Как настроить смартфоны и ПК. Информационный портал

В реальном колебательном контуре возникают. Разбираем частоту резонанса

электрическая цепь, состоящая из последовательно соединённых конденсатора с ёмкостью , катушки с индуктивностью и электрического сопротивления .

Идеальный колебательный контур — цепь, состоящая только из катушки индуктивности (не имеющей собственного сопротивления) и конденсатора ( -контур). Тогда в такой системе поддерживаются незатухающие электромагнитные колебания силы тока в цепи, напряжения на конденсаторе и заряда конденсатора. Давайте разберём контур и подумаем, откуда возникают колебания. Пусть изначально заряженный конденсатор помещён в описываемую нами цепь.

Рис. 1. Колебательный контур

В начальный момент времени весь заряд сосредоточен на конденсаторе, на катушке тока нет (рис. 1.1). Т.к. на обкладках конденсатора внешнего поля тоже нет, то электроны с обкладок начинают «уходить» в цепь (заряд на конденсаторе начинает уменьшаться). При этом (за счёт освобождённых электронов) возрастает ток в цепи. Направление тока, в данном случае, от плюса к минусу (впрочем, как и всегда), и конденсатор представляет собой источник переменного тока для данной системы. Однако при росте тока на катушке, вследствие , возникает обратный индукционный ток (). Направление индукционного тока, согласно правилу Ленца, должно нивелировать (уменьшать) рост основного тока. Когда заряд конденсатора станет равным нулю (весь заряд стечёт), сила индукционного тока в катушке станет максимальной (рис. 1.2).

Однако текущий заряд в цепи пропасть не может (закон сохранения заряда), тогда этот заряд, ушедший с одной обкладки через цепь, оказался на другой обкладке. Таким образом, происходит перезарядка конденсатора в обратную сторону (рис. 1.3). Индукционный ток на катушке уменьшается до нуля, т.к. изменение магнитного потока также стремится к нулю.

При полной зарядке конденсатора электроны начинают двигаться в обратную сторону, т.е. происходит разрядка конденсатора в обратную сторону и возникает ток, доходящий до своего максимума при полной разрядке конденсатора (рис. 1.4).

Дальнейшая обратная зарядка конденсатора приводит в систему в положение на рисунке 1.1. Такое поведение системы повторяется сколь угодно долго. Таким образом, мы получаем колебание различных параметров системы: тока в катушке, заряд на конденсаторе, напряжение на конденсаторе. В случае идеальности контура и проводов (отсутствие собственного сопротивления), эти колебания — .

Для математического описания этих параметров этой системы (в первую очередь, периода электромагнитных колебаний) вводится рассчитанная до нас формула Томсона :

Неидеальным контуром является всё тот же идеальный контур, который мы рассмотрели, с одним небольшим включением: с наличием сопротивления ( -контур). Данное сопротивление может быть как сопротивлением катушки (она не идеальна), так и сопротивлением проводящих проводов. Общая логика возникновения колебаний в неидеальном контуре аналогична той, что и в идеальном. Отличие только в самих колебаниях. В случае наличия сопротивления, часть энергии будет рассеиваться в окружающую среду — сопротивление будет нагреваться, тогда энергия колебательного контура будет уменьшаться и сами колебания станут затухающими .

Для работы с контурами в школе используется только общая энергетическая логика. В данном случае, считаем, что полная энергия системы в начале сосредоточена на и/или , и описывается.

Электромагнитное поле может существовать и в отсутствие электрических зарядов или токов: именно такие «самоподдерживающиеся» электрическое и магнитное поля представляют собой электромагнитные волны, к которым относятся видимый свет, инфракрасное, ультрафиолетовое и рентгеновское излучения, радиоволны и т. д.

§ 25. Колебательный контур

Простейшая система, в которой возможны собственные электромагнитные колебания, - это так называемый колебательный контур, состоящий из соединенных между собой конденсатора и катушки индуктивности (рис. 157). Как и у механического осциллятора, например массивного тела на упругой пружине, собственные колебания в контуре сопровождаются энергетическими превращениями.

Рис. 157. Колебательный контур

Аналогия между механическими и электромагнитными колебаниями. Для колебательного контура аналог потенциальной энергии механического осциллятора (например, упругой энергии деформированной пружины) - это энергия электрического поля в конденсаторе. Аналог кинетической энергии движущегося тела - энергия магнитного поля в катушке индуктивности. В самом деле, энергия пружины пропорциональна квадрату смещения из положения равновесия а энергия конденсатора пропорциональна квадрату заряда Кинетическая энергия тела пропорциональна квадрату его скорости а энергия магнитного поля в катушке пропорциональна квадрату силы тока

Полная механическая энергия пружинного осциллятора Е равна сумме потенциальной и кинетической энергий:

Энергия колебаний. Аналогично, полная электромагнитная энергия колебательного контура равна сумме энергий электрического поля в конденсаторе и магнитного поля в катушке:

Из сопоставления формул (1) и (2) следует, что аналогом жесткости к пружинного осциллятора в колебательном контуре служит величина обратная емкости конденсатора С, а аналогом массы - индуктивность катушки

Напомним, что в механической системе, энергия которой дается выражением (1), могут происходить собственные незатухающие гармонические колебания. Квадрат частоты таких колебаний равен отношению коэффициентов при квадратах смещения и скорости в выражении для энергии:

Собственная частота. В колебательном контуре, электромагнитная энергия которого дается выражением (2), могут происходить собственные незатухающие гармонические колебания, квадрат частоты которых тоже, очевидно, равен отношению соответствующих коэффициентов (т. е. коэффициентов при квадратах заряда и силы тока):

Из (4) следует выражение для периода колебаний, называемое формулой Томсона:

При механических колебаниях зависимость смещения х от времени определяется косинусоидальной функцией, аргумент которой называется фазой колебаний:

Амплитуда и начальная фаза. Амплитуда А и начальная фаза а определяются начальными условиями, т. е. значениями смещения и скорости при

Аналогично, при электромагнитных собственных колебаниях в контуре заряд конденсатора зависит от времени по закону

где частота определяется, в соответствии с (4), только свойствами самого контура, а амплитуда колебаний заряда и начальная фаза а, как и у механического осциллятора, определяется

начальными условиями, т. е. значениями заряда конденсатора и силы тока при Таким образом, собственная частота не зависит от способа возбуждения колебаний, в то время как амплитуда и начальная фаза определяются именно условиями возбуждения.

Энергетические превращения. Рассмотрим подробнее энергетические превращения при механических и электромагнитных колебаниях. На рис. 158 схематически изображены состояния механического и электромагнитного осцилляторов через промежутки времени в четверть периода

Рис. 158. Энергетические превращения при механических и электромагнитных колебаниях

Дважды за период колебаний энергия превращается из одного вида в другой и обратно. Полная энергия колебательного контура как и полная энергия механического осциллятора, в отсутствие диссипации остается неизменной. Чтобы убедиться в этом, нужно в формулу (2) подставить выражение (6) для и выражение для силы тока

Используя формулу (4) для получаем

Рис. 159. Графики зависимости от времени заряда конденсатора энергии электрического поля конденсатора и энергии магнитного поля в катушке

Неизменная полная энергия совпадает с потенциальной энергией в моменты, когда заряд конденсатора максимален, и совпадает с энергией магнитного поля катушки - «кинетической» энергией - в моменты, когда заряд конденсатора обращается в нуль, а ток максимален. При взаимных превращениях два вида энергии совершают гармонические колебания с одинаковой амплитудой в противофазе друг с другом и с частотой относительно своего среднего значения . В этом легко убедиться как из рис. 158, так и с помощью формул тригонометрических функций половинного аргумента:

Графики зависимости от времени заряда конденсатора энергии электрического поля и энергии магнитного поля показаны на рис. 159 для начальной фазы

Количественные закономерности собственных электромагнитных колебаний можно установить непосредственно на основе законов для квазистационарных токов, не обращаясь к аналогии с механическими колебаниями.

