Как настроить смартфоны и ПК. Информационный портал
  • Главная
  • Интересное
  • Территория электротехнической информации WEBSOR. Переменные состояния динамической системы

Территория электротехнической информации WEBSOR. Переменные состояния динамической системы

Как указывалось выше САУ, независимо от природы составляющих его звеньев, может быть описана подобными дифференциальными уравнениями (2.1). Эти способы относятся к так называемым внешним описаниям системы. Наоборот, внутреннее описание дается в переменных состояния, предпочтительно используется для тех систем, которые имеют более одного входа и выхода. При этом под переменными состояния системы понимается набор переменных , производные первого порядка от которых входят в математическую модель САУ. С другой стороны, под переменными состояния понимается совокупность переменных, значения которых наряду с входным воздействием позволяет определить будущее состояние системы и выходные величины . Математическая модель системы в переменных состояния удобна для компьютерного анализа.

Пусть линейная система, характеризуется вектором состояния , составленным из n -переменных состояния. На вход системы поступают входные управляющие сигналы . Система описывается следующими уравнениями состояния в векторном виде:

(3.2)

где и - матрицы, составленные из постоянных коэффициентов, имеют вид:

, .

Кроме уравнения (3.2) для системы можно составить следующее матричное уравнение:

(3.3)

Здесь - вектор выходных величин. Матрицы постоянных величин имеют вид

.

Решение систем уравнений (3.2) и (3.3) для некоторого момента времени t = t 0 позволяет найти для времени t>t 0 , т. е. определить будущее состояние системы, а также дает возможность определить выходные величины .

Из системы уравнений (3.2) и (3.3) можно исключить вектор . В этом случае преобразование «вход-выход» может быть описан линейными дифференциальными уравнениями n-го порядка с постоянными коэффициентами в виде (2.1).

Все рассматриваемые виды описаний тесно взаимосвязаны, поэтому, зная одно из них, можно получить остальные. Например, связь между матрицами , , описания в пространстве состояний и комплексной передаточной функцией системы W(s) задается уравнением

W(s)= (sE- ) -1

где s  оператор Лапласа, E  единичная матрица.

Управляемость и наблюдаемость

В п-мерном пространстве состояний каждому состоянию системы соответствует не­которое положение изображающей точки, определяемое значениями переменные состояния (i = 1, 2,... п).

Пусть в пространстве состояний заданы два множества и . Рассматриваемая система будет управляемой, если существует управление , определенное на конечном интерва­ле времени 0, переводящее изображающую точку в пространстве из подобласти G 1 в подобласть G 2 .

Система называется наблюдаемой, если в формирова­нии вектора выходных координат участвуют все состав­ляющие вектора переменных состояния . Если ни одна из составляющих вектора не влияет на формирование выхода системы , то такая система будет ненаблюдаемой.

Анализ управляемости и наблюдаемости выполняется с помощью матриц управляемости и наблюдаемости или с помощью грамианов управляемости и наблюдаемости .

Сформируем на основе матриц , , две вспомогательные матрицы

R = [ , , ..., n -1 ], D = [ , ,…, n -1 ]

Mатрицы R и D называются соответственно матрицей управляемости и матрицей наблюдаемости системы. В пакете MATLAB их можно построить с помощью команд ctrb и obsv .

Для того чтобы система (3.2) была управляемой, необходимо и

достаточно, чтобы матрица управляемости имела полный ранг rankR = n.

Для того чтобы система (3.2) была наблюдаемой, необходимо и достаточно, чтобы матрица наблюдаемости имела полный ранг rankD=n.

В случае систем с одним входом и одним выходом матрицы R и D квадратные, поэтому для проверки управляемости и наблюдаемости достаточно вычислить определители матриц R и D. Если они не равны нулю, то матрицы имеют полный ранг.

Лекция 4. Оценка функционирования САУ

Оценка статических свойств

В зависимости от процессов, происходящих в САУ различают два режима функционирования работы САУ и их элементов: динамический и статический.

Переходному процессу соответствует динамический режим функционирования САУ и их элементов. Этому режиму в ТАУ уделяется наибольшее время. В динамическом режиме величины, определяющие состояние САУ и их элементов изменяется во времени. Выше были представлены математические модели САУ в динамическом режиме в виде дифференциальных уравнений n -го (2.1) или в виде уравнений состояния (3.2, 3.3).

Наоборот, установившийся процесс в САУ соответствует статическему режиму функционирования, при котором величины, характеризующие состояние САУ не изменяются во времени. Для оценки САУ в статическом (установившемся) режиме используется показатель называемый точностью управления. Этот показатель определяется по статической характеристике САУ.

