Как настроить смартфоны и ПК. Информационный портал
  • Главная
  • Интересное
  • Чем характеризуются каналы передачи данных. Технические каналы передачи информации

Чем характеризуются каналы передачи данных. Технические каналы передачи информации

Передача информации по каналу с решающей обратной связью

дипломная работа

1.2.1 Способы передачи информации по каналам связи

Передача информации с повторением (накоплением). Такой метод передачи применяют для повышения достоверности при отсутствии обратного канала, хотя нет принципиальных ограничений для его использования и при наличии обратной связи. Иногда такой метод классифицируют как прием сообщений с накоплением. Сущность метода заключается в передаче одного и того же сообщения несколько раз, запоминании принятых сообщений, сравнении их поэлементно и составлении сообщения, включая элементы, выбранные «по большинству». Предположим, что трижды передана одна и та же кодовая комбинация 1010101. Во всех трех передачах она подверглась воздействию помех и была искажена:

Приемник поразрядно сравнивает три принятых символа и проставляет те символы (под чертой), количество которых в данном разряде преобладает.

Существует и другой метод передачи информации с накоплением, при котором производится не посимвольное сравнение, а сравнение всей комбинации в целом. Этот метод проще реализуется, но обеспечивает более плохие результаты.

Таким образом, высокая помехоустойчивость метода передачи информации с повторением (накоплением) основана на том, что сигнал и помехи в канале не зависят друг от друга и изменяются по разным законам (сигнал периодичен, а помеха случайна), поэтому повторяющаяся комбинация в каждой передаче, как правило, будет искажаться по-разному. Вследствие этого на приеме накопление, то есть суммирование сигнала, возрастает пропорционально числу повторений, тогда как сумма помехи возрастает по другому закону. Если считать, что помехи и сигнал независимы, то суммируются средн-ие квадраты и средний квадрат суммы возрастает пропорционально первойстепени. Поэтому при n повторениях отношение сигнал/помеха увеличивается в n раз, причем это происходит без увеличения мощности сигнала. Однако это достигается за счет усложнения аппаратуры и возрастания времени передачи или полосы частот в случае, если сигнал передается на нескольких частотах одновременно во времени. Кроме того, при зависимых ошибках и пачках ошибок помехоустойчивость системы снижается.

Передача информации с обратной связью. Помехоустойчивость передачи без обратной связи (ПБОС) обеспечивается следующими способами: помехоустойчивым кодированием, передачей с повторением, одновременной передачей по нескольким параллельным каналам. В ПБОС применяются обычно коды с исправлением ошибок, что связано с высокой избыточностью и усложнением аппаратуры. Передача с обратной связью (ПОС) во многом устраняет указанные недостатки, так как позволяет применять менее помехоустойчивые коды, обладающие, как правило, меньшей избыточностью. В частности, можно использовать коды с обнаружением ошибок. Преимуществом обратного канала является также возможность контроля работоспособности объекта, принимающего информацию.

При ПОС вводят понятие прямого канала, т.е. канала от передатчика к приемнику, например передается сигнал команды с пункта управления (ПУ) на контролируемый пункт (КП). Обратным каналом при этом явится передача сообщения с КП на ПУ о принятии сигнала команды, причем по обратному каналу могут передаваться как сообщение только о том, что сигнал принят на входе КП (в этом случае контролируется лишь прохождение сигнала по каналу связи), так и сведения о полном выполнении команды. Возможна и обратная связь, дающая сведения о поэтапном прохождении сигнала команды по тракту приема.

Рассмотрим отдельные виды передачи с обратной связью.

Передача с информационной обратной связью (ИОС). Если сообщение передается в виде непомехозащищенного кода, то в кодирующем устройстве данный код может быть преобразован в помехозащищенный. Однако, поскольку в этом обычно нет необходимости, кодирующее устройство представляет собой регистр для превращения простого параллельного кода в последовательный. Одновременно c передачей по прямому каналу сообщение запоминается в накопителе на передатчике (рис.1.1а). На контролируемом пункте принятое сообщение декодируется и также запоминается в накопителе. Однако получателю сообщение передается не сразу: сначала оно поступает через обратный канал на пункт управления. В схеме сравнения ПУ происходит сравнение принятого сообщения с переданным. Если сообщения совпадают, то формируется сигнал «Подтверждение» и происходит передача последующих сообщений (иногда перед посылкой последующего сообщения на КП сначала посылается сигнал «Подтверждение» о том, что предыдущее сообщение было принято верно и с накопителя можно передать информацию получателю). При несовпадении сообщений, что свидетельствует об ошибке, формируется сигнал «Стирание». Этот сигнал запирает ключ для прекращения передачи очередного сообщения и посылается на КП для уничтожения записанного в накопителе сообщения. После этого с ПУ производится повторная передача сообщения, записанного в накопителе.

Рис.1.1а. Способ передачи информации с ИОС.

В системах с ИОС ведущая роль принадлежит передающей части, так как она определяет наличие ошибки, приемник только информирует передатчик о том, какое сообщение им получено. Имеются различные варианты передачи с ИОС. Так, существуют системы с ИОС, в которых передача сигналов происходит непрерывно и прекращается лишь при обнаружении ошибки: передатчик посылает сигнал «Стирание» и повторяет передачу. Системы с ИОС, в которых по обратному каналу передается вся информация, переданная на КП, называются системами с ретрансляционной обратной связью. В некоторых системах с ИОС передается не вся информация, а только некоторые характерные сведения о ней (квитанции). Например, по прямому каналу передаются информационные, а по обратному каналу -- контрольные символы, которые будут сравниваться на передатчике с предварительно записанными контрольными символами. Имеется вариант, в котором после проверки принятого по обратному каналу сообщения и обнаружения ошибки передатчик может либо повторить его (дублирование сообщения), либо послать дополнительную информацию, необходимую для исправления (корректирующая информация). Число повторений может быть ограниченным или неограниченным.

Обратный канал используют для того, чтобы определить, необходима ли повторная передача информации. В системах с ИОС повышение достоверности передачи достигается путем повторения информации только при наличии ошибки, тогда как в системах без обратной связи (при передаче с накоплением) повторение осуществляется независимо от искажения сообщения. Поэтому в системах с ИОС избыточность информации значительно меньше, чем в системах с ПБОС: она минимальна при отсутствии искажений и увеличивается при ошибках. В системах с ИОС качество обратного канала должно быть не хуже качества прямого во избежание искажений, которые могут увеличить число повторений.

Передача с решающей обратной связью (РОС). Переданное с передатчика по прямому каналу сообщение принимается на приемнике (рис.1.1б), где оно запоминается и проверяется в декодирующем устройстве (декодере). Если ошибок нет, то из накопителя сообщение поступает к получателю информации, а через обратный канал на передатчик подается сигнал о продолжении дальнейшей передачи (сигнал продолжения). Если ошибка обнаружена, то декодер выдает сигнал, стирающий информацию в накопителе. Получателю сообщение не поступает, а через обратный канал на передатчик подается сигнал о переспросе или повторении передачи (сигнал повторения или переспроса). На передатчике сигнал повторения (иногда называемый решающим сигналом) выделяется приемником решающих сигналов, а переключающее устройство отключает вход кодера от источника информации и подключает его к накопителю, что позволяет повторить переданное сообщение. Повторение сообщения может происходить несколько раз до его правильного приема.

Рис.1.1б. Способ передачи информации с РОС.

При передаче с РОС ошибка определяется приемником. Для этого передаваемое сообщение должно кодироваться обязательно помехозащищенным кодом, что позволяет приемнику выделить разрешенную комбинацию (сообщение) из неразрешенных. Это означает, что передача с РОС осуществляется с избыточностью. Достоверность передачи в системах РОС определяется выбором кода и защитой решающих сигналов повторения и продолжения. Последнее не представляет особых трудностей, так как эти сигналы несут одну двоичную единицу информации и могут передаваться достаточно помехоустойчивым кодом.

Системы с РОС, или системы с переспросом, подразделяют на системы с ожиданием решающего сигнала и системы с непрерывной передачей информации.

В системах с ожиданием передача новой кодовой комбинации или повторение переданной происходит только после поступления на передатчик сигнала запроса.

В системах с непрерывной передачей происходит непрерывная передача информации без ожидания сигнала запроса. Скорость передачи при этом выше, чем в системах с ожиданием. Однако после обнаружения ошибки по обратному каналу посылается сигнал переспроса и за время прихода на передатчик с последнего уже будет передано какое-то новое сообщение. Поэтому системы с непрерывной передачей необходимо усложнять соответствующей блокировкой приемника, чтобы он не принимал информацию после обнаружения ошибки.

