Как настроить смартфоны и ПК. Информационный портал

Реостат и методы его включения. Реостаты со скользящим контактом - прицнип работы и схема

1.Принцип активной радиолокации.
2.Импульсная РЛС. Принцип работы.
3.Основные временные соотношения работы импульсной РЛС.
4.Виды ориентации РЛС.
5.Формирование развертки на ИКО РЛС.
6.Принцип функционирования индукционного лага.
7.Виды абсолютных лагов. Гидроакустический доплеровский лаг.
8.Регистратор данных рейса. Описание работы.
9.Назначение и принцип работы АИС.
10.Передаваемая и принимаемая информация АИС.
11.Организация радиосвязи в АИС.
12.Состав судовой аппаратуры АИС.
13.Структурная схема судовой АИС.
14.Принцип действия СНС GPS.
15.Сущность дифференциального режима GPS.
16.Источники ошибок в ГНСС.
17.Структурная схема приемника GPS.
18.Понятие об ECDIS.
19.Классификация ЭНК.
20.Назначение и свойства гироскопа.
21.Принцип работы гирокомпаса.
22.Принцип работы магнитного компаса.

Электронные термометры получили широкое распространение в качестве измерителей температуры. Ознакомиться с контактными и бесконтактными цифровыми термометрами можно на сайте http://mera-tek.ru/termometry/termometry-elektronnye . Этими приборами в основном и обеспечивается измерение температуры на технологических установках благодаря высокой точности измерения и большой скорости регистрации.

В электронных потенциометрах, как показывающих, так и регистрирующих, применяются автоматическая стабилизация тока в цепи потенциометра и непрерывная компенсация термопары.

Соединение токопроводящих жил — часть технологического процесса соединения кабеля. Многопроволочные токопроводящие жилы с площадью сечения от 0,35 до 1,5 мм 2 соединяют пайкой после скрутки отдельных проволок (рис. 1). Если восстанавливают изоляционными трубками 3, то перед скруткой проволок их необходимо надеть на жилу и сдвинуть к срезу оболочки 4.

Рис. 1. Соединение жил скруткой: 1 — жила токопроводящая; 2 — изоляция жилы; 3 — трубка изоляционная; 4 — оболочка кабеля; 5 — луженые проволоки; 6 — паяная поверхность

Однопроволочные жилы соединяют внахлест, скрепляя перед пайкой двумя бандажами из двух-трех витков медной луженой проволоки диаметром 0,3 мм (рис. 2). Также можно использовать специальные клеммы wago 222 415 , которые сегодня стали очень популярны за счет простоты использования и надежности эксплуатации.

При монтаже электрических исполнительных механизмов корпус их необходимо заземлять проводом сечением не менее 4 мм 2 через винт заземления. Место присоединения заземляющего проводника тщательно зачищают, а после присоединения наносят на него слой консистентной смазки ЦИАТИМ-201 для предохранения от коррозии. По окончании монтажа с помощью проверяют значение , которое должно быть не менее 20 МОм, и заземляющего устройства, которое не должно превышать 10 Ом.

Рис. 1. Схема электрических соединений блока датчиков однооборотного электрического механизма. А — блок усилителя БУ-2, Б — блок магнитного датчика, В — электрический исполнительный механизм


Монтаж блока датчиков однооборотных электрических исполнительных механизмов производится по схеме электрических соединений, показанной на рис. 1, проводом сечением не менее 0,75 мм 2 . Перед установкой датчика необходимо проверить его работоспособность по схеме, изображенной на рис. 2.

21.03.2019

Типы газоанализаторов

Используя газ в печах, различных устройствах и установках, необходимо контролировать процесс его сжигания, чтобы обеспечить безопасную эксплуатацию и эффективную работу оборудования. При этом качественный и количественный состав газовой среды определяется с помощью приборов, называемых

Резистором называют элемент электрической цепи в виде законченного изделия, основное назначение которого оказывать сопротивление электрическому току с целью регулирования тока и напряжения. Существуют резисторы с постоянным и переменным сопротивлением. Резистор, значение переменного сопротивления которого изменяется с помощью механического перемещения движка, называется реостатом. Резисторы и реостаты широко применяются в схемах управления электрическими силовыми установками и в электронных устройствах.

Резистивные элементы для силовых цепей изготавливаются из металла (нихрома, константана, чугуна и др.) в виде проволочных или ленточных спиралей, навитых на керамический каркас, или штампованных пластин; в виде угольных столбиков из тонких шайб; используются также жидкостные реостаты.

По назначению мощные резисторы и реостаты делятся на следующие основные группы:

1) нагрузочные – применяются для поглощения части электроэнергии цепи и превращения ее в тепловую энергию, а также для регулирования нагрузки источников электроэнергии при их испытаниях; включаются последовательно в цепь нагрузки;

    пусковые – предназначены для пуска электродвигателей и ограничения их пускового тока; включаются последовательно в силовую цепь двигателя;

    пускорегулирующие – кроме пуска электродвигателей выполняют функцию регулирования частоты вращения; включаются аналогично пусковым;

    регулировочные и установочные – предназначены для регулирования тока в обмотках возбуждения электрических машин, а также для его установки на заданное значение; включаются последовательно в цепь возбуждения;

    добавочные – предназначены для снижения напряжения в электрических установках, последовательно с которыми они включаются, и др.