Рис. 4.1. Статические характеристики статических и астатических систем

Статическая характеристика САУ представляет зависимость установившегося значения выходного параметра – y 0 от входного параметра – u 0 при постоянном возмущении или же зависимость выходного параметра - y 0 в установившемся режиме от возмущения–f при постоянном входном параметре. Уравнения статики САУ имеют вид или . В общем случае уравнения могут быть нелинейным. Рассмотрим статическую характеристику элементов или САУ в целом (рис. 4.1) построенную по второму уравнению. Если установившееся значение ошибки в системе зависит от установившегося значения возмущения f , то система называ­ется статической (Рис.4.1,а), а если не зависит - то астатической (Рис.4.1,б).

Относительная статическая ошибка, или статизм, системы равен

Также, статизм можно характеризовать коэффициентом статизма , равным тангенсу угла наклона статической характеристики (Рис. 3.1, а).

Эффективность статического регулирования САУ в установившемся режиме оценива­ют по так называемой степени точности управления, равной отношению абсолютной статической ошибки неавтоматизированного объек­та управления (без регулятора) к абсо­лютной статической ошибке автоматической системы.

В некоторых случаях статическая ошибка нежелательна, тогда переходят к астатическому регулированию или вводят компенсирующие воздействия на возмущения.

Изучите теоретический материал по учебной литературе: ; и ответьте на следующие вопросы:

1. Какие переменные в электрической цепи обычно принимают за переменные состояния?

2. Сколько систем уравнений составляют при решении задачи методом переменных состояния?

3. Какие зависимости устанавливаются в первой и во второй системах уравнений при решении задачи методом переменных состояния?

4. Какая из двух систем является системой дифференциальных уравнений, алгебраических?

5. Какие способы используются для получения уравнений состояния и уравнений выходных параметров?

При расчете переходного процесса методом переменных состояния рекомендуется следующий порядок:

1. Выбрать переменные состояния. В предложенных для расчета схемах это напряжения на емкостных элементах и токи в индуктивных катушках .

2. Составить систему дифференциальных уравнений для первых производных от переменных состояния.

Для этого описать послекоммутационную схему с помощью законов Кирхгофа и решить ее относительно первых производных от переменных состояния и в зависимости от переменных , и источников э.д.с. (в предлагаемых схемах источник э.д.с. – единственный).

В матричной форме эта система дифференциальных уравнений 1-го порядка будет иметь вид:

, (8.1)

где – столбец производных , ;

Х – вектор - столбец переменных состояния.

В цепях второго порядка:

– квадратная матрица порядка n , определяемая топологией электрической цепи и параметрами ее элементов. В цепях второго порядка эта матрица имеет порядок 2´2.

Матрица – прямоугольная матрица порядка , где n – порядок цепи.

Матрица – столбец – определяется источниками э.д.с. и источниками токов схемы и называется вектором входных величин .

3. Составить систему алгебраических уравнений для искомых переменных, которые называются выходными . Это токи в любых ветвях схемы (кроме тока ) и напряжения на любых элементах схемы (кроме напряжения ). Полученные алгебраические уравнения устанавливают связи между выходными переменными, с одной стороны, и переменными состояния и источниками напряжения и тока схемы – с другой. В матричной форме эта система алгебраических уравнений имеет вид

,

где – вектор выходных величин;

– матрицы, определяемые топологией электрической цепи, параметрами ее элементов и количеством искомых переменных.

Метод переменных состояния (называемый иначе методом пространства состояний) основывается на двух уравнениях, записываемых в матричной форме.

Структура первого уравнения определяется тем, что оно связывает матрицу первых производных по времени переменных состояния с матрицами самих переменных состояния и внешних воздействий и, в качестве которых рассматриваются э. д. с. и токи источников.

Второе уравнение по своей структуре является алгебраическим и связывает матрицу выходных величин у с матрицами переменных состояния и внешних воздействий и.

Определяя переменные состояния, отметим следующие их свойства

1. В качестве переменных состояния в электрических цепях следует выбирать токи в индуктивностях и напряжения на емкостях, причем не во всех индуктивностях и не на всех емкостях, а только для независимых, т. е. таких, которые определяют общий порядок системы дифференциальных уравнений цепи.

2. Дифференциальные уравнения цепи относительно переменных состояния записываются в канонической форме, т. е. представляются решенными относительно первых производных переменных состояния по времени.

Отметим, что только при выборе в качестве переменных состояния токов к в независимых индуктивностях и напряжений на независимых емкостях первое уравнение метода переменных состояния будет иметь указанную выше структуру.

Если в качестве переменных состояния выбрать токи в ветвях с емкостями или токи в ветвях с сопротивлениями, а также напряжения на индуктивностях или напряжения на сопротивлениях то первое уравнение метода переменных состояния также можно представить в канонической форме, т. е. решенным относительно первых производных по времени этих величин. Однако структура их правых частей не будет соответствовать данному выше определению, так как в них будет еще входить матрица первых производных от внешних воздействий

3. Число переменных состояния равно порядку системы дифференциальных уравнений исследуемой электрической цепи.