Уравнение для колебаний в контуре. Рассмотрим простейший колебательный контур, показанный на рис. 157. При обходе контура, например, против часовой стрелки, сумма напряжений на катушке индуктивности и конденсаторе в такой замкнутой последовательной цепи равна нулю:

Напряжение на конденсаторе связано с зарядом пластины и с емкостью С соотношением Напряжение на индуктивности в любой момент времени равно по модулю и противоположно по знаку ЭДС самоиндукции, поэтому Ток в цепи равен скорости изменения заряда конденсатора: Подставляя силу тока в выражение для напряжения на катушке индуктивности и обозначая вторую производную заряда конденсатора по времени через

Получим Теперь выражение (10) принимает вид

Перепишем это уравнение иначе, вводя по определению :

Уравнение (12) совпадает с уравнением гармонических колебаний механического осциллятора с собственной частотой Решение такого уравнения дается гармонической (синусоидальной) функцией времени (6) с произвольными значениями амплитуды и начальной фазы а. Отсюда следуют все приведенные выше результаты, касающиеся электромагнитных колебаний в контуре.

Затухание электромагнитных колебаний. До сих пор обсуждались собственные колебания в идеализированной механической системе и идеализированном LC-контуре. Идеализация заключалась в пренебрежении трением в осцилляторе и электрическим сопротивлением в контуре. Только в этом случае система будет консервативной и энергия колебаний будет сохраняться.

Рис. 160. Колебательный контур с сопротивлением

Учет диссипации энергии колебаний в контуре можно провести аналогично тому, как это было сделано в случае механического осциллятора с трением. Наличие электрического сопротивления катушки и соединительных проводов неизбежно связано с выделением джоулевой теплоты. Как и раньше, это сопротивление можно рассматривать как самостоятельный элемент в электрической схеме колебательного контура, считая катушку и провода идеальными (рис. 160). При рассмотрении квазистационарного тока в таком контуре в уравнение (10) нужно добавить напряжение на сопротивлении

Подставляя в получаем

Вводя обозначения

перепишем уравнение (14) в виде

Уравнение (16) для имеет точно такой же вид, как и уравнение для при колебаниях механического осциллятора с

трением, пропорциональным скорости (вязким трением). Поэтому при наличии электрического сопротивления в контуре электромагнитные колебания происходят по такому же закону, как и механические колебания осциллятора с вязким трением.

Диссипация энергии колебаний. Как и при механических колебаниях, можно установить закон убывания со временем энергии собственных колебаний, применяя закон Джоуля-Ленца для подсчета выделяющейся теплоты:

В результате в случае малого затухания для промежутков времени, много больших периода колебаний, скорость убывания энергии колебаний оказывается пропорциональной самой энергии:

Решение уравнения (18) имеет вид

Энергия собственных электромагнитных колебаний в контуре с сопротивлением убывает по экспоненциальному закону.

Энергия колебаний пропорциональна квадрату их амплитуды. Для электромагнитных колебаний это следует, например, из (8). Поэтому амплитуда затухающих колебаний, в соответствии с (19), убывает по закону

Время жизни колебаний. Как видно из (20), амплитуда колебаний убывает в раз за время равное независимо от начального значения амплитуды Это время х носит название времени жизни колебаний, хотя, как видно из (20), колебания формально продолжаются бесконечно долго. В действительности, конечно, о колебаниях имеет смысл говорить лишь до тех пор, пока их амплитуда превышает характерное значение уровня тепловых шумов в данной цепи. Поэтому фактически колебания в контуре «живут» конечное время, которое, однако, может в несколько раз превосходить введенное выше время жизни х.

Часто бывает важно знать не само по себе время жизни колебаний х, а число полных колебаний, которое произойдет в контуре за это время х. Это число умноженное на называют добротностью контура.

Строго говоря, затухающие колебания не являются периодическими. При малом затухании можно условно говорить о периоде, под которым понимают промежуток времени между двумя

последонательными максимальными значениями заряда конденсатора (одинаковой полярности), либо максимальными значениями тока (одного направления).

Затухание колебаний влияет на период, приводя к его возрастанию по сравнению с идеализированным случаем отсутствия затухания. При малом затухании увеличение периода колебаний очень незначительно. Однако при сильном затухании колебаний вообще может не быть: заряженный конденсатор будет разряжаться апериодически, т. е. без изменения направления тока в контуре. Так будет при т. е. при

Точное решение. Сформулированные выше закономерности затухающих колебаний следуют из точного решения дифференциального уравнения (16). Непосредственной подстановкой можно убедиться, что оно имеет вид

где - произвольные постоянные, значения которых определяются из начальных условий. При малом затухании множитель при косинусе можно рассматривать как медленно меняющуюся амплитуду колебаний.

Задача

Перезарядка конденсаторов через катушку индуктивности. В цепи, схема которой показана на рис. 161, заряд верхнего конденсатора равен а нижний не заряжен. В момент ключ замыкают. Найти зависимость от времени заряда верхнего конденсатора и тока в катушке.

Рис. 161. В начальный момент времени заряжен только один конденсатор

Рис. 162. Заряды конденсаторов и ток в контуре после замыкания ключа

Рис. 163. Механическая аналогия для электрической цепи, показанной на рис. 162

Решение. После замыкания ключа в цепи возникают колебания: верхний конденсатор начинает разряжаться через катушку, заряжая при этом нижний; затем все происходит в обратном направлении. Пусть, например, при положительно заряжена верхняя обкладка конденсатора. Тогда

спустя малый промежуток времени знаки зарядов обкладок конденсаторов и направление тока будут такими, как показано на рис. 162. Обозначим через заряды тех обкладок верхнего и нижнего конденсаторов, которые соединены между собой через катушку индуктивности. На основании закона сохранения электрического заряда

Сумма напряжений на всех элементах замкнутого контура в каждый момент времени равна нулю:

Знак напряжения на конденсаторе соответствует распределению зарядов на рис. 162. и указанному направлению тока. Выражение для тока через катушку можно записать в любом из двух видов:

Исключим из уравнения помощью соотношений (22) и (24):

Вводя обозначения

перепишем (25) в следующем виде:

Если вместо ввести функцию

и учесть, что то (27) принимает вид

Это обычное уравнение незатухающих гармонических колебаний, которое имеет решение

где и - произвольные постоянные.

Возвращаясь от функции получим для зависимости от времени заряда верхнего конденсатора следующее выражение:

Для определения постоянных и а учтем, что в начальный момент заряд а ток Для силы тока из (24) и (31) имеем

Поскольку отсюда следует, что Подставляя теперь в и учитывая, что получаем

Итак, выражения для заряда и силы тока имеют вид

Характер осцилляций заряда и тока особенно нагляден при одинаковых значениях емкостей конденсаторов . В этом случае

Заряд верхнего конденсатора осциллирует с амплитудой около среднего значения, равного За половину периода колебаний он уменьшается от максимального значения в начальный момент до нуля, когда весь заряд оказывается на нижнем конденсаторе.

Выражение (26) для частоты колебаний разумеется, можно было написать сразу, поскольку в рассматриваемом контуре конденсаторы соединены последовательно. Однако написать выражения (34) непосредственно затруднительно, так как при таких начальных условиях нельзя входящие в контур конденсаторы заменить одним эквивалентным.

