Как настроить смартфоны и ПК. Информационный портал
  • Главная
  • Windows 7, XP
  • Временное и частотное разделение каналов. Вопросы для самоконтроля

Временное и частотное разделение каналов. Вопросы для самоконтроля

Временное разделение каналов

Принцип временного разделения каналов (ВРК) состоит в том, что групповой тракт предоставляется поочередно для передачи сигналов каждого канала многоканальной системы (рисунок 6.5). В зарубежных источниках для обозначения принципа временного разделения каналов используется термин Time Division Multiply Access (TDMA).

Рисунок 6.5 – Принцип временного разделения каналов

При передаче используется дискретизация во времени (импульсная модуляция). Сначала передается импульс 1-го канала, затем следующего канала и т.д. до последнего канала за номером N, после чего опять передается импульс первого канала и процесс повторяется периодически. На приеме устанавливается аналогичный коммутатор, который поочередно подключает групповой тракт к соответствующим приемникам. В определенный короткий промежуток времени к групповой линии связи оказывается подключена только одна пара приемник/передатчик.

Это означает, что для нормальной работы многоканальной системы с ВРК необходима синхронная и синфазная работа коммутаторов на приемной и передающей сторонах. Для этого один из каналов занимают под передачу специальных импульсов синхронизации.

На рисунке 6.6, а, б, в приведены графики трех непрерывных аналоговых сигналов S 1 (t ), S 2 (t ) и S 3 (t ) и соответствующие им АИМ-сигналы. Импульсы разных АИМ-сигналов сдвинуты друг относительно друга по времени. При объединении индивидуальных каналов образуется групповой сигнал S г (t ) (рисунок 6.6, г) с частотой следования импульсов в N раз большей частоты следования индивидуальных импульсов. Интервал времени между ближайшими импульсами группового сигнала TK называется канальным интервалом или тайм-слотом (Time Slot ). Промежуток времени между соседними импульсами одного индивидуального сигнала называется циклом передачи ТЦ . От соотношения ТЦ и TK зависит число импульсов, которое можно разместить в цикле, т.е. число временных каналов.

Рисунок 6.6 – Временные диаграммы преобразования сигналов при ВРК

При временном разделении так же как и при ЧРК существуют взаимные помехи, в основном обусловленные двумя причинами. Первая состоит в том, что линейные искажения, возникающие за счет ограниченности полосы частот и неидеальности амплитудно-частотной и фазо-частотной характеристик всякой физически осуществимой системы связи, нарушают импульсный характер сигналов. При временном разделении сигналов это приведет к тому, что импульсы одного канала будут накладываться на импульсы других каналов. Иначе говоря, между каналами возникают взаимные переходные помехи или межсимвольная интерференция . Кроме того, взаимные помехи могут возникать за счет несовершенства синхронизации тактовых импульсов на передающей и приемной сторонах.

В силу данных причин временное разделение каналов на основе АИМ не получило практического применения. Временное разделение широко используют в цифровых системах передачи плезиохронной и синхронной иерархий.

В общем случае для снижения уровня взаимных помех приходится вводить "защитные" временные интервалы, что соответствует некоторому расширению спектра сигналов. Так, в системах передачи полоса эффективно передаваемых частот F =3100 Гц; в соответствии с теоремой Котельникова минимальное значение частоты дискретизации f 0 =1/Т Д =2F =6200 Гц. Однако в реальных системах частоту дискретизации выбирают с некоторым запасом: f 0 =8 кГц. При временном разделении каналов сигнал каждого канала занимает одинаковую полосу частот, определяемую в идеальных условиях согласно теореме Котельникова из соотношения (без учета канала синхронизации) Dt K =T 0 /N= 1/(2NF)= 1/(2F ОБЩ), где F ОБЩ =FN , что совпадает с общей полосой частот системы при частотном разделении.

Хотя теоретически временное и частотное разделения позволяют получить одинаковую эффективность использования частотного спектра, тем не менее, системы временного разделения уступают системам частотного разделения по этому показателю. Вместе с тем, системы с временным разделением имеют неоспоримое преимущество, связанное с тем, что благодаря разновременности передачи сигналов разных каналов отсутствуют переходные помехи нелинейного происхождения. Кроме того, аппаратура временного разделения значительно проще, чем при частотном разделении, где для каждого индивидуального канала требуются соответствующие полосовые фильтры.

Для разделения сигналов могут использоваться не только такие очевидные признаки, как частота, время и фаза. Общим признаком сигналов является форма. Различающиеся по форме сигналы могут передаваться одновременно и иметь перекрывающиеся частотные спектры, и тем не менее, такие сигналы можно разделить, если выполняется условие их ортогональности. В зарубежных источниках для обозначения данного принципа применяется понятие кодового разделения каналов Code Division Multiply Access (CDMA ). В последние годы успешно развиваются цифровые методы разделения сигналов по их форме, в частности, в качестве переносчиков различных каналов используются дискретные ортогональные последовательности в виде функций Уолша, Радемахера и другие. Широкое развитие методов разделения по форме сигналов привело к созданию систем связи с разделением "почти ортогональных" сигналов, представляющих собой псевдослучайные последовательности, корреляционные функции и энергетические спектры которых близки к аналогичным характеристикам "ограниченного" белого шума. Такие сигналы называют шумоподобными (ШПС).

4. Принципы многоканальной передачи. Основы построения телекоммуникационных систем и сетей

4. Принципы многоканальной передачи

4.1. Основы теории многоканальной передачи сообщений

Используемые методы разделения каналов (РК) можно классифицировать на линейные и нелинейные (комбинационные).

В большинстве случаев разделения каналов каждому источнику сообщения выделяется специальный сигнал, называемый канальным. Промодулированные сообщениями канальные сигналы объединяются, в результате чего образуется групповой сигнал (ГС). Если операция объединения линейна, то получившийся сигнал называют линейным групповым сигналом .

Для унификации многоканальных систем связи за основной или стандартный канал принимают канал тональной частоты (канал ТЧ), обеспечивающий передачу сообщений с эффективно передаваемой полосой частот 300…3400 Гц, соответствующей основному спектру телефонного сигнала.

Многоканальные системы образуются путем объединения каналов ТЧ в группы, обычно кратные 12 каналам. В свою очередь, часто используют "вторичное уплотнение" каналов ТЧ телеграфными каналами и каналами передачи данных .

