше соотношение цены и производительности!». Соперничество давнее, аргументы тоже. Причем, они не изменились даже с выходом процессоров AMD на ядрах K7/K8, — несмотря на то, что у последних с производительностью дела обстоят намного лучше, чем у K6. Ранее Intel не делала исключений из основного своего правила: продавать свои CPU с производительностью, аналогичной процессорам конкурента, немного дороже. Рынок местами очень прост, поэтому причина такого поведения понятна: если их и так покупают — то зачем снижать цену? Опять-таки: хоть участвовать в ценовых войнах Intel и приходилось, но развязывала их всегда AMD, это уже стало традицией. Третья версия базируется на очевидном предположении: а что если на этот раз Intel решила повести себя агрессивнее, чем обычно, и развязать ценовую войну первой?

В списке достоинств нового ядра Prescott числится не только новизна, объемы кэшей, и потенциально хорошая (правда, пока не подтвержденная) масштабируемость, но и… цена! Это сравнительно дешевое в производстве ядро: если при использовании 90-нанометровой технологии будет достигнут показатель выхода годных чипов хотя бы такой же, как у Northwood — то, ничуть не теряя в абсолютных показателях прибыли, Intel сможет продавать свои процессоры за гораздо меньшую цену. Напомним одну очевидную зависимость: такую характеристику CPU как «соотношение цена / производительность», можно улучшать, не только повышая производительность, но и снижая цену. Вообще-то, никто не мешает быстродействие даже понизить (!) — главное, чтобы цена упала еще больше:). Судя по появляющимся в Сети неофициальным анонсам цен на Pentium 4 Prescott, стоить они будут намного дешевле Pentium 4 Northwood. Таким образом, мы можем предположить, что Intel решила осуществить своего рода «обход с флангов»: пока основной конкурент, по старинке, все гонится и гонится за производительностью, ему будет нанесен удар в секторе middle-end систем, где пользователи тщательно анализируют именно такой показатель как price / performance.

Версия четвертая или Тайное оружие

Здесь следует сделать небольшое лирическо-историческое отступление для тех, кто «во времена оные» не очень активно отслеживал разные мелкие нюансы в процессорном секторе. Так, к примеру, можно вспомнить, что сразу после появления первых процессоров с поддержкой Hyper-Threading (а ими были вовсе не Pentium 4 «Northwood» + HT, а Xeon «Prestonia»), многие задались вопросом: «если ядра Prestonia и Northwood настолько похожи, что практически не отличаются по основным характеристикам, но у Prestonia поддержка Hyper-Threading присутствует, а у Northwood ее нет — то не логично ли предположить, что и у Northwood она тоже есть, просто искусственно заблокирована?». Впоследствии это предположение косвенно подтвердилось — анонсом Pentium 4 3,06 ГГц на все том же ядре Northwood, но уже с Hyper-Threading. Более того, самые смелые выдвигали и вовсе крамольную мысль: Hyper-Threading была даже в Willamette!

А теперь вспомним: что у нас в последнее время известно по части новых технологических инициатив Intel. Сразу всплывают два названия: «La Grande» и «Vanderpool». Первое — технология аппаратной защиты приложений от вмешательства извне, которую вкратце можно описать словами «сделать так, чтобы одно ПО не могло вмешиваться в функционирование другого». Впрочем, о La Grande вы можете почитать на нашем сайте . Об Vanderpool информации меньше, но исходя из обрывков доступной на сегодня, можно сделать вывод, что она представляет собой вариацию на тему полной виртуализации PC, включая все без исключения аппаратные ресурсы. Таким образом (самый простой, но и самый эффектный пример), на одном компьютере смогут работать параллельно две операционные системы, причем одна из них может быть даже перезагружена — но это совершенно не отразится на работе другой.

Так вот: есть очень большие подозрения, что и La Grande и Vanderpool в ядре Prescott уже реализованы, но (как было ранее с Hyper-Threading) пока не активированы. Если это предположение истинно, то многое относительно самого ядра становится понятным. В частности — то, почему оно такое большое, почему так долго разрабатывалось, но, несмотря на это, не выирывает в скорости у предыдущего. Если исходить из гипотезы «Тайного оружия», можно предположить, что основные ресурсы команды разработчиков были направлены вовсе не на достижение быстродействия, а на отладку новых функций. Частично данная версия перекликается со второй — так или иначе, но мы имеем дело с переходным ядром. Соответственно, быть совершенным оно вовсе не обязано, ибо не в том его основное предназначение. Между прочим, также удачно вторую и четвертую версии дополняет третья: низкая цена в данном случае является именно той конфеткой, что подсластит для конечного пользователя пилюлю «переходности».

