Как настроить смартфоны и ПК. Информационный портал

Какие бывают raid массивы. Что такое RAID

Массивы RAID были разработаны в целях повышения надежности хранения данных, увеличения скорости работы с и для обеспечения возможности объединения нескольких дисков в один большой . Разные типы RAID решают разные задачи, здесь мы рассмотрим несколько наиболее распространенных конфигураций RAID массивов из одинаковых по размеру .



RAID 0

  • RAID 0 (Stripe). Режим, при использовании которого достигается максимальная производительность. Данные равномерно распределяются по дискам массива, объединяются в один, который может быть размечен на несколько. Распределенные операции чтения и записи позволяют значительно увеличить скорость работы, поскольку несколько одновременно читают/записывают свою порцию данных. Пользователю доступен весь объем , но это снижает надежность хранения данных, поскольку при отказе одного из дисков массив обычно разрушается и восстановить данные практически невозможно. Область применения - приложения, требующие высоких скоростей обмена с диском, например видеозахват, видеомонтаж. Рекомендуется использовать с высоконадежными дисками.

    RAID 1
  • RAID 1 (Mirror). Несколько дисков (обычно 2), работающие синхронно на запись, то есть полностью дублирующие друг друга. Повышение производительности происходит только при чтении. Самый надежный способ защитить информацию от сбоя одного из дисков. Из-за высокой стоимости обычно используется при хранении очень важных данных. Высокая стоимость обусловлена тем, что лишь половина от общей емкости доступна для пользователя.

    RAID 10
  • RAID 10 , также иногда называется RAID 1+0 - комбинация двух первых вариантов. (Массив RAID0 из массивов RAID1). Имеет все скоростные преимущества RAID0 и преимущество надежности RAID1, сохраняя недостаток - высокую стоимость дискового массива, так как эффективная ёмкость массива равна половине ёмкости использованных в нём дисков. Для создания такого массива требуется минимум 4 диска. (При этом их число должно быть чётным).
  • RAID 0+1 - Массив RAID1 из массивов RAID0. Фактически не применяется из-за отсутствия преимуществ по сравнению с RAID10 и меньшей отказоустойчивости.

    RAID 1E
  • RAID 1E - Похожий на RAID10 вариант распределения данных по дискам, допускающий использование нечётного числа (минимальное количество - 3)
  • RAID 2, 3, 4 - различные варианты распределенного хранения данных с дисками, выделенными под коды четности и различными размерами блока. В настоящее время практически не используются из-за невысокой производительности и необходимости выделять много дисковой емкости под хранение кодов ЕСС и/или четности.


    RAID 5
  • RAID 5 - массив, также использующий распределенное хранение данных аналогично RAID 0 (и объединение в один большой логический ) + распределенное хранение кодов четности для восстановления данных при сбоях. Относительно предыдущих конфигураций размер Stripe-блока еще больше увеличен. Возможно как одновременное чтение, так и запись. Плюсом этого варианта является то, что доступная для пользователя емкость массива уменьшается на емкость лишь одного диска, хотя надежность хранения данных ниже, чем у RAID 1. По сути, является компромиссом между RAID0 и RAID1, обеспечивая достаточно высокую скорость работы при неплохой надежности хранения данных. При отказе одного диска из массива данные могут быть восстановлены без потерь в автоматическом режиме. Минимальное количество дисков для такого массива - 3.
    "Программные" реализации RAID5, встроенные в южные мосты материнских плат, не отличаются высокой скоростью записи, поэтому годятся далеко не для всех применений.


    RAID 5EE
  • RAID 5EE - массив, аналогичный RAID5, однако кроме распределенного хранения кодов четности используется распределение резервных областей - фактически задействуется , который можно добавить в массив RAID5 в качестве запасного (такие массивы называют 5+ или 5+spare). В RAID 5 массиве резервный диск простаивает до тех пор, пока не выйдет из строя один из основных , в то время как в RAID 5EE массиве этот диск используется совместно с остальными HDD все время, что положительно сказывается на производительность массива. К примеру, массив RAID5EE из 5 HDD сможет выполнить на 25% больше операций ввода/вывода за секунду, чем RAID5 массив из 4 основных и одного резервного HDD. Минимальное количество дисков для такого массива - 4.


    RAID 6
  • RAID 6 - аналог RAID5 c большим уровнем избыточности - информация не теряется при отказе двух любых дисков, соответственно, общая ёмкость массива уменьшается на ёмкость двух дисков. Минимальное количество дисков, необходимое для создания массива такого уровня - 4. Скорость работы в общем случае примерно аналогична RAID5. Рекомендуется для применений, где важна максимально высокая надёжность.


    RAID 50
  • RAID 50 - объединение двух(или более, но это крайне редко применяется) массивов RAID5 в страйп, т.е. комбинация RAID5 и RAID0, частично исправляющая главный недостаток RAID5 - низкую скорость записи данных за счёт параллельного использования нескольких таких массивов. Общая ёмкость массива уменьшается на ёмкость двух , но, в отличие от RAID6, без потери данных такой массив переносит отказ лишь одного диска, а минимально необходимое число дисков для создания массива RAID50 равно 6. Наряду с RAID10, это наиболее рекомендуемый уровень RAID для использования в приложениях, где требуется высокая производительность в сочетании с приемлемой надёжностью.


    RAID 60
  • RAID 60 - объединение двух массивов RAID6 в страйп. Скорость записи повышается примерно в два раза, относительно скорости записи в RAID6. Минимальное количество дисков для создания такого массива - 8. Информация не теряется при отказе двух дисков из каждого RAID 6 массива.
  • Matrix RAID - технология, реализованная фирмой Intel в своих южных мостах, начиная с ICH6R, позволяющая организовать всего на двух дисках несколько массивов RAID0 и RAID1, одновременно создавая разделы как с повышенной скоростью работы, так и с повышенной надёжностью хранения данных.
  • JBOD (От английского "Just a Bunch Of Disks")- последовательное объединение нескольких физических в один логический, не влияющее на производительность (надёжность при этом падает аналогично RAID0), при этом могут иметь разные размеры. В настоящее время практически не применяется.
  • Приветствую читателей блога!
    Сегодня будет очередная статья на компьютерную тему, а посвящена она будет такому понятию, как Raid массив дисков — уверен, многим это понятие абсолютно ничего не скажет, а те, кто уже где-то про это слышал, не имеют представление о том, что это вообще такое. Давайте разбираться вместе!