Для мощных резисторов задается значение сопротивления (обычно при 20°С) и допустимый продолжительный ток, а для реостатов, кроме того, могут быть указаны количество ступеней регулирования, сопротивления и токи ступеней и другие данные.

Резистивные элементы для электронных устройств изготавливаются из металла, углеродистых и полупроводниковых материалов в виде спиралей, лент, пластин или пленок на диэлектрическом основании. Для защиты от внешних воздействий и для изоляции между витками резисторы покрывают стеклоэмалью. Маломощные резисторы характеризуются значением сопротивления (от 1 Ом до 10 Том; один тераом равен 10 12 Ом) и рассеиваемой мощностью (от 0,01 до 150 Вт).

Ток, сопротивление, напряжение и мощность резисторов взаимосвязаны соотношениями согласно законам Ома и Джоуля-Ленца.

На электрических схемах резисторы изображаются прямоугольником с размерами 10 х 4 мм и обозначаются буквой R согласно ГОСТ 2.728-74 и ГОСТ 2.710-81 (рис.1.2).

Рис.1.2. Условные графические изображения и буквенное обозначение резисторов: а - постоянный резистор; б - общее обозначение переменного резистора; в и г - варианты включения переменного резистора

В электромеханике и автоматике также используются маломощные полупроводниковые резисторы в качестве датчиков при измерении неэлектрических величин, например: фоторезисторы (их сопротивление зависит от освещённости), магниторезисторы (сопротивление зависит от напряжённости магнитного поля), терморезисторы (термисторы - их сопротивление уменьшается с повышением температуры и позисторы – с положительным температурным коэффициентом).

В данной работе студенты могут ознакомиться с мощными и маломощными резисторами и реостатами.

Реостат - это металлический проводник с регулируемой величиной сопротивления. Реостат со скользящим контактом представляет собой цилиндр из изолирующего материала, на который намотана металлическая проволока. Концы ее присоединены к двум клеммам. Третья клемма реостата присоединена к скользящему контакту. Реостат в цепи может быть использован как регулятор тока, т.е. для изменения тока (рис.4.6),

когда провода цепи присоединяют к клемме, связанной со скользящим

контактом, и к одной клемме, связанной с обмоткой. Реостат с подвижным контактом может работать в режиме потенциометра (делителя напряжения). Это включение показано на рис.4.7.

указать плюс и минус!

При этом используются все три клеммы. Напряжение питания U подается к концам обмотки всего реостата. Далее снимается и подается потребителю напряжение U 1 , которое составляет лишь часть величины U, приблизительно пропорциональную сопротивлению реостата между точками в и с, т.е.

;
(4.7)

Изменяя положение движка С, можно менять снимаемое напряжение U 1 , приближаясь либо к U (точка С совпадает с а), либо к нулю (точка с совпадает с в).

Характеристики сопротивлений

Для каждого резистора должны быть известны его электрические параметры, определяющие рациональные условия его эксплуатации. Таковыми являются: значение электрического сопротивления R и предельно допустимая величина тока. При превышении тока выделяющаяся в резисторе энергия может привести к его перегреву в каком-либо участке, расплавлению, а следовательно разрыву цепи.

Для реостатов с подвижным контактом указывают величину сопротивления всей обмотки и предельный ток.

Для радиотехнических резисторов указывают величину сопротивления и максимальную рассеиваемую мощность.

Характеристики источников тока

Каждый источник тока имеет следующие характеристики, определяющие условия его рационального использования: электродвижущая сила, или ЭДС и внутреннее сопротивление r.

Электродвижущая сила источника тока - это величина, измеряемая отношением работы, затрачиваемой сторонними силами на перемещение заряда по замкнутой цепи, к величине этого заряда, т.е.:

(4.8)

ЭДС измеряется в вольтах (В).

Внутреннее сопротивление источника r определяет проводящие свойства той среды, которая имеется внутри источника.

Закон Ома для замкнутой цепи.

Замкнутая цепь содержит: источник тока, сопротивления (потребители тока), прибора, контролирующие характеристики тока, провода, ключ. Примером может служить цепь, приведенная на рис.4.5. По отношению к источнику тока можно выделит внешнюю цепь, содержащую элементы, находящиеся вне данного источника, если проследить за током от одной его клеммы до другой, и внутреннюю, к которой относят проводящую среду внутри источника обозначим сопротивление внешней цепи через R, внутреннее сопротивление источника г. Тогда ток в цепи определяется по закону Ома для замкнутой цепи, который гласит, что ток в замкнутой цепи прямо пропорционален величине ЭДС - обратно пропорционален сумме внутреннего и внешнего сопротивления цепи, т.е.

(4.9)

Из этого закона вытекают следующие частные случаи:

1) Если R стремится к нулю (т.е. R << r), то ток i стремится к максимально возможному значению
, называемому током короткого замыкания. Этот ток опасен для источников, поскольку вызывает перегрев источника и необратимые изменения проводящей среды внутри него.

2) Если R стремится к бесконечно большой величине (т.е. при условии, что R >> r) ток i уменьшается и падение напряжения внутри источника ir становится

намного меньше iR , следовательно
. Значит, величину ЭДС источника можно практически измерить с помощью вольтметра, присоединенного к клеммам источника при условии, что сопротивление вольтметра R v >> r при разомкнутой внешней цепи.