Для сравнения эффективности системы без обратной связи, в которой применяется код Хэмминга с исправлением одной ошибки, и системы с РОС, использующей простой код, вводят понятие коэффициента эффективности. Этот коэффициент учитывает уменьшение вероятности ошибочного приема и затраты на его достижение, выигрыш в защите от ошибок (в случае применения указанных кодов), относительное снижение скорости передачи и схемную избыточность, связанные с использованием разных кодов. Итоговое сравнение показало, что в отличие от системы без обратной связи, использующей сложный код, система с РОС дает выигрыш в 5,1 раза. Высокая эффективность систем с РОС обеспечила их широкое распространение.

Сравнительный анализ достоверности передачи систем с ИОС и РОС, показал, что:

1) системы с ИОС и РОС обеспечивают одинаковую достоверность передачи при одинаковых суммарных затратах энергии сигналов в прямом и обратном каналах при условии, что эти каналы симметричны и имеют одинаковый уровень помех;

2) системы с ИОС обеспечивают более высокую достоверность передачи, чем Системы с РОС при относительно слабых помехах в обратном канале в отличие от прямого. При отсутствии помех в обратном канале системы с ИОС обеспечивают безошибочную передачу сообщений по основному каналу;

3) при сильных помехах в обратном канале более высокую достоверность обеспечивают системы с РОС;

4) при пачках ошибок в прямом и обратном каналах более высокую достоверность обеспечивают системы с ИОС.

1.1 Акустическая информация К защищаемой речевой (акустической) информации относится информация, являющаяся предметом собственности и подлежащая защите в соответствии с требованиями правовых документов или требованиями...

Защита акустической (речевой) информации от утечки по техническим каналам

Защита акустической (речевой) информации от утечки по техническим каналам

Генераторы пространственного зашумления Генератор шума ГРОМ-ЗИ-4 предназначен для защиты помещений от утечки информации и предотвращения съема информации с персональных компьютеров и локальных вычислительных сетей на базе ПК...

Методы защиты информации

Методы защиты информации в телекоммуникационных сетях

Угрозу отождествляют обычно либо с характером (видом, способом) дестабилизирующего воздействия на информацию, либо с последствиями (результатами) такого воздействия. Однако такого рода термины могут иметь много трактовок...

Методы сбора и обработки цифровых сигналов

Передача данных -- физический перенос данных (цифрового битового потока) в виде сигналов от точки к точке или от точки к нескольким точкам средствами электросвязи по каналу передачи данных, как правило...

Моделирование объекта защиты

3.1 Утечка информации через строительные конструкции и инженерно-технические системы Для обеспечения защиты помещения от данной угрозы можно применить как метод пассивной защиты (звукопоглощающие материалы)...

Определение состава системы передачи информации

Сигнал на выходе аппаратуры ПТИ представляет собой, как правило, сигнал кодоимпульсной формы, спектр частот которого в общем случае бесконечный...

Организация работ по строительству волоконно-оптической линии связи (ВОЛС)

Возможность передачи информации по волоконно-оптическим линиям появилась благодаря переложению квантовой теории света на его распространение в прозрачных однородных средах...

3.1 Анализ возможности передачи конфиденциальной информации по квантовым каналам связи При переходе от сигналов, где информация кодируется импульсами, содержащими тысячи фотонов, к сигналам, где среднее число фотонов...

Передача информации по квантовым каналам связи

Примером протокола исправления ошибок является способ коррекции ошибок, состоящий в том, что блок данных, который должен быть согласован между пользователями, рассматривается как информационный блок некоторого кода...

Проектирование и программная реализация комплексной системы стрелочных переводов

Канал связи представляет собой тракт связи, который начинается с информационного источника, проходит через все этапы кодирования и модулирования, передатчик, физический канал...

Проектирование магистральной волоконно-оптической системы передачи с повышенной пропускной способностью

Развитие телекоммуникаций идет ускоренными темпами. Получили широкое развитие современные цифровые технологии передачи данных, к которым можно отнести ATM, Frame Relay, IP, ISDN, PCM, PDH, SDH и WDM. Причем такие технологии, как АТМ, ISDN, PCM, PDH...

Расчет надежности работы атмосферной оптической линии связи

В данной главе рассматривается технология лазерной сети связи, а так же её преимущества, такие как экономичность; низкие эксплуатационные расходы; высокая пропускная способность и качество цифровой связи...

Контрольная

Коммуникация, связь, радиоэлектроника и цифровые приборы

Канал связи - система технических средств и среда распространения сигналов для передачи сообщений (не только данных) от источника к получателю (и наоборот). Канал связи, понимаемый в узком смысле (тракт связи), представляет только физическую среду распространения сигналов, например, физическую линию связи.

Вопрос №3 «Каналы связи. Классификация каналов связи. Параметры каналов связи. Условие передачи сигнала по каналу связи».


Канал связи

Канал связи — система технических средств и среда распространения сигналов для передачи сообщений (не только данных) от источника к получателю (и наоборот). Канал связи, понимаемый в узком смысле (тракт связи ), представляет только физическую среду распространения сигналов, например, физическую линию связи.

Канал связи предназначен для передачи сигналов между удаленными устройствами. Сигналы несут информацию, предназначенную для представления пользователю (человеку), либо для использования прикладными программами ЭВМ.

Канал связи включает следующие компоненты:

  1. передающее устройство;
  2. приемное устройство;
  3. среду передачи различной физической природы (Рис.1) .

Формируемый передатчиком сигнал, несущий информацию, после прохождения через среду передачи поступает на вход приемного устройства. Далее информация выделяется из сигнала и передается потребителю. Физическая природа сигнала выбирается таким образом, чтобы он мог распространяться через среду передачи с минимальным ослаблением и искажениями. Сигнал необходим в качестве переносчика информации, сам он информации не несет.

Рис.1. Канала связи (вариант №1)

Рис.2 Канал связи (вариант №2)

Т.е. это (канал) — техническое устройство (техника+среда).


Классификация

Классификаций будет приведено ровно три типа. Выбирайте на вкус и цвет:

Классификация №1:

Существует множество видов каналов связи, среди которых наиболее часто выделяют каналы проводной связи (воздушные, кабельные, световодные и др.) и каналы радиосвязи (тропосферные, спутниковые и др.). Такие каналы в свою очередь принято квалифицировать на основе характеристик входного и выходного сигналов, а также по изменению характеристик сигналов в зависимости от таких явлений, происходящих в канале, как замирания и затухание сигналов.

По типу среды распространения каналы связи делятся на:

  • проводные;
  • акустические;
  • оптические;
  • инфракрасные;
  • радиоканалы.

Каналы связи также классифицируют на:

  • непрерывные (на входе и выходе канала – непрерывные сигналы),
  • дискретные или цифровые (на входе и выходе канала – дискретные сигналы),
  • непрерывно-дискретные (на входе канала–непрерывные сигналы, а на выходе–дискретные сигналы),
  • дискретно-непрерывные (на входе канала–дискретные сигналы, а на выходе–непрерывные сигналы).

Каналы могут быть как линейными и нелинейными , временными и пространственно-временными .

Возможна классификация каналов связи по диапазону частот .

Системы передачи информации бывают одноканальные и многоканальные . Тип системы определяется каналом связи. Если система связи построена на однотипных каналах связи, то ее название определяется типовым названием каналов. В противном случае используется детализация классификационных признаков.

Классификация №2 (более подробная) :

  1. Классификация по диапазону используемых частот
  • Километровые (ДВ) 1-10 км, 30-300 кГц;
  • Гектометровые (СВ) 100-1000 м, 300-3000 кГц;
  • Декаметровые (КВ) 10-100 м, 3-30 МГц;
  • Метровые (МВ) 1-10 м, 30-300 МГц;
  • Дециметровые (ДМВ) 10-100 см, 300-3000 МГц;
  • Сантиметровые (СМВ) 1-10 см, 3-30 ГГц;
  • Миллиметровые (ММВ) 1-10 мм, 30-300 ГГц;
  • Децимилимитровые (ДММВ) 0,1-1 мм, 300-3000 ГГц.
    1. По направленности линий связи
      • направленные (используются различные проводники):
  • коаксиальные,
  • витые пары на основе медных проводников,
  • волоконнооптические.
    • ненаправленные (радиолинии);
  • прямой видимости;
  • тропосферные;
  • ионосферные
  • космические;
  • радиорелейные (ретрансляция на дециметровых и более коротких радиоволнах).

    1. По виду передаваемых сообщений:
  • телеграфные;
  • телефонные;
  • передачи данных;
  • факсимильные.
    1. По виду сигналов:
  • аналоговые;
  • цифровые;
  • импульсные.
    1. По виду модуляции (манипуляции)
  • с амплитудной модуляцией;
  • с однополосной модуляцией;
  • с частотной модуляцией.
  • В цифровых системах связи :
  • с амплитудной манипуляцией;
  • с частотной манипуляцией;
  • с фазовой манипуляцией;
  • с относительной фазовой манипуляцией;
  • с тональной манипуляцией (единичные элементы манипулируют поднесущим колебанием (тоном), после чего осуществляется манипуляция на более высокой частоте).
    1. По значению базы радиосигнала
  • широкополосные (B>> 1);
  • узкополосные (B»1).