На рисунке 4.1 приведена обобщённая структурная схема системы многоканальной связи.


Рисунок 4.1. Обобщённая структурная схема системы многоканальной связи

Реализация сообщений каждого источника а 1 (t), а 2 (t),…,а N (t) с помощью индивидуальных передатчиков (модуляторов) М 1 , М 2 , …, М N преобразуются в соответствующие канальные сигналы s 1 (t), s 2 (t),…,s N (t). Совокупность канальных сигналов на выходе аппаратуры объединения каналов (АОК) образует групповой сигнал s(t). Наконец, в групповом передатчике М сигнал s(t) преобразуется в линейный сигнал s Л (t), который и поступает в линию связи ЛС. Допустим, что линия пропускает сигнал практически без искажений и не вносит шумов. Тогда на приемном конце линии связи линейный сигнал s Л (t) с помощью аппаратуры разделения каналов (АРК) может быть вновь преобразован в групповой сигнал s(t). Канальными или индивидуальными приемниками П 1 , П 2 , …, П N из группового сигнала s(t) выделяются соответствующие канальные сигналы s 1 (t), s 2 (t), …,s N (t) и затем преобразуются в предназначенные получателям сообщения а 1 (t), a 2 (t), …, a N (t) .

Канальные передатчики вместе с суммирующим устройством образуют аппаратуру объединения . Групповой передатчик М, линия связи ЛС и групповой приемник П составляют групповой канал связи (тракт передачи), который вместе с аппаратурой объединения и индивидуальными приемниками составляет систему многоканальной связи .

Индивидуальные приемники системы многоканальной связи П K наряду с выполнением обычной операции преобразования сигналов s K (t) в соответствующие сообщения а K (t) должны обеспечить выделение сигналов s K (t) из группового сигнала s(t). Иначе говоря, в составе технических устройств на передающей стороне многоканальной системы должна быть предусмотрена аппаратура объединения , а на приемной стороне – аппаратура разделения .

Чтобы разделяющие устройства были в состоянии различать сигналы отдельных каналов, должны существовать определенные признаки, присущие только данному сигналу. Такими признаками в общем случае могут быть параметры переносчика, например амплитуда, частота или фаза в случае непрерывной модуляции гармонического переносчика. При дискретных видах модуляции различающим признаком может служить и форма сигналов. Соответственно различаются и способы разделения сигналов: частотный, временной, фазовый и другие .

4.2. Частотное разделение каналов

Функциональная схема простейшей системы многоканальной связи с разделением каналов по частоте представлена на рисунке 4.2.


Рисунок 4.2. Функциональная схема многоканальной системы с частотным разделением каналов

В зарубежных источниках для обозначения принципа частотного разделения каналов (ЧРК) используется термин Frequency Division Multiply Access (FDMA).

Сначала в соответствии с передаваемыми сообщениями первичные (индивидуальные) сигналы, имеющие энергетические спектры G 1 (ω), G 2 (ω), …, G N (ω) μодулируют поднесущие частоты ω K каждого канала соответственно. Эту операцию выполняют модуляторы М 1 , М 2 , …, М N канальных передатчиков..

Модуляторы – это четырёхполюсники с нелинейной амплитудной характеристикой, которая в общем случае аппроксимируется полиномом n-ой степени.

где а 1 , … а n – коэффициенты аппроксимации

Для простоты возьмём полином 2-й степени, то есть:

, (4.2)

Подадим на такой четырёхполюсник сигналы двух частот, то есть

где ω > Ω. Тогда

, (4.4)

После соответствующих преобразований получим:

, (4.5)

Спектр сигнала на выходе четырехполюсника будет иметь вид (рисунок 4.3):


Рисунок 4.3. Спектр сигнала на выходе четырехполюсника

Таким образом, на выходе четырёхполюсника наряду с частотами входных сигналов (ω,Ω) οоявились: постоянная составляющая ; вторые гармоники входных сигналов (2ω,2Ω); ρоставляющие суммарной (ω + Ω) θ разностной (ω – Ω) частот.

Если предположить, что в сигнале с частотой Ω содержится информация, то она будет иметь место и в сигналах с частотами (ω н + Ω) θ (ω н – Ω), которые расположены зеркально по отношению к ω и называются верхней (ω + Ω) θ нижней (ω – Ω) токовыми частотами.

Если на четырёхполюсник подать сигнал несущей частоты U 1 (t) = U m ∙Cosω н t и сигнал тональной частоты в полосе Ω н … Ω в (где Ω н = 0.3 кГц, Ω в = 3.4 кГц), то спектр сигнала на выходе четырёхполюсника будет иметь вид (рисунок 4.4)


Рисунок 4.4. Спектр сигнала на выходе четырехполюсника

Полезными продуктами преобразования (модуляции) являются верхняя и нижняя боковые полосы. Для восстановления сигнала на приёме на вход демодулятора достаточно подать несущую частоту (ω н) и одну из боковых полос.

В многоканальных системах передачи с частотным разделением каналов (МСП-ЧРК) по каналу передаётся только сигнал одной боковой полосы, а несущая частота берётся от местного генератора. Таким образом, на выходе каждого канального модулятора включается полосовой фильтр с полосой пропускания ∆ω = Ω в – Ω н = 3.1 кГц. Спектры G 1 (ω), G 2 (ω) … G N (ω) οосле транспонирования (переноса) на различные частотные интервалы и инвертирования (эта операция в принципе необязательна, но обычно выполняется для упрощения оборудования) складываются и образуют групповой спектр G гр (ω).

С целью уменьшения влияния соседних каналов (уменьшения переходных помех) обусловленного неидеальностью АЧХ фильтров, между спектрами сигнальных сообщений вводятся защитные интервалы . Для каналов ТЧ они равны 0.9 кГц. Таким образом, ширина полосы канала ТЧ с учётом защитного интервала равна 4 кГц (рисунок 4.5)

4.3. Принципы построения аппаратуры ЧРК

В системах ЧРК с числом каналов 12 и более реализуется принцип многократного преобразования частоты . В основу построения многоканальной системы положен стандартный канал тональной (ТЧ). В соответствии с рекомендациями МККТТ оконечное оборудование (включающее АОК и АРК) строится с таким расчётом, чтобы на каждом этапе преобразования частоты с помощью унифицированных блоков формировались всё более и более укрупнённые группы каналов ТЧ. Причём в любой группе число каналов кратно 12.