Подводя итоги

Мы не зря назвали эту статью «полшага вперед». Prescott получился более сложным и неоднозначным, чем ожидаемый «Northwood с увеличенным объемом кэша и более высокой частотой» (как многие его воспринимали). Разумеется, можно обвинить производителя в том, что прирост скорости в среднем близок к нулю (а местами и отрицательный), в очередной чехарде с поддержкой процессоров на базе нового ядра системными платами… И, между прочим, вполне справедливо это сделать. Это, в конце концов, не наши проблемы — а между тем, именно мы с ними и столкнемся. Поэтому просто поставим в конце статьи «жирное троеточие». На стоп-кадре видно только начало шага: нога, зависшая в воздухе, или, если угодно, лайнер на взлете. Что нас ждет дальше? Благоприятным ли окажется «приземление» (Tejas?..) Пока можно только догадываться.

За более чем 5 лет было выпущено множество ядер и моделей Pentium 4, основанных на них. Причем с выходом новой модели к названию процессора добавлялись либо новая буква, либо еще какие-нибудь цифры, а иногда и то, и другое; всё это существенно запутывает идентификацию конкретной модели.

Процессор Pentium 4 построен на совершенной новой архитектуре - NetBurst. Ниже приведены некоторые отличительные особенности оригинальной архитектуры NetBurst (некоторые из них в последующем были изменены).

  • . Длина конвейера была увеличена до 20 шагов, то есть для завершения одной команды процессору требовалось 20 циклов. Данный шаг позволял значительно легче наращивать тактовую частоту, кроме того, в перспективе это позволяло значительно повысить быстродействие, но производительность в расчете на 1 МГц была меньше, чем у предыдущих процессоров. Отчасти этим объясняется низкая производительность Pentium 4, работающего на низких частотах. Так же в результате такого нововведения увеличилось и время ожидания.
  • Модуль предсказания переходов (ветвлений). Чтобы компенсировать недостатки применения длинного конвейера инженеры Intel улучшили схему предсказания ветвлений, в результате правильность перехода предсказывалась с вероятностью до 95 %.
  • Системная шина. В Pentium 4 используется совершенно новая 128-битная с двумя 64-битными линиями. Частота новой шины() составляет 100 МГц (у последних, тогда, моделей Pentium III она составляла 133 МГц), однако за счет передачи за 1 такт одновременно 4 пакетов (QPB - Quad Pumped Bus), эффективная частота шины составляла 400 МГц, а пропускная способность шины составляла 3200 Мб/с.
  • Арифметико-логическое устройство ( или ALU). В АЛУ обрабатываются целочисленные команды. В новом процессоре АЛУ работает на удвоенной частоте ядра (у Pentium 4 1,5ГГц АЛУ работает на частоте 3 ГГц за счет использования обоих фронтов сигнала). Таким образом, некоторые инструкции выполняются за половину такта. В Pentium 4 используются два АЛУ.
  • первого уровня (L1). Как и прежде кэш L1 разделен на две части: для команд и для данных. В кэше теперь хранятся декодированные команды и располагаются в порядке их выполнения (технология Trace Cache), что увеличивает производительность.
  • Математический (). Математический сопроцессор содержит два модуля для операций с плавающей запятой. Но реальную вычислительную работу выполняет лишь один модуль - это операции сложения (FADD) и умножения (FMUL), второй модуль выполняет операции обмена между и памятью (FSTORE). Для процессора Pentium 4 1,4 ГГц сопроцессор обеспечивает производительность в 1,4 . К примеру, в процессорах используется сопроцессор, состоящий из трех модулей (один для операций типа FSTORE, два других для операций типа FADD и FMUL) и обеспечивающий производительность в 2 GFLOPS (для процессора Athlon 1 ГГц).
  • SIMD-расширения. В процессор Pentium 4 был добавлен новый набор SIMD-расширений (SSE2), который добавил 144 новые инструкции (68 целочисленных инструкций и 76 инструкций для вычислений с плавающей запятой).

В целом, архитектура была нацелена для работы на высоких частотах, где в полную силу смог бы заработать длинный конвейер.