7. По количеству одновременно передаваемых сообщений


8. По направлению обмена сообщений

  • односторонние;
  • двусторонние.
    9. По порядку обмена сообщения
  • симплексная связь — двусторонняя радиосвязь, при которой передача и прием каждой радиостанции осуществляется поочередно;
  • дуплексная связь — передача и прием осуществляется одновременно (наиболее оперативная);
  • полудуплексная связь — относится к симплексной, в которой предусматривается автоматический переход с передачи на прием и возможность переспроса корреспондента.

10. По способам защиты передаваемой информации

11. По степени автоматизации обмена информацией

  • неавтоматизированные — управление радиостанцией и обмен сообщениями выполняется оператором;
  • автоматизированные — вручную осуществляется только ввод информации;
  • автоматические — процесс обмена сообщениями выполняется между автоматическим устройством и ЭВМ без участия оператора.

Классификация №3 (что-то может повторяться):

1. По назначению

Телефонные

Телеграфные

Телевизионные

- радиовещательные

2. По направлению передачи

- симплексные (передача только в одном направлении)

- полудуплексные (передача поочередно в обоих направлениях)

- дуплексные (передача одновременно в обоих направлениях)

3. По характеру линии связи

Механические

Гидравлические

Акустические

- электрические (проводные)

- радио (беспроводные)

Оптические

4. По характеру сигналов на входе и выходе канала связи

- аналоговые (непрерывные)

- дискретные по времени

- дискретные по уровню сигнала

- цифровые (дискретные и по времени и по уровню)

5. По числу каналов на одну линию связи

Одноканальные

Многоканальные

И еще рисунок сюда:

Рис.3. Классификация линий связи.


Характеристики (параметры) каналов связи

  1. Передаточная функция канала : представляется в виде амплитудно-частотной характеристики (АЧХ) и показывает, как затухает амплитуда синусоиды на выходе канала связи по сравнению с амплитудой на ее входе для всех возможных частот передаваемого сигнала. Нормированная амплитудно-частотная характеристика канала показана на рис.4. Знание амплитудно-частотной характеристики реального канала позволяет определить форму выходного сигнала практически для любого входного сигнала. Для этого необходимо найти спектр входного сигнала, преобразовать амплитуду составляющих его гармоник в соответствии с амплитудно-частотной характеристикой, а затем найти форму выходного сигнала, сложив преобразованные гармоники. Для экспериментальной проверки амплитудно-частотной характеристики нужно провести тестирование канала эталонными (равными по амплитуде) синусоидами по всему диапазону частот от нуля до некоторого максимального значения, которое может встретиться во входных сигналах. Причем менять частоту входных синусоид нужно с небольшим шагом, а значит количество экспериментов должно быть большим.

—- отношение спектра выходного сигнала к входному
— полоса пропускания

Рис.4 Нормированная амплитудно-частотная характеристика канала

  1. Полоса пропускания : является производной характеристикой от АЧХ. Она представляет собой непрерывный диапазон частот, для которых отношение амплитуды выходного сигнала к входному превышает некоторый заранее заданный предел, то есть полоса пропускания определяет диапазон частот сигнала, при которых этот сигнал передается по каналу связи без значительных искажений. Обычно полоса пропускания отсчитывается на уровне 0,7 от максимального значения АЧХ. Ширина полосы пропускания в наибольшей степени влияет на максимально возможную скорость передачи информации по каналу связи.
  2. Затухание : определяется как относительное уменьшение амплитуды или мощности сигнала при передаче по каналу сигнала определенной частоты. Часто при эксплуатации канала заранее известна основная частота передаваемого сигнала, то есть та частота, гармоника которой имеет наибольшую амплитуду и мощность. Поэтому достаточно знать затухание на этой частоте, чтобы приблизительно оценить искажения передаваемых по каналу сигналов. Более точные оценки возможны при знании затухания на нескольких частотах, соответствующих нескольким основным гармоникам передаваемого сигнала.

Затухание обычно измеряется в децибелах (дБ) и вычисляется по следующей формуле: , где

— мощность сигнала на выходе канала,

— мощность сигнала на входе канала.

Затухание всегда рассчитывается для определенной частоты и соотносится с длиной канала. На практике всегда пользуются понятием "погонное затухание", т.е. затухание сигнала на единицу длины канала, например, затухание 0.1 дБ/метр.

  1. Скорость передачи : характеризует количество бит, передаваемых по каналу в единицу времени. Она измеряется в битах в секунду — бит/с , а также производных единицах: Кбит/c, Мбит/c, Гбит/с . Скорость передачи зависит от ширины полосы пропускания канала, уровня шумов, вида кодирования и модуляции.
  2. Помехоустойчивость канала : характеризует его способность обеспечивать передачу сигналов в условиях помех. Помехи принято делить на внутренние (представляет собой тепловые шумы аппаратуры ) и внешние (они многообразны и зависят от среды передачи ). Помехоустойчивость канала зависит от аппаратных и алгоритмических решений по обработке принятого сигнала, которые заложены в приемо-передающее устройство. Помехоустойчивость передачи сигналов через канал может быть повышена за счет кодирования и специальной обработки сигнала.
  3. Динамический диапазон : логарифм отношения максимальной мощности сигналов, пропускаемых каналом, к минимальной.
  4. Помехозащищенность: это помехозащищенность, т. е. помехозащищенность.


Условие передачи сигналов по каналам связи.

Канал, по сути, это фильтр. Чтобы сигнал прошел через него без искажений, объем этого канала должен быть больше сигнала или равен ему (см. рис).

Математически условие можно записать так: , где

; (1)

В приведенных формулах

– полоса пропускания канала, или полоса частот, которую канал может пропустить при нормированном затухании сигнала;

– динамический диапазон, равный отношению максимально допустимого уровня сигнала в канале к уровню помех, нормированных для этого типов каналов;

– время, в течение которого канал используется для передачи данных;

– ширину спектра частот сигнала, т. е. интервал по шкале частотного спектра, занимаемый сигналом;

– динамический диапазон, равный отношению средней мощности сигнала к средней мощности помехи в канале;

– длительность сигнала, или время его существования.

Другая форма записи условия (развернутая):

P . S .: Параметр «Объем канала» в некоторых источниках так же указывается, как один из параметров канала связи, но не везде. Математическая формула приведена выше в (1).

Литература

1. http://edu.dvgups.ru/METDOC/ENF/BGD/BGD_CHS/METOD/ANDREEV/WEBUMK/frame/1.htm ;

2. http://supervideoman.narod.ru/index.htm .


А также другие работы, которые могут Вас заинтересовать

67213. Основные направления современной психологии 98.51 KB
Все что происходит внутри человека изучить невозможно то есть человек выступает как черный ящик. Объективно изучать регистрировать можно только реакции внешние действия человека и стимулы ситуации которые эти реакции обусловливают. Основная задача бихевиоризма подчеркивает Уотсон заключается в накоплении наблюдений...
67215. Сознание и самосознание. Свойства сознания 102.02 KB
Определение сознания. Основные признаки сознания. Психологические характеристики сознания человека. Соотношение сознания и бессознательного впервые было изучено в рамках теории и практики психоанализа.
67216. Ощущения и восприятие 79.04 KB
Ощущения и восприятие. Ощущения считаются самыми простыми из всех психических явлений. Способность к ощущениям имеется у всех живых существ обладающих нервной системой. Качество это основная особенность данного ощущения отличающая его от других видов ощущений и варьирующая в пределах данного вида ощущения.
67217. Внимание и память 48.64 KB
Особенности внимания как психического процесса и состояния человека. Определение внимания. Факторы определяющие избирательность и направленность внимания. Функции внимания.
67218. Мышление и интеллект 50.55 KB
Мышление как процесс активного познания и преобразования действительности. Допонятийное и понятийное мышление. Определение понятий. Основные процессы мышления: суждение, умозаключение. Индукция и дедукция. Особенности творческого мышления. Мышление и интеллект.
67220. Темперамент и характер 97.24 KB
Под темпераментом следует понимать индивидуально своеобразные свойства психики определяющие динамику психической деятельности человека которые одинаково проявляются в разнообразной деятельности независимо от ее содержания и в своей взаимной связи характеризуют тип темперамента.
67221. Эмоции и чувства 88.62 KB
В отличие от познавательных процессов, в которых действительность отражается в виде ощущений, восприятий, понятий, мнений, в эмоциях и чувствах объективная реальность отражается в форме переживаний, в ее соответствии или несоответствии потребностям и интересам человека.