Вначале каждый из каналов ТЧ "привязывается" к той или иной 12-канальной группе, называемой первичной группой (ПГ). Разнесение сигналов 12 различных телефонных сообщений по спектру (формирование ПГ) осуществляется с помощью индивидуального преобразования частоты в стандартном 12-канальном блоке. Эти блоки обеспечивают как прямую, так и обратную связь в каждом из 12 дуплексных каналов (рисунок 4.6, а).

Каждый канал содержит следующие индивидуальные устройства: на передаче ограничитель амплитуд ОА, модулятор М и полосовой фильтр ПФ; на приёме полосовой фильтр ПФ, демодулятор ДМ, фильтр нижних частот ФНЧ и усилитель низкой частоты УНЧ.

Для преобразования исходного сигнала на модуляторы и демодуляторы каждого канала подаются несущие частоты, кратные 4 кГц.


Рисунок 4.6. Структурная схема блока индивидуального преобразования (а) и схема формирования первичной группы (б)

Спектр группового сигнала ПГ представлен на рисунке 4.6, б.

В приведённом варианте формирования ПГ использован принцип однократного преобразования спектра канала ТЧ (рисунок 4.7, а)

Поскольку индивидуальное оборудование во всех 12 каналах однотипно, на данном рисунке приведены лишь устройства, относящиеся к одному каналу (первому). Как отмечалось ранее, при организации телефонной связи можно использовать либо двухполосную двухпроводную, либо однополосную четырёхпроводную систему передачи. Схема, изображённая на рисунке 4.6, относится ко второму варианту. Здесь каждый канал имеет отдельные тракт передачи и тракт приёма (действующие в одной и той же полосе частот), то есть каждый канал является четырёхпроводным. Если канал используется для телефонной связи, то двухпроводный участок цепи от абонента соединяется с четырёхпроводным каналом через дифференциальную систему (ДС). В случае передачи других сигналов (телеграфных, данных, звукового вещания и тому подобное), для которых необходим один или несколько односторонних канала, ДС отключается .

В режиме передачи сообщение от абонента (Аб) через ДС и амплитудный ограничитель (ОА) поступает на один из входов индивидуального преобразователя частоты (модулятор М 11). На другой вход М 11 подаётся сигнал поднесущей с частотой F 12 . В результате перемножения этих сигналов образуется сигнал, спектр которого состоит из двух боковых (относительно F 12) полос. Сигнал нижней из этих полос выделяется фильтром ПФ 12 и подаётся на один из входов сумматора. На другие входы сумматора поступают сигналы с выхода аналогичных трактов передачи 11 других каналов.

Амплитудные ограничители предотвращают перегрузку групповых усилителей (а, следовательно, уменьшают вероятность возникновения нелинейных помех) в моменты появления пиковых значений напряжений нескольких речевых сигналов.

В режиме приёма канальный сигнал выделяется с помощью полосового фильтра ПФ 12 из спектра первичной группы (с полосой 60 … 108 кГц) и подаётся на индивидуальный преобразователь ДМ 12 . На другой вход ДМ 12 поступает тот же сигнал поднесущей частоты F 12 , который питает и М 11 . Спектр выходного сигнала ДМ 12 состоит из двух боковых (относительно F 12) полос. Сигнал нижней из этих полос выделяется ФНЧ, усиливается и через ДС поступает к абоненту. Приёмные тракты 11 других каналов построены аналогично. В аппаратуре с числом каналов 60 и более индивидуальное оборудование размещается в специальных стойках индивидуальных преобразователей СИП-60 или СИП-300 .

На практике используется и другой вариант: формирование первичной группы из четырёх предварительных групп (рисунок 4.8), каждая из которых объединяет по три канала ТЧ. Здесь реализуется двухкратный принцип преобразования (рисунок 4.7, б)


Рисунок 4.7. Структурные схемы и диаграммы однократного (а) и двухкратного (б) преобразования спектра канала ТЧ

Рисунок 4.8. Структурная схема формирования ПГ с использованием двухкратного преобразования

Дальнейший процесс укрупнения групп каналов происходит в групповом оборудовании и поясняет рисунок 4.3.4. Одинаковые полосы частот пяти ПГ с помощью первичного группового преобразования разносятся по частоте в полосе 312 … 552 кГц и образуют 60-канальную (вторичную) группу (ВГ). На рисунке 4.9 изображена упрощённая структурная схема группового оборудования ВГ. Сообщения пяти первичных групп ПГ 1 – ПГ 5 подаются на пять групповых преобразователей ГП 1 – ГП 5 , на вторые входы которых из генераторного оборудования поступают сигналы поднесущих частот.

Рисунок 4.9. Структурная схема группового оборудования ВГ

С помощью полосовых фильтров ПФ 1 – ПФ 5 , подключенных к выходам групповых преобразователей, образуются сигналы вида ОБП с полосой частот 48 кГц каждый. В результате сложения этих неперекрывающихся по спектру пяти сигналов образуется спектр ВГ с полосой частот 240 кГц (312 … 552 кГц).

Для снижения переходных влияний между сигналами ВГ, передаваемыми по смежным трактам, в спектре ВГ могут использоваться как прямые, так и инверсные спектры ПГ 2 – ПГ 5 . В первом случае на ГП 2 – ГП 5 подаются несущие частоты 468, 516, 564, 612 кГц, а соответствующие полосовые фильтры выделяют нижние боковые полосы (как показано на рисунке 4.9). Во втором случае на ГП 2 – ГП 5 подаются несущие частоты 300, 348, 396, 444 кГц, а полосовыми фильтрами ПФ 2 – ПФ 5 выделяются верхние боковые полосы. Несущая частота для ПГ 1 в обоих случаях одинаковая (420 кГц), и спектр ПГ 1 не инвертируется. Оборудование первичного группового преобразования размещается в специальных стойках первичных преобразователей УСПП или СПП. Следующие ступени группового преобразования выполняются аналогично.