Правила Кирхгофа для разветвленных цепей

Разветвленной считают цепь, в которой можно выделить два или более узла. Узлом называется точка, в которой сходятся более чем два проводника (рис. 4.8, точки 3; 6). К таким цепям применимы правила Кирхгофа, позволяющие провести полный расчет цепи, т.е. определить токи в каждом проводнике.

иправить r3

Первое правило Кирхгофа гласит: алгебраическая сумма токов, сходящихся в узле, равна нулю, т.е.
.

При этом токи, текущие к узлу, берутся со знаком плюс, а токи, текущие от узла - со знаком минус, или наоборот.

Второе правило Кирхгофа гласит: в любом замкнутом контуре, ПРОИЗВОЛЬНО выбранном в разветвленной цепи проводников, алгебраическая сумма произведений сил токов на сопротивления соответствующих участков цепи равна алгебраической сумме ЭДС в этом

контуре, т.е.

Для составления уравнений по второму правилу Кирхгофа необходимо иметь в виду следующие правила:

1. Произвольно выбирается направление обхода контура (по часовой стрелке или против).

2. Произвольно выбираются и обозначаются направления токов во всех участках цепи, причем в пределах одного участка (т.е. между соседними узлами) ток сохраняется как по величине, так и по направлению.

3. Если выбранное направление обхода контура совпадает с направлением тока, то произведение тока на сопротивление i k R k берется со знаком "плюс", и наоборот.

4. Перед ЭДС  k ставится знак "плюс", если при обходе контура идем внутри источника от отрицательного полюса к положительному, т.е. если на пути обхода контура потенциал возрастает.

Покажем применение правил Кирхгофа на примере цепи, приведенной на рис.4.8. Направление токов показано на чертеже. На основе 1-го правила Кирхгофа для узла 3 имеем:
. На основе 2-го правила Кирхгофа для контура 12361 можно записать: , а для контура 34563 можно записать:. Если известны сопротивления участков цепиr x R x и включенные в них ЭДС  k , то приведенная система 3-х уравнений позволяет рассчитать токи, текущие в отдельных проводниках.

Правила Кирхгофа применимы не только для цепей постоянного тока. Они справедливы и для мгновенных значений тока и напряжения цепей, в проводниках, которых электрическое поле изменяется сравнительно медленно. Электромагнитное поле распространяется по цепи со скоростью, равной скорости света с. Если длина цепи l , то до самой отдаленной точки цепи ток дойдет за время t = l/c. Если за это время ток изменяется незначительно, то мгновенные значения тока практически по всей цепи будут одинаковыми и могут, следовательно, описываться законами, справедливыми для постоянных токов. Токи, удовлетворяющие такому условию называются квазистационарными (как бы постоянными). Для изменяющихся токов условие квазистационарности имеет вид:

; t << T (4.10)

где Т - период изменения тока. Это условие выполняется при зарядке и разрядке конденсатора и для переменных токов промышленной частоты. Поэтому к ним применимы правила Кирхгофа.

Анализ распределения энергии при работе источника постоянного тока

Пусть источник постоянного тока имеет ЭДС  и внутреннее сопротивление r и замкнут на сопротивление внешней нагрузки R .

Проанализируем несколько величин, характеризующих распределение энергии при работе источника постоянного тока.

а) Затраченная источником мощность Р.

Работа, совершаемая сторонними силами в замкнутой цепи по перемещению заряда dq , равна:

(4.11)

Исходя из определения, мощность, развиваемая сторонними силами в источнике, равна:

(4.12)

Эта мощность расходуется источником во внешней и внутренней по отношению к источнику частях цепи.

Используя закон Ома для замкнутой цепи, можно затраченную мощность представить в виде:

(4.13)

Если сопротивление нагрузки R уменьшается, стремясь к нулю, то
. ЕслиR увеличивается, стремясь в бесконечность, то
. График зависимости затраченной сторонними силами мощности Р от величины внешнего сопротивления R показан на рис.4.9 кривой 1.

б) Полезная мощность P пол.

Полезной по отношению к источнику мощностью P пол считают мощность, расходуемую источником во внешней цепи, т.е. на внешней нагрузке. Она равна:

Пользуясь законом Ома для замкнутой цепи, Рпол можно представить в виде.

(4.15)

Если R уменьшается, стремясь к нулю, то Р пол тоже стремится к нулю. Если R увеличивается, стремясь в бесконечность, то знаменатель увеличивается быстрее числителя в (4.15). Поэтому при R
, стремится к нулю. В этом случае между крайними значениями Р пол возможно существование максимального значения. Для нахождения P пол, max найдем первую производную по R выражения Р пол и приравняем ее нулю:

(4.16)

Таким образом, при сопротивлении внешней цепи R, равном сопротивлению внутренней цепи r, полезная мощность источника тока имеет максимальное значения, которое может быть найдено по формуле:

График зависимости P пол = f (R ) показан на рис.4.9 кривой 2.

в) Величина коэффициента полезного действия цепи  источника тока согласно определения равна:

(4.17)

При R 0, величина 0, при R
, величина 100%. В последнем случае P пол стремится к нулю, и такие режимы работы источника не представляют практического интереса. График зависимости КПД  источника тока от величины нагрузки R показан на рис.4.9 кривой 3.

перерис.

РАБОТА №60

ИЗМЕРЕНИЕ СОПРОТИВЛЕНИЙ С ПОМОЩЬЮ МОСТА ПОСТОЯННОГО ТОКА

Цель работы: ознакомиться с принципом работы мостовой схемы; произвести измерение нескольких резисторов; проверить законы параллельного и последовательного соединения резисторов.

