Как настроить смартфоны и ПК. Информационный портал
  • Главная
  • Телевизоры (Smart TV)
  • Формула емкости конденсатора через напряжение. Зарядка конденсатора от источника постоянной эдс

Формула емкости конденсатора через напряжение. Зарядка конденсатора от источника постоянной эдс

Конденсатор - фундаментальный электронный компонент (наряду с резистором и катушкой индуктивности), предназначенный для накопления электрической энергии. Лучшей аналогией его работы будет сравнение с аккумуляторной батареей. Однако основой устройства последней являются обратимые химические реакции, а накопление заряда на обкладках конденсатора имеет исключительно электрическую природу.

Устройство и принцип работы

В простейшем варианте конструкция состоит из двух электродов в форме проводящих пластин (называемых обкладками), разделённых диэлектриком, толщина которого ничтожно мала по сравнению с размерами обкладок. Практически применяемые радиоэлектронные компоненты содержат много слоёв диэлектрика и электродов. В качестве обозначения конденсатора на схеме используются два параллельных отрезка с пространством между ними. Они символизируют металлические пластины обкладок физического прибора, электрически разделённые между собой.

Многие считают Майкла Фарадея автором изобретения, но на самом деле это не так. Но он сделал главное - продемонстрировал первые практические примеры и способы использования этого прибора для хранения электрического заряда в своих экспериментах. Благодаря Фарадею человечество получило способ измерять возможность накапливать заряд. Эта величина называется ёмкостью и измеряется в Фарадах.

Работу конденсатора можно проиллюстрировать на примере событий, проходящих во вспышке цифровой фотокамеры за отрезок времени между нажатием кнопки и тем моментом, когда вспышка погаснет. Основой электронной схемы этого осветительного устройства является конденсатор, в котором происходит следующее:

  • Зарядка. После нажатия кнопки поток электронов приходит в конденсатор и останавливается на одной из его пластин благодаря диэлектрику. Этот поток называется зарядным током.
  • Накопление. Поскольку под действием электродвижущей силы всё больше и больше электронов будут поступать на обкладку и распределяться по ней, отрицательный заряд обкладки может расти до момента, пока накопленный потенциал не будет отталкивать поступающий избыточный поток электронов. Вторая пластина из-за дефицита электронов приобретает положительный заряд, по модулю равный отрицательному на первой. Зарядный ток будет протекать до тех пор, пока напряжение на обеих пластинах не сравняется с приложенным. Сила или скорость тока зарядки будет находиться на максимальном уровне в момент, когда пластины полностью разряжены, и приблизится к нулю в момент, когда напряжение на обкладках и источнике будут равны.
  • Сохранение. Поскольку обкладки заряжены противоположно, ионы и электроны будут притягиваться друг к другу, но не смогут соединиться из-за диэлектрической прослойки, создавая электростатическое поле. Благодаря этому полю конденсатор удерживает и сохраняет заряд.
  • Разряд. Если в цепи появляется возможность для электронов протечь другим путём, то напряжение, накопленное между положительными и отрицательными зарядами обкладок, мгновенно реализуется в электрический ток, импульс которого в лампе вспышки преобразуется в световую энергию.

Таким образом в фотовспышке реализуется способность конденсатора накопить для импульса энергию из батареи питания. Аккумулятор фотокамеры также является устройством, накапливающим энергию, но из-за химической природы накопления генерирует и отдаёт её медленно.

Ёмкость, заряд и напряжение

Свойство конденсатора сохранять заряд на пластинах в виде электростатического поля называется ёмкостью. Чем больше площадь обкладок и меньше расстояние между ними, тем большее количество заряда они способны накопить и, соответственно, обладают большей ёмкостью. При подаче напряжения на конденсатор отношение заряда Q к напряжению V даст значение ёмкости С. Формула заряда конденсатора будет выглядеть так:

Мера электрической ёмкости - фарад (Ф). Эта единица всегда положительная и не имеет отрицательных значений. 1 Ф равен ёмкости конденсатора, который способен сохранить заряд в 1 кулон на пластинах с напряжением в 1 вольт.

Фарад - очень большая единица измерения, для удобства использования применяют в основном её дольные меры:

  • Микрофарад (мкФ): 1мкФ=1/1000000 Ф.
  • Нанофарад (нФ): 1нФ=1/1000000000 Ф.
  • Пикофарад (пФ): 1пФ=1/000000000000 Ф.

Кроме общего размера обкладок и расстояния между ними, существует ещё один параметр, влияющий на ёмкость - используемый тип изолятора. Фактор, по которому определяется способность диэлектрика повышать ёмкость конденсатора в сравнении с вакуумом, называется диэлектрической проницаемостью и описывается для разных материалов постоянной величиной от 1 и до бесконечности (теоретически):

  • вакуум: 1,0000;
  • воздух: 1,0006;
  • бумага: 2,5-3,5;
  • стекло: 3-10;
  • оксиды металлов 6-20;
  • электротехническая керамика: до 80.

Кроме конденсаторов с твёрдым диэлектриком (керамических, бумажных, плёночных) существуют также электролитические . В последних используют алюминиевые или танталовые пластины с оксидным изолирующим слоем в качестве одного электрода и раствор электролита в качестве другого.

Главные особенности этой конструкции состоят в том, что она позволяет накапливать сравнительно внушительный заряд при небольших габаритах и является полярным электрическим накопителем. То есть включается в электрическую цепь с соблюдением полярности.

Энергия, которую способны накопить большинство конденсаторов, обычно невелика - не больше сотен джоулей. К тому же она не сохраняется долго из-за неизбежной утечки заряда. Поэтому конденсаторы не могут заменить, например, аккумуляторные батареи в качестве источника питания. И хотя они способны эффективно выполнять только одну работу (сохранение заряда), их применение весьма многообразно в электрических цепях. Конденсаторы используются как фильтры, для сглаживания сетевого напряжения, в качестве устройств синхронизации и для других целей.

Закон Кулона

Закон Кулона — это один из основных законов электростатики. Он определяет величину и направление силы взаимодействия между двумя неподвижными точечными зарядами.

Под точечным зарядом понимают заряженное тело, размер которого много меньше расстояния его возможного воздействия на другие тела. В таком случае ни форма, ни размеры заряженных тел не влияют практически на взаимодействие между ними.

Закон Кулона экспериментально впервые был доказан приблизительно в 1773 г. Кавендишем, который использовал для этого сферический конденсатор. Он показал, что внутри заряженной сферы электрическое поле отсутствует. Это означало, что сила электростатического взаимодействия меняется обратно пропорционально квадрату расстояния, однако результаты Кавендиша не были опубликованы.

В 1785 г. закон был установлен Ш. О. Кулоном с помощью специальных крутильных весов.

Опыты Кулона позволили установить закон, поразительно напоминающий закон всемирного тяготения.

Сила взаимодействия двух точечных неподвижных заряженных тел в вакууме прямо пропорциональна произведению модулей зарядов и обратно пропорциональна квадрату расстояния между ними.

В аналитическом виде закон Кулона имеет вид:

$F=k{|q_1|·|q_2|}/{r^2}$

где $|q_1|$ и $|q_2|$ — модули зарядов; $r$ — расстояние между ними; $k$ — коэффициент пропорциональности, зависящий от выбора системы единиц. Сила взаимодействия направлена по прямой, соединяющей заряды, причем одноименные заряды отталкиваются, а разноименные — притягиваются.

Сила взаимодействия между зарядами зависит также от среды между заряженными телами.

В воздухе сила взаимодействия почти не отличается от таковой в вакууме. Закон Кулона выражает взаимодействие зарядов в вакууме.

Кулон — единица электрического заряда. Кулон (Кл) — единица СИ количества электричества (электрического заряда). Она является производной единицей и определяется через единицу силы тока 1 ампер (А), которая входит в число основных единиц СИ.

За единицу электрического заряда принимают заряд, проходящий через поперечное сечение проводника при силе тока $1$А за $1$с.

То есть $1$ Кл$= 1А·с$.

Заряд в $1$ Кл очень велик. Сила взаимодействия двух точечных зарядов по $1$ Кл каждый, расположенных на расстоянии $1$ км друг от друга, чуть меньше силы, с которой земной шар притягивает груз массой $1$ т. Сообщить такой заряд небольшому телу невозможно (отталкиваясь друг от друга, заряженные частицы не могут удержаться в теле). А вот в проводнике (который в целом электронейтрален) привести в движение такой заряд просто (ток в $1$ А вполне обычный ток, протекающий по проводам в наших квартирах).

Коэффициент $k$ в законе Кулона при его записи в СИ выражается в $Н · м^2$ / $Кл^2$. Его численное значение, определенное экспериментально по силе взаимодействия двух известных зарядов, находящихся на заданном расстоянии, составляет:

$k=9·10^9H·м^2$/$Кл^2$

Часто его записывают в виде $k={1}/{4πε_0}$, где $ε_0=8.85×10^{-12}Кл^2$/$H·м^2$ - электрическая постоянная.