Каналы передачи, их классификация и основные характеристики

Основные понятия и определения: канал передачи, его динамический диапазон, эффективно передаваемая полоса частот, время, в течении которого канал предоставлен для передачи первичного сигнала, пропускная способность канала. Основные параметры и характеристики канала. Принципы нормирования отклонения остаточного затухания, частотная характеристика, понятие «шаблона» . Фазо-частотная характеристика. Амплитудная характеристика и различные ее формы. Типовые каналы и их основные характеристики.

Ключевыми понятиями техники телекоммуникационных систем и сетей являются канал передачи и канал электросвязи.

Каналом передачи называется совокупность технических средств и среды распространения, обеспечивающая передачу сигналов электросвязи в определенной полосе частот или с определенной скоростью передачи между оконечными или промежуточными пунктами телекоммуникационных сетей.

По методам передачи сигналов электросвязи различают аналоговые ицифровые каналы.

1) Аналоговые каналы, в свою очередь, подразделяются на непрерывные идискретные в зависимости от изменения информационного параметра сигнала.

2)Цифровые каналы делятся на каналы с использование импульсно-кодовой модуляции (ИКМ ) , каналы с использованиемдифференциальной ИКМ и каналы на основедельта-модуляции . Каналы, в которых на одних участка используются аналоговые, а на других цифровые методы передачи сигналов, называютсясмешанными каналами передачи.

В зависимости от ширины полосы пропускания, в которой передаются сигналы электросвязи, и соответствия параметров каналов установленным нормам, различают аналоговые типовые каналы тональной частоты, типовые первичный, вторичный, третичный и четверичный широкополосные каналы. Типовые каналы передачи сигналов звукового вещания, сигналов изображения и звукового сопровождения телевидения ;

В зависимости от скорости передачи и соответствия параметров каналов установленным нормам различают: основной цифровой канал, первичный, вторичный, третичный, четверичный и пятеричный цифровые каналы ;

По виду среды распространения сигналов электросвязи различают: проводные каналы , организованные по кабельным и, реже, воздушным линиям связи иканалы радиосвязи , организованные по радиорелейным и спутниковым линиям связи.

Каналом электросвязи называется комплекс технических средств и среды распространения, обеспечивающий передачу первичных сигналов электросвязи от преобразователя сообщения в первичный сигнал до преобразователя первичного сигнала в сообщение.

Помимо приведенной классификации, каналы электросвязи подразделяются

По виду передаваемых первичных сигналов (или сообщений) различают телефонные каналы, каналы звукового вещания, телевизионные каналы, теле-

графные каналы иканалы передачи данных ;

По способам организации двусторонней связи различают двухпроводный однополосный канал, двухпроводный двухполосный канал ичетырехпроводный однополосный канал;

По территориальному признаку каналы электросвязи подразделяются на международные, междугородные, магистральные, зоновые и местные .

Рассмотренная классификация каналов передачи и электросвязи (далее просто каналы) соответствует сложившейся практике их организации и разработке требований к их основным параметрам и характеристикам, которые принято увязывать с соответствующими параметрами и характеристиками первичных сигналов.

Канал может характеризоваться тремя параметрами:

1) эффективно передаваемой полосой частот D F к , которую канал способен пропустить с выполнением требований к качеству передачи сигналов;

2) временем Т к , в течение которого канал предоставлен для передачи сигналов или сообщений;

3) динамическим диапазоном D к , под которым понимается отношение вида

где P кмакс – максимальная неискаженная мощность, которая может быть передана по каналу; P кмин – минимальная мощность сигнала, при которой обеспечивается необходимая защищенность от помех.

Очевидно, что передача сигнала с параметрами D F c ,Т с , иD c по каналу с параметрами D F к ,Т к иD к возможна при условии

Произведение трех параметров канала V к = D к × F к × T к называется егоемкостью . Сигнал может быть передан по каналу, если его емкость не менее объема сигнала (см. лекция 2). Если система неравенств (3.2) не выполняется, то возможнадеформация одного из параметров сигнала, позволяющих согласовать его объем с емкостью канала. Следовательно, условие возможности передачи сигнала по каналу можно представить в более общем виде

V к ³ V с . (3.3)

Канал характеризуется защищенностью

, (3.4)

где P п – мощность помех в канале.

Пропускная способность канала описывается следующим выражением

, (3.5)

где P ср – средняя мощность передаваемого по каналу сигнала.

Канал передачи как четырехполюсник

Канал передачи, как совокупность технических средств и среды распространения электрического сигнала, представляет каскадное соединение различных четырехполюсников , осуществляющих фильтрацию, преобразование сигналов, их усиление и коррекцию. Следовательно, канал можно представитьэквивалентным четырехполюсником, параметры и характеристики которого определяют качество передачи сигналов, рис. 3.1.

Рис. 3.1. Канал передачи как четырехполюсник

На рис.3.1 приняты следующие обозначения: 1-1 и 2-2 -входные и выходные зажимы соответственно;I вх (j w ) иI вых (j w ) – комплексные входной и выходной токи;U вх (j w ) иU вых (j w ) – комплексные входное и выходное напряжения;Z вх (j w ) иZ вых (j w ) – комплексные входное и выходное сопротивления (как правило, величины чисто активные и равные, т.е.Z вх = R вх = Z вых = R вых );K (j w ) =U вых (j w ) /U вх (j w ) =К (w е jb (w ) – комплексный коэффициент передачи по напряжению,К (w ) – модуль коэффициента передачи иb (w ) – фазовый сдвиг между входным и выходными сигналами; если берется отношение выходного тока к входному, то говорят о коэффициенте передачи по току;u вх (t ), u вых (t ) – мгновенные значения напряжения входного и выходного сигналов ир вх и р вых – входной и выходной уровни напряжения или мощности сигналов.

Каналы передачи работают между реальными нагрузками Z н1 (j w ) и Z н2 (j w ), подключаемыми соответственно к зажимам 1-1 и 2-2.

Свойства каналов и их соответствия требованиям к качеству передачи сообщений определяется рядом параметров и характеристик.

Первым и одним из основных параметров каналов является остаточное затухание А r , под которым понимаетсярабочее затухание канала, измеренное или рассчитанное в условиях подключения к зажимам 1-1и 2-2 (рис. 3.1)активных сопротивлений, соответствующих номинальным значениям R вх и R вых соответственно. Входные и выходные сопротивления отдельных устройств канала передачи достаточно хорошо согласуются между собой. При этом условии рабочее затухание канала можно считать равным суммехарактеристических (собственных)затуханий отдельных устройств, не учитывая отражений. Тогда остаточное затухание канала может быть определено по формуле;

, (3.1)

где р вх и р вых – уровни на входе и выходе канала (см. рис. 3.1);A r – затуханиеi - го иS j - усилениеj - го четырехполюсников, составляющих канал передачи.

Это означает, что остаточное затухание (ОЗ) канала представляет собой алгебраическую сумму затуханий и усилений и удобна при расчетахА r , когда известны затухания усилительных участков и усиления усилителей. ОЗ измеряется на определенной для каждогоканала измерительной частоте .

В процессе эксплуатации ОЗ канала не остается величиной постоянной, а отклоняется от номинального значения под воздействием различных дестабилизирующих факторов. Эти изменения ОЗ называютсянестабильностью , которая оценивается по максимальному и среднеквадратическому значениям отклонений ОЗ от номинального значения или величиной их дисперсии.

Остаточное затухание канала связано с его полосой пропускания. Полоса частот канала, в пределах которой остаточное затухание отличается от номинального не более, чем на некоторую величину DA r , называется эффективно передаваемой полосой частот (ЭППЧ). В пределах ЭППЧ нормируются допустимые отклонения ОЗDA r от номинального значения. Наиболее распространенным способом нормирования является использование “шаблонов” допустимых отклонений ОЗ Примерный вид такого шаблона приведен на рис. 3.2.

Рис. 3.2. Примерный шаблон допустимых отклонений остаточного затухания канала передачи

На рис. 3.2 приняты следующие обозначения f 0 – частота, на которой определяется номинальное значение ОЗ; f н , f в – нижняя и верхняя граничные частоты ЭППЧ; 1,2 – границы допустимых отклонений ОЗ; 3 – вид измеренной частотной характеристики ОЗ. Отклонения ОЗ от номинального определяются по формуле

, (3.2)

где f - текущая частота иf 0 частота определения номинального значения ОЗ.