    Не вдаваясь в детали терминологии, Raid массив — это некий комплекс, построенный из нескольких жестких дисков, который позволяет более грамотно распределять между ними функции. Как обычно мы размещаем жесткие диски в компе? Подключаем к Sata один жесткий диск, потом другой, третий. И появляются в нашей операционке диски D, E, F и так далее. Мы можем поместить на них какие-то файлы или установить Windows, но по сути это будут отдельные диски — вынув один из них мы ровным счетом ничего не заметим (если на нем не была установлена ОС) кроме того, что нам не будут доступны записанные на них файлы. Но есть другой путь — объединить эти диски в систему, задать им определенный алгоритм совместной работы, в результате которого значительно повысится надежность хранения информации или скорость их работы.

    Но прежде, чем мы сможем создать эту систему, нужно знать, поддерживает ли материнская плата работу с дисковыми массивами Raid. Во многих современных материнках уже имеется встроенный Raid-контроллер, который-то и позволяет объединить жесткие диски. Поддерживаемые схемы массивов имеются в описаниях к материнской плате. Например, возьмем первую попавшуюся мне на глаза в Яндекс Маркете плату ASRock P45R2000-WiFi.

    Здесь описание поддерживаемых Raid массивов отображается в разделе «Дисковые контроллеры Sata».


    В данном примере мы видим, что Sata контроллер поддерживает создание массивов Raid: 0, 1, 5, 10. Что означают эти цифры? Это обозначение различных типов массивов, в которых диски взаимодействуют между собой по разным схемам, которые призваны, как я уже говорил, либо ускорять их работу, либо увеличивают надежность от потери данных.

    Если же системная плата компьютера не поддерживает Raid, то можно приобрести отдельный Raid-контроллер в виде PCI платы, которая вставляется в PCI слот на материнке и дает ей возможность создавать массивы из дисков. Для работы контроллера после его установки нужно будет также установить raid драйвер, который либо идет на диске с данной моделью, либо можно просто скачать из интернета. Лучше всего на данном устройстве не экономить и купить от какого-то известного производителя, например Asus, и с чипсетами Intel.


    Я подозреваю, что пока что вы еще не очень имеете представление, о чем все же идет речь, поэтому давайте внимательно разберем каждый из самых популярных типов Raid массивов, чтобы все стало более понятно.

    Массив RAID 1

    Массив Raid 1 — один из самых распространенных и бюджетных вариантов, который использует 2 жестких диска. Этот массив призван обеспечить максимальную защиту данных пользователя, потому что все файлы будут одновременно копироваться сразу на 2 жестких диска. Для того, чтобы его создать, берем два одинаковых по объему харда, например по 500 Гб и делаем соответствующие настройки в BIOS для создания массива. После этого в вашей системе будет виден один жесткий диск размеров не 1 Тб, а 500 Гб, хотя физически работают два жестких диска — формула расчета приведена чуть ниже. И все файлы одновременно будут писаться на два диска, то есть второй будет полной резервной копией первого. Как вы понимаете, при выходе из строя одного из дисков вы не потеряете ни частички своей информации, так как у вас будет вторая копия этого диска.

    Также поломки и не заметит операционная система, которая продолжит работу со вторым диском — о неполадке вас известит лишь специальная программа, которая контролирует функционирование массива. Вам нужно лишь удалить неисправный диск и подключить такой же, только рабочий — система автоматически скопирует на него все данные с оставшегося исправного диска и продолжит работу.

    Объем диска, который будет видеть система, рассчитывается здесь по формуле:

    V = 1 x Vmin, где V — это общий объем, а Vmin — объем памяти самого маленького жесткого диска.


    Массив RAID 0

    Еще одна популярная схема, которая призвана повысить не надежность хранения, а наоборот, скорость работы. Также состоит из двух HDD, однако в этом случае ОС видим уже полный суммарный объем двух дисков, т.е. если объединить в Raid 0 диски по 500 Гб, то система увидит один диск размером 1 Тб. Скорость чтения и записи повышается за счет того, что блоки файлов пишутся поочередно на два диска — но при этом отказоустойчивость данной системы минимальная — при выходе из строя одного из дисков почти все файлы будут повреждены и вы потеряете часть данных — ту, которая была записана на сломавшийся диск. Восстанавливать информацию после этого придется уже в сервисном центре.

    Формула расчета общего объема диска, видимого Windows, выглядит так:

    Если вы до прочтения данной статьи по большому счету не беспокоились об отказоустойчивости вашей системы, но хотели бы повысить скорость работы, то можете купить дополнительный винчестер и смело использовать этот тип. По большому счету, в домашних условиях подавляющее количество пользователей не хранит какой-то супер-важной информации, а скопировать какие-то важные файлы можно на отдельный внешний жесткий диск.

    Массив Raid 10 (0+1)

    Как следует уже из самого названия, этот тип массива объединяет в себе свойства двух предыдущих — это как бы два массива Raid 0, объединенных в Raid 1. Используются четыре жестких диска, на два из них информация записывается блоками поочередно, как это было в Raid 0, а на два других — создаются полные копии двух первых. Система очень надежная и при этом достаточно скоростная, однако весьма дорогая в организации. Для создания нужно 4 HDD, при этом система будет видеть общий объем по формуле:


    То есть, если возьмем 4 диска по 500 Гб, то система увидит 1 диск размером 1 Тб.

    Данный тип, также как и следующий, чаще всего используется в организациях, на серверных компьютерах, где нужно обеспечить как высокую скорость работы, так и максимальную безопасность от потери информации в случае непредвиденных обстоятельств.

    Массив RAID 5

    Массив Raid 5 — оптимальное сочетание цены, скорости и надежности. В данном массиве минимально могут быть задействованы 3 HDD, объем рассчитывается из более сложной формулы:

    V = N x Vmin — 1 x Vmin, где N — количество жестких дисков.