Приборы и принадлежности: источник постоянного тока, магазин сопротивлений, нуль-гальванометр, набор измеряемых сопротивлений, ключ, провода, реохорд.

Простейший мост постоянного тока содержит элементы, представленные на рис.60.1, где R x - измеряемое сопротивление; R 1 и R 2 - два плеча реохорда.


перерис всё!

Реохорд представляет собой металлическую проволоку, намотанную на непроводящий каркас, по которой может перемещаться скользящий контакт. Обозначим сопротивление части реохорда от одного его конца до скользящего контакта через, R 1 (R АД =R 1). Тогда сопротивление оставшейся части реохорда будет R 2 (R ДБ =R 2). При перемещении подвижного контакта Д реохорда изменяется величина и направление тока в нуль - гальванометре Г.

Выведем формулу для определения R x . Обозначим ток, текущий по R x через i x по R 0 через i 0 , ток через гальванометр Г - через i Г токи через R 1 и R 2 - через i 1 и i 2 . Их направления могут быть выбраны произвольно, например так как указано на рис.60.1.

На основании 1-го закона Кирхгофа для узлов С и Д имеем:

(C)

(Д)
(60.1)

На основании 2-го закона Кирхгофа для контуров АСДА и ДСВД имеем:

Изменяя положение движка Д реохорда, можно добиться, что г"г станет равна нулю. Тогда уравнения (60.1) можно записать в виде:
;
. Откуда i x =i 0 i 2 =i 4 . Это состояние места называется уравновешенным. При равновесии моста постоянного тока формулы (60.2) имеют вид:

(60.3)

Перенеся в (60.3) отрицательные слагаемые вправо и почленно разделив, имеем:

(60.4)

Учтем, что R 1 и R 2 выполнены из однородной проволоки, удельное сопротивление которой , поперечное сечение по всей длине одинаково равно s. Длины частей реохорда R 1 и R 1 соответственно равны l 1 и l 2 . Тогда вместо (60.4) имеем:

;
(60.5)

Таким образом, добившись равновесия моста постоянного тока, замечают величину сопротивления R 0 и измеряют длины l 1 и l 2 реохорда, затем рассчитывают R x по формуле (60.5).

Описание установки

Мост постоянного тока собран согласно схеме рис.60.1 и укреплен на вертикальной панели у рабочего стола. Питание схемы осуществляется от общего выпрямителя и подается от щитка к рабочей панели. Сопротивление R o представляет собой магазин сопротивлений. Сопротивление R x выполнено в виде набора нескольких сопротивлений неизвестной величины, которые проводами могут присоединяться к схеме как по отдельности, так и соединные либо параллельно, либо последовательно. Реохорд АДБ прикреплен к рабочей панели с внутренней стороны. На наружной стороне панели показан указатель положения движка реохорда, способный перемещаться по шкале с равномерно нанесенными крупными и мелкими делениями, так что длина частей реохорда пропорционально числу делений от начала шкалы до движка и числу делений от движка до конца шкалы.

Порядок выполнения работы

1.Ознакомившись с деталями схемы и шкалами приборов (нуль-гальванометр, реохорд, магазин сопротивлений), подключают с помощью проводов одно из неизвестных сопротивлений R x 1 из набора к схеме моста.

2. На электрощите включают питание рабочей панели. Устанавливают движок реохорда посередине, т.е. количество делений шкалы реохорда, соответствующее длинам l 1 и l 2 , должно быть одинаковым (равноплечный реохорд). В магазине сопротивлений R o устанавливаем какое-либо сопротивление (200-300 Ом). Кратковременно замыкают ключ К, следя за показанием нуль-гальванометра. Изменяя сопротивление r 0 магазина, следят за отклонением стрелки нуль-гальванометра и добиваются, чтобы его стрелка установилась на нуле. Затем записывают в таблицу величину R o в омах и количество делений, соответствующее длинам плеч l 1 и l 2 реохорда.

3. Изменяют положение движка Д реохорда в ту или иную сторону на один-два крупных деления. Следует избегать сильно различающихся длин l 1 и l 2 например l 1 =0.9l 2 , т.к. это может привести к потери точности измерения R x . Необходимо помнить, что положение движка должно соответствовать целому числу крупных делений, характеризующих l 1 и l 2 . Измерения R x при неравноплечном реохорде выполняют два раза, устанавливая разные длины l 1 и l 2 , один раз l 1 > l 2 , второй раз l 1 < l 2 . Результаты заносят в таблицу.

4.Вместо первого сопротивления R x 1 включают другое R x 2 , из набора сопротивлений. С ним проводят измерения, аналогично описанным в п.2 и п.3., и результаты заносят в таблицу.

5.Соединяют сопротивления R x 1 и R x 2 последовательно, а затем параллельно и трижды определяют их общее сопротивление при каждом соединении так, как описано в п.2, п.3 и п.4.

6. Проводят оценку погрешностей измерения сопротивлений (относительная и абсолютная).

7. Используя средние значения R x 1 и R x 2 из таблицы, рассчитывают общее сопротивление при последовательном соединении R посл и при параллельном R пар. Проводят анализ полученных результатов.