Willamette

Впервые это ядро «засветилось» в роадмэпе () Intel еще в 1998 году. Предполагалось, что оно должно прийти на смену и покорить частоту 1 ГГц. Но процессоры на этом ядре были анонсированы только в 2000 году как Pentium 4. Выпущенные года, процессоры устанавливались в разъём Socket 423 и выпускались в корпусе тип FC-PGA2. Процессоры для Socket 423 не пользовались популярностью, так как Intel сразу заявила, что этот разъем является переходным, кроме того системы на базе Pentium 4 стоили очень дорого (сами процессоры в момент анонса стоили $644 и $819 за Pentium 4 1,4 и 1,5 ГГц соответственно). Так как процессор изготавливался с использованием 180 нм техпроцесса, то на кристалле удалось разместить лишь 256 Кбайт кэша L2. Большинство экспертов расценило 1,4 и 1,5 ГГц версии промежуточными - процессор Athlon набирал всё большую популярность, и превосходил по быстродействию Pentium III, а дальнейшее усовершенствование архитектуры Pentium III тогда было ещё не возможно. Терять свою долю рынка Intel не была намерена, поэтому она и выпустила эти процессоры («сырая» технология производства не позволила тогда выпустить более быстрые модели). Несмотря на непопулярность 1,4 и 1,5 ГГц версий, Intel года анонсирует 1,3 ГГц версию Pentium 4, которая стоила $409. В различных тестовых испытаниях эти процессоры проигрывали как Pentium III, так и Athlon`ам (а в некоторых случаях и `ам), работавшим на более низких частотах. Однако уже в апреле 2001 года выходит Pentium 4 с частотой 1,7 ГГц, а в августе этого года выходит 2 ГГц версия, а так же «новые-старые» процессоры для Socket 478, который просуществовал более чем 2 года, в этом же месяце выходит новый чипсет от Intel (i845). Новый чипсет теперь поддерживал память стандарта PC133 SDRAM, что позволило значительно снизить цены на системы на базе Intel Pentium 4, однако использование данного типа памяти несколько уменьшало быстродействие (иногда весьма существенно) системы. Intel для увеличения продаж активно продвигала данный процессор - его рекламу можно было увидеть как по телевизору, так и в газетах/журналах. Продажи Pentium 4 увеличивались, процессор начинал пользоваться всё большей популярностью. Вскоре многие производители системной логики представили свои чипсеты для Pentium 4 с поддержкой памяти , а в начале года Intel выпускает свои чипсеты с поддержкой данного типа памяти. Процессор начинает замещать собой Pentium III, а по производительности он фактически сравнялся с Athlon`ом. Intel, державшая пальму первенстве в течение 16 лет, а затем довольно быстро потерявшая её, сейчас вновь начинает отвоёвывать своё. А начавшиеся проблемы с отсутствием производственных мощностей у AMD и выпуск Pentium 4 на ядре Northwood закрепили лидирующие позиции Intel, правда, ненадолго.

Процессоры Pentium 4 на ядре Willamette
Тактовая частота ядра (ГГц) Дата анонса процессора для Socket 423 Дата анонса процессора для Socket 478 Начальная стоимость процессора ($)
1,3 3 января 2001 409 - ?
1,4 20 ноября 2000 644 27 сентября 2001
1,5 819 27 августа 2001
1,6 2 июля 2001 294
1,7 23 апреля 2001 352
1,8 2 июля 2001 562
1,9 27 августа 2001 375 375
2,0 562 562

Northwood

Первые процессоры на данном ядре анонсированы года. Ядро мало чем отличается от своего предшественника, разве что использованием более совершенного тех процесса - 130 нм, что позволило разместить на кристалле 512Кб кэша L2 и снизить тепловыделение процессора. Переход на новый техпроцесс позволил ещё больше наращивать тактовую частоту (до 3,4ГГц). Чтобы отличать процессоры на ядре Northwood от аналогичных моделей на ядре Willamette, было решено в конце названия новых процессоров приписывать букву «A» (например Pentium 4 2,0A построен на ядре Northwood).

Prescott

Mobile Pentium 4

Первые версии Pentium 4 для ноутбуков и лэптопов были анонсированы года, были построены на ядре Northwood и носили имя Mobile Pentium 4-M. От настольных версий эти процессоры отличались заниженным напряжением питания (1,2-1,3 В) и поддержкой технологии . Частота системной шины у всех процессоров составляла 400 МГц. Были выпущены модели с частотами 1,4; 1,5; 1,6; 1,7; 1,8; 1,9; 2,0; 2,2; 2,4; 2,5; 2,6, TDP у последней модели составляет 35 Вт.