    Итак, допустим у нас 3 диска по 500 Гб. Объем, видимый ОС, будет равен 1 Тб.

    Схема работы массива выглядит следующим образом: на первые два диска (или три, в зависимости от их количества) записываются блоки разделенных файлов, а на третий (или четвертый) — контрольная сумма первых двух (или трех). Таким образом, при отказе одного из дисков, его содержимое легко восстановить за счет имеющейся на последнем диске контрольной суммы. Производительность такого массива ниже, чем у Raid 0, но такая же надежная, как Raid 1 или Raid 10 и при этом дешевле последнего, т.к. можно сэкономить на четвертом харде.

    На схеме ниже представлена схема Raid 5 из четырех HDD.

    Есть также другие режимы — Raid 2,3, 4, 6, 30 и т.д., но они являются по большому счету производными от перечисленных выше.

    Как установить Raid массив дисков на Windows?

    С теорией, надеюсь, разобрались. Теперь посмотрим на практику — вставить в слот PCI Raid контроллер и установить драйвера, думаю, опытным пользователям ПК труда не составит.

    Как же теперь создать в операционной системе Windows Raid массив из подключенных жестких дисков?

    Лучше всего, конечно, это делать, когда вы только-только приобрели и подключили чистенькие винчестеры без установленной ОС. Сначала перезагружаем компьютер и заходим в настройки BIOS — здесь нужно найти SATA контроллеры, к которым подключены наши жесткие диски, и выставить их в режим RAID.

    После этого сохраняем настройки и перезагружаем ПК. На черном экране появится информация о том, что у вас включен режим Raid и о клавише, с помощью которой можно попасть в его настройку. В примере ниже предложено нажать клавишу «TAB».

    В зависимости от модели Raid-контроллера она может быть другой. Например, «CNTRL+F»

    Заходим в утилиту настройки и нажимаем в меню что-то типа «Create array» или «Create Raid» — надписи могут отличаться. Также если контроллер поддерживает несколько типов Raid, то будет предложено выбрать, какой именно нужно создать. В моем примере доступен только Raid 0.

    После этого возвращаемся обратно в BIOS и в настройке порядка загрузки видим уже не несколько отдельных дисков, а один в виде массива.

    Вот собственно и все — RAID настроен и теперь компьютер будет воспринимать ваши диски как один. Вот так, например, будет виден Raid при установке Windows.

    Думаю, что вы уже поняли преимущества использования Raid. Напоследок приведу сравнительную таблицу замеров скорости записи и чтения диска отдельно или в составе режимов Raid — результат, как говорится, на лицо.

    (+) : Имеет высокую надёжность - работает до тех пор, пока функционирует хотя бы один диск в массиве. Вероятность выхода из строя сразу двух дисков равна произведению вероятностей отказа каждого диска. На практике при выходе из строя одного из дисков следует срочно принимать меры - вновь восстанавливать избыточность. Для этого с любым уровнем RAID (кроме нулевого) рекомендуют использовать диски горячего резерва . Достоинство такого подхода - поддержание постоянной доступности.

    (-) : Недостаток заключается в том, что приходится выплачивать стоимость двух жёстких дисков, получая полезный объём лишь одного жёсткого диска.

    RAID 1+0 и RAID 0+1

    Зеркало на многих дисках - RAID 1+0 или RAID 0+1 . Под RAID 10 (RAID 1+0) имеют в виду вариант, когда два или более RAID 1 объединяются в RAID 0. Под RAID 0+1 может подразумеваться два варианта:

    RAID 2

    Массивы такого типа основаны на использовании кода Хемминга . Диски делятся на две группы: для данных и для кодов коррекции ошибок, причём если данные хранятся на дисках, то для хранения кодов коррекции необходимо дисков. Данные распределяются по дискам, предназначенным для хранения информации, так же, как и в RAID 0, т.е. они разбиваются на небольшие блоки по числу дисков. Оставшиеся диски хранят коды коррекции ошибок, по которым в случае выхода какого-либо жёсткого диска из строя возможно восстановление информации. Метод Хемминга давно применяется в памяти типа ECC и позволяет на лету исправлять однократные и обнаруживать двукратные ошибки.

    Достоинством массива RAID 2 является повышение скорости дисковых операций по сравнению с производительностью одного диска.

    Недостатком массива RAID 2 является то, что минимальное количество дисков, при котором имеет смысл его использовать,- 7. При этом нужна структура из почти двойного количества дисков (для n=3 данные будут храниться на 4 дисках), поэтому такой вид массива не получил распространения. Если же дисков около 30-60, то перерасход получается 11-19%.


    RAID 3

    В массиве RAID 3 из дисков данные разбиваются на куски размером меньше сектора (разбиваются на байты) или блоки и распределяются по дискам. Ещё один диск используется для хранения блоков чётности. В RAID 2 для этой цели применялся диск, но большая часть информации на контрольных дисках использовалась для коррекции ошибок на лету, в то время как большинство пользователей удовлетворяет простое восстановление информации в случае поломки диска, для чего хватает информации, умещающейся на одном выделенном жёстком диске.

    Отличия RAID 3 от RAID 2: невозможность коррекции ошибок на лету и меньшая избыточность.

    Достоинства:

    • высокая скорость чтения и записи данных;
    • минимальное количество дисков для создания массива равно трём.

    Недостатки:

    • массив этого типа хорош только для однозадачной работы с большими файлами, так как время доступа к отдельному сектору, разбитому по дискам, равно максимальному из интервалов доступа к секторам каждого из дисков. Для блоков малого размера время доступа намного больше времени чтения.
    • большая нагрузка на контрольный диск, и, как следствие, его надёжность сильно падает по сравнению с дисками, хранящими данные.


    RAID 4

    RAID 4 похож на RAID 3, но отличается от него тем, что данные разбиваются на блоки, а не на байты. Таким образом, удалось отчасти «победить» проблему низкой скорости передачи данных небольшого объёма. Запись же производится медленно из-за того, что чётность для блока генерируется при записи и записывается на единственный диск. Из систем хранения широкого распространения RAID-4 применяется на устройствах хранения компании NetApp (NetApp FAS), где его недостатки успешно устранены за счет работы дисков в специальном режиме групповой записи, определяемом используемой на устройствах внутренней файловой системой WAFL .