Аппаратура образования групповых трактов может состоять из различных комбинаций стандартных блоков, в которых осуществляется тот или иной этап преобразования частоты. Например, в широко используемой в настоящее время аппаратуре системы К-1920 каналы ТЧ объединяются в две 60-канальные группы (ВГ) и шесть 300-канальных групп (ТГ). При этом общее число каналов N = 60 ∙ 2 + 300 ∙ 6 = 1920 .

После того как путём последовательного объединения достигается номинальное число каналов, обычно осуществляется ещё одно преобразование частоты: суммарный (групповой) спектр преобразуется в линейный спектр, то есть в ту полосу частот, в которой многоканальный сигнал этой системы передаётся по линии. При этом учитываются особенности каждой линии.

Если индивидуальное и групповое преобразование обычно осуществляется в типовых блоках и стойках, то сопряжение этой аппаратуры (в частности, формирование линейного спектра) с линейным трактом выполняется в оборудовании, специфичном для каждой данной проводной или радиосистемы.

Рассмотрим основные характеристики групповых сообщений .

При проектировании и разработке многоканальных систем передачи возникает необходимость количественной оценки параметров групповых сообщений на различных ступенях преобразования, в частности сигналов на входе линейного тракта. Эти параметры, как и для любых сигналов связи, определяются соответствующими частотными, информационными и энергетическими характеристиками.

По рекомендации МККТТ средняя мощность сообщения в активном канале в точке с нулевым относительным уровнем устанавливается равной 88 мкВт0 (– 10.6 дБм0). Однако при расчёте P ср МККТТ рекомендует принимать величину P 1 = 31.6 мкВт0 (– 15 дБм0) (при этом кроме активности каналов учитываются и другие факторы, например, организация в некоторых ТЧ каналах каналов ТТ, неидеальность индивидуального оборудования и тому подобное). Если N ≥ 240, то средняя мощность группового сообщения в точке нулевого относительного уровня P ср = 31.6N, мкВт, а соответствующий уровень средней мощности p ср = – 15 + 10 lg N , дБм0.

По нормам, принятым в РФ при N ≥ 240

Р 1 = 50 мкВт0 (– 13 дБм0); р ср = – 13 + 10 lg N, дБм0. (4.6)

Если N < 240, то приходится учитывать существенную зависимость коэффициента активности от N. В этом случае Р 1 представляют как функцию N, и уровень средней мощности группового сообщения определяют иначе:

Рср = – 1 + 4 lg N, дБм0. (4.7)

Некоторые параметры и область применения типовой аппаратуры кабельных систем передачи с ЧРК приведены в таблице 4.1.


Таблица 4.1. Параметры типовой аппаратуры кабельных систем передачи с ЧРК

4.4. Временное разделение каналов (ВРК), аналоговые методы передачи

Формирование сигнала линейного тракта систем передачи при ВРК и аналоговых методах передачи. При ВРК на передающей стороне непрерывные сигналы от абонентов передаются поочерёдно (рисунок 4.9)

Для этого эти сигналы преобразуются в ряд дискретных значений, периодически повторяющихся через определённые интервалы времени Т д, которые называются периодом дискретизации (смотри рисунок 4.10). Согласно теореме В.А. Котельникова период дискретизации непрерывного, ограниченного по спектру сигнала с верхней частотой F в >> F н должен быть равен

T д = 1/F д, F д ≥ 2F в, (4.8)

Интервал времени между ближайшими импульсами группового сигнала Т к называется канальным интервалом или тайм-слотом (Time Slot).

Из принципа временного объединения сигналов следует, что передача в таких системах осуществляется циклами, то есть периодически в виде групп из N гр = N + n импульсов, где N – количество информационных сигналов, n – количество служебных сигналов (импульсов синхронизации – ИС, служебной связи, управления и вызовов). Тогда величина канального интервала ∆t к = Т д /N гр.

Таким образом, при ВРК сообщения от N абонентов и дополнительных устройств передаются по общему каналу связи в виде последовательности импульсов, длительность каждого из которых τ и < ∆τ к (смотри рисунок 4.10 и 4.11) .


Рисунок 4.11. Групповой сигнал при ВРК с ФИМ

При временном разделении каналов возможны следующие виды импульсной модуляции (рисунок 4.12): АИМ – амплитудно-импульсная модуляция; ШИМ – широтно-импульсная модуляция; ФИМ – фазоимпульсная модуляция.

Рисунок 4.12. Модуляция канальных импульсов при ВРК: а) непрерывное сообщение; б) АИМ; в) ШИМ; г) ФИМ

Каждый из перечисленных методов импульсной модуляции имеет свои достоинства и недостатки. АИМ – проста в реализации, но плохая помехоустойчивость. Используется как промежуточный вид модуляции при преобразовании аналогового сигнала в цифровой , .

При ШИМ спектр сигнала меняется в зависимости от длительности импульса. Минимальному уровню сигнала соответствует минимальная длительность импульса и, соответственно, максимальный спектр сигнала. При ограниченной полосе канала такие импульсы сильно искажаются.

В аппаратуре с ВРК и аналоговыми методами модуляции наибольшее применение получила ФИМ, так как при её использовании можно уменьшить мешающее действие аддитивных шумов и помех путём двухстороннего ограничения импульсов по амплитуде, а также оптимальным образом согласовать неизменную длительность импульсов с полосой пропускания канала. Поэтому в системах передачи с ВРК используется, в основном, ФИМ.

Характерной особенностью спектров сигналов при импульсной модуляции является наличие составляющих с частотами Ω н …Ω в передаваемого сообщения u к (t) (рисунок 4.3). Эта особенность спектра указывает на возможность демодуляции АИМ и ШИМ фильтром нижних частот (ФНЧ) с частотой среза, равной Ω в. Демодуляция не будет сопровождаться искажениями, если в полосу пропускания ФНЧ не попадут составляющие нижней боковой полосы (ω д – Ω в) … (ω д – Ω н), а это условие будет выполняться, если выбрать

F д > 2F в,

что соответствует условию (4.11). Обычно принимают ω д = (2.3 … 2.4)Ω в и при дискретизации телефонного сообщения с полосой частот 0.3 … 3.4 кГц частоту дискретизации F д = ω д /2π βыбирают равной 8 кГц, а период дискретизации Т д = 1/F д = 125 мкс.