Prescott 2M

Первые слухи о новом ядре Prescott 2 появились в начале 2005 года. Предполагалось, что оно будет иметь 2 Мбайт кэша L2 и частоту FSB равную 266 МГц (эффективная частота 1066 МГц). Процессоры на основе этого ядра были анонсированы . От ядра Prescott это ядро отличается только наличием 2 Мбайт кэш-памяти L2. Новые процессоры получили и новую маркировку: 6x0. 21 февраля 2005 года были анонсированы модели Pentium 4 630, 640, 650, 660 с частотами 3,0; 3,2; 3,4; 3,6 ГГц, позднее была представлена модель 670, работающая на частоте 3,8 ГГц.

Cedar Mill

Анонс процессоров, построенных на новом ядре, запланирован на вторую половину января . Ядро Cedar Mill представляет собой одноядерную модификацию ядра известного под кодовым именем . Cedar Mill изготовлен с использованием новейшей 65 нм технологии. По сути, ядро представляет собой ядро Prescott 2M, даже не изменилась серия процессора, процессоры без поддержки технологии виртуализации Vanderpool имеют маркировку вида 6x1, с поддержкой Vanderpool имеют маркировку вида 6x3. Процессоры первоначально будут иметь частоту от 3,0 ГГц до 3,8 ГГц. Более подробно о причине выхода Cedar Mill рекомендуется читать здесь .

Ядро Cedar Mill является последним в линейке Pentium 4. Следующие поколения процессоров, в частности Conroe, будут продвигаться под новым брэндом, название которого, пока, не анонсировано.

Tejas, Jayhawk и другие

Intel возлагала на архитектуру NetBurst большие надежды. В 2001-2003 в роадмэпах Intel встречались такие ядра, как Tejas, который должен был использовать шину 1066 МГц и работать на частотах от 4,4 до 9,2 ГГц и должен был бы быть поступить в продажу во второй половине 2004 года и называться Pentium 6. Nehalem, как предполагалось, этот процессор должен был использовать системную шину 1200 МГц и работать на частотах свыше 10 ГГц, и должен был поступить в продажу в 2005 году. Jayhawk, процессор серии Xeon, который должен был иметь кэш L1 для данных объемом 24 Кб и для 16 тысяч микроопераций. Однако все эти процессоры в 2004 году были отменены.

Intel предполагала с помощью процессоров основанных на архитектуре NetBurst достичь частоты в 10ГГц, но, не дойдя и до 4 ГГц, эта архитектура столкнулась с неразрешимыми до сих пор (и похоже уже никогда) тепловыми проблемами. Данная проблема подтолкнула Intel к разработке новой архитектуры и к закрытию всех проектов по разработке ядер на архитектуре NetBurst.

Взглянув назад, Pentium 4 оставляет двойственное впечатление. С одной стороны это был одни из самых популярных процессоров, его продвижение в , и, как следствие, огромная популярность в народе, позволили Intel надолго занять большую часть рынка. С другой стороны Pentium 4 имел не самую удачную архитектуру. Он так ни разу и не закрепил своё лидирующее положение в плане производительности, по уровню TDP (тепловыделение) он практически всегда проигрывал конкурентным процессорам AMD Athlon, впрочем также, как и по стоимости. А архитектура Pentium III, которую когда-то Intel посчитала менее перспективной, чем NetBurst вновь появилась в процессорах .

Технические характеристики различных ядер

Данные относящиеся ко всем моделям

  • Разрядность : 32
  • Разрядность внешней шины: 128

Willamette

  • Дата анонса первой модели: 20 ноября 2000 года
  • Тактовые частоты (ГГц): 1,3; 1,4; 1,5; 1,6; 1,7; 1,8; 1,9; 2,0
  • Эффективная частота системной шины (FSB) (МГц): 400
  • Размер кэша L2(Кбайт): 256
  • Напряжение питания: 1,7 В или 1,75 В
  • Количество транзисторов (млн.): 42
  • Площадь кристалла (кв. мм): 217
  • Максимальное TDP (расчетное тепловыделение): 75,3 Вт
  • Техпроцесс (нм): 180
  • Разъём: Socket 423, позже Socket 478
  • Корпус: 423-контактный FC-PGA2 или 478-контактный mPGA
  • Поддерживаемые технологии: IA32, SSE2