Измеряем

сопротивл

l 1 ,

l 2 ,

,

R=R x ср  R x ср,

сопротивл

сопротивл

Сопротивления R x 1

соединенные

последовательно

Сопротивления R x 1

И R x 1 соединенные параллельно

Вопросы для допуска к работе

1. Какие элементы содержит простейший мост постоянного тока для измерения сопротивления? Перечислите и укажите их на рабочей панели.

2. Что означает "уравновешенный" мост?

3. Какими способами можно добиться равновесия моста?

4. Сколько раз необходимо измерять каждое из неизвестных сопротивлений?

5. Какие соединения двух сопротивлений исследуются в данной работе?

6. Где надо установить движок реохорда, чтобы мост был разноплечным? Какие длины плеч l 1 и l 2 целесообразно еще использовать?

Вопросы для сдачи работы.

1. Нарисуйте схему простейшего моста постоянного тока. Охарактеризуйте назначение элементов схемы.

2. Выведите и объясните расчетную формулу для определения неизвестного сопротивления R x .

3. Законы Кирхгофа для разветвленных цепей.

4. От чего зависит сопротивление металлического проводника. Что показывает удельное сопротивление и от чего оно зависит?

5. Законы параллельного и последовательного сопротивления проводников.

6. Объяснение порядка выполнения работы.

7. Обсуждение полученных результатов.

Литература:

Стр.99-100, 103-105; - стр.157-159.

РАБОТА №63

ОПРЕДЕЛЕНИЕ ПОЛЕЗНОЙ МОЩНОСТИ И КПД ИСТОЧНИКА ПОСТОЯННОГО ТОКА.

Цель работы: опытным путем изучить зависимость полезной мощности и КПД источника постоянного тока от величины сопротивления внешней цепи (сопротивления нагрузки).

Приборы и принадлежности: источник постоянного тока, миллиамперметр, вольтметр, два магазина сопротивлений, два ключа, провода.

Описание установки

Схема для реализации поставленной выше цели представлена на рис.63.1. Источником служит выпрямитель ИПТ.

Последовательно с выпрямителем соединяется декадный магазин сопротивлений R o , который можно рассматривать как добавочное внутреннее сопротивление источника, так как собственное сопротивление выпрямителя не велико (8 Ом). Второй декадный магазин сопротивлений R является внешним сопротивлением по отношению к источнику тока, т.е. сопротивлением нагрузки источника. Миллиамперметр mА позволяет измерить ток во внешней цепи при разных значениях R. Вольтметр V измеряет напряжение на внешней цепи источника. Ключ К 1 позволяет определить с помощью вольтметра величину ЭДС источника при разомкнутой внешней цепи, т.е. при разомкнутом ключе К 2 .

Величина R o задается преподавателем и при выполнении работы не изменяется. Величина R внешнего сопротивления может изменять произвольно, но необходимо использовать несколько значений R , меньших R o , обязательно - величину R, равную R o и несколько значений R, больших R o . Интервал между значениями R (при R > R o ) должен быть порядка 100-150 Ом.

Порядок выполнения

1.Собирают схему согласно рисунку 63.1 (или проверяют ее если собрана). Знакомятся со шкалами измерительньк приборов (декадные магазины сопротивлений, вольтметр, миллиамперметр). Определяют цены делений используемых приборов.

2. Включают выпрямитель в сеть с напряжением 220 В и тумблер на панели выпрямителя. В магазине R o устанавливают сопротивление порядка 100-150 Ом, замыкают ключ К 1 (ключ К 2 при этом разомкнут) и с помощью вольтметра определяют величину ЭДС выпрямителя, записываю ее в таблицу.

3.Замыкают оба ключа K 1 и К 2 . Изменяя внешнее сопротивление R , снимают показания вольтметра и миллиамперметра и заносят их в таблицу. Величина R изменяется 10 раз, из них по крайней мере 3 значения должны быть меньше R 0 .

4. Рассчитывают значения полезной мощности Р пол и коэффициента полезного действия по формулам

,
(63.1)

Строят графики зависимости  и P пол от величины внешней нагрузки R, т.е. =f(R); используют миллиметровую бумагу.

5. Проводят анализ полученных результатов. Рассчитывают максимальное значение полезной мощности при данном R o по формуле P пол, max = E 2 /4 R 0

Вопросы для допуска к работе

1. Какие элементы должна содержать схема для выполнения работы?

2. Для чего служит декадный магазин сопротивления R 0 ? Изменяется ли его сопротивление при выполнении работы? Каким оно должно быть?

3. Назовите цены делений используемых вольтметра и амперметра.

4. Как определить величину ЭДС источника для данной схемы?

5. Объясните порядок выполнения работы.

Вопросы для сдачи работы

1. Какую величину называют полезной мощностью по отношению к источнику? Как ее можно определить?

2. Вывести условие, при котором полезная мощность источника принимает максимальное значение?

3. Нарисовать и пояснить график зависимости полезной мощности от величины сопротивления внешней цепи.

4. Какая величина называется коэффициентом полезного действия источника тока?

5. Какова зависимость КПД источника тока от величины внешней нагрузки? При каком условии КПД источника становится максимальным?

6. Нарисуйте схему по которой выполняется работа. Объясните назначение элементов схемы.

7. Каково должно быть сопротивление внешней цепи, чтобы КПД стал равен 75%? Внутреннее сопротивление источника считать известным и равным 12 Ом.

8. Каково максимальное значение полезной мощности источника тока? От чего оно зависит?

9. Анализ полученных результатов и оценка погрешностей определения КПД и полезной мощности источника.