4. Выбор в качестве переменных состояния токов и напряжений удобен еще и потому, что именно эти величины согласно законам коммутации (§ 13-1) в момент коммутации не изменяются скачком, т. е. одинаковы для моментов времени

5. Переменные состояния потому так и называются, что в каждый момент времени задают энергетическое состояние электрической цепи, так как последнее определяется суммой выражений

6. Представление уравнений в канонической форме очень удобно при их решении на аналоговых вычислительных машинах и для программирования при их решении на цифровых вычислительных машинах. Поэтому такое представление имеет очень важное значение при решении этих уравнений с помощью средств современной вычислительной техники.

Покажем на примере цепи рис. 14-14, как составляются уравнения по методу переменных состояния.

Сначала получим систему дифференциальных уравнений, соответствующую первому матричному уравнению метода, а затем запишем ее в матричной форме. Алгоритм составления этих уравнений для любой электрической цепи следующий. Сначала записываются урэвнения по законам Кирхгофа или по методу контурных токов; затем выбираются переменные состояния и путем дифференцирования исходных уравнений и исключения других переменных получаются

чаются уравнения метода переменных состояния. Этот алгоритм очень напоминает применяемый в классическом методе расчета пере ходных процессов для получения одного результирующего дифференциального уравнения относительно одного из переменных

В частных случаях, когда в цепи нет емкостных контуров т. е. контуров, все ветви которых содержат емкости, и нет узлов с присоединенными ветвями, в каждой из которых включены индуктивности, может быть указан и другой алгоритм. Не останавливая на нем, отметим лишь, что он основан на замене емкостей источниками э. д. с., индуктивностей - источниками тока и применении метода наложения.

Для цепи рис. 14-14 по законам Кирхгофа

(14-36)

Определяя из первого уравнения, подставляя в третье, заменяя и представляя полученное дифференциальное уравнение в канонической форме относительно получаем:

Решая второе уравнение (14-36) относительно , заменяя согласно первому уравнению (14-36) и подставляя , получаем:

Складывая почленно (14-38) с умноженным на уравнением (14-37) и определяя из полученного результата , получаем:

Перепишем уравнения (14-39) и (14-37) в матричной форме:

(14-4°)

где для рассматриваемой цепи имеем:

(14-42а)

В общем случае первое уравнение метода переменных состояния в матричной форме запишется в виде

(14-43)

Матрицы А и В в линейных цепях зависят только от параметров цепи , т. е. являются постоянными величинами. При этом А - квадратная матрица порядка и называется основной матрицей цепи, матрица В - в общем случае прямоугольная, размера называется матрицей связи между входом цепи и переменными состояния, матрицы - матрицы столбцы или векторы переменных состояния (размера и внешних возмущений (размера )

В рассматриваемом примере матрица В получилась квадратной второго порядка, так как число переменных состояния равно числу внешних возмущении

Перейдем к составлению второго уравнения метода В качестве выходных можно выбрать любые из величин. Возьмем, например, в качестве выходных три величины

Значения их запишутся через переменные состояния и внешние возмущения непосредственно из уравнений (14 36)

(14-44)

или в матричнои форме

или сокращенно

(14-46)

где для рассматриваемой цепи

а в общем случае второе уравнение метода переменных состояния

Матрицы С и D зависят только от параметров цепи . В общем случае - это прямоугольные матрицы соответственно размеров , причем С называется матрицей связи переменных состояния с выходом цепи, матрицей непосредственной связи входа и выхода цепи (или системы).

Для ряда физических систем D является нулевой матрицей и второй член в (14-48) обращается в нуль, так как нет непосред. ственной связи между входом и выходом системы.

Если в качестве переменных состояния взять, например, ток i и напряжение и представить дифференциальные уравнения относительно них в канонической форме, то (опуская все промежуточные преобразования) первое из уравнений метода в матричной форме будет иметь вид:

Таким образом, действительно, первое уравнение метода переменных состояния будет в матричной форме иметь вид (14-43) только при выборе в качестве переменных состояния тока и напряжения

Переходя к решению матричного дифференциального уравнения (14-43), прежде всего отметим, что оно особенно упрощается, если квадратная основная матрица А порядка является диагональной. Тогда все линейных дифференциальных уравнений (14-43) развязаны, т. е. производные переменных состояния зависят каждая только от своей переменной состояния.

Рассмотрим сначала решение линейного неоднородного матричного дифференциального уравнения (14-43) операторным методом Для этого преобразуем его по Лапласу:

причем матрица-столбец начальных значений переменных состояния, т. е.

(14-53)

которые в момент коммутации не изменяются скачком, заданы и равны их значениям в момент

Перепишем (14-51):

где - единичная матрица порядка .

Для получения матрицы изображений переменных состояния умножим слева обе части (14-54) на обратную матрицу

Переходя обратно к оригиналам при помощи обратного преобразования Лапласа, получаем:

Из операторного метода известно, что

По аналогии, записывая обратное преобразование Лапласа в матричной форме, будем иметь:

где - переходная матрица состояния системы, называемая иначе фундаментальной.