Northwood

  • Дата анонса первой модели: 7 августа 2001 года
    • Процессоры с частотой FSB равной 400МГц: 1,6; 1,8; 2,0; 2,2; 2,4; 2,5; 2,6; 2,8
    • Процессоры с частотой FSB равной 533МГц: 2,26; 2,4; 2,53; 2,67; 2,8; 3,06
    • Процессоры с частотой FSB равной 800МГц: 2,4; 2,6; 2,8; 3,0; 3,2; 3,4
  • Эффективная частота системной шины (FSB) (МГц): 400, 533, 800
  • Размер кэша L1: 8Кбайт (для данных)+12 тысяч операций
  • Размер кэша L2(Кбайт): 512
  • Напряжение питания: 1,475-1,55 (в зависимости от модели)
  • Количество транзисторов (млн.): 55
  • Площадь кристалла (кв. мм): 146, позже 131
  • Максимальное TDP (расчетное тепловыделение): 89 Вт
  • Техпроцесс (нм): 130
  • Разъём: Socket 478
  • Корпус: 478-контактный mPGA
  • Поддерживаемые технологии: IA32, MMX, SSE, SSE2, HT (не все модели)

Серия процессоров Intel Pentium 4 является наиболее удачной, если сравнивать с другими модификациями разработчика, так как на протяжении многих лет работы было доказано право на ее существование. В представленной статье можно узнать о том, чем отличаются данные процессоры, ознакомиться с их техническими характеристиками.


Благодаря результатам проведенного тестирования и отзывам можно определиться с выбором.

Гонка за частотами

Поколения процессоров постоянно сменяются одно за другим за счет гонке разработчиков за частотами. Конечно, появились и новые технологии, однако были не на первом плане. Таким образом, не только пользователи, но и производители прекрасно понимали, что в один прекрасный день будет достигнута эффективная частота процессора. Это произошло после выхода в свет четвёртого поколения Intel Pentium.

Частота функционирования одного ядра в 4 GHz стала пределом. Это произошло по той причине, что кристаллу для работы необходимо было много электроэнергии. Таким образом, рассеиваемая мощность в форме колоссального тепловыделения поставила под сомнение функционирование всей системы. Дальнейшие модификации процессоров Intel и аналоги соперников стали производиться в районе 4 ГГц. Следует также упомянуть про технологии, в которых использовалось нескольких ядер, а также о внедрении специальных инструкций, способных оптимизировать работу по обработке данных.

Первый блин комом

В области высоких технологий монополия на рынке не привела ни к чему хорошему. Это подтверждают многочисленные производители электроники, которые смогли убедиться в этом на собственном опыте. Но компании Intel и Rambus приняли решение хорошо заработать. В результате был выпущен совместный продукт, подающий большие надежды. Таким образом, свет увидел первый процессор Intel Pentium 4, работающий на Socket 423 и на достаточно высокой скорости общался с оперативной памятью Rambus. В результате многие пользователи захотели стать обладателями этого быстрого компьютера. Правда, эти две компании так и не стали монополистами на рынке.

Этому стало помехой открытие двухканального режима памяти. Результаты проведенного тестирования показали высокий прирост производительности. Таким образом, новой технологией сразу заинтересовались все разработчики компьютерных комплектующих. А Что касается первого процессора Pentium 4, он и сокет 423 стали историей, так как производителем не была обеспечена платформа возможностью модернизации. На сегодняшний день комплектующие под данную платформу являются востребованными. Оказывается, несколько государственных предприятий закупили сверхбыстрые компьютеры. Таким образом, замена комплектующих несколько дешевле полного апгрейда.

Шаг в правильном направлении

Большинство обладателей персональных компьютеров, играющих в игры и предпочитающих работать с документацией и смотреть мультимедиа контент, имеют установленный Intel Pentium 4 (Socket 478). Многие тесты, которые были проведены профессионалами и энтузиастами, свидетельствуют о том, что мощности этой платформы вполне хватает для выполнения всех задач, поставленных перед рядовым пользователем. Такая платформа задействует две модификации ядер:

Willamette;
Prescott.

Их характеристики свидетельствуют о том, что отличия между двумя процессорами небольшие. Последняя модификация предусматривает поддержку 13 новых инструкций, предназначенных для оптимизации данных, которые получили краткое название SSE3. Частотный диапазон функционирования кристаллов пребывает в промежутке 1,4-3,4 ГГц, что вполне удовлетворяет требования рынка. Разработчик пошел на риск и ввел дополнительную ветку процессоров под сокет 478. Данные устройства должны были привлечь внимание ценителей игр и оверлокеров. Новая серия стала называться Intel Pentium 4 CPU Extreme Edition.

Плюсы и минусы 478 сокета

Отзывы ИТ-специалистов свидетельствуют о том, что процессор Intel Pentium 4, который функционирует на платформе 478 сокета, до сих пор считается востребованным. Далеко не каждый пользователь может позволить себе модернизацию, требующую покупки трёх базовых комплектующих. Стоит отметить, что для решения многих задач, предназначенных для улучшения производительности всей системы, стоит просто установить более мощный кристалл. Хорошо, что вторичный рынок ими переполнен, так как процессор долговечнее даже материнской платы.