Литература: - стр.163-165.

РАБОТА №64

ОПРЕДЕЛЕНИЕ ЭДС ИСТОЧНИКА ТОКА МЕТОДОМ КОМПЕНСАЦИИ

Цель работы: изучить компенсационный метод измерения ЭДС;

проверить законы параллельного и последовательного источников с одинаковым значением ЭДС.

Приборы и принадлежности: источник постоянного тока, нормальный элемент Вестона, нуль-гальванометр, сухие элементы - 2 шт., 2 ключа, реохорд, провода.

Обоснование метода измерений.

Метод компенсации применяется для определения ЭДС источников или разностей потенциалов, небольших по величине. Сущность этого метода можно понять, анализируя работу схемы, приведенной на рис.64.1.

Источник с ЭДС E 0 питает током реохорд АВ. Источник с ЭДС Е 1 присоединен к части реохорда между точками А и М. Необходимо, чтобы источники тока были соединены к точке А приведенной схемы одноименными полюсами, т.е. навстречу друг другу. Величина Е 0 должна быть больше Е 1 , а внутреннее сопротивление источников тока должно быть гораздо меньше сопротивления реохорда АВ. Обозначим сопротивление части реохорда от конца А до движка М через R AM . Тогда сопротивление оставшейся части будет R MB . Сопротивление всего реохорда, т.е. R AB =R AM +R MB остается неизменным при любом положении движка М. Ток, текущий от В до М, обозначим через i ток, текущий от М до А, - через I , ток, даваемый источником Е 1 - через i 1 .

Установим условия, при которых ток в гальванометре Г станет равным нулю.

Согласно 1-ому закону Кирхгофа для узла А имеем: i ’= i ’’+ i ,

Cогласно 2-му закону Кирхгофа для контуров АСДВА и АFКМА:

где r 0 и r 1 - внутренние сопротивления источников Е 0 и Е 1 cоответственно; R Г -сопротивление нуль-гальванометра.

Перемещая подвижной контакт М, можно добиться, что ток в гальванометре i 1 cтанет равным нулю. Тогда i = i , а равенства (64.1) примут вид:

(64.2)

Отсутствие тока в цепи гальванометра означает, что ЭДС источника тока равна разности потенциалов между токами А и М реохорда. В этом случае можно также сказать, что ЭДС уравновешена падением потенциала (отсюда название метода).

Разделив в (64.2) одно равенство на другое, получим:

;
(64.3)

Если вместо 1 включить другой источник тока с 2 то для того, чтобы ток в цепи гальванометра стал равен нулю, необходимо движок М передвинуть в другое положение М". Тогда аналогично (64.2) и (64.3) получим:

(64.4)

(64.5)

Поделив левые и правые части равенств (64.3) и (64.5), получим:

(64.6)

Таким образом, если добиться компенсации с начала для известной ЭДС 1 , а затем для неизвестной для ЭДС 2 и определить величину отношения R AM / R AM ? то можно найти величину неизвестной 2 по формуле (64.6).

Отметим, что отношение сравниваемых ЭДС источников не зависит от их внутренних сопротивлений, и от других сопротивлений схемы, а определяется только сопротивлениями участка реохорда, к которому подключаются сравниваемые источники с 1 и 2 .

Т.к. для реохорда берется калиброванная проволока, сопротивление которой R=l/s, то отношение участков сопротивлений R AM и R AM ’ можно заменить отношением длин l AM и l AM этих участков. В этом случае расчетная формула для определения неизвестной ЭДС примет вид:

(64.7)

Описание установки.

Схема для определения ЭДС источника методом компенсации представлена на рис.64.2.

Согласно этой схеме собрана установка, укрепленная на вертикальной панели у рабочего стола. Питание схемы осуществляется от его выпрямителя и подается от щитка (12В) к рабочей панели. Реохордом АВ является ползунковый реостат, к движку М которого присоединен нуль-гальванометр Г. Для включения ЭДС питания 0 и нуль-гальванометра служит ключ К 1 . Перекидной ключ K 2 позволяет включать в цепь нуль-гальванометра либо источник с эталонной ЭДС 1 , либо источник, величину ЭДС 2 которого надо определить. Эталонным источником является нормальный элемент Вестона. Вместо 2 можно включить батарею, состоящую из двух сухих элементов, соединенных проводами сначала последовательно, затем параллельно.

Порядок выполнения работы

1. Ознакомившись с деталями схемы и шкалами приборов (нуль-гальванометр, реохорд), замыкают ключ К 2 на эталонный элемент 1 . Затем замыкают ключ К 1 и передвигают движок М реохорда, добиваясь полного отсутствия тока в цепи гальванометра. Ток в цепи следует замыкать на очень короткое время, достаточное для наблюдения за показаниями нуль-гальванометра.

2. Измеряют длину l AM плеча AM реохорда (до середины ползунка М). Измерения длины плеча AM производят три раза и вычисляют его среднее значение.

3. Перебрасывают рубильник K на исследуемый элемент 2 и определяют длину l AM плеча AM" реохорда, при которой наступает компенсация неизвестной ЭДС 2 .

4. Подключают вместо 2 с помощью проводов другой исследуемый источник 3 и определяют его ЭДС аналогично п.3. Результаты заносят в таблицу.

5. Соединяют источники 2 и 3 последовательно, затем параллельно и определяют общую ЭДС полученной батареи источников аналогично п.3 и п.4. Результаты заносят в таблицу.