Электрическая емкость конденсатора

Электроемкость

Электроемкостью проводника $С$ называют численную величину заряда, которую нужно сообщить проводнику, чтобы изменить его потенциал на единицу:

Емкость характеризует способность проводника накапливать заряд. Она зависит от формы проводника, его линейных размеров и свойств среды, окружающей проводник.

Единицей емкости в СИ является фарада ($Ф$) — емкость проводника, в котором изменение заряда на $1$ кулон меняет его потенциал на $1$ вольт.

Электрический конденсатор

Электрический конденсатор (от лат. condensare, буквально сгущать, уплотнять) — устройство, предназначенное для получения электрической емкости заданной величины, способное накапливать и отдавать (перераспределять) электрические заряды.

Конденсатор — это система из двух или нескольких равномерно заряженных проводников с равными по величине зарядами, разделенных слоем диэлектрика. Проводники называются обкладками конденсатора. Как правило, расстояние между обкладками, равное толщине диэлектрика, намного меньше размеров самих обкладок, так что поле в конденсаторе практически все сосредоточено между его обкладками. Если обкладки являются плоскими пластинами, поле между ними однородно. Электроемкость плоского конденсатора определяется по формуле:

$C={q}/{U}={ε_{0}εS}/{d}$

где $q$ — заряд конденсатора, $U$ — напряжение между его обкладками, $S$ — площадь пластины, $d$ — расстояние между пластинами, $ε_{0}$ — электрическая постоянная, $ε$ — диэлектрическая проницаемость среды.

Под зарядом конденсатора понимают абсолютное значение заряда одной из пластин.

Энергия поля конденсатора

Энергия заряженного конденсатора выражается формулами

$E_n={qU}/{2}={q^2}/{2C}={CU^2}/{2}$

которые выводятся с учетом выражений для связи работы и напряжения и для емкости плоского конденсатора.

Энергия электрического поля. Объемная плотность энергии электрического поля (энергия поля в единице объема) напряженностью $Е$ выражается формулой:

$ω={εε_{0}E^2}/{2}$

где $ε$ - диэлектрическая проницаемость среды, $ε_0$ - электрическая постоянная.

Сила тока

Электрическим током называется упорядоченное (направленное) движение заряженных частиц.

Сила электрического тока — это величина ($I$), характеризующая упорядоченное движение электрических зарядов и численно равная количеству заряда $∆q$, протекающего через определенную поверхность $S$ (поперечное сечение проводника) за единицу времени:

$I={∆q}/{∆t}$

Итак, чтобы найти силу тока $I$, надо электрический заряд $∆q$, прошедший через поперечное сечение проводника за время $∆t$, разделить на это время.

Сила тока зависит от заряда, переносимого каждой частицей, скорости их направленного движения и площади поперечного сечения проводника.

Рассмотрим проводник с площадью поперечного сечения $S$. Заряд каждой частицы $q_0$. В объеме проводника, ограниченном сечениями $1$ и $2$, содержится $nS∆l$ частиц, где $n$ — концентрация частиц. Их общий заряд $q=q_{0}nS∆l$. Если частицы движутся со средней скоростью $υ$, то за время $∆t={∆l}/{υ}$ все частицы, заключенные в рассматриваемом объеме, пройдут через поперечное сечение $2$. Сила тока, следовательно, равна:

$I={∆q}/{∆t}={q_{0}nS∆l·υ}/{∆l}=q_{0}nυS$

В СИ единица силы тока является основной и носит название ампер (А) в честь французского ученого А. М. Ампера (1755-1836).

Силу тока измеряют амперметром. Принцип устройства амперметра основан на магнитном действии тока.

Оценка скорости упорядоченного движения электронов в проводнике, проведенная по формуле для медного проводника с площадью поперечного сечения $1мм^2$, дает весьма незначительную величину — $∼0.1$ мм/с.

Закон Ома для участка цепи

Сила тока на участке цепи равна отношению напряжения на этом участке к его сопротивлению.

Закон Ома выражает связь между тремя величинами, характеризующими протекание электрического тока в цепи: силой тока $I$, напряжением $U$ и сопротивлением $R$.

Закон этот был установлен в 1827 г. немецким ученым Г. Омом и поэтому носит его имя. В приведенной формулировке он называется также законом Ома для участка цепи . Математически закон Ома записывается в виде следующей формулы:

Зависимость силы тока от приложенной разности потенциалов на концах проводника называется вольт-амперной характеристикой (ВАХ) проводника.

Для любого проводника (твердого, жидкого или газообразного) существует своя ВАХ. Наиболее простой вид имеет вольт-амперная характеристика металлических проводников, заданная законом Ома $I={U}/{R}$, и растворов электролитов. Знание ВАХ играет большую роль при изучении тока.

Закон Ома — это основа всей электротехники. Из закона Ома $I={U}/{R}$ следует:

  1. сила тока на участке цепи с постоянным сопротивлением пропорциональна напряжению на концах участка;
  2. сила тока на участке цепи с неизменным напряжением обратно пропорциональна сопротивлению.

Эти зависимости легко проверить экспериментально. Полученные с использованием схемы, графики зависимости силы тока от напряжения при постоянном сопротивлении и силы тока от сопротивления представлены на рисунке. В первом случае использован источник тока с регулируемым выходным напряжением и постоянное сопротивление $R$, во втором — аккумулятор и переменное сопротивление (магазин сопротивлений).

Электрическое сопротивление

Электрическое сопротивление — это физическая величина, характеризующая противодействие проводника или электрической цепи электрическому току.

Электрическое сопротивление определяется как коэффициент пропорциональности $R$ между напряжением $U$ и силой постоянного тока $I$ в законе Ома для участка цепи.

Единица сопротивления называется омом (Ом) в честь немецкого ученого Г. Ома, который ввел это понятие в физику. Один ом ($1$ Ом) — это сопротивление такого проводника, в котором при напряжении $1$ В сила тока равна $1$ А.

Удельное сопротивление

Сопротивление однородного проводника постоянного сечения зависит от материла проводника, его длины $l$ и поперечного сечения $S$ и может быть определено по формуле:

где $ρ$ — удельное сопротивление вещества, из которого изготовлен проводник.

Удельное сопротивление вещества — это физическая величина, показывающая, каким сопротивлением обладает изготовленный из этого вещества проводник единичной длины и единичной площади поперечного сечения.

Из формулы $R=ρ{l}/{S}$ следует, что

Величина, обратная $ρ$, называется удельной проводимостью $σ$:

Так как в СИ единицей сопротивления является $1$ Ом, единицей площади $1м^2$, а единицей длины $1$ м, то единицей удельного сопротивления в СИ будет $1$ Ом$·м^2$/м, или $1$ Ом$·$м. Единица удельной проводимости в СИ — $Ом^{-1}м^{-1}$.

На практике площадь сечения тонких проводов часто выражают в квадратных миллиметрах (м$м^2$). В этом случае более удобной единицей удельного сопротивления является Ом$·$м$м^2$/м. Так как $1 мм^2 = 0.000001 м^2$, то $1$ Ом$·$м $м^2$/м$ = 10^{-6}$ Ом$·$м. Металлы обладают очень малым удельным сопротивлением — порядка ($1 ·10^{-2}$) Ом$·$м$м^2$/м, диэлектрики — в $10^{15}-10^{20}$ раз большим.

Зависимость сопротивления от температуры

С повышением температуры сопротивление металлов возрастает. Однако существуют сплавы, сопротивление которых почти не меняется при повышении температуры (например, константан, манганин и др.). Сопротивление же электролитов с повышением температуры уменьшается.

Температурным коэффициентом сопротивления проводника называется отношение величины изменения сопротивления проводника при нагревании на $1°$С к величине его сопротивления при $0°$С:

$α={R_t-R_0}/{R_0t}$

Зависимость удельного сопротивления проводников от температуры выражается формулой:

$ρ=ρ_0(1+αt)$

В общем случае $α$ зависит от температуры, но если интервал температур невелик, то температурный коэффициент можно считать постоянным. Для чистых металлов $α=({1}/{273})K^{-1}$. Для растворов электролитов $α

Зависимость сопротивления проводника от температуры используется в термометрах сопротивления.

Параллельное и последовательное соединение проводников

Для параллельного соединения проводников справедливы следующие соотношения:

1) электрический ток, поступающий в точку $А$ разветвления проводников (она называется также узлом ), равен сумме токов в каждом из элементов цепи:

3) при параллельном соединении проводников складываются их обратные сопротивления:

${1}/{R}={1}/{R_1}+{1}/{R_2}, R={R_1·R_2}/{R_1+R_2};$

4) сила тока и сопротивление в проводниках связаны соотношением:

${I_1}/{I_2}={R_2}/{R_1}$

Для последовательного соединения проводников в цепи справедливы следующие соотношения:

1) для общего тока $I$:

где $I_1$ и $I_2$ — ток в проводниках $1$ и $2$ соответственно; т. е. при последовательном соединении проводников сила тока на отдельных участках цепи одинакова;

2) общее напряжение $U$ на концах всего рассматриваемого участка равно сумме напряжений на отдельных его участках:

3) полное сопротивление $R$ всего участка цепи равно сумме последовательно соединенных сопротивлений:

4) также справедливо соотношение:

${U_1}/{U_2}={R_1}/{R_2}$

Работа электрического тока. Закон Джоуля-Ленца

Работа, совершаемая током, проходящим по некоторому участку цепи, согласно ($U=φ_1-φ_2={A}/{q}$) равна:

где $А$ — работа тока; $q$ — электрический заряд, прошедший за данное время через рассматриваемый участок цепи. Подставляя в последнее равенство формулу $q=It$, получаем:

Работа электрического тока на участке цепи равна произведению напряжения на концах этого участка на силу тока и на время, в течение которого совершалась работа.