Наглядное представление о происходящих здесь процессах дает механический аналог данной электрической цепи, показанный на рис. 163. Одинаковые пружины соответствуют случаю конденсаторов одинаковой емкости. В начальный момент левая пружина сжата, что соответствует заряженному конденсатору, а правая находится в недеформированном состоянии, так как аналогом заряда конденсатора здесь служит степень деформации пружины. При прохождении через среднее положение обе пружины частично сжаты, а в крайнем правом положении левая пружина недеформирована, а правая сжата так же, как левая в начальный момент, что соответствует полному перетеканию заряда с одного конденсатора на другой. Хотя шар совершает обычные гармонические колебания около положения равновесия, деформация каждой из пружин описывается функцией, среднее значение которой отлично от нуля.

В отличие от колебательного контура с одним конденсатором, где при колебаниях происходит повторяющаяся его полпая перезарядка, в рассмотренной системе первоначально заряженный конденсатор полностью не перезаряжается. Например, при его заряд уменьшается до нуля, а затем снова восстанавливается в той же полярности. В остальном эти колебания не отличаются от гармонических колебаний в обычном контуре. Энергия этих колебаний сохраняется, если, разумеется, можно пренебречь сопротивлением катушки и соединительных проводов.

Поясните, почему из сопоставления формул (1) и (2) для механической и электромагнитной энергий сделан вывод о том, что аналогом жесткости к является а аналогом массы индуктивность а не наоборот.

Приведите обоснование вывода выражения (4) для собственной частоты электромагнитных колебаний в контуре из аналогии с механическим пружинным осциллятором.

Гармонические колебания в -контуре характеризуются амплитудой, частотой, периодом, фазой колебаний, начальной фазой. Какие из этих величин определяются свойствами самого колебательного контура, а какие зависят от способа возбуждения колебаний?

Докажите, что средние значения электрической и магнитной энергий при собственных колебаниях в контуре равны между собой и составляют половину полной электромагнитной энергии колебаний.

Как применить законы квазистационарных явлений в электрической цепи для вывода дифференциального уравнения (12) гармонических колебаний в -контуре?

Какому дифференциальному уравнению удовлетворяет сила тока в LC-контуре?

Проведите вывод уравнения для скорости убывания энергии колебаний при малом затухании аналогично тому, как это было сделано для механического осциллятора с трением, пропорциональным скорости, и покажите, что для промежутков времени, значительно превосходящих период колебаний, это убывание происходит по экспоненциальному закону. Какой смысл имеет использованный здесь термин «малое затухание»?

Покажите, что функция даваемая формулой (21), удовлетворяет уравнению (16) при любых значениях и а.

Рассмотрите механическую систему, показанную на рис. 163, и найдите зависимость от времени деформации левой пружины и скорости массивного тела.

Контур без сопротивления с неизбежными потерями. В рассмотренной выше задаче, несмотря на не совсем обычные начальные условия для зарядов на конденсаторах, можно было применить обычные уравнения для электрических цепей, поскольку там были выполнены условия квазистационарности протекающих процессов. А вот в цепи, схема которой показана на рис. 164, при формальном внешнем сходстве со схемой на рис. 162, условия квазистационарности не выполняются, если в начальный момент один конденсатор заряжен, а второй - нет.

Обсудим подробнее причины, по которым здесь нарушаются условия квазистационарности. Сразу после замыкания

Рис. 164. Электрическая цепь, для которой не выполняются условия квазистационарности

ключа все процессы разыгрываются только в соединенных между собой конденсаторах, так как нарастание тока через катушку индуктивности происходит сравнительно медленно и поначалу ответвлением тока в катушку можно пренебречь.

При замыкании ключа возникают быстрые затухающие колебания в контуре, состоящем из конденсаторов и соединяющих их проводов. Период таких колебаний очень мал, так как мала индуктивность соединительных проводов. В результате этих колебаний заряд на пластинах конденсаторов перераспределяется, после чего два конденсатора можно рассматривать как один. Но в первый момент этого делать нельзя, ибо вместе с перераспределением зарядов происходит и перераспределение энергии, часть которой переходит в теплоту.

После затухания быстрых колебаний в системе происходят колебания, как в контуре с одним конденсатором емкости заряд которого в начальный момент равен первоначальному заряду конденсатора Условием справедливости приведенного рассуждения является малость индуктивности соединительных проводов по сравнению с индуктивностью катушки.

Как и в рассмотренной задаче, полезно и здесь найти механическую аналогию. Если там две пружины, соответствующие конденсаторам, были расположены по обе стороны массивного тела, то здесь они должны быть расположены по одну сторону от него, так чтобы колебания одной из них могли передаваться другой при неподвижном теле. Вместо двух пружин можно взять одну, но только в начальный момент она должна быть деформирована неоднородно.

Захватим пружину за середину и растянем ее левую половину на некоторое расстояние Вторая половина пружины останется в недеформированном состоянии, так что груз в начальный момент смещен из положения равновесия вправо на расстояние и покоится. Затем отпустим пружину. К каким особенностям приведет то обстоятельство, что в начальный момент пружина деформирована неоднородно? ибо, как нетрудно сообразить, жесткость «половины» пружины равна Если масса пружины мала по сравнению с массой шара, частота собственных колебаний пружины как протяженной системы много больше частоты колебаний шара на пружине. Эти «быстрые» колебания затухнут за время, составляющее малую долю периода колебаний шара. После затухания быстрых колебаний натяжение в пружине перераспределяется, а смещение груза практически остается равным так как груз за это время не успевает заметно сдвинуться. Деформация пружины становится однородной, а энергия системы равной

Таким образом, роль быстрых колебаний пружины свелась к тому, что запас энергии системы уменьшился до того значения, которое соответствует однородной начальной деформации пружины. Ясно, что дальнейшие процессы в системе не отличаются от случая однородной начальной деформации. Зависимость смещения груза от времени выражается той же самой формулой (36).

В рассмотренном примере в результате быстрых колебаний превратилась во внутреннюю энергию (в теплоту) половина первоначального запаса механической энергии. Ясно, что, подвергая начальной деформации не половину, а произвольную часть пружины, можно превратить во внутреннюю энергию любую долю первоначального запаса механической энергии. Но во всех случаях энергия колебаний груза на пружине соответствует запасу энергии при той же однородной начальной деформации пружины.

В электрической цепи в результате затухающих быстрых колебаний энергия заряженного конденсатора частично выделяется в виде джоулевой теплоты в соединительных проводах. При равных емкостях это будет половина первоначального запаса энергии. Вторая половина остается в форме энергии сравнительно медленных электромагнитных колебаний в контуре, состоящем из катушки и двух соединенных параллельно конденсаторов С, и

Таким образом, в этой системе принципиально недопустима идеализация, при которой пренебрегается диссипацией энергии колебаний. Причина этого в том, что здесь возможны быстрые колебания, не затрагивающие катушки индуктивности или массивного тела в аналогичной механической системе.

Колебательный контур с нелинейными элементами. При изучении механических колебаний мы видели, что колебания далеко не всегда бывают гармоническими. Гармонические колебания - это характерное свойство линейных систем, в которых

возвращающая сила пропорциональна отклонению от положения равновесия, а потенциальная энергия - квадрату отклонения. Реальные механические системы этими свойствами, как правило, не обладают, и колебания в них можно считать гармоническими лишь при малых отклонениях от положения равновесия.

В случае электромагнитных колебаний в контуре может сложиться впечатление, что мы имеем дело с идеальными системами, в которых колебания строго гармонические. Однако это верно лишь до тех пор, пока емкость конденсатора и индуктивность катушки можно считать постоянными, т. е. не зависящими от заряда и тока. Конденсатор с диэлектриком и катушка с сердечником, строго говоря, представляют собой нелинейные элементы. Когда конденсатор заполнен сегнетоэлектриком, т. е. веществом, диэлектрическая проницаемость которого сильно зависит от приложенного электрического поля, емкость конденсатора уже нельзя считать постоянной. Аналогично, индуктивность катушки с ферромагнитным сердечником зависит от силы тока, так как ферромагнетик обладает свойством магнитного насыщения.