6. Проводят оценку погрешностей (абсолютная и относительная) при измерении ЭДС методом компенсации. Проводят анализ полученных результатов.

Вопросы для допуска к работе.

1. Какие элементы содержит схема для определения ЭДС источника постоянного тока методом компенсации? Перечислите и укажите их на рабочей панели.

2. Почему метод измерения называется "метод компенсации"? Что чем компенсируется?

3. Как узнать, достигнута ли компенсация? Как можно добиться состояния компенсации?

4. Какие величины необходимо практически измерить для последующего расчета ЭДС?

5. Какие соединения двух неизвестных источников тока используются в этой работе?

Вопросы для сдачи работы.

1. Какая величина называется электродвижущей силой (ЭДС) источника тока? В каких единицах она измеряется?

2. К каким характеристикам источника целесообразно отнести ЭДС: силовым или энергетическим?

3. В чем состоит сущность метода компенсации?

4. Какие ограничения накладываются на характеристики используемых источников тока?

5. Выведите и объясните расчетную формулу для определения ЭДС методом компенсации.

6. Законы при последовательном и параллельном соединении источников тока.

7. Законы Кирхгофа для разветвленных цепей.

8. Объясните порядок выполнения работы.

9. Обсуждение полученных результатов.

Литература:

Стр.202-203; 205-207.

РАБОТА №65

ГРАДУИРОВАНИЕ ВОЛЬТМЕТРА

Цель работы: ознакомление с работой прибора магнитоэлектрической системы и принципами градуирования вольтметра.

Приборы и принадлежности: источник постоянного тока, рабочий вольтметр, испытуемый вольтметр, ключ, два магазина сопротивлений, провода.

Обоснование метода измерений.

Проградуировать прибор - это установить соотношение между делениями шкалы прибора и значения величин, отсчитываемыми по той шкале.

Градуировка вольтметра означает определение соотношения между числом делений по шкале, на которое отклонилась стрелка вольтметра, и напряжением на его клеммах.

Градуировку вольтметра проводят, пользуясь схемой, показанной на рис.65.1.

Реостатом называют электрическое устройство используемое для ограничения и регулировки тока или напряжения в электрической схеме.

По своему внутреннему устройству реостаты делятся на проволочные и не проволочные. Основной частью любого проволочного реостата является керамическая трубка, на которую намотана особая высокоомная проволока. На направляющем металлическом стержне закреплен ползунок, свободно передвигающийся вдоль проволоки, намотанной на керамие.

Итак, любой реостат состоит из нескольких основных частей:


Керамического цилиндра
Металлическая проволока - которая наматывется на трубку из керамики, концы проволоки выведены на контакты (зажимы), расположенные на противоположных концах трубки с обоих сторон;
Металлическая штанга - установлена чуть выше трубки, на одной стороне которой имеется контактная клемма;
Движущийся контакт - закреплен на штанге, который иногда называют ползун.

Реостат подсоединен в цепь через две зажимные клеммы: нижнюю непосредственно с обмотки и верхнюю клемму с движущегося контакта. При подключении реостата в электрическую цепь, ток от нижней клеммы течет по виткам из металлической проволоки, а затем проходит через скользящий контакт, затем по металлическому стержню и на верхний контакт.

Т.е, в схеме будет задействована только часть реостатной обмотки. В тот момент, когда ползунок двигается, изменяется сопротивление обмотки, т.к меняется ее длина, а соответственно сопротивление и сила тока в электрической цепи.

Необходимо отметить, что ток следует по каждому витку обмотки, а не поперек них. Это происходит потому, что витки обмотки изолированы друг от друга.

Так на рисунке А – движущийся контакт находится посередине. Поэтому ток будет протекать только через половину устройства. На позиции Б - токовый проводник используется полностью поетому, его длина максимальная, как и сопротивление, а в соответствии с сила тока снижается. На третьем рисунке все наоборот: снижается сопротивление, растут амперы.

На электрических схемах реостат обозначен следующим образом:


Реостат в схему включается всегда последовательно. При этом один из контактов подсоединен к ползуну, с помощью которого и регулируется количество ампер в цепи. Но необходимо добавить, что этот прибор можно применять и для регулировки напряжения. Здесь может быть применено несколько схем с одним или двумя сопротивлениями. Понятно, что чем меньше элементов в электрической цепочке, тем проще она.

Обычно этот электронный компонент включается в электрическую схему для регулирования величины тока, пример подключения показан на рисунке ниже.


При перемещении движка изменяется длина токопроводящего слоя, а следовательно, и величина сопротивления реостата, включаемого последовательно в схему, что в вызывает некоторое изменение величины силы тока в цепи и перераспределение напряжения между реостатом и нагрузкой.

Когда движок перемещается к контакту, величина сопротивления реостата сильно снижается,а ток в в цепи наоборот возрастает, тогда меньшая часть напряжения будет гасится на приборе и сильнее возрастет напряжение на подключенной к нагрузке.

Если движок перемещать к противоположному контакту, сопротивление реостата возрастает, а ток в цепи снижается, падение напряжение на реостате будет увеличиваться, а на нагрузке снижаться.

Расчет представленной выше схемы, аналогичен расчету гасящего сопротивления. Величина сопротивления реостата вычисляется по формуле:

R реост =U реост /I

Падение напряжения находится по формуле ниже:

U реост =U ист -U потр

У реостата имеется всего два вывода, а у его родственника , целых три. Поэтому больше не путайте их между собой.