Таким образом, находим оригинал первого слагаемого правой части (14-56)

Обратная матрица определяется делением присоединенной или взаимной матрицы на определитель основной матрицы:

где уравнение

(14-61)

представляет собой характеристическое уравнение исследуемой цепи.

Оригинал второго слагаемого правой части (14-56) находится при помощи теоремы свертки в матричной форме

если положить

Тогда на основании (14-62)-(14-64)

и общее решение дифференциального неоднородного матричного уравнения (14-43) на основании (14-56), (14-59) и (14-65) будет иметь вид:

(14-66)

Первое слагаемое правой части (14-66) представляет собой значения переменных состояния или реакцию цепи при нулевом входе, т. е. Иначе говоря, оно представляет первую составляющую свободных процессов в цепи обусловленную ненулевыми начальными значениями переменных состояния цепи, и поэтому является решением уравнения . Второе слагаемое представляет собой составляющую реакции цепи при т. е. при нулевом состоянии цепи.

Нулевым состоянием цепи назовем такое ее состояние, когда начальные значения всех переменных состояния равны нулю. Иначе говоря, второе слагаемое (14-66) представляет собой сумму при принужденной реакции цепи возникающей под влиянием внешних воздействий и второй составляющей свободных процессов

Равенство (14-66) означает, что реакция цепи равна сумме реакций при нулевом входе и нулевом состоянии.

На основании (14-48) и (14-66) для выходных величин имеем.

Если состояние цепи задано не в момент , а в момент , то равенства (14-66) и (14-67) обобщаются:

(14-68)

Пример 14-5. Для разветвленной цепи второго порядка составлены уравнения состояния

при ненулевых начальных условиях и при единственном имеющем вней источнике э. д. с.

Найти переменные состояния .

Решение. Перепишем уравнения состояния в матричной форме

Найдем сначала первые свободные составляющие переменных состояния при нулевом входе Для этого составим матрицу

Для нахождения присоединенной или взаимной матрицы заменим в предыдущей матрице каждый элемент его алгебраическим дополнением Получим матрицу

Транспонируем ее, найдя присоединенную или взаимную матрицу:

Найдем определитель матрицы

На основании (14-60) обратная матрица будет равна:

Подвергнем ее обратному преобразованию Лапласа с учетом того, что для этого нужно подвергнуть обратному преобразованию Лапласа каждый ее элемент. На основании (14-73) получим переходную матрицу состояния цепи

Например,

Для переходной матрицы состояния системы получим:

Для первых свободных составляющих переменных состояния будем иметь

Суммируя полученные результаты, находим искомые значения переменных состояния:

Так как решение уравнения (14-43) было получено выше и дано формулой (14-66), то для проверки правильности решения (14-66) и вычисления с его помощью матрицы переменных состояния можно сначала непосредственной подстановкой (14-66) в (14-43) убедиться, что последнее при этом обращается в тождество. Для этого нужно только сначала вычислить дифференцируя (14-66). При этом получаем:

Теперь нетрудно непосредственно убедиться, что (14-66) действительно является решенпем матричного дифференциального уравненения

Отметим, что переходная матрица состояния системы ем позволяет найти в пространстве состояний, т. е. в пространстве, число измерений которого равно числу компонент вектора переменных состояния перемещение, начинающееся из некоторого начального положения (при или при ) причем вектор содержит значительную информацию, так как одновременно описывает все переменные состояния, т. е. функции времени .

Множественная регрессия не является результатом преобразования уравнения:

-
;

-
.

Линеаризация подразумевает процедуру …

- приведения уравнения множественной регрессии к парной;

+ приведения нелинейного уравнения к линейному виду;

- приведения линейного уравнения к нелинейному виду;

- приведения нелинейного уравнения относительно параметров к уравнению, линейному относительно результата.

Остатки не изменяются;

Уменьшается количество наблюдений

В стандартизованном уравнении множественной регрессии переменными являются:

Исходные переменные;

Стандартизованные параметры;

Средние значения исходных переменных;

Стандартизованные переменные.

Одним из методов присвоения числовых значений фиктивным переменным является. . .

+– ранжирование;

Выравнивание числовых значений по возрастанию;

Выравнивание числовых значений по убыванию;

Нахождение среднего значения.

В матрице парных коэффициентов корреляции отображены значения парных коэффициентов линейной корреляции между. . . .

Переменными;

Параметрами;

Параметрами и переменными;

Переменными и случайными факторами.

Метод оценки параметров моделей с гетероскедастичными остатками называется ____________ методом наименьших квадратов:

Обычным;

Косвенным;

Обобщенным;

Минимальным.

Дано уравнение регрессии . Определите спецификацию модели.

Полиномиальное уравнение парной регрессии;

Линейное уравнение простой регрессии;

Полиномиальное уравнение множественной регрессии;

Линейное уравнение множественной регрессии.

В стандартизованном уравнении свободный член ….