Если разрабатывать апгрейд, первостепенное внимание следует уделить наиболее мощным представителям этой категории Extreme Edition, которые сегодня показывают высокие результаты при проведении проверки на производительность. В качестве минусов процессоров под Socket 478 стоит выделить рассеиваемую мощность, требующую достойного охлаждения. Таким образом, к расходам пользователя добавляется и потребность покупки достойного кулера.

Процессоры по низкой стоимости

Наверняка, многие пользователи сталкивались с моделями процессоров Intel Pentium 4, представленными на рынке. Они имеют в маркировке надпись Celeron. Данные устройства являются младшей линейкой агрегатов, которые обладают меньшей мощностью благодаря уменьшению инструкций, а также отключения блоков внутренней памяти микропроцессора (кэш). Intel Celeron предусмотрен для пользователей, которым важна в первую очередь стоимость компьютера, а не его производительность. Многие владельцы подобных устройств высказывают мнение, что младшая линейка процессоров считается отбраковкой в ходе производства кристаллов Intel Pentium 4.

Это предположение возникло на рынке в 1999 году, когда некоторые энтузиасты доказали, что Pentium 2 и его младшая модель Celeron представляют собой один и тот же процессор. Правда, за прошлые годы ситуация сильно изменилась. Теперь разработчик обладает отдельной линией по выпуску сравнительно дешевого устройства, предназначенного для нетребовательных покупателей. Кроме того, стоит помнить о том, что существует еще конкурент AMD, претендующий на вытеснение компании Intel с рынка. Таким образом, все ценовые ниши должны быть заняты высококачественной продукцией.

Новый виток эволюции

Большинство специалистов, работающих в области компьютерных технологий, имеют мнение, что именно возникновение на рынке процессора Intel Pentium 4 Prescott ознаменовало начало эпохи устройств с несколькими ядрами, а также завершило гонку за гигагерцами. С внедрением новых технологий разработчику потребовалось перейти на сокет 775, который и позволил раскрыть потенциал персональных компьютеров в работе с программами и динамическими играми, нуждающимися в больших объемах ресурсов.

Данные статистики свидетельствуют о том, что более 50% всех устройств, существующих на планете, способны работать на легендарном разъёме Socket 775, представленном компанией Intel. Выход процессора Intel Pentium D вызвал ажиотаж на рынке, так как у разработчика на одном ядре получалось запустить два потока инструкций, создавая тем самым прообраз двухъядерного устройства.

Данная технологи стала называться Hyper-threading. На сегодняшний день она является передовым решением в процессе производства кристаллов, обладающих высокой мощностью. Не стала останавливаться на достигнутом компания Intel и презентовала технологии Dual Core, Core 2 Duo и Core 2 Quad, имеющие на аппаратном уровне по несколько микропроцессоров на одном кристалле.

Двуликие процессоры

Если взять ориентир на критерий «цена-качество», то в преимуществе оказываются процессоры, имеющие два ядра. Они отличаются такими важными характеристиками, как низкая себестоимость и высокая производительность. Микропроцессоры Intel Pentium Dual Core и Core 2 Duo считаются наиболее продаваемыми в мире. Основное отличие заключается в том, что последний обладает двумя физическими ядрами, работающими независимо друг от друга. Что касается процессора Dual Core, он выполнен в виде двух контроллеров, установленных на одном кристалле, совместная работа которых неразрывно связана между собой.

Правда, частотный диапазон устройств, обладающих двумя ядрами, слегка занижен и находится в промежутке 2-2,66 ГГц. Основная проблема заключается в рассеиваемой мощности кристалла. Он довольно сильно нагревается на повышенных частотах. В качестве примера можно привести восьмую линейку Intel Pentium D (D820-D840). Они первыми получили два раздельных ядра, а также рабочие частоты, превышающие 3 ГГц. Потребляемая мощность данных процессоров достигает около 130 Вт.

Перебор с четырьмя ядрами

Усовершенствованные устройства, имеющие четыре ядра ядрами Intel(R) Pentium(R) 4 были рассчитаны на потребителей, которые стремятся приобрести комплектующие с запасом на будущее. Но рынок программного обеспечения вдруг остановился. Таким образом, разработка, тестирование, а также внедрение приложений осуществляется для оборудования, которые имеют одно или два ядра максимум. Что же делать с системами, которые обладают 6, 8 и более микропроцессорами?