На уроке рассматривается прибор под названием реостат, сопротивление которого можно изменять. Подробно рассматривается устройство реостата и принцип его работы. Показывается обозначение реостата на схемах, возможные варианты включения реостата в электрическую цепь. Приводятся примеры применения реостата в повседневной жизни.

Тема: Электромагнитные явления

Урок: Реостаты

На предыдущих уроках мы говорили, что существуют не только потребители и источники электрического тока, но еще и так называемые элементы управления. Одним из важных элементов управления является реостат или любой другой прибор, основанный на его действии. В реостате используется проводник из заранее известного материала с определенной длиной и сечением, а значит, мы можем узнать его сопротивление. Принцип работы реостата основан на том, что мы можем изменять это сопротивление, следовательно, можем регулировать силу тока и напряжение в электрических цепях.

Рис. 1. Устройство реостата

На рисунке 1 представлен реостат без оболочки. Это сделано для того, чтобы можно было посмотреть все его части. На керамическую трубу (1) намотан провод (2). Его концы выведены к двум контактам (3а). Также имеется штанга, в конце которой расположен контакт (3б). По этой штанге движется скользящий контакт (4), так называемый «ползун».

Если расположить скользящий контакт посередине (рис. 2а), то будет задействована только половина проводника. Если передвинуть этот скользящий контакт дальше (рис. 2б), то будет задействовано больше витков провода, следовательно, его длина возрастет, сопротивление увеличится, а сила тока уменьшится. Если же передвинуть «ползун» в другую сторону (рис. 2в), то, наоборот, сопротивление уменьшится, и сила тока в цепи возрастет.

Рис. 2. Реостат

Внутри реостат полый. Это необходимо, поскольку при протекании тока реостат нагревается, а эта полость обеспечивает быстрое охлаждение.

Когда мы изображаем схему (рисунок электрической цепи), то каждый элемент обозначается определенным символом. Реостат обозначается следующим образом (рис. 3):

Рис. 3. Изображение реостата

Красный прямоугольник соответствует сопротивлению, синий контакт - подводящий к реостату провод, зеленый - скользящий контакт. При таком обозначении легко понять, что при движении ползунка влево сопротивление реостата уменьшится, а при движении вправо - увеличится. Также может использоваться следующее изображение реостата (рис. 4):

Рис. 4. Еще одно изображение реостата

Прямоугольник обозначает сопротивление, а стрелка - то, что его можно изменять.

В электрическую цепь реостат включается последовательно. Ниже приведена одна из схем включения (рис. 5):

Рис. 5. Включение реостата в цепь с лампой накаливания

Зажимы 1 и 2 подключаются к источнику тока (это может быть гальванический элемент или подключение к розетке). Стоит обратить внимание, что второй контакт должен быть подключен к движущейся части реостата, которая позволяет менять сопротивление. Если увеличивать сопротивление реостата, то накал лампочки (3) будет уменьшаться, а значит, ток в цепи тоже уменьшается. И, наоборот, при уменьшении сопротивления реостата лампочка будет гореть ярче. Этот метод часто используется в выключателях для регулировки интенсивности освещения.

Реостат также можно использовать для регулировки напряжения. Ниже представлены две схемы (рис. 6):

Рис. 6. Включение резистора в цепь с вольтметром

В случае использования двух сопротивлений (рис. 6а) мы снимаем определенное напряжение со второго резистора (устройство, которое основано на сопротивлении проводника), и таким образом, как бы регулируем напряжение. При этом надо точно знать все параметры проводника для правильной регулировки напряжения. В случае с реостатом (рис. 6б) ситуация заметно упрощается, поскольку мы можем непрерывно регулировать его сопротивление, а значит, и изменять снимаемое напряжение.

Реостат - достаточно универсальный прибор. Кроме регулировки силы тока и напряжения, он также может использоваться в различных бытовых приборах. Например, в телевизорах регулировка громкости происходит с помощью реостатов, переключение каналов в телевизоре также неким образом связано с использованием реостатов. Также стоит обратить внимание, что для безопасности лучше использовать реостаты, снабженные защитным кожухом (рис. 7).

Рис. 7. Реостат в защитном кожухе

На этом уроке мы рассмотрели строение и применение такого элемента управления, как реостат. На следующих уроках будут решаться задачи, связанные с проводниками, реостатами и законом Ома.

Список литературы

  1. Генденштейн Л.Э, Кайдалов А.Б., Кожевников В.Б. Физика 8 / Под ред. Орлова В.А., Ройзена И.И. - М.: Мнемозина.
  2. Перышкин А.В. Физика 8. - М.: Дрофа, 2010.
  3. Фадеева А.А., Засов А.В., Киселев Д.Ф. Физика 8. - М.: Просвещение.
  1. Центр образования «Технологии обучения» ().
  2. Школьный демонстрационный физический эксперимент ().
  3. Электротехника ().

Домашнее задание

  1. Стр. 108-110: вопросы № 1-5. Перышкин А.В. Физика 8. - М.: Дрофа, 2010.
  2. Как можно регулировать накал лампы с помощью реостата?
  3. Всегда ли при движении ползунка реостата вправо сопротивление будет уменьшаться?
  4. Чем обусловлено применение именно керамической трубы в реостате?

Лучшие статьи по теме