Если в механических колебательных системах массу, как правило, можно считать постоянной и нелинейность возникает только из-за нелинейного характера действующей силы, то в электромагнитном колебательном контуре нелинейность может возникать как за счет конденсатора (аналога упругой пружины), так и за счет катушки индуктивности (аналога массы).

Почему для колебательного контура с двумя параллельными конденсаторами (рис. 164) неприменима идеализация, в которой система считается консервативной?

Почему быстрые колебания, приводящие к диссипации энергии колебаний в контуре на рис. 164, не возникали в контуре с двумя последовательными конденсаторами, показанными на рис. 162?

Какие причины могут приводить к несинусоидальности электромагнитных колебаний в контуре?

Последовательный колебательный контур — это цепь, состоящая их катушки индуктивности и конденсатора, которые соединяются последовательно. На схемах идеальный последовательный колебательный контур обозначается вот так:

Реальный колебательный контур имеет сопротивление потерь катушки и конденсатора. Это суммарное суммарное сопротивление потерь обозначается буквой R. В результате, реальный последовательный колебательный контур будет иметь такой вид:


R — это суммарное сопротивление потерь катушки и конденсатора

L — собственно сама индуктивность катушки

С — собственно сама емкость конденсатора

Колебательный контур и генератор частоты

Давайте проведем классический эксперимент, который есть в каждом учебнике по электронике. Для этого соберем вот такую схему:


Генератор у нас будет выдавать синус.

Для того, чтобы снять осциллограмму через последовательный колебательный контур, мы подключим в схему шунтовый резистор с малым сопротивлением в 0,5 Ом и с него уже будем снимать напряжение. То есть в данном случае мы шунт используем для наблюдения силы тока в цепи.


А вот и сама схема в реальности:


Слева-направо: шунтовый резистор, катушка индуктивности и конденсатор. Как вы уже поняли, сопротивление R — это суммарное сопротивление потерь катушки и конденсатора, так как нет идеальных радиоэлементов. Оно «прячется» внутри катушки и конденсатора, поэтому в реальной схеме отдельным радиоэлементом мы его не увидим.

Теперь нам осталось подцепить эту схему к генератору частоты и осциллографу , и прогнать по некоторым частотам, снимая осциллограмму с шунта U ш , а также снимая осциллограмму с самого генератора U ГЕН .


С шунта мы будем снимать напряжение , которое у нас отображает поведение силы тока в цепи, а с генератора собственно сам сигнал генератора. Давайте прогоним нашу схемку по некоторым частотам и глянем что есть что.

Влияние частоты на сопротивление колебательного контура

Итак, погнали. В схеме я взял конденсатор на 1мкФ и катушку индуктивности на 1 мГн. На генераторе настраиваю синус размахом в 4 Вольта. Вспоминаем правило: если в цепи соединение радиоэлементов идет последовательно друг за другом, значит, через них течет одинаковая сила тока.

Красная осциллограмма — это напряжение с генератора частоты, а желтая осциллограмма — отображение силы тока через напряжение на шунтовом резисторе.

Частота 200 Герц с копейками:


Как мы видим, при такой частоте ток в этой цепи есть, но очень слабый

Добавляем частоту. 600 Герц с копейками


Здесь мы уже отчетливо видим, что сила тока возросла, а также видим, что осциллограмма силы тока опережает напряжение. Попахивает конденсатора.

Добавляем частоту. 2 Килогерца


Сила тока стала еще больше.

3 Килогерца


Сила тока увеличилась. Заметьте также, что сдвиг фаз стал уменьшаться.

4,25 Килогерц


Осциллограммы почти уже сливаются в одну. Сдвиг фаз между напряжением и силой тока становится почти незаметным.

И вот на какой-то частоте у нас сила тока стала максимальной, а сдвиг фаз стал равен нулю. Запомните этот момент. Для нас он будет очень важен.



Еще совсем недавно ток опережал напряжение, а сейчас уже стал запаздывать после того, как выровнялся с ним по фазе. Так как ток уже отстает от напряжения, здесь уже попахивает реактивным сопротивлением катушки индуктивности.

Увеличиваем частоту еще больше


Сила тока начинает падать, а сдвиг фаз увеличивается.

22 Килогерца


74 Килогерца


Как вы видите, с увеличением частоты, сдвиг приближается к 90 градусов, а сила тока становится все меньше и меньше.

Резонанс

Давайте подробнее рассмотрим тот самый момент, когда сдвиг фаз был равен нулю и сила тока, проходящая через последовательный колебательный, контур была максимальна:

Это явление носит название резонанса .

Как вы помните, если у нас сопротивление становится малым, а в данном случае сопротивления потерь катушки и конденсатора очень маленькие, то в цепи начинает течь большая сила тока согласно закону Ома : I=U/R . Если генератор мощный, то напряжение на нем не меняется, а сопротивление становится пренебрежимо малым и вуаля! Ток растет как грибы после дождя, что мы и увидели, посмотрев на желтую осциллограмму при резонансе.

Формула Томсона

Если при резонансе у нас реактивное сопротивление катушки равняется реактивному сопротивлению конденсатора X L =X C , то можно уравнять их реактивные сопротивления и уже отсюда вычислить частоту, на которой произошел резонанс. Итак, реактивное сопротивление катушки у нас выражается формулой:

Реактивное сопротивление конденсатора вычисляется по формуле:

Приравниваем обе части и вычисляем отсюда F :

В данном случае мы получили формулу резонансной частоты . Это формула по другому называется формулой Томсона , как вы поняли, в честь ученого, который ее вывел.

Давайте по формуле Томсона посчитаем резонансную частоту нашего последовательного колебательного контура. Для этого я буду использовать свой RLC-транзисторметр .

Замеряем индуктивность катушки:


И замеряем нашу емкость:


Высчитываем по формуле нашу резонансную частоту:

У меня получилось 5, 09 Килогерц.

С помощью регулировки частоты и осциллографа я поймал резонанс на частоте 4,78 Килогерц (написано в нижнем левом углу)

Спишем погрешность в 200 с копейками Герц на погрешность измерений приборов. Как вы видите, формула Томпсона работает.

Резонанс напряжений

Давайте возьмем другие параметры катушки и конденсатора и посмотрим, что у нас происходит на самих радиоэлементах. Нам ведь надо досконально все выяснить;-). Беру катушку индуктивности с индуктивностью в 22 микрогенри:


и конденсатор в 1000 пФ


Итак, чтобы поймать резонанс, я не буду в схему добавлять . Поступлю более хитрее.

Так как мой генератор частоты китайский и маломощный, то при резонансе у нас в цепи остается только активное сопротивление потерь R. В сумме получается все равно маленькое значение сопротивления, поэтому ток при резонансе достигает максимальных значений. В результате этого, на внутреннем сопротивлении генератора частоты падает приличное напряжение и выдаваемая амплитуда частоты генератора падает. Я буду ловить минимальное значение этой амплитуды. Следовательно это и будет резонанс колебательного контура. Перегружать генератор — это не есть хорошо, но что не сделаешь ради науки!

Ну что же, приступим;-). Давайте сначала посчитаем резонансную частоту по формуле Томсона. Для этого я открываю онлайн калькулятор на просторах интернета и быстренько высчитываю эту частоту. У меня получилось 1,073 Мегагерц.

Ловлю резонанс на генераторе частоты по его минимальным значениям амплитуды. Получилось как-то вот так:


Размах амплитуды 4 Вольта

Хотя на генераторе частоты размах более 17 Вольт! Вот так вот сильно просело напряжение. И как видите, резонансная частота получилась чуток другая, чем расчетная: 1,109 Мегагерц.