При ФИМ составляющие спектра модулирующего сообщения (Ω н …Ω в) зависят от его частоты и имеют малую амплитуду, поэтому демодуляция ФИМ производится только путём преобразования в АИМ или ШИМ с последующей фильтрацией в ФНЧ.

4.5. Принципы построения аппаратуры с ВРК

На рисунке 4.13 приведена упрощённая структурная схема оконечной станции многоканальной системы с ВРК . Непрерывное сообщение от каждого из абонентов u 1 (t) … u N (t) через соответствующие дифференциальные системы ДС 1 … ДС N подаются на входы канальных модуляторов КМ 1 … КМ N . В канальных модуляторах в соответствии с передаваемым сообщением производятся модуляции импульсов, следующих через период дискретизации Т д, по одному из параметров, например, ФИМ. В соответствии со значением передаваемого непрерывного сообщения (рисунок 4.12, а) в момент отсчёта при ФИМ происходит изменение положения импульса постоянной амплитуды и длительности относительно середины канального интервала от +∆t m до – ∆t m (рисунок 4.12, г). Промодулированные импульсы с выхода КМ, импульсы синхронизации от генератора синхронизации (ГИС), а также импульсы датчика служебной связи (ДСС), датчика сигналов управления и вызовов (ДУВ) объединяются. В результате получается групповой сигнал u гр (t). Для обеспечения работы канальных модуляторов и дополнительных устройств последовательности импульсов с частотой дискретизации F д, сдвинутые относительно первого канала на i∆t к, где i – номер канала. Таким образом, моменты начала работы КМ определяются запускающими импульсами от РК, который определяет моменты подключения к общему широкополосному каналу соответствующего абонента или дополнительного устройства.

Полученный групповой сигнал u гр (t) подаётся на вход регенератора (Р), который придаёт дискретным сигналам различных каналов одинаковые характеристики, например одинаковую форму импульса. Все устройства, предназначенные для образования сигнала u гр (t): КМ 1 … КМ N , РК, ГИС, ДУВ, ДСС, Р – входят в аппаратуру объединения сигналов (АО), которая осуществляет объединение во времени всех сигналов и формирует групповой сигнал. Далее сигнал может передаваться на следующую станцию по проводным соединительным линиям или с помощью радиосвязи.

Рисунок 4.13. Упрощённая структурная схема оконечной станции системы связи с ВРК

На приёме выделенный сигнал u * гр (t) подаётся на входы всех канальных демодуляторов КД 1 … КД N и приемников служебной связи (ПСС), управления и вызова (ПУВ).

Канальные демодуляторы осуществляют разделение u * гр (t) на отдельные канальные сигналы, представляющие собой дискретные отсчёты, и восстановление по этим отсчётам непрерывных сообщений u * 1 (t) … u * N (t), соответствующих поданным на входы КМ в АО. Для обеспечения временного разделения канальных сигналов необходимо, чтобы каждый из КД открывался поочерёдно только (!) в соответствующие данному каналу интервалы времени ∆t к. Это обеспечивается импульсами, снимаемыми с выходов РК′ аппаратуры разделения сигналов (АР), работающего аналогично РК в АО на передающем конце линии связи. Для обеспечения правильного разделения каналов РК′, который находится в АР, должен работать синхронно и синфазно с РК АО, что осуществляется с помощью импульсов синхронизации (ИС), выделяемых соответствующими селекторами (СИС) и блоком синхронизации (БС). Сообщения с выходов КД поступают к соответствующим абонентам через дифференциальные системы.

Помехоустойчивость систем передачи с ВРК во многом определяется точностью и надёжностью работы системы синхронизации и распределителей каналов, установленных в аппаратуре объединения и разделения каналов . Для обеспечения точности работы системы синхронизации импульсы синхронизации (ИС) должны иметь параметры, позволяющие наиболее просто и надёжно выделять их из последовательности импульсов группового сигнала u * гр (t). Наиболее целесообразным при ФИМ оказалось применение сдвоенных ИС, для передачи которых выделяют один из канальных интервалов ∆t к в каждом периоде дискретизации Т д (смотри рисунок 4.11).

Определим число каналов, которое можно получить в системе с ФИМ. На рисунке 4.11 показана последовательность импульсов при многоканальной передаче с ФИМ. Из рисунка следует, что

Т д = (2∆τ макс + τ з)N гр, (4.9)

где τ з – защитный интервал; ∆τ макс – максимальное смещение (девиация) импульсов. При этом полагаем, что длительность импульсов мала по сравнению с τ з и ∆τ макс.

Из формулы (4.9) получаем

; (4.10)

Максимальная девиация импульсов при заданном количестве каналов

, (4.11)

Принимаем , поэтому

. (4.11, а)

Учитывая, что при телефонной передаче Т д = 125 мкс, получим при N гр = 6 ∆τ макс = 8 мкс, при N гр = 12 ∆τ макс = 3 мкс и при N гр = 24 ∆τ макс = 1.5 мкс. Помехоустойчивость системы с ФИМ тем выше, чем больше ∆τ макс.

При передаче сигналов с ФИМ по радиоканалам на второй ступени (в радиопередатчике) может использоваться амплитудная (АМ) или частотная (ЧМ) модуляция. В системах с ФИМ – АМ обычно ограничиваются 24 каналами, а в более помехоустойчивой системе ФИМ – ЧМ – 48 каналами.

Контрольные вопросы:

  1. Что включает в себя система многоканальной связи? Поясните её работу.
  2. В чём состоит принцип частотного разделения каналов?
  3. Дайте определение модулятору. Что является полезными продуктами модуляции?
  4. Сколько составляет длительность цикла при передаче телефонных сообщений с ВРК, почему?
  5. Для чего нужны амплитудные ограничители с системах передачи с ЧРК?
  6. Для чего используются частотные фильтры в системах передачи с ВРК?
  7. В чём состоит принцип временного разделения каналов?
  8. Поясните назначение дифсистемы (упрощённая структурная схема оконечной станции системы связи с ВРК), каким требованиям должны удовлетворять такие устройства?
  9. Какие виды импульсной модуляции возможны при временном разделении каналов?
  10. Какой параметр сигнала является носителем информации в сигналах с АИМ, ФИМ, ШИМ?
  11. Для чего передают импульсы синхронизации?
  12. Перечислите виды синхронизаций по назначению.
  13. Чем обусловлены взаимные помехи, возникающие при разделении каналов? Что делают для снижения уровня взаимных помех?