Закон Джоуля-Ленца

Закон Джоуля — Ленца гласит: количество теплоты, выделяемое в проводнике на участке электрической цепи с сопротивлением $R$ при протекании по нему постоянного тока $I$ в течение времени $t$ равно произведению квадрата тока на сопротивление и время:

Закон был установлен в 1841 г. английским физиком Дж. П. Джоулем, а в 1842 г. подтвержден точными опытами русского ученого Э. X. Ленца. Само же явление нагрева проводника при прохождении по нему тока было открыто еще в 1800 г. французским ученым А. Фуркруа, которому удалось раскалить железную спираль, пропустив через нее электрический ток.

Из закона Джоуля — Ленца следует, что при последовательном соединении проводников, поскольку ток в цепи всюду одинаков, максимальное количество тепла будет выделяться на проводнике с наибольшим сопротивлением. Это используется в технике, например, для распыления металлов.

При параллельном соединении все проводники находятся под одинаковым напряжением, но токи в них разные. Из формулы ($Q=I^2Rt$) следует, что, так как, согласно закону Ома $I={U}/{R}$, то

Следовательно, на проводнике с меньшим сопротивлением будет выделяться больше тепла.

Если в формуле ($A=IUt$) выразить $U$ через $IR$, воспользовавшись законом Ома, получим закон Джоуля-Ленца. Это лишний раз подверждает тот факт, что работа тока расходуется на выделение тепла на активном сопротивлении в цепи.

Мощность электрического тока

Действие тока характеризуют не только работой $A$, но и мощностью $Р$. Мощность тока показывает, какую работу совершает ток за единицу времени. Если за время $t$ была совершена работа $А$, то мощность тока $P={A}/{t}$. Подставляя в это равенство выражение ($A=IUt$), получаем:

Это выражение можно переписать в разных формах, воспользовавшись законом Ома для участка цепи:

$P=IU=I^{2R}={U^2}/{R}$

Из соотношения для ЭДС легко получить мощность источника тока:

В СИ работу выражают в джоулях (Дж), мощность - в ваттах (Вт), а время -в секундах (с). При этом

$1$Вт$=1$Дж/с, $1$Дж$=1$Вт$·$с.

Рассчитаем наибольшую допустимую мощность потребителей электроэнергии, которые могут одновременно работать в квартире. Так как в жилых зданиях сила тока в проводке не должна превышать $I=10$А, то при напряжении $U=220$В соответствующая электрическая мощность оказывается равной:

$Р=10А·220В=2200Вт=2.2кВт.$

Одновременное включение в сеть приборов с большей суммарной мощностью приведет к увеличению силы тока, и потому недопустимо.

В быту работу тока (или израсходованную на совершение этой работы электроэнергию) измеряют с помощью специального прибора, называемого электрическим счетчиком (счетчиком электроэнергии). При прохождении тока через этот счетчик внутри его начинает вращаться легкий алюминиевый диск. Скорость его вращения прямо пропорциональна силе тока и напряжению. Поэтому по числу оборотов, сделанных им за данное время, можно судить о работе, совершенной током за это время. Работа тока при этом выражается обычно в киловатт-часах ($кВт·ч$).

$1кВт·ч$ — это работа, совершаемая электрическим током мощностью $1кВт$ в течение $1ч$. Так как $1кВт=1000Вт$, а $1ч=3600с$, то $1кВт·ч=1000Вт·3600с=3600000 Дж$.

Как и любая система заряжен-ных тел, конденсатор обладает энер-гией. Вычислить энергию заряжен-ного плоского конденсатора с одно-родным полем внутри него не-сложно.

Энергия заряженного конденса-тора.

Для того чтобы зарядить конденсатор, нужно совершить рабо-ту по разделению положительных и отрицательных зарядов. Согласно закону сохранения энергии эта ра-бота равна энергии конденсатора. В том, что заряженный конденсатор обладает энергией, можно убедиться, если разрядить его через цепь, со-держащую лампу накаливания, рас-считанную на напряжение в не-сколько вольт (рис. 4). При раз-рядке конденсатора лампа вспыхи-вает. Энергия конденсатора пре-вращается в другие формы: тепло-вую, световую.

Выведем формулу для энергии плоского конденсатора .

Напряженность поля, созданного зарядом одной из пластин, равна Е/2, где Е — напряженность поля в конденсаторе. В однородном поле одной пластины находится заряд q, распределенный по поверхности дру-гой пластины (рис. 5). Согласно формуле W p = qEd. для потенциальной энергии заряда в однородном поле энергия конденсатора равна:

Можно доказать, что эти форму-лы справедливы для энергии любого конденсатора, а не только для плос-кого.

Энергия электрического поля.

Согласно теории близкодействия вся энергия взаимодействия заряженных тел сконцентрирована в электриче-ском поле этих тел. Значит, энергия может быть выражена через основную характеристику поля — напря-женность.

Так как напряженность электри-ческого поля прямо пропорциональ-на разности потенциалов

(U = Ed), то согласно формуле

энергия конденсатора прямо пропор-циональна напряженности электри-ческого поля внутри него: W p ~ E 2 . Детальный расчет дает следующее значение для энергии поля, приходя-щейся на единицу объема, т.е. для плотности энергии:

где ε 0 — электрическая постоянная

Применение конденсаторов.

Энер-гия конденсатора обычно не очень велика — не более сотен джоулей. К тому же она не сохраняется долго из-за неизбежной утечки заряда. Поэтому заряженные конденсаторы не могут заменить, например, акку-муляторы в качестве источников электрической энергии.


Но это совсем не означает, что конденсаторы как накопители энергии не получили практического при-менения. Они имеют одно важное свойство: конденсаторы могут на-капливать энергию более или менее длительное время, а при разрядке через цепь малого сопротивления они отдают энергию почти мгновенно. Именно это свойство используют широко на практике.

Лампа-вспышка, применяемая в фотографии, питается электрическим током разряда конденсатора, заря-жаемого предварительно специаль-ной батареей. Возбуждение кванто-вых источников света — лазеров осу-ществляется с помощью газораз-рядной трубки, вспышка которой происходит при разрядке батареи конденсаторов большой электроем-кости.

Однако основное применение кон-денсаторы находят в радиотехнике. С этим вы познакомитесь в XI классе.

Энергия конденсатора пропор-циональна его электроемкости и квадрату напряжения между плас-тинами. Вся эта энергия сосредото-чена в электрическом поле. Плот-ность энергии поля пропорциональна квадрату напряженности поля.

Рис. 1 Рис. 2

ЗАКОНЫ ПОСТОЯННОГО ТОКА.

Неподвижные электрические заряды редко используются на практике. Для того чтобы заставить электрические заряды слу-жить нам, их нужно привести в движение — создать электрический ток. Электрический ток освещает квартиры, приводит в дви-жение станки, создает радиоволны, циркулирует во всех электрон-но-вычислительных машинах.

Мы начнем с наиболее простого случая движения заряжен-ных частиц — рассмотрим постоянный электрический ток.

ЭЛЕКТРИЧЕСКИЙ ТОК. СИЛА ТОКА

Дадим строгое определение тому, что называют электрическим током.

Напомним, какой величиной ха-рактеризуется ток количественно.

Найдем, как быстро движутся электроны по проводам в вашей квартире.

При движении заряженных час-тиц в проводнике происходит перенос электрического заряда с одного места в другое. Однако если заряженные частицы совершают беспорядочное тепловое движение, как, например, свободные электроны в металле, то переноса заряда не про-исходит (рис.1). Электриче-ский заряд перемещается через по-перечное сечение проводника лишь в том случае, если наряду с беспорядочным движением электроны участвуют в упорядоченном движении (рис. 2). В этом случае говорят, что в проводнике устанавливается электрический ток.

Из курса физики VIII класса вы знаете, что электрическим током называют упорядоченное (направ-ленное) движение заряженных частиц.

Электрический ток возникает при упорядоченном перемещении свобод-ных электронов или ионов.

Если перемещать нейтральное в целом тело, то, несмотря на упо-рядоченное движение огромного чис-ла электронов, и атомных ядер, электрический ток не возникает. Полный заряд, переносимый через любое сечение проводника, будет при этом равным нулю, так как заряды разных знаков с одинаковой средней скоростью.

Электрический ток имеет определенное направление. За направление тока принимают направление движения положительно заряженных частиц. Если ток образован движением отрицательно заряженных частиц, то направление тока считают противоположным направлению дви-жения частиц.

Действия тока. Движение частиц в проводнике мы непосредственно не видим. О наличии электрического тока приходится судить по тем дей-ствиям или явлениям, которые его сопровождают.