Это обыкновенный маркетинговый ход, который ориентирован на потенциальных покупателей, желающих приобрести компьютер или ноутбук самой высокой мощности, существующей в мире. Можно провести аналогию с мегапикселями на фотоаппарате – лучшим оказывается не тот, на котором написано 20 Мп, а устройство с большей матрицей и фокусным расстоянием. В процессорах значение имеет набор инструкций, обрабатывающиеся программным кодом приложения. Они и выдают результат пользователю.

Таким образом, программисты должны оптимизировать этот ход, чтобы микропроцессор его без проблем и с высокой скоростью мог обработать. Стоит отметить, что слабых компьютеров на рынке много, поэтому производителям становится выгодно разрабатывать нересурсоёмкие программы. Из этого можно сделать вывод, что большая мощность компьютера на этом этапе эволюции не требуется.

Советы по модернизации

Обладателям процессора Intel Pentium 4 (775 сокет), которые хотят провести модернизацию с минимальными затратами, рекомендуется посмотреть в сторону вторичного рынка. Сначала необходимо ознакомиться с техническими характеристиками материнской платы, установленной в системе. Совершить это легко на официальном сайте разработчика. Там следует найти раздел «поддержка процессоров». Затем в средствах массовой информации нужно отыскать таблицу производительности процессоров, а после этого сравнить ее с характеристиками материнской платы, отобрав несколько оптимальных вариантов. Также необходимо изучить отзывы по выбранным устройствам.

Затем предлагается приступить к поиску требуемого процессора, который уже был в употреблении. Для большинства платформ, где осуществляется поддержка работы микропроцессоров с четырьмя ядрами, желательно устанавливать Intel Core Quad 6600. Когда система способна работать лишь с двухъядерными кристаллами, следует найти серверный вариант Intel Xeon или инструмент, предназначенный для оверлокера Intel Extreme Edition. Их цена на рынке пребывает в промежутке 800-1000 рублей, что значительно дешевле любого апгрейда.

Рынок мобильных устройств

Кроме стационарных компьютеров, процессоры Intel Pentium 4 могут быть установлены на ноутбуки. Для этого разработчики предусмотрели отдельную линейку, которая в собственной маркировке содержала букву «М». Что касается характеристик мобильных процессоров, они были аналогичны стационарным компьютерам. Правда, наблюдался заниженный частотный диапазон. Таким образом, наибольшей мощностью среди процессоров для ноутбуков обладает Pentium 4M 2,66 ГГц. Хотя, с развитием платформ в мобильных версиях настолько все напутано, что даже сам разработчик Intel до сегодняшнего дня не предоставил дерево развития процессоров на собственном официальном сайте.

С применением 478-контактной платформы в ноутбуках компания изменяла только технологию обработки процессорного кода. Как результат, на одном сокете получается развести множество процессоров. Наибольшей популярностью, о чем свидетельствуют данные статистики, пользуется кристалл Intel Pentium Dual Core. Стоит отметить, что он является самым дешёвым устройством в производстве, а его рассеиваемая мощность достаточно мала, если сравнивать с аналогами.

Гонка за энергосбережением

Следует заметить, что для компьютеров потребляемая процессором мощность не считается критичной для системы. В ситуации с ноутбуком дело обстоит несколько иначе. В данном случае устройства Intel Pentium 4 вытеснены менее энергозависимыми микропроцессорами. Если пользователь ознакомится с тестами мобильных процессоров, он сможет убедиться, что по производительности старый Core 2 Quad, входящий в линейку Pentium 4, не особо отстаёт от современного кристалла Core i5. Что касается энергопотребления последнего, оно в 3,5 раза меньше. Таким образом, различие отражается на автономности работы устройства. Если проследить за рынком мобильных процессоров, легко определить, что разработчик снова вернулся к технологиям, которые были популярны в прошлом десятилетии.

К началу 2004 года, компании Intel удалось успешно перевести свои процессоры на новое ядро Prescott. Правда само ядро не может похвастаться улучшенными характеристиками. В частности по производительности в большинстве приложений оно уступает ядру Northwood (в некоторых - до 15%), а по тепловыделению значительно превосходит его. Но проблема повышенного потребления энергии свойственна степпингу C0. А в последнее время, Intel перешел на выпуск процессоров на новом степпинге - D0, в котором эта проблема частично решена. А окончательно она будет решена в следующем степпинге - E0, в котором появится механизм снижения частоты во время простоя процессора. Но пока, основным степпингом является D0, на котором производятся процессоры как Socket478, так и Socket LGA775 форм-фактора.