Итак рассмотрим как осуществляется звонок по мобильному телефону. Лишь только пользователь набирает номер, телефонная трубка (HS - Hand Set) начинает поиск ближайшей базовой станции (BS - Base Station) - приемопередающее, управляющее и коммуникационное оборудование, составляющее сеть. В ее состав входят контроллер базовой станции (BSC -Base Station Controller) и несколько ретрансляторов (BTS - Base Transceiver Station). Базовые станции управляются мобильным коммутирующим центром (MSC - Mobile Service Center). Благодаря сотовой структуре, ретрансляторы покрывают местность зоной уверенного приема в одном или нескольких радиоканалах с дополнительным служебным каналом, по которому происходит синхронизация. Точнее происходит согласование протокола обмена аппарата и базовой станции по аналогии с процедурой модемной синхронизации (handshacking), в процессе которого устройства договариваются о скорости передачи, канале и т.д. Когда мобильный аппарат находит базовую станцию и происходит синхронизация, контроллер базовой станции формирует полнодуплексный канал на мобильный коммутирующий центр через фиксированную сеть. Центр передает информацию о мобильном терминале в четыре регистра: посетительский регистр подвижных абонентов или "гостей" (VLR - Visitor Layer Register), "домашний" регистр местных подвижных абонентов (HRL - Home Register Layer), регистр подписчика или аутентификации (AUC - AUthentiCator) и регистр идентификации оборудования (EIR - Equipment Identification Register). Эта информация уникальна и находится в пластиковой абонентской микроэлектронной телекарточке или модуле (SIM - Subscriber Identity Module), по которому производятся проверка правомочности абонента и тарификация. В отличие от стационарных телефонов, за пользование которыми плата взимается в зависимости от нагрузки (числа занятых каналов), поступающей по фиксированной абонентской линии, плата за пользование подвижной связью взимается не с используемого телефонного аппарата, а с SIM-карты, которую можно вставить в любой аппарат.

Карточка представляет собой не что иное, как обычный флэш-чип, выполненный по смарт-технологии (SmartVoltage) и имеющий необходимый внешний интерфейс. Его можно использовать в любых аппаратах, и главное - чтобы совпадало рабочее напряжение: ранние версии использовали 5.5В интерфейс, а у современных карт обычно 3.3В. Информация хранится в стандарте уникального международного идентификатора абонента (IMSI -International Mobile Subscriber Identification), благодаря чему исключается возможность появления "двойников" - даже если код карты будет случайно подобран, система автоматически исключит фальшивый SIM, и не придется в последствии оплачивать чужие разговоры. При разработке стандарта протокола сотовой связи этот момент был изначально учтен, и теперь каждый абонент имеет свой уникальный и единственный в мире идентификационный номер, кодирующийся при передаче 64 бит ключом. Кроме этого, по аналогии со скремблерами, предназначенными для шифрования/дешифрования разговора в аналоговой телефонии, в сотовой связи применяется 56 бит кодирование.


На основании этих данных формируется представление системы о мобильном пользователе (его местоположение, статус в сети и т. д.) и происходит соединение. Если мобильный пользователь во время разговора перемещается из зоны действия одного ретранслятора в зону действия другого, или даже между зонами действия разных контроллеров, связь не обрывается и не ухудшается, поскольку система автоматически выбирает ту базовую станцию, с которой связь лучше. В зависимости от загруженности каналов телефон выбирает между сетью 900 и 1800 МГц, причем переключение возможно даже во время разговора абсолютно незаметно для говорящего.

Звонок из обычной телефонной сети мобильному пользователю осуществляется в обратной последовательности: сначала определяются местоположение и статус абонента на основании постоянно обновляющихся данных в регистрах, а затем происходят соединение и поддержание связи. Максимальная мощность излучения подвижного аппарата в зависимости от его назначения (автомобильный постоянный или переносный, носимый или карманный) может изменяться в пределах 0.8-20 Вт (соответственно 29-43 dBm). В качестве примера в таблице 4.9. приводятся классы станций и абонентских устройств по применяемой мощности, принятые в системе GSM-900.

Частотное разделение каналов, Мультиплексирование с разделением по частоте (англ. Frequency-Division Multiplexing, FDM)

Разделение каналов осуществляется по частотам. Так как радиоканал обладает определённым спектром, то в сумме всех передающих устройств и получается современная радио связь. Например: спектр сигнала для мобильного телефона 8 МГц. Если мобильный оператор даёт абоненту частоту 880 МГц, то следующий абонент может занимать частоту 880+8=888 МГц. Таким образом, если оператор мобильной связи имеет лицензионную частоту 800-900 МГц, то он способен обеспечить около 12 каналов, с частотным разделением.

Частотное разделение каналов применяется в технологии X-DSL. По телефонным проводам передаются сигналы различной частоты: телефонный разговор-0,3-3,4 кГц а для передачи данных используется полоса от 28 до 1300 кГц.

Очень важно фильтровать сигналы. Иначе будут происходить наложения сигналов, из-за чего связь может сильно ухудшиться.

Практика построения современных систем передачи информации показывает, что наиболее дорогостоящими звеньями каналов связи являются линии связи : кабельные, волноводные и световодные, радиорелейные и спутниковые и др. Поскольку экономически нецелесообразно использовать дорогостоящую линию связи для передачи информации между единственной парой абонентов, то возникает проблема построения многоканальных систем передачи, в которых одна общая линия связи уплотнятся большим числом индивидуальных каналов. Этим обеспечивается повышение эффективности использования пропускной способности линии связи. Сообщения А 1 (t), …, А N (t) от N источников ИС 1 , …, ИС N с помощью индивидуальных модуляторов М 1 , …, М N преобразуются в канальные сигналы U 1 (t), …, U N (t). Сумма этих сигналов образует групповой канальный сигнал U Л (t), который передается по линии связи (ЛС). Групповой приемник П преобразует полученный сигнал Z Л (t) в исходный групповой сигнал Z(t)=U(t). Индивидуальные приемники П 1 , …, П N выделяют из группового сигнала Z(t) соответствующие канальные сигналы Z 1 (t), …, Z N (t) и преобразуют их в сообщения . Блоки М 1 , …, М N и сумматор образуют аппаратуру уплотнения, блоки М, ЛС и П – групповой канал. Аппаратура уплотнения, групповой канал и индивидуальные приемники образуют систему многоканальной связи.