Во-первых, проводник, по которо-му течет ток, нагревается.

Во-вторых, электрический ток мо-жет изменять химический состав проводника, например, выделять его химические составные части (медь из раствора медного купороса и т.д.).

В-третьих, ток оказывает силовое воздействие на соседние токи и на-магниченные тела. Это действие то-ка называется магнитным. Так, маг-нитная стрелка вблизи проводника с током поворачивается. Магнитное действие тока в отличие от химиче-ского и теплового является основ-ным, так как проявляется у всех без исключения проводников. Хими-ческое действие тока наблюдается лишь у растворов и расплавов электролитов, а нагревание отсут-ствует у сверхпроводников.

Сила тока.

Если в цепи уста-навливается электрический ток, то это означает, что через поперечное сечение проводника все время пере-носится электрический заряд. Заряд, перенесенный в единицу времени, служит основной количественной ха-рактеристикой тока, называемой си-лой тока.

Таким образом, сила тока равна отношению заряда q, переносимого через поперечное сечение провод-ника за интервал времени t, к этому интервалу времени. Если сила тока со временем не меняется, то ток на-зывают постоянным.

Сила тока, подобно заряду, ве-личина скалярная. Она может быть как положительной, так и отрица-тельной. Знак силы тока зависит от того, какое из направлений вдоль проводника принять за положитель-ное. Сила тока / > 0, если направ-ление тока совпадает с условно вы-бранным положительным направле-нием вдоль проводника. В против-ном случае / < 0.

Сила тока зависит от заряда, переносимого каждой частицей, кон-центрации частиц, скорости их направленного движения и площади поперечного сечения проводника. По-кажем это.

Пусть проводник (рис. 3) имеет поперечное сечение площадью S. За положительное направление в проводнике примем направление сле-ва направо. Заряд каждой частицы равен q 0 . В объеме проводника, ограниченном поперечными сечениям-и 1 и 2, содержится nSl частиц, где п — концентрация частиц. Их общий заряд q = q Q nSl. Если частицы движутся слева направо со средней скоростью υ, то за время

Все частицы, заключенные в рассматриваемом объеме, пройдут через поперечное сечение 2. Поэтому сила тока равна:

формуле (2) где е — модуль заряда электрона.

Пусть, например, сила тока I = 1 А, а площадь по-перечного сечения проводника S = 10 -6 м 2 . Модуль заряда электрона е = 1,6 - 10 -19 Кл. Число электронов в 1 м 3 меди равно числу атомов в этом объеме, так как один из ва-лентных электронов каждого атома меди коллективизирован и является свободным. Это число есть п = 8,5 · 10 28 м -3 Следовательно,

Рис №1. Рис №2 Рис №3

УСЛОВИЯ, НЕОБХОДИМЫЕ ДЛЯ СУЩЕСТВОВАНИЯ ЭЛЕКТРИЧЕСКОГО ТОКА

Что необходимо для создания электрического тока? Подумайте над этим сами и только потом прочтите этот параграф.

Для возникновения и существо-вания постоянного электрического тока в веществе необходимо, во-первых, наличие свободных заряжен-ных частиц. Если положительные и отрицательные заряды связаны друг с другом в атомах или молекулах , то их перемещение не приведет к по-явлению электрического тока.

Наличия свободных зарядов еще недостаточно для возникновения то-ка. Для создания и поддержания упорядоченного движения, заряжен-ных частиц необходима, во-вторых, сила, действующая на них в опре-деленном направлении. Если эта сила перестанет действовать, то упорядоченное движение заряженных частиц прекратится из-за сопротив-ления, оказываемого их движению ионами кристаллической решетки металлов или нейтральными молеку-лами электролитов .

На заряженные частицы, как мы знаем, действует электрическое поле с силой . Обычно именно электрическое поле внутри провод-ника служит причиной, вызываю-щей и поддерживающей упорядочен-ное движение заряженных частиц. Только в статическом случае, когда заряды покоятся, электрическое поле внутри проводника равно нулю.

Если внутри проводника имеется электрическое поле, то между конца-ми проводника в соответствии с фор-мулой существует разность потенциалов. Когда разность потен-циалов не меняется во времени, то в проводнике устанавливается по-стоянный электрический ток. Вдоль проводника потенциал уменьшается от максимального значения на одном конце проводника до минималь-ного — на другом. Это уменьшение потенциала можно обнаружить на простом опыте.

Возьмем в качестве проводника не очень сухую деревянную палку и подвесим ее горизонтально. (Такая палка хотя и плохо, но все же про-водит ток.) Источником напряжения пусть будет электростатическая ма-шина, Для регистрации потенциала различных участков проводника от-носительно земли можно использо-вать листочки металлической фоль-ги, прикрепленные к палке. Один полюс машины соединим с землей, а второй — с одним концом проводни-ка (палки). Цепь окажется незамк-нутой. При вращении рукоятки ма-шины мы обнаружим, что все лис-точки отклоняются на один и тот же угол (рис. 1).

Значит, потен-циал всех точек проводника отно-сительно земли одинаков. Так и должно быть при равновесии заря-дов на проводнике. Если теперь дру-гой конец палки заземлить, то при вращении рукоятки машины карти-на изменится. (Так как земля — проводник, то заземление провод-ника делает цепь замкнутой.) У за-земленного конца листочки вообще не разойдутся: потенциал этого кон-ца проводника практически равен потенциалу земли (падение потен-циала в металлической проволоке мало). Максимальный угол расхож-дения листочков будет у конца про-водника, присоединенного к машине (рис. 2). Уменьшение угла рас-хождения листочков по мере удале-ния от машины свидетельствует о падении потенциала вдоль провод-ника.

Электрический ток может быть получен только в веществе, в котором имеются свободные заряженные частицы. Чтобы они пришли в движение, нужно создать в проводнике электрическое поле.

Рис №1 Рис №2

ЗАКОН ОМА ДЛЯ УЧАСТКА ЦЕПИ. СОПРОТИВЛЕНИЕ

В VIII классе изучался закон Ома . Этот закон прост, однако столь важен, что его необходимо повторить.

Вольт - амперная характеристика.

В предыдущем параграфе было уста-новлено, что для существования то-ка в проводнике необходимо создать разность потенциалов на его концах. Сила тока в проводнике определяет-ся этой разностью потенциалов. Чем больше разность потенциалов, тем больше напряженность электриче-ского поля в проводнике и, следо-вательно, тем большую скорость на-правленного движения приобретают заряженные частицы. Согласно фор-муле, это означает увеличение силы тока.

Для каждого проводника — твер-дого, жидкого и газообразного — существует определенная зависи-мость силы тока от приложенной разности потенциалов на концах про-водника. Эту зависимость выражает так называемая вольт - амперная ха-рактеристика проводника. Ее нахо-дят, измеряя силу тока в проводнике при различных значениях напряже-ния. Знание вольт - амперной характе-ристики играет большую роль при изучении электрического тока.

Закон Ома.

Наиболее простой вид имеет вольт - амперная характеристи-ка металлических проводников и растворов электролитов. Впервые (для металлов) ее установил немец-кий ученый Георг Ом, поэтому зависимость силы тока от напря-жения носит название закона Ома. На участке цепи, изображенной на рисунке 109, ток направлен от точки 1 к точке 2. Разность потен-циалов (напряжение) на концах проводника равна: U = φ 1 - φ 2. Так как ток направлен слева направо, то напряженность электрического поля направлена в ту же сторону и φ 1 > φ 2

Согласно закону Ома для участка цепи сила тока прямо пропорцио-нальна приложенному напряжению U и обратно пропорциональна сопро-тивлению проводника R:

Закон Ома имеет очень простую форму, но доказать эксперименталь-но его справедливость довольно трудно. Дело в том, что разность по-тенциалов на участке металлическо-го проводника даже при большой силе тока мала, так как мало сопро-тивление проводника.

Электрометр, о котором шла речь, непригоден для измерения столь малых напряжений: его чув-ствительность слишком мала. Нужен несравненно более чувствительный прибор. Тогда, измеряя силу тока амперметром, а напряжение чув-ствительным электрометром, можно убедиться в том, что сила тока пря-мо пропорциональна напряжению. Применение же обычных приборов для измерения напряжения — вольт-метров — основано на использовании закона Ома.

Принцип устройства, вольтметра такой же, как и ампер-метра. Угол поворота стрелки прибо-ра пропорционален силе тока. Сила тока, проходящего по вольтметру, определяется напряжением между точками цепи, к которой он под-ключен. Поэтому, зная сопротивле-ние вольтметра, можно по силе тока определить напряжение. На практике прибор градуируют так, чтобы он сразу показывал напряжение в воль-тах.

Сопротивление. Основная элек-трическая характеристика проводни-ка — сопротивление. От этой вели-чины зависит сила тока в провод-нике при заданном напряжении. Со-противление проводника представля-ет собой как бы меру противо-действия проводника установлению в нем электрического тока. С помощью закона Ома можно определить сопротивление проводника:

Для этого нужно измерить напря-жение и силу тока.