    RAID 5

    Основным недостатком уровней RAID от 2-го до 4-го является невозможность производить параллельные операции записи, так как для хранения информации о чётности используется отдельный контрольный диск. RAID 5 не имеет этого недостатка. Блоки данных и контрольные суммы циклически записываются на все диски массива, нет асимметричности конфигурации дисков. Под контрольными суммами подразумевается результат операции XOR (исключающее или). Xor обладает особенностью, которая применяется в RAID 5, которая даёт возможность заменить любой операнд результатом, и, применив алгоритм xor , получить в результате недостающий операнд. Например: a xor b = c (где a , b , c - три диска рейд-массива), в случае если a откажет, мы можем получить его, поставив на его место c и проведя xor между c и b : c xor b = a. Это применимо вне зависимости от количества операндов: a xor b xor c xor d = e . Если отказывает c тогда e встаёт на его место и проведя xor в результате получаем c : a xor b xor e xor d = c . Этот метод по сути обеспечивает отказоустойчивость 5 версии. Для хранения результата xor требуется всего 1 диск, размер которого равен размеру любого другого диска в raid.

    (+) : RAID5 получил широкое распространение, в первую очередь, благодаря своей экономичности. Объём дискового массива RAID5 рассчитывается по формуле (n-1)*hddsize, где n - число дисков в массиве, а hddsize - размер наименьшего диска. Например, для массива из 4-х дисков по 80 гигабайт общий объём будет (4 - 1) * 80 = 240 гигабайт. На запись информации на том RAID 5 тратятся дополнительные ресурсы и падает производительность, так как требуются дополнительные вычисления и операции записи, зато при чтении (по сравнению с отдельным винчестером) имеется выигрыш, потому что потоки данных с нескольких дисков массива могут обрабатываться параллельно.

    (-) : Производительность RAID 5 заметно ниже, в особенности на операциях типа Random Write (записи в произвольном порядке), при которых производительность падает на 10-25% от производительности RAID 0 (или RAID 10), так как требует большего количества операций с дисками (каждая операция записи сервера заменяется на контроллере RAID на три - одну операцию чтения и две операции записи). Недостатки RAID 5 проявляются при выходе из строя одного из дисков - весь том переходит в критический режим (degrade), все операции записи и чтения сопровождаются дополнительными манипуляциями, резко падает производительность. При этом уровень надежности снижается до надежности RAID-0 с соответствующим количеством дисков (то есть в n раз ниже надежности одиночного диска). Если до полного восстановления массива произойдет выход из строя, или возникнет невосстановимая ошибка чтения хотя бы на еще одном диске, то массив разрушается, и данные на нем восстановлению обычными методами не подлежат. Следует также принять во внимание, что процесс RAID Reconstruction (восстановления данных RAID за счет избыточности) после выхода из строя диска вызывает интенсивную нагрузку чтения с дисков на протяжении многих часов непрерывно, что может спровоцировать выход какого-либо из оставшихся дисков из строя в этот наименее защищенный период работы RAID, а также выявить ранее необнаруженные сбои чтения в массивах cold data (данных, к которым не обращаются при обычной работе массива, архивные и малоактивные данные), что повышает риск сбоя при восстановлении данных. Минимальное количество используемых дисков равно трём.

    RAID 5EE

    Примечание: поддерживается не во всех контроллерах RAID level-5EE подобен массиву RAID-5E, но с более эффективным использованием резервного диска и более коротким временем восстановления. Подобно RAID level-5E, этот уровень RAID-массива создает ряды данных и контрольных сумм во всех дисках массива. Массив RAID-5EE обладает улучшенной защитой и производительностью. При применении RAID level-5E, ёмкость логического тома ограничивается ёмкостью двух физических винчестеров массива (один для контроля, один резервный). Резервный диск является частью массива RAID level-5EE. Тем не менее, в отличие от RAID level-5E, использующего неразделенное свободное место для резерва, в RAID level-5EE в резервный диск вставлены блоки контрольных сумм, как показывается далее на примере. Это позволяет быстрее перестраивать данные при поломке физического диска. При такой конфигурации, вы не сможете использовать его с другими массивами. Если вам необходим запасной диск для другого массива, вам следует иметь еще один резервный винчестер. RAID level-5E требует как минимум четырех дисков и, в зависимости от уровня прошивки и их ёмкости, поддерживает от 8 до 16 дисков. RAID level-5E обладает определенной прошивкой. Примечание: для RAID level-5EЕ, вы можете использовать только один логический том в массиве.

    Достоинства:

    • 100% защита данных
    • Большая ёмкость физических дисков по сравнению с RAID-1 или RAID -1E
    • Большая производительность по сравнению с RAID-5
    • Более быстрое восстановление RAID по сравнению с RAID-5Е

    Недостатки:

    RAID 6

    RAID 6 - похож на RAID 5, но имеет более высокую степень надёжности - под контрольные суммы выделяется ёмкость 2-х дисков, рассчитываются 2 суммы по разным алгоритмам. Требует более мощный RAID-контроллер. Обеспечивает работоспособность после одновременного выхода из строя двух дисков - защита от кратного отказа. Для организации массива требуется минимум 4 диска . Обычно использование RAID-6 вызывает примерно 10-15% падение производительности дисковой группы, по сравнению с аналогичными показателями RAID-5, что вызвано большим объёмом обработки для контроллера (необходимость рассчитывать вторую контрольную сумму, а также прочитывать и перезаписывать больше дисковых блоков при записи каждого блока).

    RAID 7

    RAID 7 - зарегистрированная торговая марка компании Storage Computer Corporation, отдельным уровнем RAID не является. Структура массива такова: на дисках хранятся данные, один диск используется для складирования блоков чётности. Запись на диски кешируется с использованием оперативной памяти, сам массив требует обязательного ИБП ; в случае перебоев с питанием происходит повреждение данных.