С понятием ЭППЧ тесно связана амплитудно-частотная характеристика -АЧХ (или просточастотная характеристика ) канала, под которой понимаетсязависимость остаточного затухания от частоты А r =j ч (f ) при постоянном уровне на входе канала, т.е. р вх = const . Эта характеристика оценивает амплитудно-частотные (просто частотные) искажения, вносимые каналом за счет зависимости его ОЗ от частоты. Допустимые искажения определяются шаблоном отклонений ОЗ в пределах ЭППЧ. Примерный вид АЧХ канала показан на рис. 3.3.

Для передачи ряда сигналов электросвязи важной является фазо-частотная характеристика – ФЧХ (простофазовая характеристика ) канала, под которой понимается зависимость фазового сдвига между выходным и входным сигналами от частоты, т.е.b=j ф (f). Общий вид фазовой характеристики канала приведен на рис. 3.4

(линия 1).

Рис.3. 3. Частотная характеристика канала. Рис.3. 4. Фазовая характеристика канала.

В средней части ЭППЧ указанная характерситика близка к линейной, а на ее границах наблюдается заметная нелинейность, обусловленная фильтрами, входящими в состав канала передачи. В связи с тем, что непосредственное измерение фазового сдвига, вносимого каналом, затруднительно, для оценки фазовых искажений рассматривают частотную характеристику группового времени прохождения – ГВП (или замедления – ГВЗ)

t (w ) = db (w) /d w , (3.3)

где b (w ) – фазо-частотная характеристика. Примерный вид частотной характеристики ГВП показан на рис.3.4 (линия 2).

Частотные характеристики остаточного затухания, фазового сдвига или группового времени прохождения определяют линейные искажения , вносимые каналами передачи при прохождении по ним сигналов электросвязи.

Зависимость мощности, напряжения, тока или их уровней на выходе канала от мощности, напряжения, тока или их уровней на входе канала называется амплитудной характеристикой АХ . Под АХ канала понимается также зависимость остаточного затухания канала от уровня сигнала на его входе, т.е.A r =j а (р вх ), измеренная на некоторой обусловленной постоянной частоте измерительного сигнала на входе канала, т.е.f изм =const.

Амплитудная характеристика канала может быть представлена различными зависимостями, показанными на рис.3.5: U вых =j н (U вх ) (рис.3.5 а, линии 1 и 2), А r = j А (р вх ) (рис. 3.5 б, линия 1),р вх =j р (р вых ) (рис. 3.5 б, линии 2 и 3), где приняты следующие обозначения:U вх , U вых – напряжения сигнала на входе и выходе канала соответственно;р вх , р вых – уровни (напряжения, мощности) сигналов на входе и выходе канала соответственно;A r – остаточное затухание канала передачи.

Из рассмотрения графиков, представленных на рис.3.5 видно, что АХ имеет три участка:

1) нелинейный участок при малых значениях напряжения или уровней сигнала на входе канала. Нелинейность АХ при этом объясняется соизмеримостью напряжения или уровня сигнала с шумами самого канала;

2) линейный участок при значениях напряжения или уровня входного сигнала, для которого характерна прямая пропорциональная зависимость между напряжением (уровнем) сигнала на входе канала и напряжением (уровнем) сигнала на выходе канала;

Рис.3. 5. Амплитудные характеристики канала передачи

3) участок с существенной нелинейностью при значениях входного напряжения (уровня) сигнала выше максимального U макс (р макс ), для которого характерно появлениенелинейных искажений. Если угол наклона прямой, соответствующей линейному участку АХ, равен 45 0 , то напряжение (уровень) сигнала на выходе канала равно напряжению (уровню) на его входе. Если угол наклона меньше 45 0 , то в канале имеет место затухание, а если угол наклона больше 45 0 , то в канале имеет место усиление. ЕслиA r > 0, то канал вносит затухание (ослабление), еслиA r <0, то канал передачи вноситостаточное усиление.

Незначительная нелинейность АХ при малых значениях входного напряжения или уровня сигнала не влияет на качество передачи и ею можно пренебречь. Нелинейность АХ при значительных значениях напряжения или уровня входного сигнала, выходящих за пределы линейного участка АХ, проявляются в возникновении гармоник иликомбинационных частот выходного сигнала. По АХ можно лишь приблизительно оценить величину нелинейных искажений. Более точно величина нелинейных искажений в каналах оцениваетсякоэффициентом нелинейных искажений илизатуханием нелинейности.

или
, (3.4)

где U – действующее значение напряжения первой (основной гармоники измерительного сигнала; U ,U и т.д. – действующие значения напряжений второй, третьей и т.д. гармоник сигнала, возникших из-за нелинейности АХ канала передачи. Кроме того, в технике многоканальных телекоммуникационных систем передачи широко пользуются понятиемзатухания нелинейности по гармоникам

А нг = 20lg(U / U n г ) =р - р n г ,n = 2, 3 …, (3.5)

где р – абсолютный уровеньпервой гармоники измерительного сигнала,р n г – абсолютный уровеньn –ой гармоники , обусловленной нелинейностью АХ канала.

Цифровые каналы характеризуются скоростью передачи, а качество передачи сигналов оценивается коэффициентом ошибки , под которым понимаетсяотношение числа элементов цифрового сигнала, принятых с ошибками к общему числу элементов сигнала, переданных в течение времени измерения

К ош = N ош / N =N ош / ВТ , (3.6)

где N ош – число ошибочно принятых элементов;N – общее число переданных элементов;В – скорость передачи в бодах;Т – время измерения (наблюдения).

Телекоммуникационные системы должны быть построены таким образом, чтобы каналы обладали бы определенной универсальностью и были бы пригодны для передачи различного вида сообщений. Такими свойствами обладают типовые каналы , параметры и характеристики которых нормированы. Типовые каналы могут бытьпростыми, т.е. не проходящим через оборудование транзита, и составными , т.е. проходящими через оборудование транзита.

Типовые каналы передачи

Канал тональной частоты . Типовой аналоговый канал передачи с полосой частот 300…3400 Гц и с нормированными параметрами и характеристиками называетсяканалом тональной частоты – КТЧ.

Нормированная (номинальная величина) относительного (измерительного) уровня на входе КТЧ равна р вх = - 13дБм 0, на выходе КТЧр вых = + 4дБм 0. Частота измерительного сигнала принимается равнойf изм = 1020 Гц (ранее 800 Гц ). Таким образом, номинальное остаточное затухание КТЧ равноA r = - 17 дБ , т.е. КТЧ вносит усиление равное 17дБ .

Эффективно передаваемой полосой частот КТЧ (составного и максимальной протяженности) называется полоса, на крайних частотах которой (0,3 и 3,4 кГц) остаточное затуханиеA r на 8,7 дБ превышает величину остаточного затухания на частоте 1020 Гц (ранее 800 Гц).

Частотная характеристика отклонений остаточного затухания D А r от номинального значения (- 17дБ ) должна оставаться в пределахшаблона , приведенного на рис. 3.6.

Рис. 3.6. Шаблон допустимых отклонений остаточного затухания КТЧ

Чтобы выполнить требования к частотной характеристики остаточного затухания, ее неравномерность для простого канала длиной 2500 км должна укладываться в переделы, указанные в табл. 3.1.

Таблица 3.1

f , кГц

D A r , дБ

Фазо-частотные искажения мало влияют на качество передачи речевых сигналов, но так как КТЧ используется для передачи и других первичных сигналов, большие фазо-частотные искажения или неравномерность частотной характеристики группового времени прохождения (ГВП) недопустимы. Поэтому нормируются отклонения ГВП от его значения на частоте 1900 Гц для простого канала длиной 2500 км, табл.3.2.

Таблица 3.2

f , кГц

Dt ,мс

Естественно, что для составных каналов отклонения ГВП будут во столько раз больше, сколько простых каналов организуют составной.

Амплитудная характеристика КТЧ нормируется следующим образом: остаточное затухание простого канала должно быть постоянным с точностью до 0,3 дБ при изменении уровня измерительного сигнала от –17,5 до +3,5дБ в точке с нулевым измерительным уровнем на любой частоте в переделах ЭППЧ. Коэффициент нелинейных искажений для простого канала не должен превышать 1,5% (1% по 3-й гармонике) при номинальном уровне передачи на частоте 1020Гц .

Нормирование касается и степени согласования входного и выходного сопротивлений КТЧ с сопротивлениями внешних цепей – нагрузок: внутренним сопротивлением источника передаваемых сигналов и сопротивлением нагрузки. Входное и выходное сопротивление КТЧ должны быть чисто активные и равны R вх = R вых = 600Ом . Вход и выход канала должны бытьсимметричными , коэффициент отражения d или затухание несогласованности (отражения ) А d равные соответственно не должны превышать 10% или 20дБ .

(3.7)

не должны превышать 10% или 20 дБ . ЗдесьZ н - номинальное, аZ р – реальное значение сопротивления.