Теперь небольшой прикол;-)

Вот этот сигнал мы подаем на наш последовательный колебательный контур:


Как видите, мой генератор не в силах выдать большую силу тока в колебательный контур на резонансной частоте, поэтому сигнал получился даже чуть искаженным на пиках.

Ну а теперь самое интересное. Давайте замеряем падение напряжения на конденсаторе и катушке на резонансной частоте. То есть это будет выглядеть вот так:


Смотрим напряжение на конденсаторе:


Размах амплитуды 20 Вольт (5х4)! Откуда? Ведь подавали мы на колебательный контур синус с частотой в 2 Вольта!


Ладно, может с осциллографом что-то произошло?. Давайте замеряем напряжение на катушке:


Народ! Халява!!! Подали 2 Вольта с генератора, а получили 20 Вольт и на катушке и на конденсаторе! Выигрыш энергии в 10 раз! Успевай только снимать энергию или с конденсатора или с катушки!

Ну ладно раз такое дело… беру лампочку от мопеда на 12 Вольт и цепляю ее к конденсатору или катушке. Лампочке ведь вроде как по-барабану на какой частоте работать и какой ток кушать. Выставляю амплитуду, чтобы на катушке или конденсаторе было где то Вольт 20 так как среднеквадратичное напряжение будет где-то Вольт 14, и цепляю поочередно к ним лампочку:



Как видите — полный ноль. Лампочка гореть не собирается, так что побрейтесь фанаты халявной энергии). Вы ведь не забыли, что мощность определяется произведением силы тока на напряжение? Напряжения вроде как-бы хватает, а вот силы тока — увы! Поэтому последовательный колебательный контур носит также название узкополосного (резонансного) усилителя напряжения , а не мощности!

Давайте обобщим, что у нас получилось в этих опытах.

При резонансе напряжение на катушке и на конденсаторе оказались намного больше, чем то, которое мы подавали на колебательный контур. В данном случае у нас получилось в 10 раз больше. Почему же напряжение на катушке при резонансе равняется напряжению на конденсаторе. Это легко объясняется. Так как в последовательном колебательном контуре катушка и кондер идут друг за другом, следовательно, в цепи протекает одна и та же сила тока.

При резонансе реактивное сопротивление катушки равняется реактивному сопротивлению конденсатора. Получаем по правилу шунта, что на катушке у нас падает напряжение U L = IX L , а на конденсаторе U C = IX C . А так как при резонансе у нас X L = X C , то получаем что U L = U C , ток ведь в цепи один и тот же;-). Поэтому резонанс в последовательном колебательном контуре называют также резонансом напряжений , так как напряжение на катушке на резонансной частоте равняется напряжению на конденсаторе .

Добротность

Ну раз уж мы начали задвигать тему колебательных контуров, поэтому мы не можем обойти стороной такой параметр, как добротность колебательного контура. Так как мы уже провели некоторые опыты, то нам будет проще определить добротность, исходя из амплитуды напряжений. Добротность обозначается буквой Q и вычисляется по первой простой формуле:


Давайте посчитаем добротность в нашем случае.

Так как цена деления одного квадратика по вертикали 2 Вольта, следовательно, амплитуда сигнала генератора частоты 2 Вольта.

А это то, что мы имеем на зажимах конденсатора или катушки. Здесь цена деления одного квадратика по вертикали 5 Вольт. Считаем квадратики и умножаем. 5х4=20 Вольт.

Считаем по формуле добротности:


Q=20/2=10 . В принципе немного и не мало. Пойдет. Вот так вот на практике можно найти добротность.

Есть также вторая формула для вычисления добротности.

где

R — сопротивление потерь в контуре, Ом

L — индуктивность, Генри

С — емкость, Фарад

Зная добротность, можно легко найти сопротивление потерь R последовательного колебательного контура.

Также хочу добавить пару слов о добротности. Добротность контура — это качественный показатель колебательного контура. В основном его стараются всегда увеличить различными всевозможными способами. Если взглянуть на формулу выше, то можно понять, для того, чтобы увеличить добротность, нам надо как-то уменьшить сопротивление потерь колебательного контура. Львиная доля потерь относится к катушке индуктивности, так как она уже конструктивно имеет большие потери. Она намотана из провода и в большинстве случаев имеет сердечник. На высоких частотах в проводе начинает проявляться скин-эффект, который еще больше вносит потери в контур.

Резюме

Последовательный колебательный контур состоит из катушки индуктивности и конденсатора, соединенных последовательно.

На какой-то частоте реактивное сопротивление катушки становится равным реактивному сопротивлению конденсатора и в цепи последовательного колебательного контура наступает такое явление, как резонанс .

При резонансе реактивные сопротивления катушки и конденсатора хоть и равны по модулю, но противоположны по знаку, поэтому они вычитается и в сумме дают ноль. В цепи остается только активное сопротивление потерь R.

При резонансе сила тока в цепи становится максимальной, так как сопротивление потерь катушки и конденсатора R в сумме дают малое значение.

При резонансе напряжение на катушке равняется напряжению на конденсаторе и превышает напряжение на генераторе.

Коэффициент, показывающий во сколько раз напряжение на катушке либо на конденсаторе превышает напряжение на генераторе, называется добротностью Q последовательного колебательного контура и показывает качественную оценку колебательного контура. В основном стараются сделать Q как можно больше.

На низких частотах колебательный контур имеет емкостную составляющую тока до резонанса, а после резонанса — индуктивную составляющую тока.

Под электрическими колебаниями понимают периодические изменения заряда, силы тока и напряжения. Простейшая система, в которой возможны свободные электрические колебания, - это так называемый колебательный контур. Это устройство, состоящее из соединенных между собой конденсатора и катушки. Будем полагать, что активное сопротивление катушки отсутствует, в этом случае контур называют идеальным. При сообщении этой системе энергии в ней будут происходить незатухающие гармонические колебания заряда на конденсаторе, напряжения и тока.

Сообщить колебательному контуру энергию можно разными способами. Например, зарядив конденсатор от источника постоянного тока или возбудив ток в катушке индуктивности. В первом случае энергией обладает электрическое поле между обкладками конденсатора. Во втором, энергия заключена в магнитном поле тока, текущего по цепи.

§1 Уравнение колебаний в контуре

Докажем, что при сообщении контуру энергии в нем будут происходить незатухающие гармонические колебания. Для этого необходимо получить дифференциальное уравнение гармонических колебаний вида .

Допустим, конденсатор зарядили и замкнули на катушку. Конденсатор начнет разряжаться, по катушке потечет ток. Согласно второму закону Кирхгофа сумма падений напряжений вдоль замкнутого контура равна сумме ЭДС в этом контуре .

В нашем случае падение напряжения поскольку контур идеальный. Конденсатор в цепи ведет себя как источник тока, в качестве ЭДС выступает разность потенциалов между обкладками конденсатора , где - заряд на конденсаторе, - электроемкость конденсатора. Кроме того, при протекании через катушку изменяющегося тока в ней возникает ЭДС самоиндукции , где - индуктивность катушки, - скорость изменения тока в катушке. Поскольку ЭДС самоиндукции препятствует процессу разрядки конденсатора второй закон Кирхгофа принимает вид

Но ток в контуре – это ток разрядки или зарядки конденсатора, следовательно . Тогда

Дифференциальное уравнение преобразуется к виду



Введя обозначение , получим известное нам дифференциальное уравнение гармонических колебаний .

Это означает, что заряд на конденсаторе в колебательном контуре будет изменяться по гармоническому закону

где - максимальное значение заряда на конденсаторе, - циклическая частота, - начальная фаза колебаний.

Период колебаний заряда . Это выражение носит название формулы Томпсона.