Из-за чего появилась потребность в новом сокете? Основная версия - более равномерное распределение потребляемой мощности между различными блоками процессорного ядра. Кроме того, в ближайшее время Intel введет несколько новых технологий, таких как EM64T (64-битное расширение команд), NX-bit (дополнительные возможности в области защиты информации), а также усовершенствованный механизм энергосбережения. Вполне возможно, для их поддержки и понадобятся дополнительные контакты. Кстати, по предварительной информации все эти технологии уже присутствуют в сегодняшних процессорах Prescott, но в заблокированном виде.

Еще одна новая технология, которая должна появится в ближайшее время (ориентировочно - в степпинге E0) это SpeedStep. Благодаря ей, процессор во время простоя будет снижать тактовую частоту, и как следствие, выделять меньше тепла. И если снижение частоты будет серьезным (например в 2 раза), и будет сопровождаться снижением напряжения Vcore, то возможно кардинальное уменьшение типичного уровня тепловыделения. Напомню, что процессоры AMD Athlon64 уже сейчас поддерживают аналогичную технологию - Cool"n"Quiet, которая путем снижения частоты и напряжения более чем в 2 раза снижает уровень тепловыделения (35W против 89W подробности в обзоре AMD Athlon64).

И опять возвращаемся к проблеме потребления энергии. Специалисты Intel оценивают технологический потенциал ядра Prescott - 4Ггерц. А на этой частоте максимальное тепловыделение может достигать отметки в 150W. Поэтому использование нового сокета, нового дизайна модуля питания и новой конструкции охлаждающей системы, предназначено для реализации этого потенциала.

Компания Intel решила не ограничиваться простой сменой процессорного сокета. Фактически, на суд публике представлена совершенно новая платформа: поддержка памяти DDR2, поддержка шины PCI Express, а также расширенные возможности по подключению периферии. Для этого были выпущены чипсеты i925X и i915P. Подробно на них мы останавливаться не будем, потому что уже тщательно разобрали возможности i925X в обзоре платы Abit AA8 DuraMAX .

Возвращаемся к процессорам - для сокета LGA775 компания Intel анонсировала следующие процессоры:

Celeron D 325 2.53Ггерц 79$
Celeron D 330 2.66Ггерц 83$
Celeron D 335 2.8Ггерц 103$
Celeron D 340 2.93Ггерц 117$ *

Pentium4 520 2.8Ггерц 163$
Pentium4 530 3.0Ггерц 178$
Pentium4 540 3.2Ггерц 218$
Pentium4 550 3.4Ггерц 278$
Pentium4 560 3.6Ггерц 417$
Pentium4 570 3.8Ггерц 637$ *

Жирным шрифтом выделен "процессорный номер", который предназначен для четкого деления процессоров на классы. Фактически это означает отход от устаревшей системы классифицирования процессоров по тактовой частоте.

После перехода процессоров Pentium4 на более скоростную 1066Мгерцовую шину, соответствующие модели скорее всего составят "шестую" серию, и займут промежуточную позицию между "пятой" и "седьмой" серией (в "седьмую" серию входят процессоры Pentium4 Extreme Edition c 2Мбайтным кешем L3).

Что касается процессоров Celeron, то стоит отметить их возросшие характеристики. В частности объем кэш-памяти L2 увеличился с 128 до 256Кбайт, а частота системной шины возросла с 100 до 133мгерц (QPB: с 400 до 533Мгерц соответственно).

Итак, посмотрим что собой представляет процессор Pentium4 540.

Утилита CPU-Z правильно определила все параметры процессора, включая степпинг (D0). Что касается внешнего вида, то для постоянных читателей здесь нет никаких неожиданностей.



Слева Socket478, справа LGA775


А для тех, кто впервые видит процессор LGA775 прошу обратить внимание на полное отсутствие ножек.


Теперь ножки находятся непосредственно на процессорном сокете (все этапы установки процессора вы можете просмотреть в предварительном обзоре платформы LGA775). Кстати, практически сразу после появления первых образцов системных плат с LGA775 многие обозреватели стали жаловаться на хрупкость и ненадежность процессорного сокета. Самой распространенной проблемой является то, что после нескольких установок процессора в сокет, ножки деформируются (или сгибаются).

Естественно после получения платформы LGA775, я устанавливал процессор с особой аккуратностью. Однако никаких трудностей в процессе установки выявлено не было. Более того, по моему мнению проблему с ненадежностью сокета носит несколько преувеличенный характер (с другой стороны "кривыми" руками можно поломать все что угодно:). В любом случае как только к нам попадет первая "бюджетная" плата с LGA775, мы проведем своеобразное "стресс-тестирование" сокета LGA775 на многократную установку процессора.

Лучшие статьи по теме