Важным показателем качества передачи по КТЧ является мощность помех, которые измеряются специальным прибором, называемым псофометром (“псофос” – по гречески означает шум). Псофометр представляет вольтметр с квадратичной характеристикой выпрямления. Выбор такой характеристики объясняется тем, что ухо складывает шумы от отдельных источников по мощности, а мощность пропорциональна квадрату напряжения или тока. От обычных квадратичных вольтметров псофометры отличаются наличием у них частотной зависимости чувствительности. Эта зависимость учитывает различную чувствительность уха на отдельных частотах, входящих в состав спектра помех и шумов, и формируется взвешивающимпсофометрическим фильтром.

При подаче на вход псофометра напряжения частотой 800 Гц с нулевым измерительным уровнем его показание будет равно 775мВ . Для получения того же значения при иных частотах уровни должны быть большей частью выше. Напряжение помех, измеренное псофометромU псоф , связано с эффективным напряжениемU эфф соотношениемU псоф = k п × U эфф , здесьk п = 0,75 называетсяпсофометрическим коэффициентом.

Напряжение помех или шумов, измеренное псофометром, называется псофометрическим напряжением . Мощность, определяемая псофометрическим напряжением на некотором сопротивленииR , называетсяпсофометрической мощностью, которая равнаP псоф = k п × U 2 эфф / R = 0,56U 2 эфф R .

Средний уровень мощности помех с равномерным спектром оказывается при псофометрических измерениях в полосе частот 0,3…3,4 кГц на 2,5дБ (или в 1,78 раза) меньше, чем при измерениях действующих (эффективных) значений. Величина 2,5дБ называетсялогарифмическим псофометрическим коэффициентом.

Псофометрическая мощность помех в точке с нулевым измерительным уровнем КТЧ максимальной протяженности, состоящего из максимального числа простых каналов, не должна превышать 50000 пВтп 0 (пиковаттпсофометрических в точке нулевого относительного уровня). Соответствующее значение эффективной (невзвешенной ) допустимой мощности помех составляет 87000пВт. Псофометрическая мощность помех простого канала длиной 2500км не должна превышать 10000пВтп 0.

Нормируются также допустимые величины средней и пиковой мощности телефонных сигналов на входе КТЧ: в точке нулевого относительного уровня среднее значение мощности составляет 32 мкВт , а пиковое – 2220мкВт.

Распространение информации происходит в процессе ее передачи.

При передаче информации всегда есть два объекта – источник и приемник информации. Эти роли могут меняться, например, во время диалога каждый из участников выступает то в роли источника, то в роли приемника информации.

Информация проходит от источника к приемнику через канал связи, в котором она должна быть связана с каким-то материальным носителем. Для передачи информации свойства этого носителя должны изменяться со временем. Так лампочка, которая все время горит, передает информацию только о том, что какой-то процесс идет. Если же включать и выключать лампочку, можно передавать самую разную информацию, например, с помощью азбуки Морзе.

При разговоре людей носитель информации – это звуковые волны в воздухе. В компьютерах информация передается с помощью электрических сигналов или радиоволн (в беспроводных устройствах). Информация может передаваться с помощью света, лазерного луча, системы телефонной или почтовой связи, компьютерной сети и др.

Информация поступает по каналу связи в виде сигналов, которые приемник может обнаружить с помощью своих органов чувств (или датчиков) и «понять» (раскодировать).

Сигнал – это изменение свойств носителя, которое используется для передачи информации.

Примеры сигналов – это изменение частоты и громкости звука, вспышки света, изменение напряжения на контактах и т.п.

Человек может принимать сигналы только с помощью своих органов чувств. Чтобы передавать информацию, например, с помощью радиоволн, нужны вспомогательные устройства: радиопередатчик, преобразующий звук в радиоволны, и радиоприемник, выполняющий обратное преобразование. Они позволяют расширить возможности человека.

С помощью одного сигнала невозможно передать много информации. Поэтому чаще всего используется не одиночный сигнал, а последовательность сигналов, то есть сообщение. Важно понимать, что сообщение – это только «оболочка» для передачи информации, а информация – это содержание сообщения. Приемник должен сам «извлечь» информацию из полученной последовательности сигналов. Можно принять сообщение, но не принять информацию, например, услышав речь на незнакомом языке или перехватив шифровку.

Одна и та же информация может быть передана с помощью разных сообщений, например, через устную речь, с помощью записки или с помощью флажного семафора, который используется на флоте. В то же время одно и то же сообщение может нести разную информацию для разных приемников. Так фраза «В Сантьяго идет дождь», переданная в 1973 году на военных радиочастотах, для сторонников генерала А. Пиночета послужила сигналом к началу государственного переворота в Чили.

Таким образом, информация представляется и передается в форме последовательности сигналов, символов. От источника к приёмнику сообщение передается через некоторую материальную среду. Если в процессе передачи ис­пользуются технические средства связи, то их называют каналами передачи информации (информационными каналами). К ним относятся телефон, радио, ТВ. Органы чувств человека исполняют роль биологических информационных каналов.

Процесс передачи информации по техническим каналам связи проходит по следующей схеме (по Шеннону):

Передача информации возможна с помощью любого языка кодирования информации, понятного как источнику, так и приёмнику.

Кодирующее устройство – устройство, предназначенное для преобразования исходного сообщения источника информации к виду, удобному для передачи.

Декодирующее устройство – устройство для преобразования кодированного сообщения в исходное.

Пример. При телефонном разговоре: источник сообщения – говорящий человек; кодирующее устройство – микрофон – преобразует звуки слов (акустические волны) в электрические импульсы; канал связи – телефонная сеть (провод); декодирующее устройство – та часть трубки, которую мы подносим к уху, здесь электрические сигналы снова преобразуются в слышимые нами звуки; приёмник информации – слушающий человек.

Термином «шум» называют разного рода помехи, искажающие передаваемый сигнал и приводящие к потере информации. Такие помехи, прежде всего, возникают по техническим причинам: пло­хое качество линий связи, незащищенность друг от друга различных потоков информации, передаваемой по одним и тем же ка­налам. Для защиты от шума применяются разные способы, например, применение разного рода фильтров, отделяющих полезный сигнал от шума. Существует наука, разрабатывающая способы защиты информации – криптология, широко применяющаяся в теории связи.

Клодом Шенноном была разработана специальная теория ко­дирования, дающая методы борьбы с шумом. Одна из важных идей этой теории состоит в том, что передаваемый по линии связи код должен быть избыточным. За счет этого потеря какой-то части ин­формации при передаче может быть компенсирована. Однако нельзя делать избыточность слишком большой. Это при­ведёт к задержкам и подорожанию связи. Иными словами, чтобы содержание сообщения, искаженного помехами, можно было восстановить, оно должно быть избыточным, то есть, в нем должны быть «лишние» элементы, без которых смысл все равно восстанавливается. Например, в сообщении «Влг впдт в Кспск мр» многие угадают фразу «Волга впадает в Каспийское море», из которой убрали все гласные. Этот пример говорит о том, что естественные языки содержат много «лишнего», их избыточность оценивается в 60-80%.

При обсуждении темы об измерении скорости передачи инфор­мации можно привлечь прием аналогии. Аналог – процесс пере­качки воды по водопроводным трубам. Здесь каналом передачи воды являются трубы. Интенсивность (скорость) этого процесса характеризуется расходом воды, т.е. количеством литров, перекачиваемых за единицу времени. В процессе передачи информации каналами являются техничес­кие линии связи. По аналогии с водопроводом можно говорить об информационном потоке, передаваемом по каналам. Скорость пе­редачи информации – это информационный объем сообщения, передаваемого в единицу времени. Поэтому единицы измерения скорости информационного потока: бит/с, байт/с и др.

Еще одно понятие – пропускная способность информационных каналов – тоже может быть объяснено с помощью «водопроводной» ана­логии. Увеличить расход воды через трубы можно путем увеличения давления. Но этот путь не бесконечен. При слишком большом дав­лении трубу может разорвать. Поэтому предельный расход воды, который можно назвать пропускной способностью водопровода. Аналогичный пре­дел скорости передачи данных имеют и технические линии инфор­мационной связи. Причины этому также носят физический характер.

Рассмотрим каналы, отличающиеся по типу используемых в них линий связи.

1. Механические , в которых для передачи информации используется перемещение каких-либо твердых, жидких или газообразных тел. В первом случае могут использоваться рычаги или тросы (например − органы управления автомобилем), во втором – гидравлические системы (например − тормозная система автомобиля), в третьем – разного рода пневматические устройства (широко используются, например, в газовой промышленности).

2. Акустические . Используют механические колебания звуковой и ультразвуковой частоты, особенно хорошо распространяющиеся в жидких средах. Широко применяются, например, для передачи информации людям или устройствам, находящимся под водой или в другой жидкой среде, а также при проведении медицинских исследований (УЗИ). Акустический канал в газовой среде – едва ли не основной для передачи информации между людьми (речь). Акустические сигналы низкой интенсивности безвредны для здоровья человека.