Сопротивление зависит от мате-риала проводника и его геометри-ческих размеров. Сопротивление про-водника длиной l с постоянной пло-щадью поперечного сечения S равно:

где р — величина, зависящая от рода вещества и его состояния (от тем-пературы в первую очередь). Вели-чину р называют удельным сопро-тивлением проводника. Удельное со-противление численно равно сопро-тивлению проводника, имеющего форму куба с ребром 1 м, если ток направлен вдоль нормали к двум противоположным граням куба.

Единицу сопротивления провод-ника устанавливают на основе зако-на Ома и называют ее ом. Провод-ник имеет сопротивление 1 Ом, если при разности потенциалов 1 В сила тока в нем 1 А.

Единицей удельного сопротивле-ния является 1 Ом?м. Удельное со-противление металлов мало. Диэлектрики обладают очень большим удельным сопротивлением. В табли-це на форзаце приведены примеры значений удельного сопротивления некоторых веществ.

Значение закона Ома.

Закон Ома определяет силу тока в электриче-ской цепи при заданном напря-жении и известном сопротивлении. Он позволяет рассчитать тепловые, химические и магнитные действия тока, так как они зависят от силы тока. Из закона Ома вытекает, что замыкать обычную осветительную сеть проводником малого сопротив-ления опасно. Сила тока окажется настолько большой, что это может иметь тяжелые последствия.

Закон Ома — основа всей элект-ротехники постоянных токов. Формулу — надо хорошо понять и твердо запомнить.


ЭЛЕКТРИЧЕСКИЕ ЦЕПИ. ПОСЛЕДОВАТЕЛЬНОЕ И ПАРАЛЛЕЛЬНОЕ СОЕДИНЕНИЯ ПРОВОДНИКОВ

От источника тока энергия может быть передана по проводам к устрой-ствам, потребляющим энергию: Элек-трической лампе, радиоприемнику и др. Для этого составляют электри-ческие цепи различной сложности. Электрическая цепь состоит из источника энергии, устройств, по-требляющих электрическую энергию, соединительных проводов и выклю-чателей для замыкания цепи. Часто и электрическую цепь включают приборы, контролирующие силу тока и напряжение на различных участ-ках цепи, - амперметры и вольт-метры.

К наиболее простым и часто встречающимся соединениям провод-ников относятся последовательное и параллельное соединения.

Последовательное соединение проводников.

При последовательном соединении электрическая цепь не имеет разветвлений. Все проводники включают в цепь поочередно друг за другом. На рисунке 1 показано последовательное соединение двух проводников 1 и 2, имеющих сопротивления R 1 , и R 2 . Это могут быть две лампы, две обмотки элект-родвигателя и др.

Сила тока в обоих проводниках одинакова, т. е. (1)

так как в проводниках электриче-ский заряд в случае постоянного тока не накапливается и через любое поперечное сечение проводника за определенное время проходит один и тот же заряд.

Напряжение на концах рассмат-риваемого участка цепи складывает-ся из напряжений на - первом и вто-ром проводниках:

Надо надеяться, что с доказатель-ством этого простого соотношения вы справитесь сами.

Применяя закон Ома для всего участка в целом и для участков с сопротивлениями R 1 и R 2 , можно до-казать, что полное сопротивление всего участка цепи при последова-тельном соединении равно:

Это правило можно применить для любого числа последовательно соединенных проводников.

Напряжения на проводниках и их сопротивления при последователь-ном соединении связаны соотноше-нием:

Докажите это равенство.

Параллельное соединение про-водников.

На рисунке 2 показано параллельное соединение двух про-водников 1 и 2с сопротивлениями R 1 и R 2 . В этом случае электриче-ский ток 1 разветвляется на две час-ти. Силу тока в первом и втором про-водниках обозначим через I 1 и I 2 . Так как в точке а — разветвлении проводников (такую точку называют узлом) — электрический заряд не на-капливается, то заряд, поступающий в единицу времени в узел, равен заряду, уходящему из узла за это же время. Следовательно, I = I 1 + I 2

Напряжение U на концах про-водников, соединенных параллельно, одно и то же.

В осветительной сети поддержи-вается напряжение 220 или 127 В. На это напряжение рассчитаны при-боры, потребляющие электрическую энергию. Поэтому параллельное сое-динение — самый распространенный способ соединения различных потре-бителей. В этом случае выход из строя одного прибора не отражается на работе остальных, тогда как при последовательном соединении выход из строя одного прибора размы-кает цепь.

Применяя закон Ома для всего участка в целом и для участков с сопротивлениями R 1 и R 2 , можно доказать, что величина, обратная полному сопротивлению участка ab, равна сумме величин, обратных сопротивлениям отдельных провод-ников:

Сила тока в каждом из провод-ников и сопротивления проводников при параллельном соединении свя-заны соотношением

Различные проводники в цепи соединяются друг с другом после-довательно или параллельно. В пер-вом случае сила тока одинакова во всех проводниках, а во втором слу-чае одинаковы напряжения на про-водниках. Чаще всего к осветитель-ной сети различные потребители тока подключаются параллельно.

ИЗМЕРЕНИЕ СИЛЫ ТОКА И НАПРЯЖЕНИЯ

Как измерить силу тока ампер-метром, а напряжение вольтметром, должен знать каждый.

Измерение силы тока.

Для изме-рения силы тока в проводнике ам-перметр включают последовательно с этим проводником (рис. 1). Но нужно иметь в виду, что сам ампер-метр обладает некоторым сопротив-лением R a . Поэтому сопротивление участка цепи с включенным ампер-метром увеличивается, и при неиз-менном напряжении сила тока умень-шается в соответствии с законом Ома. Чтобы амперметр оказывал как можно меньшее влияние на силу тока, измеряемую им, его сопротив-ление делают очень малым. Это нужно помнить и никогда не пытать-ся измерять силу тока в освети-тельной сети, подключая амперметр к розетке. Произойдет короткое за-мыкание; сила тока при малом со-противлении прибора достигнет столь большой величины, что обмотка ам-перметра сгорит.

Измерение напряжения.

Для того чтобы измерить напряжение на участке цепи с сопротивлением R, к нему параллельно подключают вольтметр. Напряжение на вольтметре совпа-дает с напряжением на участке цепи (рис. 2).

Если сопротивление вольтметра R B , то после включения его в цепь сопротивление участка будет уже не R, а . Из-за этого измеряемое напряжение на участ-ке цепи уменьшится. Для того чтобы вольтметр не вносил заметных иска-жений в измеряемое напряжение, его сопротивление должно быть большим по сравнению с сопротивлением участка цепи, на котором измеряется напряжение. Вольтметр можно вклю-чать в сеть без риска, что он сгорит, если только он рассчитан на напря-жение, превышающее напряжение сети.

Амперметр включают последова-тельно с проводником, в котором измеряют силу тока. Вольтметр включают параллельно проводнику, на котором измеряют напряжение.

РАБОТА И МОЩНОСТЬ ПОСТОЯННОГО ТОКА

Электрический ток получил такое широкое применение потому, что он несет с собой энергию. Эта энергия может быть превращена в любую форму.

При упорядоченном движении за-ряженных частиц в проводнике электрическое поле совершает ра-боту; ее принято называть работой тока. Сейчас мы напомним сведения о работе и мощности тока из курса физики VIII класса.

Работа тока.

Рассмотрим произ-вольный участок цепи. Это, может быть однородный проводник, напри-мер нить лампы накаливания, обмот-ка электродвигателя и др. Пусть за время t через поперечное сечение проводника проходит заряд q. Тогда электрическое поле совершит работу A = qU.

Так как сила тока , то эта работа равна:

Работа тока на участке цепи равна произведению силы тока, на-пряжения и времени, в течение ко-торого совершалась работа.

Согласно закону сохранения энергии эта работа должна быть рав-на изменению энергии рассматри-ваемого участка цепи. Поэтому энер-гия, выделяемая на данном участке цепи за время At, равна работе тока (см. формулу (1)).

В случае если на участке цепи не совершается механическая рабо-та и ток не производит химических действий, происходит только нагре-вание проводника. Нагретый про-водник отдает теплоту окружающим телам.

Нагревание проводника происхо-дит следующим образом. Электриче-ское поле ускоряет электроны. После столкновения с ионами кристалличе-ской решетки они передают ионам свою энергию. В результате энергия беспорядочного движения ионов око-ло положений равновесия возраста-ет. Это и означает увеличение внут-ренней энергии. Температура про-водника при этом повышается, и он начинает передавать теплоту окру-жающим телам. Спустя небольшое время после замыкания цепи процесс устанавливается, и температура пе-рестает изменяться со временем. К проводчику за счет работы элект-рического поля непрерывно поступа-ет энергия. Но его внутренняя энер-гия остается неизменной, так как проводник передает окружающим те-лам количество теплоты, равное ра-боте тока. Таким образом, формула (1) для работы тока определяет количество теплоты, передаваемое проводником другим телам.