Равен 1;

Равен коэффициенту множественной детерминации;

Равен коэффициенту множественной корреляции;

Отсутствует.

В качестве фиктивных переменных в модель множественной регрессии включаются факторы,

Имеющие вероятностные значения;

Имеющие количественные значения;

Не имеющие качественных значений;

Не имеющие количественных значений.

Факторы эконометрической модели являются коллинеарными, если коэффициент …

Корреляции между ними по модулю больше 0,7;

Детерминации между ними по модулю больше 0,7;

Детерминации между ними по модулю меньше 0,7;

Обобщенный метод наименьших квадратов отличается от обычного МНК тем, что при применении ОМНК …

Преобразуются исходные уровни переменных;

Остатки не изменяются;

Остатки приравниваются к нулю;

Уменьшается количество наблюдений.

Объем выборки определяется …

Числовыми значением переменных, отбираемых в выборку;

Объемом генеральной совокупности;

Числом параметров при независимых переменных;

Числом результативных переменных.

11. Множественная регрессия не является результатом преобразования уравнения:

+-
;

-
;

-
.

Исходные значения фиктивных переменных предполагают значения …

Качественные;

Количественно измеримые;

Одинаковые;

Значения.

Обобщенный метод наименьших квадратов подразумевает …

Преобразование переменных;

Переход от множественной регрессии к парной;

Линеаризацию уравнения регрессии;

Двухэтапное применение метода наименьших квадратов.

Линейное уравнение множественной регрессии имеет вид . Определите какой из факторовили:

+- , так как 3,7>2,5;

Оказывают одинаковое влияние;

- , так как 2,5>-3,7;

По этому уравнению нельзя ответить на поставленный вопрос, так как коэффициенты регрессии несравнимы между собой.

Включение фактора в модель целесообразно, если коэффициент регрессии при этом факторе является …

Нулевым;

Незначимым;

Существенным;

Несущественным.

Что преобразуется при применении обобщенного метода наименьших квадратов?

Стандартизованные коэффициенты регрессии;

Дисперсия результативного признака;

Исходные уровни переменных;

Дисперсия факторного признака.

Проводится исследование зависимости выработки работника предприятия от ряда факторов. Примером фиктивной переменной в данной модели будет являться ______ работника.

Возраст;

Уровень образования;

Заработная плата.

Переход от точечного оценивания к интервальному возможен, если оценки являются:

Эффективными и несостоятельными;

Неэффективными и состоятельными;

Эффективными и несмещенными;

Состоятельными и смещенными.

Матрица парных коэффициентов корреляции строится для выявления коллинеарных и мультиколлинеарных …

Параметров;

Случайных факторов;

Существенных факторов;

Результатов.

На основании преобразования переменных при помощи обобщенного метода наименьших квадратов получаем новое уравнение регрессии, которое представляет собой:

Взвешенную регрессию, в которой переменные взяты с весами
;

;

Нелинейную регрессию, в которой переменные взяты с весами
;

Взвешенную регрессию, в которой переменные взяты с весами .

Если расчетное значение критерия Фишера меньше табличного значения, то гипотеза о статистической незначимости уравнения …

Отвергается;

Незначима;

Принимается;

Несущественна.

Если факторы входят в модель как произведение, то модель называется:

Суммарной;

Производной;

Аддитивной;

Мультипликативной.

Уравнение регрессии, которое связывает результирующий признак с одним из факторов при зафиксированных на среднем уровне значении других переменных, называется:

Множественным;

Существенным;

Частным;

Несущественным.

Относительно количества факторов, включенных в уравнение регрессии, различают …

Линейную и нелинейную регрессии;

Непосредственную и косвенную регрессии;

Простую и множественную регрессию;

Множественную и многофакторную регрессию.

Требованием к уравнениям регрессии, параметры которых можно найти при помощи МНК является:

Равенство нулю значений факторного признака4

Нелинейность параметров;

Равенство нулю средних значений результативной переменной;

Линейность параметров.

Метод наименьших квадратов не применим для …

Линейных уравнений парной регрессии;

Полиномиальных уравнений множественной регрессии;

Уравнений, нелинейных по оцениваемым параметрам;

Линейных уравнений множественной регрессии.

При включении фиктивных переменных в модель им присваиваются …

Нулевые значения;

Числовые метки;

Одинаковые значения;

Качественные метки.

Если между экономическими показателями существует нелинейная связь, то …

Нецелесообразно использовать спецификацию нелинейного уравнения регрессии;

Целесообразно использовать спецификацию нелинейного уравнения регрессии;

Целесообразно использовать спецификацию линейного уравнение парной регрессии;

Необходимо включить в модель другие факторы и использовать линейное уравнение множественной регрессии.

Результатом линеаризации полиномиальных уравнений является …

Нелинейные уравнения парной регрессии;

Линейные уравнения парной регрессии;

Нелинейные уравнения множественной регрессии;

Линейные уравнения множественной регрессии.