4. Электрические каналы. Наиболее распространены в настоящее время при передаче информации на малые расстояния. Основа – проводные линии связи.

5. Радиоканалы. Как и оптические, используют для передачи информации электромагнитные волны. Однако намного более низкой частоты. Благодаря способности таких волн огибать препятствия и отражаться от плазменных слоев, окружающих Землю, становится возможным передача информации на большие расстояния, в том числе в масштабе всей Земли. Эти преимущества, однако, являются источником недостатков. Радиоканалы сильно подвержены влиянию помех и менее скрытны. Радиоканал, наряду с оптическим, может использоваться для подключения к компьютерной сети Интернет в районах со слаборазвитой инфраструктурой проводной электросвязи.

Конец работы -

Эта тема принадлежит разделу:

Теория информации и кодирования

Сочинский государственный университет.. туризма и курортного дела.. Факультет информационных технологий и математики..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Курс лекций
Эффективная организация обмена информации приобретает все большее значение как условие успешной практической деятельности людей. Объем информации, необходимый для нормального функционирования совре

Определение понятия информация
Слово информация происходит от латинского informare – изображать, составлять понятие о чем-либо, осведомлять. Информация наряду с материей и энергией является первичны

Фазы обращения информации
Система управления состоит из объекта управления, комплекса технических средств, состоящего из компьютера, входящих в его состав устройств ввода-вывода и хранения информации, устройств сбора переда

Некоторые определения
Данные или сигналы, организованные в определенные последовательности, несут информацию не потому, что они повторяют объекты реального мира, а по общественной договоренности о кодировании, т.е. одно

Меры информации
Прежде, чем перейти к мерам информации, укажем, что источники информации и создаваемые ими сообщения разделяются на дискретные и непрерывные. Дискретные сообщения слагаются из конечно

Геометрическая мера
Определение количества информации геометрическим методом сводится к измерению длины линии, площади или объема геометрической модели данного носителя информации или сообщения. По геометрическим разм

Аддитивная мера (мера Хартли)
Аддитивную меру можно рассматривать как более удобную для ряда применений комбинаторную меру. Наши интуитивные представления об информации предполагают, чтобы количество информации увеличивалось пр

Энтропия и ее свойства
Существует несколько видов статистических мер информации. В дальнейшем будем рассматривать только одну их них ─ меру Шеннона. Мера Шеннона количества информации тесно связана с понятие

Энтропия и средняя энтропия простого события
Рассмотрим подробнее понятие энтропии в разных вариантах, так как оно используется в шенноновской теории информации. Энтропия - мера неопределенности некоторого опыта. В простейшем случае его ис

Метод множителей Лагранжа
Если нужно найти экстремум (максимум, минимум или седловую точку) функции n переменных f(x1, x2, …, xn), связанных k

Вывод формулы среднего значения энтропии на букву сообщения
Предположим, имеется сообщение, состоящее из n букв: , где j=1, 2, …, n ─ номера букв в сообщении по порядку, а i1, i2, … ,in номера букв

Энтропия сложного события, состоящего из нескольких зависимых событий
Теперь предположим, что элементы сообщения (буквы) взаимозависимы. В этом случае вероятность появления последовательности из нескольких букв не равна произведению вероятностей появ

Избыточность сообщения
Как отмечалось, энтропия максимальна, если вероятности сообщений или символов, из которых они составлены, одинаковы. Такие сообщения несут максимально возможную информацию. Если же сообщение имеет

Содержательность информации
Мера содержательности обозначается cont (от английского Content ─ содержание). Содержательность события I выражается через функцию меры содержательности его о

Целесообразность информации
Если информация используется в системах управления, то ее полезность разумно оценивать по тому эффекту, который она оказывает на результат управления. В связи с этим в 1960 г. советским ученым А.А.

Динамическая энтропия
Здесь энтропия рассматривается как функция времени. При этом преследуется цель – избавиться от неопределенности, т.е. добиться положения, когда энтропия равна 0. Такая ситуация характерна для задач

Энтропия непрерывных сообщений
Исходные данные часто представляются в виде непрерывных величин, например, температура воздуха или морской воды. Поэтому представляет интерес измерение количества содержащейся в таких сообщениях ин

Первый случай (значения сл. величины ограничены интервалом)
Случайная величина a ограничена интервалом . В этом случае определенный интеграл ее плотности распределения вероятностей (дифференциального закона распределения вероятностей) на

Второй случай (заданы дисперсия и математическое ожидание сл. величины)
Предположим теперь, что область определения значений случайной величины не ограничена, но задана ее дисперсия D и математическое ожидание M. Заметим, что дисперсия прямо пропорциональ

Квантование сигналов
Непрерывные сигналы – носители информации – представляют собой непрерывные функции непрерывного аргумента – времени. Передача таких сигналов может выполняться при помощи непрерывных каналов связи,

Виды дискретизации (квантования)
Наиболее простыми и часто используемыми видами квантования являются: · квантование по уровню (будем говорить просто квантование); · квантование по времени (будем называть

Критерии точности представления квантованного сигнала
В результате обратного преобразования из непрерывно-дискретной формы в непрерывную получается сигнал, отличающийся от исходного на величину ошибки. Сигнал называется воспроизводящей функц

Элементы обобщенной спектральной теории сигналов
Обобщенная спектральная теория сигналов объединяет методы математического описания сигналов и помех. Эти методы позволяют обеспечить требуемую избыточность сигналов с целью уменьшения влияния помех

О практическом использовании теоремы Котельникова
Возможную схему квантования-передачи-восстановления непрерывного сигнала можно представить в виде, изображенном на рис. 2.5. Рис. 2.5. Возможная схема квантования-передачи-

Выбор периода дискретизации (квантования по времени) по критерию наибольшего отклонения
В результате квантования по времени функции x(t) получается ряд значений x(t1), x(t2), … квантуемой величины x(t) в дискретные моменты времени t

Интерполяция при помощи полиномов Лагранжа
Воспроизводящая функция в большинстве случаев рассчитывается по формуле: , где − некоторые функции. Эти функции обычно стремятся выбрать так, чтобы. (2.14) В этом случае,

Оценка максимального значения ошибки при получении воспроизводящей функции на основе полинома Лагранжа
Найдем погрешность интерполяции. Представим ее виде: , (2.16) где K(t) – вспомогательная функция, которую надо найти. Для произвольного t* имеем: (

Обобщение на случай использования полиномов Лагранжа произвольного порядка
Интерполяция полиномами n-го порядка рассматривается аналогично предыдущим случаям. При этом наблюдается значительное усложнение формул. Обобщение приводит к формуле следующего вида:

Выбор интервала дискретизации по критерию среднеквадратического отклонения
Рассмотрим случай дискретизации случайного стационарного эргодического процесса x(t) с известной корреляционной функцией. Восстанавливать будем при помощи полиномов Лагранжа. Наиболее часто

Оптимальное квантование по уровню
Рисунком 2.13 иллюстрируется принцип квантования по уровню. Рис. 2.13. Квантование по уровню. Это квантование сводится к замене значения исходного сигнала уровн

Расчет неравномерной оптимальной в смысле минимума дисперсии ошибки шкалы квантования
Рис. 2.19. Обозначения Зададимся теперь числом шагов квантования n, границами интервала (xmin, xmax

Общие понятия и определения. Цели кодирования
Кодирование − операция отождествления символов или групп символов одного кода с символами или группами символов другого кода. Код (франц. code), совокупность зна

Элементы теории кодирования
Некоторые общие свойства кодов. Рассмотрим на примерах. Предположим, что дискретный источник без памяти, т.е. дающий независимые сообщения – буквы – на выходе, име

Неравенство Крафта
Теорема 1. Если целые числа n1, n2, …, nk удовлетворяют неравенству, (3.1) существует префиксный код с алфавитом объемом m,

Теорема 2.
Формулировка. Пусть задан код с длинами кодовых слов n1, n2, … , nk и с алфавитом объема m. Если код однозначно декодируем, неравенство Крафта удовле

Теорема 3.
Формулировка. При заданной энтропии H источника и объеме m вторичного алфавита существует префиксный код с минимальной средней длиной nср min

Теорема о минимальной средней длине кодового слова при поблочном кодировании (теорема 4)
Рассмотрим теперь случай кодирования не отдельных букв источника, а последовательностей из L букв. Теорема 4. Формулировка. Для данного дискретного источника

Оптимальные неравномерные коды
Определения. Неравномерными называют коды, кодовые слова которых имеют различную длину. Оптимальность можно понимать по-разному, в зависимости о