    RAID 10

    Схема архитектуры RAID 10

    RAID 10 - зеркалированный массив, данные в котором записываются последовательно на несколько дисков, как в RAID 0 . Эта архитектура представляет собой массив типа RAID 0, сегментами которого вместо отдельных дисков являются массивы RAID 1. Соответственно, массив этого уровня должен содержать как минимум 4 диска. RAID 10 объединяет в себе высокую отказоустойчивость и производительность.

    Нынешние контроллеры используют этот режим по умолчанию для RAID 1+0. То есть, один диск основной, второй - зеркало, считывание данных производится с них поочередно. Сейчас можно считать, что RAID 10 и RAID 1+0 - это просто разное название одного и того же метода зеркалирования дисков. Утверждение, что RAID 10 является самым надёжным вариантом для хранения данных, ошибочно, т.к., несмотря на то, что для данного уровня RAID возможно сохранение целостности данных при выходе из строя половины дисков, необратимое разрушение массива происходит при выходе из строя уже двух дисков, если они находятся в одной зеркальной паре.

    Комбинированные уровни

    Помимо базовых уровней RAID 0 - RAID 5, описанных в стандарте, существуют комбинированные уровни RAID 1+0, RAID 3+0, RAID 5+0, RAID 1+5, которые различные производители интерпретируют каждый по-своему.

    • RAID 1+0 - это сочетание зеркалирования и чередования (см. выше).
    • RAID 5+0 - это чередование томов 5-го уровня.
    • RAID 1+5 - RAID 5 из зеркалированных пар.

    Комбинированные уровни наследуют как преимущества, так и недостатки своих «родителей»: появление чередования в уровне RAID 5+0 нисколько не добавляет ему надёжности, но зато положительно отражается на производительности. Уровень RAID 1+5, наверное, очень надёжный, но не самый быстрый и, к тому же, крайне неэкономичный: полезная ёмкость тома меньше половины суммарной ёмкости дисков…

    Стоит отметить, что количество жёстких дисков в комбинированных массивах также изменится. Например для RAID 5+0 используют 6 или 8 жёстких дисков, для RAID 1+0 - 4, 6 или 8.

    Сравнение стандартных уровней

    Уровень Количество дисков Эффективная ёмкость* Отказоустойчивость Преимущества Недостатки
    0 от 2 S * N нет наивысшая производительность очень низкая надёжность
    1 2 S 1 диск надёжность
    1E от 3 S * N / 2 1 диск** высокая защищённость данных и неплохая производительность двойная стоимость дискового пространства
    10 или 01 от 4, чётное S * N / 2 1 диск*** наивысшая производительность и высокая надёжность двойная стоимость дискового пространства
    5 от 3 до 16 S * (N - 1) 1 диск экономичность, высокая надёжность, неплохая производительность производительность ниже RAID 0
    50 от 6, чётное S * (N - 2) 2 диска** высокая надёжность и производительность высокая стоимость и сложность обслуживания
    5E от 4 S * (N - 2) 1 диск экономичность, высокая надёжность, скорость выше RAID 5
    5EE от 4 S * (N - 2) 1 диск быстрое реконструирование данных после сбоя, экономичность, высокая надёжность, скорость выше RAID 5 производительность ниже RAID 0 и 1, резервный накопитель работает на холостом ходу и не проверяется
    6 от 4 S * (N - 2) 2 диска экономичность, наивысшая надёжность производительность ниже RAID 5
    60 от 8, чётное S * (N - 2) 2 диска высокая надёжность, большой объем данных
    61 от 8, чётное S * (N - 2) / 2 2 диска** очень высокая надёжность высокая стоимость и сложность организации

    * N - количество дисков в массиве, S - объём наименьшего диска. ** Информация не потеряется, если выйдут из строя все диски в пределах одного зеркала. *** Информация не потеряется, если выйдут из строя два диска в пределах разных зеркал.

    Matrix RAID

    Matrix RAID - это технология, реализованная фирмой Intel в своих чипсетах начиная с ICH6R. Строго говоря, эта технология не является новым уровнем RAID (ее аналог существует в аппаратных RAID-контроллерах высокого уровня), она позволяет, используя небольшое количество дисков организовать одновременно один или несколько массивов уровня RAID 1, RAID 0 и RAID 5. Это позволяет за сравнительно небольшие деньги обеспечить для одних данных повышенную надёжность, а для других высокую скорость доступа и производства.

    Дополнительные функции RAID-контроллеров

    Многие RAID-контроллеры оснащены набором дополнительных функций:

    • "Горячая замена" (Hot Swap)
    • "Горячий резерв" (Hot Spare)
    • Проверка на стабильность.

    Программный (англ. software ) RAID

    Для реализации RAID можно применять не только аппаратные средства, но и полностью программные компоненты (драйверы). Например, в системах на ядре Linux существуют специальные модули ядра , а управлять RAID-устройствами можно с помощью утилиты mdadm . Программный RAID имеет свои достоинства и недостатки. С одной стороны, он ничего не стоит (в отличие от аппаратных RAID-контроллеров, цена которых от $250). С другой стороны, программный RAID использует ресурсы центрального процессора , и в моменты пиковой нагрузки на дисковую систему процессор может значительную часть мощности тратить на обслуживание RAID-устройств.

    Ядро Linux 2.6.28 (последнее из вышедших в 2008 году) поддерживает программные RAID следующих уровней: 0, 1, 4, 5, 6, 10. Реализация позволяет создавать RAID на отдельных разделах дисков, что аналогично описанному выше Matrix RAID. Поддерживается загрузка с RAID.

    Дальнейшее развитие идеи RAID

    Идея RAID-массивов - в объединении дисков, каждый из которых рассматривается как набор секторов, и в результате драйвер файловой системы «видит» как бы единый диск и работает с ним, не обращая внимания на его внутреннюю структуру. Однако, можно добиться существенного повышения производительности и надёжности дисковой системы, если драйвер файловой системы будет «знать» о том, что работает не с одним диском, а с набором дисков.