Чтобы разделяющие устройства могли различать сигналы отдельных каналов, должны быть определены соответствующие признаки, присущие только данному сигналу. Такими признаками в случае непрерывной модуляции могут быть частота, амплитуда, фаза, в случае дискретной модуляции еще и форма сигнала. В соответствии с используемыми для разделения признаками различаются и способы разделения: частотные, временные, фазовые и др.

23.Частотное разделение сигналов. Временное разделение сигналов. Разделение сигналов по форме (кодовое).

В системах телемеханики для передачи многих сигналов по одной линии связи применение обычного кодирования показывается недостаточным. Необходимо либо дополнительное разделение сигналов, либо специальное кодирование, которое включает в себя элементы разделения сигналов. Разделение сигналов - обеспечение независимой передачи и приема многих сигналов по одной линии связи или в одной полосе частот, при котором сигналы сохраняют свои свойства и не искажают друг друга.

Сейчас применяются следующие способы:

    Временное разделение, при котором сигналы передаются последовательно во времени, поочередно используя одну и ту же полосу частот;

    Кодово-адресное разделение, осуществляемое на базе временного (реже частотного) разделение сигналов с посылкой кода адреса;

    Частотное разделение, при котором каждому из сигналов присваивается своя частота и сигналы передаются последовательно или параллельно во времени;

    Частотно-временное разделение, позволяющее использовать преимущества как частотного, так и временного разделения сигналов;

    Фазовое разделение, при котором сигналы отличаются друг от друга фазой.

Временное разделение (ВР). Каждому из n - сигналов линия предоставляется поочередно: сначала за промежуток времени t 1 передается сигнал 1, за t 2 - сигнал 2 и т.д. При этом каждый сигнал занимает свой временной интервал. Время, которое отводится для передачи всех сигналов, называется циклом. Полоса частот для передачи сигналов определяется самым коротким импульсом в кодовой комбинации. Между информационными временными интервалами необходимы защитные временные интервалы во избежание взаимного влияния канала на канал т.е. проходных искажений.

Для осуществления временного разделения используют распределители, один из которых устанавливают на пункте управления, а другой - на исполнительном пункте.

Кодово - адресное разделение сигналов (КАР). Используют временное кодово-адресное разделение сигналов (ВКАР), при этом сначала передается синхронизирующий импульс или кодовая комбинация (синхрокомбинация) для обеспечения согласованной работы распределителей на пункте управления и контролируемом пункте. Далее посылается кодовая комбинация, называемая кодом адреса. Первые символы кода адреса предназначены для выбора контролируемого пункта и объекта, последние образуют адрес функции, в котором указывается, какая ТМ - операция (функция) должна выполняться (ТУ, ТИ и т.п.). После этого следует кодовая комбинация самой операции, т.е. передается командная информация или принимается известительная информация.

Частотное разделение сигналов. Для каждого из n - сигналов выдается своя полоса в частотном диапазоне. На приемном пункте (КП) каждый из посланных сигналов выделяется сначала полосовым фильтром, затем подается на демодулятор, затем на исполнительные реле. Можно передавать сигналы последовательно или одновременно, т.е. параллельно.

Фазовое разделение сигналов. На одной частоте передается несколько сигналов в виде радиоимпульсов с различными начальными фазами. Для этого используется относительная или фазорастностная манипуляция.

Частотно-временное разделение сигналов. Заштрихованные квадраты с номерами - это сигналы, передаваемые в определенной полосе частот и в выделенном интервале времени. Между сигналами имеются защитные временные интервалы и полосы частот. Число образуемых сигналов при этом значительно увеличивается.


Методы разделения каналов: пространственное, линейное (частотное, временное), по форме. Условие линейного разделения каналов.

В многоканальных системах тракты всех сигналов должны быть разде­лены каким-либо способом, чтобы сигнал каждого источника мог попасть в соответствующий приемник. Такая процедура носит название разделения каналов или раз­деления канальных сигналов .

Мультиплексирование (англ. MUX) – процедура объединения (уплотнения) канальных сигналов в МСП.

Процедура обратная мультиплексированию связана с разделением каналов – демультиплексирование (англ. DMX или DeMUX).

MUX + DMX = MULDEX - «мульдекс»

Классификация методов разделения каналов

Все используемые методы разделения каналов можно классифицировать на линейные и нелинейные (см. рисунок).

Рисунок - Классификация методов разделения каналов

В МСП выделяют следующие методы разделения каналов:

- про­странственное (схемное);

- линейные: частотное – ЧРК, временное – ВРК, разделение каналов по форме – РКФ;

- нелинейные: приводимые к линейным и мажоритарные.

Пространственное разделение.

Это простейший вид разделения, при котором каждому каналу отводится индивидуальная линия связи:



Рисунок - МСП с пространственным разделением каналов

ИИ – источник информации

ПИ – приемник информации

ЛС - линия связи

Другие формы разделения каналов предполагают передачу сообщений по одной линии связи. В связи с этим многоканальную передачу называют также уплотнением каналов .

Обобщенная структурная схема МСП с линейным разделением сигналов каналов

M i – модулятор i-го канала

П i – перемножитель i-го канала

И i – интегратор i-го канала

Д i – модулятор i-го канала

СС – синхросигнал передающей стороны

ПС – приемник синхросигнала на приёмной стороне

ЛС – линия связи

На передающей стороне первичные сигналы C 1 (t), C 2 (t),...,C N (t) поступают на вход M 1 , M 2 ,..., M N , на другой вход которых от генераторов переносчиков поступают линейно независимые или ортогональные переносчики ψ 1 (t), ψ 2 (t),...,ψ N (t) , переносящие первичные сигналы в канальные сигналы S 1 (t), S 2 (t),.., S N (t) . Затем канальные сигналы суммируются, и формируется групповой много­канальный сигнал S гр (t) .