Лемма 1. О существовании оптимального кода с одинаковой длиной кодовых слов двух наименее вероятных кодируемых букв
Формулировка. Для любого источника с k>=2 буквами существует оптимальный (в смысле минимума средней длины кодового слова) двоичный код, в котором два наименее вероятных сло

Лемма 2. Об оптимальности префиксного кода нередуцированного ансамбля, если префиксный код редуцированного ансамбля оптимален
Формулировка. Если некоторый префиксный код редуцированного ансамбля U"является оптимальным, то соответствующий ему префиксный код исходного ансамбля т



Особенности эффективных кодов
1. Букве первичного алфавита с наименьшей вероятностью появления ставится в соответствие код с наибольшей длиной (лемма 1), т.е. такой код является неравномерным (с разной длиной кодовых слов). В р

Помехоустойчивое кодирование
Как следует из названия, такое кодирование предназначено для устранения вредного влияния помех в каналах передачи информации. Уже сообщалось, что такая передача возможна как в пространстве, так и в

Простейшие модели цифровых каналов связи с помехами
Свойство помехоустойчивых кодов обнаруживать и исправлять ошибки в сильной степени зависит от характеристик помех и канала передачи информации. В теории информации обычно рассматривают две простые

Расчет вероятности искажения кодового слова в ДСМК
Положим, кодовое слово состоит из n двоичных символов. Вероятность неискажения кодового слова, как несложно доказать, равна: . Вероятность искажения одного символа (однокра

Общие принципы использования избыточности
Для простоты рассмотрим блоковый код. С его помощью каждым k разрядам (буквам) входной последовательности ставится в соответствие n-разрядное кодовое слова. Количество разного вида

Граница Хэмминга
Граница Хэмминга Q, определяет максимально возможное количество разрешенных кодовых слов равномерного кода при заданных длине n кодового слова и корректирующей способности кода КСК

Избыточность помехоустойчивых кодов
Одной из характеристик кода является его избыточность. Увеличение избыточности в принципе нежелательно, т.к. увеличивает объемы хранимых и передаваемых данных, однако для борьбы с искажениями избыт

Линейные коды
Рассмотрим класс алгебраических кодов, называемых линейными. Определение: Линейными называют блоковые коды, дополнительные разряды которых образуются

Определение числа добавочных разрядов m
Для определения числа добавочных разрядов можно воспользоваться формулой границы Хэмминга: . При этом можно получить плотноупакованный код, т.е. код с минимальной при заданных пар

Построение образующей матрицы
Линейные коды обладают следующим свойством: из всего множества 2k разрешенных кодовых слов, образующих, кстати, группу, можно выделить подмножества из k слов, обладающих св

Порядок кодирования

Порядок декодирования

Двоичные циклические коды
Вышеприведенная процедура построения линейного кода имеет ряд недостатков. Она неоднозначна (МДР можно задать различным образом) и неудобна в реализации в виде технических устройств. Этих недостатк

Некоторые свойства циклических кодов
Все свойства циклических кодов определяются образующим полиномом. 1. Циклический код, образующий полином которого содержит более одного слагаемого, обнаруживает все одиночные ошибки.

Построение кода с заданной корректирующей способностью
Существует несложная процедура построения кода с заданной корректирующей способностью. Она состоит в следующем: 1. По заданному размеру информационной составляющей кодового слова длиной

Матричное описание циклических кодов
Циклические коды можно, как и любые линейные коды, описывать с помощью матриц. Вспомним, что KC(X) = gm(X)*И(Х) . Вспомним также на примере порядок умножения пол

Выбор образующего полинома
Ясно, что полиномы кодовых слов КС(Х) должны делиться на образующий полином g(X) без остатка. Циклические коды относятся к классу линейных. Это означает, что для этих кодов существует

Пропускная способность каналов связи
Эта тема является одной из центральных в теории информации. В ней рассматриваются предельные возможности каналов связи по передаче информации, определяются характеристики каналов, влияющие на эти в

Пропускная способность дискретного канала связи с шумом
Исследуем теперь пропускную способность дискретного канала связи с шумом. Существует большое количество математических моделей таких каналов. Простейшей из них является канал с независимой

Типичные последовательности и их свойства
Будем рассматривать последовательности статистически независимых букв. Согласно закону больших чисел, наиболее вероятными будут последовательности длиной n, в которых при количества N

Основная теорема Шеннона для дискретного канала с шумом
Формулировка Для дискретного канала в шумом существует такой способ кодирования, при котором может быть обеспечена безошибочная передача все информации, поступающей от источ

Обсуждение основной теоремы Шеннона для канала с шумом
Теорема Шеннона для канала с шумом не указывает на конкретный способ кодирования, обеспечивающий достоверную передачу информации со скоростью, сколь угодно близкой с пропускной способности канала с

Пропускная способность непрерывного канала при наличии аддитивного шума
Рассмотрим следующую модель канала: 1. Канал способен пропускать колебания с частотами ниже Fm. 2. В канале действует помеха n(t), имеющая нормальный (гау

Шаг 2. Ввод текстовых файлов в Excel-таблицу с разбиением каждой строки текста на отдельные символы
При вводе ранее сохраненного текстового файла следует указать тип файла *.*. Это позволит во время выбора видеть в списке все файлы. Укажите свой файл. После этого на экран будет выведено окно М

Шаг 4. Находим среднюю энтропию, приходящуюся на 1 букву сообщения
Как описано в теоретическом введении, средняя энтропия находится по формулам 1 и 2. В обоих случаях нужно найти вероятности появления букв или двухбуквенных комбинаций.. Вероятности можно

Шаг 8. Напишем отчет о выполненной работе с описанием всех вычислений и о том, как они выполнялись. Прокомментируйте результаты
Результаты вычислений представьте в виде таблицы: <Язык 1> <Язык

Подключение возможности использования нестандартных функций
Программное управление приложениями, входящими в состав Microsoft Office, осуществляется при помощи так называемых макросов. Слово Макрос – греческого происхождения. В перево

Создание нестандартной функции
Перед созданием нестандартных функций нужно открыть файл в рабочей книгой, содержащей информацию, которую нужно обработать с применением этих нестандартных функций. Если ранее эта рабочая книга был

Запись голоса и подготовка сигнала
Запись начинается и заканчивается нажатием кнопки Record (рис. 5), помеченной красный кружком. В процессе записи кнопка Recоrd выглядит вдавленной и более светлой (подсвеченной).

Импорт текстовых данных в Excel
Двойным кликом откройте текстовый файл с экспортированные из программы Wavosaur данными (рис. 23). Рис. 23. Примерный вид данных Видно, что экспортированные

Квантование по уровню сводится к замене значения исходного сигнала уровнем того шага, в пределы которого это значение попадает
Квантование по уровню – необходимое условие преобразования непрерывного сигнала в цифровую форму. Однако одного лишь квантования по уровню для этого недостаточно – для преобразования в цифровую фор

Коды Хаффмена
На этом алгоритме построена процедура построения оптимального кода, предложенная в 1952 году доктором Массачусетского технологического института (США) Дэвидэм Хаффменом: 5) буквы перви

Процесс повторяется до тех пор, пока в каждой подгруппе останется по одной букве
Рассмотрим алфавит из восьми букв. Ясно, что при обычном (не учитывающем статистических характеристик) кодировании для представления каждой буквы требуется три символа. Наибольший эффек

Параметры эффективности оптимальных кодов
Таких параметров 2: коэффициент статистического сжатия и коэффициент относительной эффективности. Оба параметра характеризуют степень уменьшения средней длины кодового слова. При этом средняя длина

Особенности эффективных кодов
5. Букве первичного алфавита с наименьшей вероятностью появления ставится в соответствие код с наибольшей длиной (лемма 1), т.е. такой код является неравномерным (с разной длиной кодовых слов). В р

Выполнение работы
Лабораторная работа №4 выполняется под управлением специально написанной управляющей программы. Эта управляющая программа написана на языке Visual Basic 6. Исполняемый файл программы носит и

Построение образующей матрицы
Линейные коды обладают следующим свойством: из всего множества 2k разрешенных кодовых слов можно выделить подмножества из k слов, обладающих свойством линейной независимост

Порядок кодирования
Кодовое слово КС получается путем умножения матрицы информационной последовательности ||X|| на образующую матрицу ||OM||: ||KC1*n|| = ||X

Порядок декодирования
В результате передачи кодового слова через канал оно может быть искажено помехой. Это приведет к тому, что принятое кодовое слово ||ПКС|| может не совпасть с исходным ||КС||.

Выполнение работы
Лабораторная работа №5, как и работа №4, выполняется под управлением управляющей программы, написанной на алгоритмическом языке Visual Basic 6. Исполняемый файл программы носит имя Помехо

Лучшие статьи по теме