Если в формуле (1) выразить либо напряжение через силу тока, либо силу тока через напряжение с помощью закона Ома для участка цепи, то получим три эквивалентные формулы:

(2)

Формулой A = I 2 R t удобно пользоваться для последовательного соединения проводников, так как сила тока в этом случае одинакова во всех проводниках. При парал-лельном соединении удобна формула , так как напряжение на всех проводниках одинаково.

Закон Джоуля — Ленца.

Закон, определяющий количество теплоты, которое выделяет проводник с то-ком в окружающую среду, был впервые установлен эксперименталь-но английским ученым Д. Джоу-лем (1818-1889) и русским ученым Э. X. Ленцем (1804-1865). Закон Джоуля — Ленца был сформулиро-ван следующим образом: количество теплоты, выделяемое проводником с током, равно произведению квад-рата силы тока, сопротивления про-водника и времени прохождения то-ка по проводнику:

(3)

Мы получили этот закон с по-мощью рассуждений, основанных на законе сохранения энергии. Формула (3) позволяет вычислить количе-ство теплоты, выделяемое на любом участке цепи, содержащем какие угодно проводники.

Мощность тока.

Любой электри-ческий прибор (лампа, электродвигатель) рассчитан на потребление определенной энергии в единицу вре-мени. Поэтому наряду с работой то-ка очень важное значение имеет по-нятие мощность тока. Мощность то-ка равна отношению работы тока за время t к этому интервалу времени.

Согласно этому определению

(4)

Это выражение для мощности можно переписать в нескольких эквивалентных формах, если исполь-зовать закон Ома для участка цепи:

На большинстве приборов ука-зана потребляемая ими мощность.

Прохождение по проводнику электрического тока сопровождается выделением в нем энергии. Эта энер-гия определяется работой тока: про-изведением перенесенного заряда и напряжения на концах проводника.

ЭЛЕКТРОДВИЖУЩАЯ СИЛА.

Любой источник тока характеризуется электродвижущей силой, или ЭДС. Так, на круглой батарейке для карманного фонарика написано: 1,5 В. Что это значит?

Соедините проводником два ме-таллических шарика, несущих за-ряды противоположных знаков. Под влиянием электрического поля этих зарядов в проводнике возникает электрический ток (рис. 1). Но этот ток будет очень кратковремен-ным. Заряды быстро нейтрализуют-ся, потенциалы шариков станут одинаковыми, и электрическое поле ис-чезнет.

Сторонние силы.

Для того чтобы ток был постоянным, надо поддер-живать постоянное напряжение меж-ду шариками. Для этого необходимо устройство (источник тока), которое перемещало бы заряды от одного шарика к другому в направлении, противоположном направлению сил, действующих на эти заряды со сто-роны электрического поля шариков. В таком устройстве на заряды, кро-ме электрических сил, должны дей-ствовать силы не электростатического происхождения (рис. 2). Одно лишь электрическое поле заряжен-ных частиц (кулоновское поле) не способно поддерживать постоянный ток в цепи.

Любые силы, действующие на электрически заряженные частицы, за исключением сил электростати-ческого происхождения (т. е. кулоновских), называют сторонними си-лами.

Вывод о необходимости сторон-них сил для поддержания посто-янного тока в цепи станет еще оче-виднее, если обратиться к закону сохранения энергии. Электростатиче-ское поле потенциально. Работа это-го поля при перемещении заряжен-ных частиц вдоль замкнутой электри-ческой цепи равна нулю. Прохож-дение же тока по проводникам сопровождается выделением энер-гии — проводник нагревается. Сле-довательно, в любой цепи должен быть какой-то источник энергии, по-ставляющий ее в цепь. В нем, по-мимо кулоновских сил, обязательно должны действовать сторонние не- потенциальные силы. Работа этих сил вдоль замкнутого контура долж-на быть отлична от нуля. Именно в процессе совершения работы этими силами заряженные частицы приобретают внутри источника тока энер-гию и отдают ее затем проводникам электрической цепи.

Сторонние силы приводят в дви-жение заряженные частицы внутри всех источников тока: в генераторах на электростанциях, в гальваниче-ских элементах, аккумуляторах и т.д.

При замыкании цепи создается электрическое поле во всех провод-никах цепи. Внутри источника тока заряды движутся под действием сторонних сил против кулоновских сил (электроны от положительно заряженного электрода к отрица-тельному), а во всей остальной цепи их приводит в движение электриче-ское поле (см. рис. 2).

Аналогия между электрическим током и течением жидкости.

Чтобы лучше понять механизм возникнове-ния тока, обратимся к сходству меж-ду электрическим током в провод-нике и течением жидкости по трубам.

На любом участке горизонталь-ной трубы жидкость течет за счет разности давлений на концах участ-ка. Жидкость перемещается в сторо-ну уменьшения давления. Но сила давления в жидкости — это вид сил упругости, которые являются потен-циальными, подобно кулоновским силам. Поэтому работа этих сил на замкнутом пути равна нулю и одни эти силы не способны вызвать длительную циркуляцию жидкости по трубам. Течение жидкости сопро-вождается потерями энергии вслед-ствие действия сил трения. Для цир-куляции воды необходим насос.

Поршень этого насоса действует на частички жидкости и создает по-стоянную разность давлений на вхо-де и выходе насоса (рис. 3). Благодаря этому жидкость течет по трубе. Насос подобен источнику тока, а роль сторонних сил играет сила, действующая на воду со стороны движущегося поршня. Внутри на-соса жидкость течет от участков с меньшим давлением к участкам с большим давлением. Разность дав-лений аналогична напряжению.

Природа сторонних сил.

Природа сторонних сил может быть разнооб-разной. В генераторах электростанций сторонняя сила — это сила, дей-ствующая со стороны магнитного поля на электроны в движущемся проводнике. Об этом кратко гово-рилось в курсе физики VIII класса.

В гальваническом элементе, на-пример элементе Вольта, действуют химические силы. Элемент Вольта состоит из цинкового и медного электродов, помещенных в раствор серной кислоты. Химические силы вызывают растворение цинка в кис-лоте. В раствор переходят положи-тельно заряженные ионы цинка, а сам цинковый электрод при этом заряжается отрицательно. (Медь очень мало растворяется в серной - кислоте.) Между цинковым и мед-ным электродами появляется раз-ность потенциалов, которая обуслов-ливает ток в замкнутой электриче-ской цепи.

Электродвижущая сила.

Дейст-вие сторонних сил характеризуется важной физической величиной, на-зываемой электродвижущей силой (сокращенно ЭДС).

Электродви-жущая сила в замкнутом контуре представляет собой отношение рабо-ты сторонних сил при перемещении заряда вдоль контура к заряду:

Электродвижущую силу выража-ют в вольтах.

Можно говорить об электродви-жущей силе на любом участке цепи. Это удельная работа сторонних сил (работа по перемещению единич-ного заряда) не во всем контуре, а только на данном участке. Электро-движущая сила гальванического эле-мента есть работа сторонних сил при перемещении единичного положи-тельного заряда внутри элемента от одного полюса к другому. Работа сторонних сил не может быть вы-ражена через разность потенциалов, так как сторонние силы не потенциальные и их работа зависит от формы траектории. Так, например, работа сторонних сил при переме-щении заряда между клеммами ис-точника тока вне самого источника равна нулю.

Теперь вы знаете, что такое ЭДС. Если на батарейке написано 1,5 В, то это означает, что сторонние силы (химические в данном случае) совер-шают работу 1,5 Дж при переме-щении заряда в 1 Кл от одного полюса батарейки к другому. Постоянный ток не может существовать в замкнутой цепи, если в ней не действуют сторонние силы, т. е. нет ЭДС

Рис №1 Рис №2 Рис №3

ЗАКОН ОМА ДЛЯ ПОЛНОЙ ЦЕПИ

Электродвижущая сила опреде-ляет силу тока в замкнутой электри-ческой цепи с известным сопротив-лением.

Спомощью закона сохранения энергии найдем зависимость силы тока от ЭДС и сопротивления.

Рассмотрим простейшую полную (замкнутую) цепь, состоящую из источника тока (гальванического элемента, аккумулятора или гене-ратора) и резистора сопротивле-нием R (рис. 1). Источник тока имеет ЭДС εи сопротивление r. Сопротивление источника часто на-зывают внутренним сопротивлением в отличие от внешнего сопротивле-ния R цепи. В генераторе r — это сопротивление обмоток, а в гальва-ническом элементе — сопротивление раствора электролита и электродов.

Закон Ома для замкнутой цепи связывает силу тока в цепи, ЭДС и полное сопротивление R + r цепи. Эта связь может быть установлена теоретически, если использовать за-кон сохранения энергии и закон Джоуля — Ленца.

Пусть за время t через попе-речное сечение проводника пройдет электрический заряд q. Тогда рабо-ту сторонних сил при перемещении заряда?qможно записать так: А ст = ε · q. Согласно определению силы тока q = It. Поэтому

(1)

При совершении этой работы на внутреннем и внешнем участках цепи, сопротивления которых r и R, выделяется некоторое количество теплоты. По закону Джоуля — Лен-ца оно равно:

Q = I 2 R · t + I 2 r · t. (2)

Согласно закону сохранения энергии A = Q. Приравнивая (1) и (2), получим:

ε = IR + Ir (3)

Произведение силы тока и сопро-тивления участка цепи часто назы-вают падением напряжения на этом участке. Таким образом, ЭДС равна сумме падений напряжений на внут-реннем и внешнем участках замкну-той цепи.