    Более того: при разрушении любого из дисков в составе RAID-0 вся информация в массиве окажется потерянной. Но если драйвер файловой системы разместил каждый файл на одном диске, и при этом правильно организована структура директорий, то при разрушении любого из дисков будут потеряны только файлы, находившиеся на этом диске; а файлы, целиком находящиеся на сохранившихся дисках, останутся доступными.

    Сотрудник корпорации Y-E Data, которая является крупнейшим в мире производителем USB флоппи-дисководов, Дэниэл Олсон в качестве эксперимента создал RAID-массив из четырех

    Проблема повышения надежности хранения информации всегда стоит на повестке дня. Особенно это касается больших массивов данных, баз данных от которых зависит работа комплексных систем в большом диапазоне сфер отраслей. Особенно это важно для высокопроизводительных серверов.

    Как известно, производительность современных процессоров неизменно растет, за чем явно не успевают в своем развитии современные
    жесткие диски. Наличие одного диска, будь то SCSI или, еще хуже IDE, уже не сможет решить задачи, актуальные нашему времени. Нужно множество дисков, которые будут дополнять друг друга, подменять в случае выхода одного из них, хранить резервные копии, работать качественно и продуктивно.

    Однако, просто наличия нескольких жестких дисков недостаточно, их нужно объединить в систему , которая будет слаженно работать и не допустит потери данных при любых сбоях, связанных с дисками.

    О создании такой системы нужно позаботиться заранее, ведь, как говорит известная пословица – пока жареный петух не клюнет - не хватятся. Можно потерять свои данные безвозвратно .

    Этой системой может стать RAID – технология виртуального хранения информации, объединяющая несколько дисков в один логический элемент. RAID массивом называется избыточный массив независимых дисков. Используют обычно для улучшения производительности и надежности.

    Что нужно для создания рейд? Как минимум наличие двух винчестеров. В зависимости от уровня массива варьируется количество используемых устройств хранения.

    Какие бывают массивы raid

    Существуют базовые, комбинированные массивы RAID. Институт в Беркли штат Калифорния предложил разделять рейд на уровни спецификации :

    • Базовые :
      • RAID1 ;
      • RAID2 ;
      • RAID3 ;
      • RAID4 ;
      • RAID5 ;
      • RAID6 .
    • Комбинированные :
      • RAID10 ;
      • RAID01 ;
      • RAID50 ;
      • RAID05 ;
      • RAID60 ;
      • RAID06 .

    Рассмотрим наиболее часто используемые.

    Рейд 0

    RAID 0 предназначен для увеличения скорости и записи. Он не увеличивает надежность хранения, в связи с этим не является избыточным. Еще его зовут страйп (striping - «чередование» ). Обычно используется от 2 до 4 дисков.

    Данные делятся на блоки, записывающие по очереди на диски. Скорость записи/чтения возрастает при этом в число раз, кратное количеству дисков. Из недостатков можно отметить возросшую вероятность потери данных при такой системе. Базы данных на таких дисках хранить не имеет смысла, ведь любой серьезный сбой приведет к полной неработоспособности рейда, так как отсутствуют средства восстановления.

    Рейд 1

    RAID 1 обеспечивает зеркальное хранение данных на аппаратном уровне. Называют также массив Mirror , что значит «зеркало » . То есть данные дисков в этом случае дублируются. Можно использовать при количестве устройств хранения от 2 до 4.

    Скорость записи/чтения при этом практически не меняется, что можно отнести к преимуществам . Массив работает, если хоть один диск рейда находится в работе, но объем системы при этом равен объему одного диска. На практике при выходе из строя одного из винчестеров Вам нужно будет как можно быстрее принять меры к его замене.

    Рейд 2

    RAID 2 – использует так называемый код Хемминга . Данные разбиваются по жестким дискам аналогично RAID 0, на оставшихся дисках хранятся коды исправления ошибок , при сбое по которым можно регенерировать информации. Этот метод позволяет на лету обнаруживать , а затем и исправлять сбои в системе.

    Быстрота чтения/записи в этом случае в сравнении с использованием одного диска повышается . Минусом является большое количество дисков, при котором его рационально применять, чтобы не было избыточности данных, обычно это 7 и больше .

    RAID 3 – в массиве данные разбиваются на все диске кроме одного, в котором хранятся байты четности. Устойчив к отказам системы . Если один из дисков выходит из строя . То его информацию легко «поднять», используя данные контрольных сумм четности.

    В сравнении с RAID 2 нет возможности коррекции ошибок на лету. Этот массив отличается высокой производительностью и возможностью использовать от 3 дисков и больше.

    Главным минусом такой системы можно считать повышенную нагрузку на диск, хранящий байты четности и низкую надежность этого диска.

    Рейд 4

    В целом RAID 4 аналогичен RAID 3 с той разницей , что данные четности хранятся в блоках, а не в байтах, что позволило увеличить скорость передачи данных малого объема.

    Минусом указанного массива оказывается скорость записи, ведь четность записи генерируется на один единственный диск, как и RAID 3.

    Представляется собой неплохое решение для тех серверов, где файлы чаще считываются, чем записываются.

    Рейд 5

    RAID от 2 до 4 имеют недостатки, связанные с невозможностью распараллеливания операций записи. RAID 5 устраняет этот недостаток. Блоки четности записываются одновременно на все дисковые устройства массива, нет асинхронности в распределении данных, а значит, четность является распределенной.

    Число используемых винчестеров от 3. Массив очень распространён благодаря своей универсальности и экономичности , чем большее число дисков будет использоваться, тем экономнее будет затрачиваться дисковое пространство. Скорость при этом высокая за счет распараллеливания данных, но производительность снижается в сравнении с RAID 10, за счет большого числа операций. Если выходит из строя один диск, то надежность снижается до уровня RAID 0. Требуется много времени на восстановление.

    Рейд 6

    Технология RAID 6 схожа с RAID 5, но повышается надежностью за счет увеличения количества дисков четности.

    Однако, дисков уже требуется минимум 5 и более мощный процессор для обработки возросшего числа операций, причем количество дисков обязательно должно быть равно простому числу 5,7,11 и так далее.

    Рейд 10, 50, 60

    Далее идут комбинации указанных ранее рейдов. Например, RAID 10 это RAID 0 + RAID 1.