Напряжение на конденсаторе

Ток в цепи

Видим, что кроме заряда на конденсаторе по гармоническому закону будут изменять еще ток в контуре и напряжение на конденсаторе. Напряжение колеблется в одной фазе с зарядом, а сила тока опережает заряд по

фазе на .

Энергия электрического поля конденсатора

Энергия магнитного поля тока

Таким образом, энергии электрического и магнитного полей тоже изменяются по гармоническому закону, но с удвоенной частотой.

Подведем итог

Под электрическими колебаниями следует понимать периодические изменения заряда, напряжения, силы тока, энергии электрического поля, энергии магнитного поля. Эти колебания, как и механические, могут быть как свободными, так и вынужденными, гармоническим и негармоническим. Свободные гармонические электрические колебания возможны в идеальном колебательном контуре.

§2 Процессы, происходящие в колебательном контуре

Мы математически доказали факт существования свободных гармонических колебаний в колебательном контуре. Однако, остается неясным, почему такой процесс возможен. Что является причиной возникновения колебаний в контуре?

В случае свободных механических колебаний такая причина была найдена – это внутренняя сила, возникающая при выведении системы из по- ложения равновесия. Эта сила в любой момент направлена к положению равновесия и пропорциональна координате тела (со знаком «минус»). Попробуем найти аналогичную причину возникновения колебаний в колебательном контуре.

Пусть колебания в контуре возбуждают, зарядив конденсатор и замкнув его на катушку.

В начальный момент времени заряд на конденсаторе максимален. Следовательно, напряжение и энергия электрического поля конденсатора тоже максимальны.

Ток в контуре отсутствует, энергия магнитного поля тока равна нулю.

Первая четверть периода – разрядка конденсатора.

Обкладки конденсатора, имеющие разные потенциалы, соединили проводником, поэтому конденсатор начинает разряжаться через катушку. Заряд, напряжение на конденсаторе и энергия электрического поля убывают.

Ток, появившийся в цепи, нарастает, однако, его нарастанию препятствует ЭДС самоиндукции, возникающая в катушке. Энергия магнитного поля тока увеличивается.

Прошла четверть периода - конденсатор разрядился.

Конденсатор разрядился, напряжение на нем стало равным нулю. Энергия электрического поля в этот момент тоже равна нулю. По закону сохранения энергии исчезнуть она не могла. Энергия поля конденсатора полностью перешла в энергию магнитного поля катушки, которая в этот момент достигает своего максимального значения. Максимален ток в цепи.

Казалось бы, в этот момент ток в цепи должен прекратиться, ибо исчезла причина возникновения тока – электрическое поле. Однако, исчезновению тока опять таки препятствует ЭДС самоиндукции в катушке. Теперь она будет поддерживать убывающий ток, и он будет продолжать течь в прежнем направлении, заряжая конденсатор. Начинается вторая четверть периода.

Вторая четверть периода – перезарядка конденсатора.

Ток, поддерживаемый ЭДС самоиндукции, продолжает течь в прежнем направлении, постепенно уменьшаясь. Этот ток заряжает конденсатор в противоположной полярности. Заряд и напряжение на конденсаторе увеличиваются.

Энергия магнитного поля тока, убывая, переходит в энергию электрического поля конденсатора.

Прошла вторая четверть периода – конденсатор перезарядился.

Конденсатор перезаряжается до тех пор, пока существует ток. Поэтому в тот момент, когда ток прекращается, заряд и напряжение на конденсаторе принимают максимальное значение.

Энергия магнитного поля в этот момент полностью перешла в энергию электрического поля конденсатора.

Ситуация в контуре в этот момент, эквивалентна исходной. Процессы в контуре повторятся, но в обратном направлении. Одно полное колебание в контуре, длящееся в течение периода, закончится, когда система вернется в исходное состояние, то есть когда конденсатор перезарядится в первоначальной полярности.

Нетрудно видеть, что причиной возникновения колебаний в контуре служит явление самоиндукции. ЭДС самоиндукции препятствует изменению тока: она не дает ему мгновенно нарастать и мгновенно исчезать.

Кстати, будет не лишним сопоставить выражения для расчета квазиупругой силы в механической колебательной системе и ЭДС самоиндукции в контуре:

Ранее были получены дифференциальные уравнения для механической и электрической колебательной систем:

Несмотря на принципиальные отличия физических процессов к механических и электрических колебательных системах, явно просматривается математическая тождественность уравнений, описывающих процессы в этих системах. Об этом следует поговорить подробнее.

§3 Аналогия между электрическими и механическими колебаниями

Внимательный анализ дифференциальных уравнений для пружинного маятника и колебательного контура, а так же формул, связывающих величины, характеризующих процессы в этих системах, позволяет выявить, какие величины ведут себя одинаково (таблица 2).

Пружинный маятник Колебательный контур
Координата тела () Заряд на конденсаторе ()
Скорость тела Сила тока в контуре
Потенциальная энергия упруго деформированной пружины Энергия электрического поля конденсатора
Кинетическая энергия груза Энергия магнитного поля катушки с током
Величина, обратная жесткости пружины Емкость конденсатора
Масса груза Индуктивность катушки
Сила упругости ЭДС самоиндукции, равная напряжению на конденсаторе

Таблица 2

Важно не просто формальное сходство между величинами, описывающими процессы колебания маятника и процессы в контуре. Тождественны сами процессы!

Крайние положения маятника эквивалентны состоянию контура, когда заряд на конденсаторе максимален.

Положение равновесия маятника эквивалентно состоянию контура, когда конденсатор разряжен. В этот момент сила упругости обращается в ноль, а в контуре отсутствует напряжение на конденсаторе. Скорость маятника и сила тока в контуре максимальны. Потенциальная энергия упругой деформации пружины и энергия электрического поля конденсатора равны нулю. Энергия системы состоит из кинетической энергии груза или из энергии магнитного поля тока.

Разрядка конденсатора протекает аналогично движению маятника из крайнего положения в положение равновесия. Процесс перезарядки конденсатора тождественен процессу удаления груза из положения равновесия в крайнее положение.

Полная энергия колебательной системы или остается неизменной с течением времени.

Подобная аналогия может быть прослежена не только между пружинным маятником и колебательным контуром. Всеобщи закономерности свободных колебаний любой природы! Эти закономерности, проиллюстрированные на примере двух колебательных систем (пружинном маятнике и колебательном контуре) не просто можно, а нужно видеть в колебаниях любой системы.

В принципе, можно решить задачу о любом колебательном процессе, заменив его колебаниями мятника. Для этого достаточно грамотно построить эквивалентную механическую систему, решить механическую задачу и провести замену величин в окончательном результате. Например, нужно найти период колебаний в контуре, содержащем конденсатор и две катушки, соединенные параллельно.

Колебательный контур содержит один конденсатор и две катушки. Поскольку катушка ведет себя как груз пружинного маятника, а конденсатор как пружина, то эквивалентная механическая система должна содержать одну пружину и два груза. Вся проблема в том, как грузы прикреплены к пружине. Возможны два случая: один конец пружины закреплен, а к свободному концу прикреплен один груз, второй находится на первом или грузы прикреплены к разным концам пружины.

При параллельном соединении катушек разной индуктивности токи по ним текут разные. Следовательно, скорости грузов в тождественной механической системе тоже должны быть разными. Очевидно, это возможно лишь во втором случае.

Период этой колебательной системы нами уже найден. Он равен . Заменяя массы грузов на индуктивности катушек, а величину, обратную жесткости пружины, на емкость конденсатора, получаем .

§4 Колебательный контур с источником постоянного тока

Рассмотрим колебательный контур, содержащий источник постоянного тока. Пусть конденсатор первоначально не заряжен. Что будет происходить в системе после замыкания ключа К? Будут ли в этом случае наблюдаться колебания и какова их частота и амплитуда?