Обычно закон Ома для замкну-той цепи записывают в форме

(4)

Присоединим цепь, состоящую из незаряженного конденсатора емкостью С и резистора с сопротивлением R, к источнику питания с постоянным напряжением U (рис. 16-4).

Так как в момент включения конденсатор еще не заряжен, то напряжение на нем Поэтому в цепи в начальный момент времени падение напряжения на сопротивлении R равно U и возникает ток, сила которого

Рис. 16-4. Зарядка конденсатора.

Прохождение тока i сопровождается постепенным накоплением заряда Q на конденсаторе, на нем появляется напряжение и падение напряжения на сопротивлении R уменьшается:

как и следует из второго закона Кирхгофа. Следовательно, сила тока

уменьшается, уменьшается и скорость накопления заряда Q, так как ток в цепи

С течением времени конденсатор продолжает заряжаться, но заряд Q и напряжение на нем растут все медленнее (рис. 16-5), а сила тока в цепи постепенно уменьшается пропорционально разности - напряжений

Рис. 16-5. График изменения тока и напряжения при зарядке конденсатора.

Через достаточно большой интервал времени (теоретически бесконечно большой) напряжение на конденсаторе достигает величины, равной напряжению источника питания, а ток становится равным нулю - процесс зарядки конденсатора заканчивается.

Процесс зарядки конденсатора тем продолжительней, чем больше сопротивление цепи R, ограничивающее силу тока, и чем больше емкость конденсатора С, так как при большой емкости должен накопиться больший заряд. Скорость протекания процесса характеризуют постоянной времени цепи

чем больше , тем медленнее процесс.

Постоянная времени цепи имеет размерность времени, так как

Через интервал времени с момента включения цепи, равный , напряжение на конденсаторе достигает примерно 63% напряжения источника питания, а через интервал процесс зарядки конденсатора можно считать закончившимся.

Напряжение на конденсаторе при зарядке

т. е. оно равно разности постоянного напряжения источника питания и свободного напряжения убывающего с течением времени по закону показательной функции от значения U до нуля (рис. 16-5).

Зарядный ток конденсатора

Ток от начального значения постепенно уменьшается по закону показательной функции (рис. 16-5).

б) Разряд конденсатора

Рассмотрим теперь процесс разряда конденсатора С, который был заряжен от источника питания до напряжения U через резистор с сопротивлением R (рис. 16-6, Где переключатель переводится из положения 1 в положение 2).

Рис. 16-6. Разряд конденсатора на резистор.

Рис. 16-7. График изменения тока и напряжения при разрядке конденсатора.

В начальный момент, в цепи возникнет ток и конденсатор начнет разряжаться, а напряжение на нем уменьшаться. По мере уменьшения напряжения будет уменьшаться и ток в цепи (рис. 16-7). Через интервал времени напряжение на конденсаторе и ток цепи уменьшатся при мерно до 1% начальных значений и процесс разряда конденсатора можно считать закончившимся.

Напряжение на конденсаторе при разряде

т. е. уменьшается по закону показательной функции (рис. 16-7).

Разрядный ток конденсатора

т. е. он, так же как и напряжение, уменьшается по тому же закону (рис. 6-7).

Вся энергия, запасенная при зарядке конденсатора в его электрическом поле, при разряде выделяется в виде тепла в сопротивлении R.

Электрическое поле заряженного конденсатора, отсоединенного от источника питания, не может долго сохраняться неизменным, так как диэлектрик конденсатора и изоляция между его зажимами обладают некоторой проводимостью.

Разряд конденсатора, обусловленный несовершенством диэлектрика и изоляции, называется саморазрядом. Постоянная времени при саморазряде конденсатора не зависит от формы обкладок и расстояния между ними.

Процессы зарядки и разряда конденсатора называются переходными процессами.

Обложка

Учебно-методическое пособие к лабораторной работе № 3.3

по дисциплине «Физика»

Владивосток

Титул

Министерство образования и науки Российской Федерации

Школа естественных наук

ИЗУЧЕНИЕ ПРОЦЕССОВ ЗАРЯДКИ И РАЗРЯДКИ КОНДЕНСАТОРА. ОПРЕДЕЛЕНИЕ ЕМКОСТИ КОНДЕНСАТОРА

Владивосток

Дальневосточный федеральный университет

____________________________________________________________________________________________________________

Оборот титула

УДК 53 (о76.5)

Составитель: О.В.Плотникова

Изучение процессов зарядки и разрядки конденсатора. Определение емкости конденсатора: учебно-методич. пособие к лабораторной работе № 3.3 по дисциплине «Физика» / Дальневосточный федеральный университет, Школа естественных наук [сост. О.В.Плотникова]. – Владивосток: Дальневост. федерал. ун-т, 2013. - с.

Пособие, подготовленное на кафедре общей физики Школы естественных наук ДВФУ, содержит краткий теоретический материал по теме «Электрическая емкость. Конденсаторы» и инструктаж к выполнению лабораторной работы «Изучение процессов зарядки и разрядки конденсатора. Определение емкости конденсатора» по дисциплине «Физика».

Для студентов-бакалавров ДВФУ.

УДК 53 (о76.5)

© ФГАОУ ВПО «ДВФУ», 2013

Цель работы: экспериментальное подтверждение законов, описывающие процессы зарядки и разрядки конденсатора, определение постоянной времени электрической цепи, определение неизвестной емкости конденсатора.

Краткая теория

    Электроёмкость.

Проводники – это вещества, содержащие большое количество свободных заряженных частиц. В металлических проводниках такими частицами являются свободные электроны, в электролитах – положительные и отрицательные ионы, в ионизированных газах – ионы и электроны.

Если рассматривать проводник, рядом с которым нет других проводников, то он называется уединенным. Опыт показывает, что потенциал уединенного проводника прямо пропорционален находящемуся на нем заряду. Отношение заряда, сообщенного проводнику, к его потенциалу называется электроемкостью проводника (или просто емкостью):

Таким образом, емкость определяется величиной заряда, который надо сообщить проводнику, чтобы увеличить его потенциал на единицу.

Емкость зависит от размеров и формы проводника, от диэлектрической проницаемости среды, от наличия рядом других проводников и не зависит ни от заряда, ни от потенциала. Так, для уединенного проводящего шара радиуса R емкость равна:

С = 4πεε 0 R. (т.к. потенциал φ=
).

Здесь ε – диэлектрическая проницаемость среды, ε 0 - электрическая постоянная.

Единица емкости в системе СИ называется Фарадой (Ф). 1Ф = 1.

    Конденсаторы.

Емкостью обладают не только отдельные проводники, но и системы проводников. Система, состоящая из двух проводников, разделенных слоем диэлектрика, называется конденсатором. Проводники в этом случае называются обкладками конденсатора. Заряды на обкладках имеют противоположные знаки, но по модулю – одинаковы. Практически все поле конденсатора сосредоточено между обкладками и.

Емкостью конденсатора называется величина

С= , (1)

где q – абсолютная величина заряда одной из обкладок, U - разность потенциалов (напряжение) между обкладками.

В зависимости от формы обкладок, конденсаторы бывают плоскими, сферическими, цилиндрическими.

Найдем емкость плоского конденсатора, обкладки которого имеют площадь S, расположены на расстоянии d, а пространство между обкладками заполнено диэлектриком с диэлектрической проницаемостью ε.

Если поверхностная плотность заряда на обкладках равна σ (σ= ), то напряженность поля конденсатора (поле считается однородным) равна:

Е= =

Разность потенциалов между обкладками связана с напряженностью поля: Е = , откуда получим U=Ed = =

Используя формулу (1), получим для емкости плоского конденсатора выражение:

С =(2)

    Соединение конденсаторов.

Используются два основных вида соединения: последовательное и параллельное.

При параллельном соединении (рис 1), общая емкость батареи равна сумме емкостей всех конденсаторов:

С общ. = С 1 +С 2 +С 3 +…=ΣС i . (3)

При последовательном соединении (рис.2) величина, обратная общей емкости, равна сумме величин, обратных емкостям всех конденсаторов:

. (4)

Если последовательно соединены n конденсаторов с одинаковой емкостью С, то общая емкость: С общ. =

Рис. 1.Параллельное соединение. Рис. 2.Последовательное соединение

    Энергия конденсатора.

Если процесс зарядки конденсатора является медленным (квазистационарным), то можно считать, что в каждый момент времени потенциал любой из обкладок конденсатора во всех точках одинаков. При увеличении заряда на величину dq совершается работа
, гдеu – мгновенное значение напряжения между обкладками конденсатора. Учитывая, что
, получаем:
. Если емкость не зависит от напряжения, то эта работа идет на увеличение энергии конденсатора. Интегрируя данное выражение, получим:

,

где W – энергия конденсатора, U – напряжение между обкладками заряженного конденсатора.