В стандартизованном уравнении множественной регрессии
0,3;
-2,1. Определите, какой из факторовилиоказывает более сильное влияние на:

+- , так как 2,1>0,3;

По этому уравнению нельзя ответить на поставленный вопрос, так как неизвестны значения «чистых» коэффициентов регрессии;

- , так как 0,3>-2,1;

По этому уравнению нельзя ответить на поставленный вопрос, так как стандартизированные коэффициенты несравнимы между собой.

Факторные переменные уравнения множественной регрессии, преобразованные из качественных в количественные называются …

Аномальными;

Множественными;

Парными;

Фиктивными.

Оценки параметров линейного уравнения множественной регрессии можно найти при помощи метода:

Средних квадратов;

Наибольших квадратов;

Нормальных квадратов;

Наименьших квадратов.

Основным требованием к факторам, включаемым в модель множественной регрессии, является:

Отсутствие взаимосвязи между результатом и фактором;

Отсутствие взаимосвязи между факторами;

Отсутствие линейной взаимосвязи между факторами;

Наличие тесной взаимосвязи между факторами.

Фиктивные переменные включаются в уравнение множественной регрессии для учета действия на результат признаков …

Качественного характера;

Количественного характера;

Несущественного характера;

Случайного характера.

Из пары коллинеарных факторов в эконометрическую модель включается тот фактор,

Который при достаточно тесной связи с результатом имеет наибольшую связь с другими факторами;

Который при отсутствии связи с результатом имеет максимальную связь с другими факторами;

Который при отсутствии связи с результатом имеет наименьшую связь с другими факторами;

Который при достаточно тесной связи с результатом имеет меньшую связь с другими факторами.

Гетероскедастичность подразумевает …

Постоянство дисперсии остатков независимо от значения фактора;

Зависимость математического ожидания остатков от значения фактора;

Зависимость дисперсии остатков от значения фактора;

Независимость математического ожидания остатков от значения фактора.

Величина остаточной дисперсии при включении существенного фактора в модель:

Не изменится;

Будет увеличиваться;

Будет равно нулю;

Будет уменьшаться.

Если спецификация модели отображает нелинейную форму зависимости между экономическими показателями, то нелинейно уравнение …

Регрессии;

Детерминации;

Корреляции;

Аппроксимации.

Исследуется зависимость, которая характеризуется линейным уравнением множественной регрессии. Для уравнения рассчитано значение тесноты связи результативной переменной с набором факторов. В качестве этого показателя был использован множественный коэффициент …

Корреляции;

Эластичности;

Регрессии;

Детерминации.

Строится модель зависимости спроса от ряда факторов. Фиктивной переменной в данном уравнении множественной регрессии не является _________потребителя.

Семейное положение;

Уровень образования;

Для существенного параметра расчетное значение критерия Стьюдента …

Больше табличного значения критерия;

Равно нулю;

Не больше табличного значения критерия Стьюдента;

Меньше табличного значения критерия.

Систему МНК, построенную для оценки параметров линейного уравнения множественной регрессии можно решить …

Методом скользящего среднего;

Методом определителей;

Методом первых разностей;

Симплекс-методом.

Показатель, характеризующий на сколько сигм изменится в среднем результат при изменении соответствующего фактора на одну сигму, при неизменном уровне других факторов, называется ____________коэффициентом регрессии

Стандартизованным;

Нормализованным;

Выровненным;

Центрированным.

Мультиколлинеарность факторов эконометрической модели подразумевает …

Наличие нелинейной зависимости между двумя факторами;

Наличие линейной зависимости между более чем двумя факторами;

Отсутствие зависимости между факторами;

Наличие линейной зависимости между двумя факторами.

Обобщенный метод наименьших квадратов не используется для моделей с _______ остатками.

Автокоррелированными и гетероскедастичными;

Гомоскедастичными;

Гетероскедастичными;

Автокоррелированными.

Методом присвоения числовых значений фиктивным переменным не является:

Ранжирование;

Присвоение цифровых меток;

Нахождения среднего значения;

Присвоение количественных значений.

Нормально распределенных остатков;

Гомоскедастичных остатков;

Автокорреляции остатков;

Автокорреляции результативного признака.

Отбор факторов в модель множественной регрессии при помощи метода включения основан на сравнении значений …

Общей дисперсии до и после включения фактора в модель;

Остаточной дисперсии до и после включения случайных факторов в модель;

Дисперсии до и после включения результата в модель;

Остаточной дисперсии до и после включения фактора модель.

Обобщенный метод наименьших квадратов используется для корректировки …

Параметров нелинейного уравнения регрессии;

Точности определения коэффициента множественной корреляции;

Автокорреляции между независимыми переменными;

Гетероскедастичности остатков в уравнении регрессии.

После применения обобщенного метода наименьших квадратов удается избежать_________ остатков

Гетероскедастичности;

Нормального распределения;

Равенства нулю суммы;

Случайного характера.