Очевидно, после замыкания ключа конденсатор начнет заряжаться. Записываем второй закон Кирхгофа:

Ток в контуре – это ток зарядки конденсатора, следовательно . Тогда . Дифференциальное уравнение преобразуется к виду

*Решаем уравнение заменой переменных.

Обозначим . Дифференцируем дважды и с учетом того, что , получаем . Дифференциальное уравнение приобретает вид

Это дифференциальное уравнение гармонических колебаний, его решением является функция

где - циклическая частота, константы интегрирования и находятся из начальных условий.

Заряд на конденсаторе меняется по закону

Сразу после замыкания ключа заряд на конденсаторе равен нулю и ток в контуре отсутствует . С учетом начальных условий получаем систему уравнений:

Решая систему, получаем и . После замыкания ключа заряд на конденсаторе изменяется по закону .

Нетрудно видеть, что в контуре происходят гармонические колебания. Наличие в контуре источника постоянного тока не повлияло на частоту колебаний, она осталась равной . Изменилось «положение равновесия» - в тот момент, когда ток в цепи максимален, конденсатор заряжен. Амплитуда колебаний заряда на конденсаторе равна Cε.

Этот же результат можно получить проще, используя аналогию между колебаниями в контуре и колебаниями пружинного маятника. Источник постоянного тока эквивалентен постоянному силовому полю, в которое помещен пружинный маятник, например, полю тяготения. Отсутствие заряда на конденсаторе в момент замыкания цепи тождественно отсутствию деформации пружины в момент приведения маятника в колебательное движение.

В постоянном силовом поле период колебаний пружинного маятника не изменяется. Период колебаний в контуре ведет себя так же – он остается неизменным при введении в контур источника постоянного тока .

В положении равновесия, когда скорость груза максимальна, пружина деформирована:

Когда ток в колебательном контуре максимален . Второй закон Кирхгофа запишется следующим образом

В этот момент заряд на конденсаторе равен Этот же результат можно было получить на основании выражения (*), выполнив замену

§5 Примеры решения задач

Задача 1 Закон сохранения энергии

L = 0,5 мкГн и конденсатора емкостью С = 20 пФ происходят электрические колебания. Чему равно максимальное напряжение на конденсаторе, если амплитуда тока в контуре 1 мА? Активное сопротивление катушки пренебрежимо мало.

Решение:

(1)

2 В тот момент, когда напряжение на конденсаторе максимально (максимален заряд на конденсаторе), ток в цепи отсутствует. Полная энергия системы состоит только из энергии электрического поля конденсатора

(2)

3 В момент, когда ток в цепи максимален, конденсатор полностью разряжен. Полная энергия системы состоит только из энергии магнитного поля катушки

(3)

4 На основании выражений (1), (2), (3) получаем равенство . Максимальное напряжение на конденсаторе равно

Задача 2 Закон сохранения энергии

В колебательном контуре, состоящем из катушки индуктивностью L и конденсатора емкостью С, происходят электрические колебания с периодом Т = 1 мкс. Максимальное значение заряда . Чему равен ток в контуре в тот момент, когда заряд на конденсаторе равен ? Активное сопротивление катушки пренебрежимо мало.

Решение:

1 Поскольку активным сопротивлением катушки можно пренебречь, полная энергия системы, состоящая из энергии электрического поля конденсатора и энергии магнитного поля катушки, остается неизменной с течением времени:

(1)

2 В тот момент, когда заряд на конденсаторе максимален, ток в цепи отсутствует. Полная энергия системы состоит только из энергии электрического поля конденсатора

(2)

3 На основании (1) и (2) получаем равенство . Ток в контуре равен .

4 Период колебаний в контуре определяется формулой Томсона . Отсюда . Тогда для тока в контуре получаем

Задача 3 Колебательный контур с двумя параллельно соединенными конденсаторами

В колебательном контуре, состоящем из катушки индуктивностью L и конденсатора емкостью С, происходят электрические колебания с амплитудой заряда . В тот момент, когда заряд на конденсаторе максимален, замыкают ключ К. Каким станет период колебаний в контуре после замыкания ключа? Чему равна амплитуда тока в контуре после замыкания ключ? Омическим сопротивлением контура пренебречь.

Решение:

1 Замыкание ключа приводит к появлению в контуре еще одного конденсатора, подключенного параллельно первому. Общая емкость двух параллельно соединенных конденсаторов равна .

Период колебаний в контуре зависит только от его параметров и не зависит от того, как в системе возбудили колебания и какую энергию сооб- щили системе для этого. Согласно формуле Томсона .

2 Для нахождения амплитуды тока выясним, какие процессы происходят в контуре после замыкания ключа.

Второй конденсатор подключили в тот момент, когда заряд на первом конденсаторе был максимален, следовательно, ток в контуре отсутствовал.

Контурный конденсатор должен начать разряжаться. Ток разрядки, дойдя до узла, должен бы разделиться на две части. Однако, в ветви с катушкой, возникает ЭДС самоиндукции, препятствующая нарастанию тока разрядки. По этой причине весь ток разрядки потечет в ветвь с конденсатором, омическое сопротивление которой равно нулю. Ток прекратится, как только сравняются напряжения на конденсаторах, при этом первоначальный заряд конденсатора перераспределится между двумя конденсаторами. Время перераспределения заряда между двумя конденсаторами ничтожно мало вследствие отсутствия омического сопротивления в ветвях с конденсаторами. За это время ток в ветви с катушкой возникнуть не успеет. Колебания в новой системе продолжатся уже после перераспределения заряда между конденсаторами.

Важно понять, что в процессе перераспределения заряда между двумя конденсаторами энергия системы не сохраняется! До замыкания ключа энергией обладал один конденсатор, контурный:

После перераспределения заряда энергией обладает батарея конденсаторов:

Нетрудно видеть, что энергия системы уменьшилась!

3 Новую амплитуду тока найдем, воспользовавшись законом сохранения энергии. В процессе колебаний энергия батареи конденсаторов переходит в энергию магнитного поля тока:

Обратите внимание, закон сохранения энергии начинает «работать» только после завершения перераспределения заряда между конденсаторами.

Задача 4 Колебательный контур с двумя последовательно соединенными конденсаторами

Колебательный контур состоит из катушки индуктивностью L и двух последовательно соединенных конденсаторов С и 4С. Конденсатор емкостью С заряжен до напряжения , конденсатор емкостью 4С не заряжен. После замыкания ключа в контуре начинаются колебания. Чему равен период этих колебаний? Определите амплитуду тока, максимальное и минимальное значения напряжения на каждом конденсаторе.

Решение:

1 В момент, когда ток в цепи максимален, ЭДС самоиндукции в катушке отсутствует . Записываем для этого момента второй закон Кирхгофа

Видим, что в тот момент, когда ток в контуре максимален, конденсаторы заряжены до одинакового напряжения, но в противоположной полярности:

2 До замыкания ключа полная энергия системы состояла только из энергии электрического поля конденсатора С:

В момент, когда ток в цепи максимален, энергия системы складывается из энергии магнитного поля тока и энергии двух заряженных до одинакового напряжения конденсаторов:

Согласно закону сохранения энергии

Для нахождения напряжения на конденсаторах воспользуемся законом сохранения заряда – заряд нижней обкладки конденсатора С частично перешел на верхнюю обкладку конденсатора 4С:

Подставляем найденное значение напряжения в закон сохранения энергии и находим амплитуду тока в контуре:

3 Найдем, в каких пределах изменяется напряжение на конденсаторах в процессе колебаний.

Понятно, что в момент замыкания цепи на конденсаторе С было максимальное напряжение . Конденсатор 4С был не заряжен, следовательно, .