    Они наследуют и преимущества массивов их составляющих в плане надежности, производительности и количестве дисков, а вместе с тем экономичности.

    Создание рейд массива на домашнем ПК

    Преимущества создания рейд массива дома неочевидны, ввиду того, что это неэкономично , потеря данных не столь критична в сравнении с серверами, а информацию можно хранить в резервных копиях, периодически делая бэкапы.

    Для этих целей Вам понадобится рейд-контроллер , обладающий собственной BIOS и своими настройками. В современных системных платах рейд-контроллер может быть интегрирован в южный мост чипсета. Но даже в таких плата посредством подключения к PCI или PCI-E разъему можно подключить еще один контроллер. Примерами могут быть устройства фирм Silicon Image и JMicron.

    Каждый контроллер может иметь свою утилиту для настройки.

    Рассмотрим создание рейд с помощью Intel Matrix Storage Manager Option ROM.

    Перенесите все данные с Ваших дисков, иначе в процессе создания массива они будут очищены .

    Зайдите в BIOS Setup Вашей материнской платы и включите режим работы RAID для вашего sata винчестера.

    Чтобы запустить утилиту перезагрузите ПК, нажмите ctrl+i во время процедуры POST . В окне программы Вы увидите список доступных дисков. Нажмите Create Massive , Далее выберите необходимый уровень массива .

    В дальнейшем следуя интуитивно понятному интерфейсу введите размер массива и подтвердите его создание.

  • Интерфейс scsi
  • 3.2. Запоминающие устройства на оптических дисках
  • 3.2.1. Оптические диски 3.2.2. Организация данных на оптических дисках
  • 3.2.3. Приводы оптических дисков
  • 3.2.1. Оптические диски
  • 3.2.2. Организация данных на оптических дисках
  • 3.2.3. Приводы оптических дисков
  • 3.3. Запоминающие устройства со сменными магнитными носителями
  • 3.3.1. Накопители на гибких магнитных дисках 3.3.2. Запоминающие устройства со сменными магнитными и магнитооптическими дисками 3.3.3. Накопители на магнитных лентах
  • 3.3.1. Накопители на гибких магнитных дисках
  • 3.3.2. Запоминающие устройства со сменными магнитными и магнитооптическими дисками
  • 3.3.3. Накопители на магнитных лентах
  • Глава 4. Методы оценки характеристик и повышения производительности памяти
  • 4.1. Методы оценки временных характеристик зу 4.2. Методы повышения производительности памяти эвм 4.3. Направления развития зу
  • 4.1. Методы оценки временных характеристик зу
  • 4.1.1. Экспериментальные методы оценки 4.1.2. Теоретические методы оценки
  • 4.1.1. Экспериментальные методы оценки
  • 4.1.2. Теоретические методы оценки
  • 4.2. Методы повышения производительности памяти эвм
  • 4.2.1. Использование кэш-памяти 4.2.2. Диспетчеризация (управление порядком) обслуживания обращений 4.2.3. Организация дисковых массивов (raid)
  • 4.2.1. Использование кэш-памяти
  • 4.2.2. Диспетчеризация (управление порядком) обслуживания обращений
  • 4.2.3. Организация дисковых массивов (raid)
  • 4.3. Направления развития зу
  • Литература и ссылки
  • 4.2.3. Организация дисковых массивов (raid)

    Еще одним способом повышения производительности дисковой памяти стало построение дисковых массивов, хотя этот нацелен не только (и не столько) на достижение более высокой производительности, но и большей надежности работы запоминающих устройств на дисках.

    Технология RAID (Redundant Array of Independent Disks – избыточный массив независимых дисков) задумывалась как объединение нескольких недорогих жестких дисков в один массив дисков для увеличения производительности, объема и надежности, по сравнению с одиночным диском. При этом ЭВМ должна видеть такой массив как один логический диск.

    Если просто объединить несколько дисков в (не избыточный) массив, то среднее время между отказами (СВМО) будет равно СВМО одного диска, деленному на количество дисков. Такой показатель слишком мал для приложений, критичных к аппаратным сбоям. Улучшить его можно применяя реализуемую различным образом избыточность при хранение информации.

    В RAID системах для повышения надежности и производительности используются комбинации трех основных механизмов, каждый из которых хорошо известен и по отдельности: - организация “зеркальных” дисков, т.е. полное дублирование хранимой информации; - подсчет контрольных кодов (четность, коды Хэмминга), позволяющих восстановить информацию при сбое; - распределение информации по различным дискам массива так, как это делается при чередовании обращений по блокам памяти (см. interleave), что повышает возможности параллельной работы дисков при операциях над хранимой информацией. При описании RAID этот прием называют “stripped disks”, что буквально означает “разделенные на полоски диски”, или просто "полосатые диски"..

    Рис. 43. Разбиение дисков на чередующиеся блоки - “полоски”.

    Изначально было определено пять типов дисковых массивов, обозначаемых RAID 1 – RAID 5, различающихся по своим особенностям и производительности. Каждый из этих типов за счет определенной избыточности записываемой информации обеспечивал повышенную отказоустойчивость по сравнению с одиночным дисководом. Кроме того, массив дисков, не обладающих избыточностью, но позволяющий повысить производительность (за счет расслоения обращений), стали часто называть RAID 0.

    Основные типы RAID массивов можно кратко охарактеризовать следующим образом .

    RAID 0 . Обычно этот тип массива определяется как группа дисков с чередованием (stripped) расположения информации без контроля четности и без избыточности данных. Размеры чередующихся областей (stripes – “полосок”, или блоков) могут быть большими в многопользовательском окружении или малыми в однопользовательской системе при последовательном доступе к длинным записям.

    Организация RAID 0 как раз и соответствует той, которая показана на рис. 43. Операции записи и чтения могут выполняться одновременно на каждом дисководе. Минимальное количество дисководов для RAID 0 – два.

    Для этого типа характерны высокая производительность и наиболее эффективное использование дискового пространства, однако, выход из строя одного из дисков приводит к невозможности работы со всем массивом.