Фиктивные переменные включаются в уравнения ____________регрессии

Случайной;

Парной;

Косвенной;

Множественной.

Взаимодействие факторов эконометрической модели означает, что …

Влияние факторов на результирующий признак зависит от значений другого неколлинеарного им фактора;

Влияние факторов на результирующий признак усиливается, начиная с определенного уровня значений факторов;

Факторы дублируют влияние друг друга на результат;

Влияние одного из факторов на результирующий признак не зависит от значений другого фактора.

Тема Множественная регрессия (Задачи)

Уравнение регрессии, построенное по 15 наблюдениям, имеет вид:

Пропущенные значения, а также доверительный интервал для

с вероятностью 0,99 равны:

Уравнение регрессии, построенное по 20 наблюдениям, имеет вид:

с вероятностью 0,9 равны:

Уравнение регрессии, построенное по 16 наблюдениям, имеет вид:

Пропущенные значения, а также доверительный интервал для с вероятностью 0,99 равны:

Уравнение регрессии в стандартизированном виде имеет вид:

Частные коэффициенты эластичности равны:

Стандартизованное уравнение регрессии имеет вид:

Частные коэффициенты эластичности равны:

Стандартизованное уравнение регрессии имеет вид:

Частные коэффициенты эластичности равны:

Стандартизованное уравнение регрессии имеет вид:

Частные коэффициенты эластичности равны:

Стандартизованное уравнение регрессии имеет вид:

Частные коэффициенты эластичности равны:

По 18 наблюдениям получены следующие данные:

;
;
;
;

равны:

По 17 наблюдениям получены следующие данные:

;
;
;
;

Значения скорректированного коэффициента детерминации, частных коэффициентов эластичности и параметра равны:

По 22 наблюдениям получены следующие данные:

;
;
;
;

Значения скорректированного коэффициента детерминации, частных коэффициентов эластичности и параметра равны:

По 25 наблюдениям получены следующие данные:

;
;
;
;

Значения скорректированного коэффициента детерминации, частных коэффициентов эластичности и параметра равны:

По 24 наблюдениям получены следующие данные:

;
;
;
;

Значения скорректированного коэффициента детерминации, частных коэффициентов эластичности и параметра равны:

По 28 наблюдениям получены следующие данные:

;
;
;
;

Значения скорректированного коэффициента детерминации, частных коэффициентов эластичности и параметра равны:

По 26 наблюдениям получены следующие данные:

;
;
;
;

Значения скорректированного коэффициента детерминации, частных коэффициентов эластичности и параметра равны:

В уравнении регрессии:

Восстановить пропущенные характеристики; построить доверительный интервал для с вероятностью 0,95, еслиn=12

Зная реакцию цепи на единичное возмущающее воздействие, т.е. функцию переходной проводимости или (и) переходную функцию по напряжению , можно найти реакцию цепи на воздействие произвольной формы. В основе метода – метода расчета с помощью интеграла Дюамеля – лежит принцип наложения.

При использовании интеграла Дюамеля для разделения переменной, по которой производится интегрирование, и переменной, определяющей момент времени, в который определяется ток в цепи, первую принято обозначать как , а вторую - как t.

Пусть в момент времени к цепи с нулевыми начальными условиями (пассивному двухполюснику ПД на рис. 1) подключается источник с напряжением произвольной формы. Для нахождения тока в цепи заменим исходную кривую ступенчатой (см. рис. 2), после чего с учетом, что цепь линейна, просуммируем токи от начального скачка напряжения и всех ступенек напряжения до момента t, вступающих в действие с запаздыванием по времени.

В момент времени t составляющая общего тока, определяемая начальным скачком напряжения , равна .

В момент времени имеет место скачок напряжения , который с учетом временного интервала от начала скачка до интересующего момента времени t обусловит составляющую тока .

Полный ток в момент времени t равен, очевидно, сумме всех составляющих тока от отдельных скачков напряжения с учетом , т.е.

Заменяя конечный интервал приращения времени на бесконечно малый, т.е. переходя от суммы к интегралу, запишем

. (1)

Соотношение (1) называется интегралом Дюамеля.

Следует отметить, что с использованием интеграла Дюамеля можно определять также напряжение. При этом в (1) вместо переходной проводимости будет входить переходная функция по напряжению.

Последовательность расчета с использованием
интеграла Дюамеля

В качестве примера использования интеграла Дюамеля определим ток в цепи рис. 3, рассчитанный в предыдущей лекции с использованием формулы включения.

Исходные данные для расчета: , , .

Полученный результат аналогичен выражению тока, определенному в предыдущей лекции на основе формулы включения.

Метод переменных состояния

Уравнения элекромагнитного состояния – это система уравнений, определяющих режим работы (состояние) электрической цепи.

Метод переменных состояния основывается на упорядоченном составлении и решении системы дифференциальных уравнений первого порядка, которые разрешены относительно производных, т.е. записаны в виде, наиболее удобном для применения численных методов интегрирования, реализуемых средствами вычислительной техники.