После замыкания ключа конденсатор С начинает разряжаться, а конденсатор емкостью 4С – заряжаться. Процесс разрядки первого и зарядки второго конденсаторов заканчивается, как только прекращается ток в цепи. Это произойдет через половину периода. Согласно законам сохранения энергии и электрического заряда:

Решая систему, находим:

.

Знак «минус» означает, что через полпериода конденсатор емкости С заряжен в полярности, обратной первоначальной.

Задача 5 Колебательный контур с двумя последовательно соединенным катушками

Колебательный контур состоит из конденсатора емкостью С и двух катушек индуктивностью L 1 и L 2 . В тот момент, когда ток в контуре принял максимальное значение , в первую катушку быстро (по сравнению с периодом колебаний) вносят железный сердечник, что приводи к увеличению ее индуктивности в μ раз. Чему равна амплитуда напряжения в процессе дальнейших колебаний в контуре?

Решение:

1 При быстром внесении сердечника в катушку должен сохраниться магнитный поток (явление электромагнитной индукции). Поэтому быстрое изменение индуктивности одной из катушек приведет к быстрому изменению тока в контуре.

2 За время внесения сердечника в катушку заряд на конденсаторе измениться не успел, он остался незаряженным (сердечник вносили в тот момент, когда ток в цепи был максимален). Через четверть периода энергия магнитного поля тока перейдет в энергию заряженного конденсатора:

Подставляем в полученное выражение значение тока I и находим амплитуду напряжения на конденсаторе:

Задача 6 Колебательный контур с двумя параллельно соединенным катушками

Катушки индуктивности L 1 и L 2 подключены через ключи К1 и К2 к конденсатору емкостью С. В начальный момент оба ключа разомкнуты, а конденсатор заряжен до разности потенциалов . Сначала замыкают ключ К1 и, когда напряжение на конденсаторе станет равным нулю, замыкают К2. Определите максимальное напряжение на конденсаторе после замыкания К2. Сопротивлениями катушек пренебречь.

Решение:

1 При разомкнутом ключе К2 в контуре, состоящем из конденсатора и первой катушки, происходят колебания. К моменту замыкания К2 энергия конденсатора перешла в энергию магнитного поля тока в первой катушке :

2 После замыкания К2 в колебательном контуре оказываются две катушки, соединенные параллельно.

Ток в первой катушке не может прекратиться вследствие явления самоиндукции. В узле он делится: одна часть тока идет во вторую катушку, а другая заряжает конденсатор .

3 Напряжение на конденсаторе станет максимальным, когда прекратится ток I , заряжающий конденсатор. Очевидно, что в этот момент токи в катушках сравняются .

: На грузы действуют одинаковые по модулю силы – оба груза прикреплены к пружине Сразу после замыкания К2 в первой катушке существовал ток В начальный момент первый груз имел скорость Сразу после замыкания К2 ток во второй катушке отсутствовал В начальный момент второй груз покоился Каково максимальное значения напряжения на конденсаторе? Чему равна максимальная сила упругости, возникающая в пружине в процессе колебаний?

Маятник двигается поступательно со скоростью центра масс и совершает колебания относительно центра масс.

Сила упругости максимальна в момент максимальной деформации пружины. Очевидно, в этот момент относительная скорость грузов становится равной нулю, а относительно стола грузы двигаются со скоростью центра масс. Записываем закон сохранения энергии:

Решая систему, находим

Производим замену


и получаем для максимального напряжения найденное ранее значение

§6 Задания для самостоятельного решения

Упражнение1 Расчет периода и частоты собственных колебаний

1 В колебательный контур входят катушка переменной индуктивности, изменяющаяся в пределах L 1 = 0,5 мкГн до L 2 = 10 мкГн, и конденсатор, емкость которого может изменяться в пределах от С 1 = 10 пФ до

С 2 =500 пФ. Какой диапазон частот можно охватить настройкой этого контура?

2 Во сколько раз изменится частота собственных колебаний в контуре, если его индуктивность увеличить в 10 раз, а емкость уменьшить в 2,5 раза?

3 Колебательный контур с конденсатором емкость 1 мкФ настроен на частоту 400 Гц. Если подключить к нему параллельно второй конденсатор, то частота колебаний в контуре становится равной 200 Гц. Определите емкость второго конденсатора.

4 Колебательный контур состоит из катушки и конденсатора. Во сколько раз изменится частота собственных колебаний в контуре, если в контур последовательно включить второй конденсатор, емкость которого в 3 раза меньше емкости первого?

5 Определите период колебаний контура, в состав которого входит катушка (без сердечника) длины в = 50 см м площади поперечного сечения

S = 3 cм 2 , имеющая N = 1000 витков, и конденсатора емкости С = 0,5 мкФ.

6 В состав колебательного контура входит катушка индуктивности L = 1,0 мкГн и воздушный конденсатор, площади пластин которого S = 100 cм 2 . Контур настроен на частоту 30 МГц. Определите расстояние между пластинами. Активное сопротивление контура пренебрежимо мало.

Сегодня нас интересует простейший колебательный контур , его принцип работы и применение.

За полезной информацией по другим темам переходите на наш телеграм-канал .

Колебания – процесс, повторяющийся во времени, характеризуется изменением параметров системы около точки равновесия.

Первое, что приходит на ум - это механические колебания математического или пружинного маятников. Но ведь колебания бывают и электромагнитными.

По определению колебательный контур (или – это электрическая цепь, в которой происходят свободные электромагнитные колебания.

Такой контур представляет собой электрическую цепь, состоящую из катушки индуктивностью L и конденсатора емкостью C . Соединены эти два элемента могут быть лишь двумя способами - последовательно и параллельно. Покажем на рисунке ниже изображение и схему простейшего колебательного контура.

Кстати! Для всех наших читателей сейчас действует скидка 10% на .

Кстати! Для всех наших читателей сейчас действует скидка 10% на .

Принцип действия колебательного контура

Давайте рассмотрим пример, когда сначала мы заряжаем конденсатор и замыкаем цепь. После этого в цепи начинает течь синусоидальный электрический ток. Конденсатор разряжается через катушку. В катушке при протекании через нее тока возникает ЭДС самоиндукции , направленная в сторону, противоположную току конденсатора.

Разрядившись окончательно, конденсатор благодаря энергии ЭДС катушки, которая в этот момент будет максимальна, начнет заряжаться вновь, но только в обратной полярности.

Колебания, которые происходят в контуре – свободные затухающие колебания. То есть без дополнительной подачи энергии колебания в любом реальном колебательном контуре рано или поздно прекратятся, как и любые колебания в природе.

Это обусловлено тем, что контур состоит из реальных материалов (конденсатор, катушка, провода), обладающих таким свойством, как электрическое сопротивление, и потери энергии в реальном колебательном контуре неизбежны. В противном случае это нехитрое устройство могло бы стать вечным двигателем , существование которого, как известно, невозможно.


Еще одна важная характеристика – добротность Q . Добротность определяет амплитуду резонанса и показывает, во сколько раз запасы энергии в контуре превышают потери энергии за один период колебаний. Чем выше добротность системы, тем медленнее будут затухать колебания.

Резонанс LC-контура

Электромагнитные колебания в происходят с определенной частотой, которая называется резонансной Подробнее про – в нашей отдельной статье. Частоту колебаний можно менять, варьируя такие параметры контура, как емкость конденсатора C , индуктивность катушки L , сопротивление резистора R (для LCR-контура ).

Применение колебательного контура

Колебательный контур широко применяется на практике. На его основе строятся частотные фильтры, без него не обходится ни один радиоприемник или генератор сигналов определенной частоты.

Если вы не знаете, как подступиться к расчету LC-контура или на это совершенно нет времени, обратитесь в профессиональный студенческий сервис . Качественная и быстрая помощь в решении любых задач не заставит себя ждать!

Лучшие статьи по теме