    RAID 1 . Этот тип дискового массива (рис. 44, а ) известен также как зеркальные диски и представляет собой просто пары дисководов, дублирующих хранимые данные, но представляющиеся компьютеру как один диск. И хотя в рамках одной пары зеркальных дисков разбиение на полоски не производится, чередование блоков может быть организовано для нескольких массивов RAID 1, образующих вместе один большой массив из нескольких зеркальных пар дисков. Такой вариант организации получил название RAID 1 + 0. Существует и обратный вариант.

    Все операции записи производятся одновременно в оба диска зеркальной пары, чтобы информация в них была идентична. Но при чтении каждый из дисков пары может работать независимо, что позволяет выполнять одновременно две операции чтения, удваивая тем самым производительность при чтении. В этом смысле RAID 1 обеспечивает наилучшую производительность среди всех вариантов дисковых массивов.

    RAID 2 . В этих дисковых массивах блоки – сектора данных чередуются по группе дисков, часть из которых используется только для хранения контрольной информации – ECC (error correcting codes) кодов. Но поскольку во всех современных дисках имеется встроенный контроль с помощью ECC кодов, то RAID 2 мало что дает, по сравнению с другими типами RAID, и сейчас редко используется.

    RAID 3 . Как и в RAID 2 в этом типе дискового массива (рис. 44, б ) блоки –сектора чередуются по группе дисков, но один из дисков группы отведен для хранения информации о четности. В случае выхода дисковода из строя восстановление данных осуществляется на основе вычисления значений функции "исключающее ИЛИ" (XOR) от данных, записанных на оставшихся дисках. Записи обычно занимают все диски (так как полоски короткие), что повышает общую скорость передачи данных. Так как каждая операция ввода-вывода требует доступа к каждому диску, массив RAID 3 может обслужить в каждый момент времени только один запрос. Поэтому данный тип обеспечивает наилучшую производительность для одного пользователя в однозадачном окружении с длинными записями. При работе с короткими записями во избежание снижения производительности требуется синхронизация шпинделей дисководов. По своим характеристикам RAID 3 близок к RAID 5 (см. ниже).

    RAID 4. Эта организация, показанная на рис. 35, в ), похожа на RAID 3 с той лишь разницей, что в нем используются блоки (полоски) большого размера, так что записи можно читать с любого диска массива (кроме диска, хранящего коды четности). Это позволяет совмещать операции чтения на разных дисках. При операциях записи всегда происходит обновление диска четности, поэтому их совмещение невозможно. В целом, данная архитектура не имеет особых преимуществ перед другими вариантами RAID.

    RAID 5. Этот тип дискового массива похож на RAID 4, но хранение кодов четности в нем осуществляется не на специально выделенном диске, а блоками, располагающимися поочередно на всех дисках. Эту организацию даже иногда называют массив с “вращающейся четностью” (можно отметить некую аналогию с назначением линий прерываний для слотов шины PCI или с циклическим приоритетом контроллера прерываний в процессорах линии x86). Такое распределение позволяет избежать ограничения возможности одновременной записи из-за хранения кодов четности только на одном диске, характерного для RAID 4. На рис. 44, г ) показан массив, состоящий из четырех дисководов, причем для каждых трех блоков данных имеется один блок четности (эти блоки заштрихованы), местоположение которого для каждой тройки блоков данных изменяется, перемещаясь циклически по всем четырем дисководам.

    Операции чтения могут выполняться параллельно для всех дисков. Операции записи, требующие участия двух дисководов (для данных и для четности) обычно также могут совмещаться, так как коды четности распределены по всем дискам.

    Сравнение различных вариантов организации дисковых массивов показывает следующее.

    Организация RAID 0 – это наиболее быстрый и эффективный вариант, но не обеспечивающий устойчивости к сбоям. Он требует минимум 2 дисковода. Операции записи и чтения могут выполняться одновременно на каждом дисководе.

    Архитектура RAID 1 наиболее пригодна для высокопроизводительных высоконадежных приложений, но и наиболее дорогая. Кроме того, это единственный вариант, устойчивый к сбоям, если используются только два дисковода. Операции чтения могут выполняться одновременно для каждого дисковода, операции записи всегда дублируются для зеркальной пары дисководов.

    Архитектура RAID 2 используется редко.

    Дисковый массив типа RAID 3 можно использовать для ускорения передачи данных и повышения устойчивости к сбоям в однопользовательской среде при последовательном доступе к длинным записям. Но он не позволяет совмещать операции и требует синхронизации вращения шпинделей дисководов. Для него нужно, как минимум, три дисковода: 2 для данных и один для кодов четности.

    Архитектура RAID 4 не поддерживает одновременные операции и не имеет преимуществ, по сравнению с RAID 5.

    Организацию RAID 5 характеризует эффективность, устойчивость к сбоям и хорошая производительность. Но производительность при записи и в случае отказа дисковода хуже, чем у RAID 1. В частности, поскольку блок кодов четности относится ко всему записываемому блоку, то, если пишется только часть его, необходимо сперва считать ранее записанные данные, затем вычислить новые значения кодов четности и только после этого записать новые данные (и четность). Операции перестройки также требуют больше времени из-за необходимости формирования кодов четности. Для данного типа RAID нужно, как минимум, три дисковода.

    Кроме того, на основе наиболее распространенных вариантов RAID: 0, 1 и 5 могут формироваться так называемые двухуровневые архитектуры, в которых сочетаются принципы организации различных типов массивов. Например, несколько RAID массивов одного и того же типа можно объединить в одну группу массивов данных или массив четности.

    За счет такой двухуровневой организации можно достичь требуемого баланса между увеличением надежности хранения данных, характерным для массивов RAID 1 и RAID 5 и высокой скоростью чтения, присущей чередованию блоков на дисках в массиве типа RAID 0. Такие двухуровневые схемы иногда называют RAID 0+1 или 10 и 0+5 или 50.

    Управление работой RAID массивов может осуществляться не только аппаратно, но и программно, возможность чего предусматривается в некоторых серверных вариантах операционных систем. Хотя понятно, что такая реализация будет иметь существенно худшие характеристики производительности.

    Лучшие статьи по теме