Количество переменных состояния, а следовательно, число уравнений состояния равно числу независимых накопителей энергии.

К уравнениям состояния выдвигаются два основных требования:

Независимость уравнений;

Возможность восстановления на основе переменных состояния (переменных, относительно которых записаны уравнения состояния) любых других переменных.

Первое требование удовлетворяется специальной методикой составления уравнений состояния, которая будет рассмотрена далее.

Для выполнения второго требования в качестве переменных состояния следует принять потокосцепления (токи в ветвях с индуктивными элементами) и заряды (напряжения) на конденсаторах. Действительно, зная закон изменения этих переменных во времени их всегда можно заменить источниками ЭДС и тока с известными параметрами. Остальная цепь оказывается резистивной, а следовательно, всегда рассчитывается при известных параметрах источников. Кроме того, начальные значения этих переменных относятся к независимым, т.е. в общем случае рассчитываются проще других.

При расчете методом переменных состояния, кроме самих уравнений состояния, связывающих первые производные и с самими переменными и и источниками внешних воздействий – ЭДС и тока, необходимо составить систему алгебраических уравнений, связывающих искомые величины с переменными состояния и источниками внешних воздействий.

Таким образом, полная система уравнений в матричной форме записи имеет вид

; (2)
. (3)

Здесь и - столбцовые матрицы соответственно переменных состояния и их первых производных по времени; - матрица-столбец источников внешних воздействий; - столбцовая матрица выходных (искомых) величин; - квадратная размерностью n x n (где n – число переменных состояния) матрица параметров, называемая матрицей Якоби; - прямоугольная матрица связи между источниками и переменными состояния (количество строк равно n, а столбцов – числу источников m); - прямоугольная матрица связи переменных состояния с искомыми величинами (количество строк равно числу искомых величин к, а столбцов – n); - прямоугольная размерностью к x m матрица связи входа с выходом.

Начальные условия для уравнения (2) задаются вектором начальных значений (0).

В качестве примера составления уравнений состояния рассмотрим цепь на рис. 4,а, в которой требуется определить токи и .

По законам Кирхгофа для данной цепи запишем

; (4)
; (5)

Матричное уравнение вида (3) вытекает из соотношений (4) и (6):

С D

Вектор начальных значений (0)= .

Непосредственное использование законов Кирхгофа при составлении уравнений состояния для сложных цепей может оказаться затруднительным. В этой связи используют специальную методику упорядоченного составления уравнений состояния.

Методика составления уравнений состояния

Эта методика включает в себя следующие основные этапы:

1. Составляется ориентированный граф схемы (см. рис. 4,б), на котором выделяется дерево, охватывающее все конденсаторы и источники напряжения (ЭДС). Резисторы включаются в дерево по необходимости: для охвата деревом всех узлов. В ветви связи включаются катушки индуктивности, источники тока и оставшиеся резисторы.

2. Осуществляется нумерация ветвей графа (и элементов в схеме), проводимая в следующей последовательности: первыми нумеруются участки графа (схемы) с конденсаторами, затем резисторами, включенными в дерево, следующими нумеруются ветви связи с резисторами и, наконец, ветви с индуктивными элементами (см. рис. 4,б).

3. Составляется таблица, описывающая соединение элементов в цепи. В первой строке таблицы (см. табл. 1) перечисляются емкостные и резистивные элементы дерева, а также источники напряжения (ЭДС). В первом столбце перечисляются резистивные и индуктивные элементы ветвей связи, а также источники тока.

Таблица 1 . Таблица соединений

Процедура заполнения таблицы заключается в поочередном мысленном замыкании ветвей дерева с помощью ветвей связи до получения контура с последующим обходом последнего согласно ориентации соответствующей ветви связи. Со знаком «+» записываются ветви графа, ориентация которых совпадает с направлением обхода контура, и со знаком «-» ветви, имеющие противоположную ориентацию.

Осуществляется расписывание таблицы по столбцам и по строкам. В первом случае получаются уравнения по первому закону Кирхгофа, во втором – по второму.

В рассматриваемом случае (равенство тривиально)

,

откуда в соответствии с нумерацией токов в исходной цепи

.

При расписывании таблицы соединений по строкам напряжения на пассивных элементах необходимо брать со знаками, противоположными табличным:

(7)

Эти уравнения совпадают соответственно с соотношениями (6) и (5).

Из (7) непосредственно вытекает

.

Таким образом, формализованным способом получены уравнения, аналогичные составленным выше с использованием законов Кирхгофа.

Литература

  1. Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.
  2. Матханов П.Н. Основы анализа электрических цепей. Линейные цепи.: Учеб. для электротехн. радиотехн. спец. вузов. 3-е изд., перераб. и доп. –М.: Высш. шк., 1990. –400с.

Контрольные вопросы и задачи

А
В

Лучшие статьи по теме