На приемной стороне групповой сигнал S" гр (t), изменившийся под воз­действием различного вида помех и искажений n(t), поступает на перемножители П 1 , П 2 ,..., П N , над вход которых от генерато­ров переносчиков поступают переносчики ψ 1 (t), ψ 2 (t),..., ψ N (t) . Результаты перемножения поступают на интеграторы И 1 , И 2 ,..., И N , на выходе которых получаются канальные сигналы c учетом помех и искажений, S" 1 (t), S" 2 (t),..., S" N (t). Далее канальные сигналы поступают на Д 1 ,Д 2 ,...,Д n , которые преобразуют канальные сигналы в первичные c учетом помех и искажений С" 1 (t), С" 2 (t),..., С" N (t).

Функционирование системы передачи возможно при синхронном (а иногда и синфазном) воздействии переносчиков на устройства преобразования М на передаче и умножения П на приеме. Для этого на передающей стороне в групповой сигнал вводится синхросигнал (СС), а на приемной стороне он выделяется из группового сигнала приемником синхросигнала (ПС).

Многоканальные системы телекоммуникаций с частотным разделением каналов. Методы формирования канальных сигналов.

Телекоммуникационной системой с частотным разделением каналов называют систему, в линейном тракте которой для передачи канальных сигналов отводятся неперекрывающиеся полосы частот .

Рассмотрим принцип частотного разделения каналов, используя схему N-канальной системы и планы частот в ее характерных точках.

Рисунок - Структурная схема N-канальной МСП с ЧРК

В качестве переносчиков в МСП с ЧРК используются гармонические колебания с различными частотами f 1 , f 2 , …f n (колебания несущих):

ψ i (t ) = S i

Канальные сигналы формируются в результате модуляции одного из параметров переносчиков первичными сигналами C i (t) . Применяются амплитудная , частотная и фазовая модуляции. Частоты несущих колебаний выбираются так, чтобы спектры канальных сигналов S 1 (t) и S 2 (t) не перекрывались . Групповой сигнал S гр (t) , поступивший в линию связи, представляет собой сумму канальных сигналов

S гр (t ) = S 1 (t ) + S 2 (t ) + ...+ S n (t )

При передаче по линейному тракту сигнал S гр (t ) претерпевает линейные и нелинейные искажения и на него накладывается помеха n(t), т.о., в приемную часть поступает искаженный сигнал .

В приемной части производится разделение канальных сигналов с помощью канальных полосовых разделительных фильтров КПФ-1, КПФ-2, КПФ-n, т.е. из группового сигнала выделяют канальные сигналы .

Первичные сигналы восстанавливаются демодуляторами Д 1 , Д 2 , … Д n с использованием частот, равными частотам несущих на передаче.

Планы частот в ее характерных точках (см. схему)

В ЧРК доминирующее положение занимает вид модуляции АМ-ОБП, поскольку является наиболее компромиссным.

Рисунок – Варианты полосой фильтрации при АМ-ОБП

Формирование сигнала АМ-ОБП в технике связи осуществляется двумя способами:

1) Фильтровой способ

2) Фазоразностный способ

Фильтровой способ чаще используется в технике МСП, в то время как фазоразностный как правило в малоканальных системах передачи.

Фильтровой способ

На передающей стороне

Пример:

Спектр сигнала 0,3 – 3,4 кГц. Определить результат АМ-ОБП, если в качестве несущей используется гармоническое колебание с частотой 100 кГц.

На приемной стороне

Примечание: Нестабильность по частоте (рассогласование) между генераторным оборудованием передающей и приемной сторон для первичной группы сигнала (12x КТЧ) должно составлять не более 1,5 Гц.

Фазоразностный способ

Принцип работы: схема состоит из двух плеч, объединяемых на входе и выходе с помощью развязывающих устройств (РУ). На модулятор (M 2) одного плеча исходный сигнал и несущая частота подаются сдвинутыми по фазе на π/2 относительно сигнала и несущей частоты, подаваемых на модулятор (M 1) другого плеча. В результате на выходе схемы будет колебание только одной боковой полосы. Фазовые контуры (ФК 1 , ФК ФК 2) обеспечивают сдвиг по фазе на π/2.

Условием разделимости канальных сигналов в МСП с ЧРК является их ортогональность , т.е.

где энергетический спектр i-го канального сигнала;

границы полосы частот, отводимой в линейном тракте для i-го канального сигнала.

Ширина частотного спектра группового сигнала Df S определяется числом каналов в системе передачи (N); шириной спектра канальных сигналов Df i , а также частотными характеристиками затухания канальных полосовых разделительных фильтров КПФ-1, КПФ-2, КПФ-n.

Разделительные фильтры обеспечивают малое затухание в полосе пропускания (апр ) и необходимую величину затухания в диапазоне эффективного задерживания (апод ). Между этими полосами находятся полосы расфильтровки разделительных фильтров. Следовательно, канальные сигналы должны быть разделены защитными промежутками (D), величины которых должны быть не меньше полос расфильтровки фильтров.

Следовательно, ширина группового сигнала может быть определена по формуле

Df гр = N × (Dfi + Df з )

так как затухание разделительных фильтров в полосе задерживания конечно (апод ), то полное разделение канальных сигналов невозможно. Вследствие этого появляются межканальные переходные помехи .

В современных МСП телефонной связи каждому КТЧ выделяется полоса частот 4 кГц, хотя частотный спектр передаваемых звуковых сигналов ограничивается полосой от 300 до 3400 Гц, т.е. ширина спектра составляет 3,1 кГц. Между полосами частот соседних каналов предусмотрены интервалы шириной по 0,9 кГц, предназначенные для снижения уровня взаимных помех при расфильтровке сигналов. Это означает, что в многоканальных системах связи с частотным разделением сигналов эффективно используется лишь около 80% полосы пропускания линии связи. Кроме того, необходимо обеспечить высокую степень линейности всего тракта группового сигнала.

Рисунок – Структурная схема аппаратуры формирования

Тема 5. Методы разделения каналов

5.1 Методы разделения каналов: пространственное, линейное (частотное, временное), по форме. Условие линейного разделения каналов. Сигналы переносчики и модуляция их параметров.

5.2 Многоканальные системы телекоммуникаций с частотным разделением каналов. Методы формирования канальных сигналов.

5.3 Многоканальные системы телекоммуникаций с временным разделением каналов. Сравнительный анализ аналого-импульсных методов модуляции.

Лучшие статьи по теме