Используя связь между зарядом, емкостью конденсатора и напряжением, можно представить выражение для энергии заряженного конденсатора в других видах:

. (5)

    Квазистационарные токи. Процессы зарядки и разрядки конденсатора.

При зарядке или разрядке конденсатора в цепи конденсатора течет ток. Если изменения тока происходят очень медленно, то есть за время установления электрического равновесия в цепи изменения токов и э.д.с. малы, то для определения их мгновенных значений можно использовать законы постоянного тока. Такие медленно меняющиеся токи называют квазистационарными.

Так как скорость установления электрического равновесия велика, под понятие квазистационарных токов подпадают и довольно быстрые в обычном понимании процессы: переменный ток, многие электрические колебания, используемые в радиотехнике. Квазистационарными являются и токи зарядки или разрядки конденсатора.

Рассмотрим электрическую цепь, общее сопротивление которой обозначим R. Цепь содержит конденсатор емкостью C, подключенный к источнику питания с э.д.с. ε (рис. 3).

Рис. 3. Процессы зарядки и разрядки конденсатора.

Зарядка конденсатора . Применяя к контуру ε RC1ε второе правило Кирхгофа, получим:
,

где I, U – мгновенные значения силы тока и напряжения на конденсаторе (направление обхода контура указано стрелкой).

Учитывая, что
,
, можно привести уравнение к одной переменной:

.

Введем новую переменную:
. Тогда уравнение запишется:

.

Разделив переменные и проинтегрировав, получим:
.

Для определения постоянной А используем начальные условия:

t=0, U=0, u= - ε. Тогда получим: А= - ε. Возвращаясь к переменной
, получим окончательно для напряжения на конденсаторе выражение:

. (6)

С течением времени напряжение на конденсаторе растет, асимптотически приближаясь к э.д.с. источника (рис.4, I.).

Разрядка конденсатора. Для контура CR2C по второму правилу Кирхгофа: RI=U. Используем также:

, и
(ток течет в обратном направлении).

Приведя к переменной U, получим:

. Интегрируя, получим:
.

Постоянную интегрирования B определим из начальных условий: t=0, U=ε. Тогда получим: В=ε.

Для напряжения на конденсаторе получим окончательно:

. (7)

С течением времени напряжение падает, приближаясь к 0 (рис. 4, II).

Рис. 4. Графики зарядки (I) и разрядки (II) конденсатора.

    Постоянная времени . Характер протекания процессов зарядки и разрядки конденсатора (установление электрического равновесия) зависит от величины:

, (8)

которая имеет размерность времени и называется постоянной времени электрической цепи. Постоянная времени показывает, через какое время после начала разрядки конденсатора напряжение уменьшается в e раз (е=2,71).

Теория метода

Прологарифмируем выражение (7):

(учли, что RC=τ).

График зависимости lnU от t (линейная зависимость) выражается прямой линией (рис.5), пересекающей ось y (lnU) в точке с координатами (0; lnε). Угловой коэффициент К этого графика и будет определять постоянную времени цепи:
,
откуда:

. (9)

Рис. 5. Зависимость натурального логарифма напряжения от времени при разрядке конденсатора

Используя формулы:
и
,
можно получить, что для одного и того же интервала времени
:
.

Отсюда:
.
(10)

Экспериментальная установка

Установка состоит из основного блока – измерительного модуля, имеющего клеммы для подключения дополнительных элементов, источника питания, цифрового мультиметра и набора минимодулей с различными значениями сопротивления и емкости.

Для выполнения работы собирается электрическая цепь в соответствии со схемой, изображенной на верхней панели модуля. В гнезда «R 1 » подключается минимодуль с номиналом 1Мом, в гнезда «R 2 » - минимодуль с номиналом 100Ом. Параметры исследуемого конденсатора, подключаемого в гнезда «С», задаются преподавателем. В гнезда подключения амперметра устанавливается перемычка. В гнезда вольтметра подключается цифровой мультиметр в режиме вольтметра.

Следует отметить, что сопротивления резисторов заряда-разряда (минимодулей) R и цифрового вольтметра R V образуют делитель напряжения, что приводит к тому, что фактически максимальное напряжение на конденсаторе будет равно не ε, а
,

где r 0 - сопротивление источника питания. Соответствующие поправки необходимо будет вносить и при вычислении постоянной времени. Однако, если входное сопротивление вольтметра (10 7 Ом) значительно превышает сопротивление резисторов, и сопротивление источника мало, то данными поправками можно пренебречь.

Порядок выполнения работы

Таблица 1

ε= В, R 1 = Ом, С 1 = Ф

Разрядка

τ 1 ±Δτ 1 (с)

Таблица 2

ε = В, R 1 = Ом, С х =? Ф

Разрядка

τ х ±Δτ х (с)

С х ± Δ С х (Ф)

Таблица 3

ε= В, R 2 = Ом, С 2 = Ф

Разрядка

τ 2 ±Δτ 2 (с)

Обработка результатов измерения

По результатам измерений студенты выполняют одно из следующих заданий (по указанию преподавателя).

Задание 1. Построение кривых разрядки конденсаторов и экспериментальное подтверждение закона, описывающего данный процесс.

    Используя данные, взятые из таблиц 1 и 3, постройте графики зависимости напряжения от времени при разрядке конденсаторов С 1 и С 2 . Проанализируйте их, сравните с теоретическими (рис. 4).

    Постройте графики разрядки конденсаторов С 1 и С 2 в осях (lnU, t). Проанализируйте их, сравните с теоретическими (рис. 5).

    Определите по графикам угловые коэффициенты К 1 и К 2. Среднее значение углового коэффициента находится как отношение, определяющее тангенс угла наклона прямой:

.

    Случайные погрешности графическим методом можно оценить по отклонению опытных точек относительно проведенной прямой. Относительная погрешность углового коэффициента может быть найдена согласно формуле:

,

где δ(lnU) – отклонение (в проекции на ось lnU) от прямой линии наиболее удаленной опытной точки,
- интервал, на котором сделаны измерения.


Задание 2. Определение неизвестной емкости конденсатора.

    Используя данные, взятые из таблиц 1 и 2, постройте графики зависимости напряжения от времени при разрядке конденсаторов С 1 и С х. Проанализируйте их, сравните с теоретическими (рис. 4).

    Постройте графики разрядки конденсаторов С 1 и С х в осях (lnU, t). Сравните их и сделайте вывод о соотношении постоянных времени (см. рис.5).

    Определите по формуле (10) неизвестную емкость, используя графики и данные таблиц 1 и 2.

    Найдите относительные погрешности угловых коэффициентов ε К1 и ε кх (см. п.4 задания 1).

    Определите относительную и абсолютную погрешности емкости:

,
.

    Сравните полученное значение С х со значением, измеренным при помощи цифрового мультиметра в режиме измерения емкости. Сделайте вывод.

Дополнительное задание.

Рассчитайте энергию заряженного конденсатора, используя формулу (5).

Контрольные вопросы

    Что представляет собой конденсатор? Что называется емкостью конденсатора?

    Докажите, что электрическое поле плоского конденсатора сосредоточено между его обкладками.

2. Сколько надо взять конденсаторов емкостью 2мкФ и как их соединить,

чтобы получить общую емкость 5 мкФ?

    Как можно найти энергию заряженного конденсатора?

    Какие токи называются квазистационарными? Почему токи зарядки и разрядки конденсатора можно отнести к квазистационарным?

    По какому закону изменяется напряжение на конденсаторе в процессах а) зарядки и б) разрядки?

    Что показывает постоянная времени цепи? От чего она зависит?

    Зачем в данной работе строится график зависимости lnU от t?

    Как в данной работе определяется постоянная времени электрической цепи?

ЛИТЕРАТУРА

1.Трофимова Т.И. Курс физики. / Т.И. Трофимова. - М.: Высшая школа, 2006-2009 г. г. – 544с.

2 Савельев И.В. Курс физики. В 3-х томах. Том 2. Электричество. Колебания и волны. Волновая оптика. Изд. 3-е, стереотип. / И.В. Савельев - М.: Лань, 2007. - 480 с.

3. Грабовский Р. И. Курс физики / Р.И. Грабовский - СПб: издательство «Лань», 2012. – 608с.

4 Зисман Г. А., Тодес О. М. Курс общей физики. В 3-х томах. Том 2. Электричество и магнетизм / Г.А. Зисман, О.М. Тодес - СПб: «Лань», 2007. - 352c.

Концевой титул

Учебное издание

Составитель:

Плотникова Ольга Васильевна

ИЗУЧЕНИЕ ПРОЦЕССОВ ЗАРЯДКИ И РАЗРЯДКИ КОНДЕНСАТОРА. ОПРЕДЕЛЕНИЕ ЕМКОСТИ КОНДЕНСАТОРА

Учебно-методическое пособие к лабораторной работе № 3.3 по дисциплине «Физика»

Компьютерная верстка

Подписано в печать

Формат 60х84/16. Усл.печ.л. Уч.-изд.л.

Тираж экз. Заказ

Дальневосточный федеральный университет

Отпечатано на кафедре общей физики ШЕН ДВФУ

690091, г. Владивосток, ул. Суханова, 8

Лучшие статьи по теме