Как настроить смартфоны и ПК. Информационный портал
  • Главная
  • Windows Phone
  • Для чего нужны программные средства защиты информации. Программно-аппаратные средства защиты информации

Для чего нужны программные средства защиты информации. Программно-аппаратные средства защиты информации

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Основные данные о работе

Версия шаблона 1.1

Филиал Нижегородский

Вид работы Электронная письменная предзащита

Название дисциплины ВКР

Тема

Программные средства защиты информации в сетях

Работу выполнил

Ипатов Александр Сергеевич

№ контракта 09200080602012

Введение

1. Основные положения теории информационной безопасности

1.1 Информационная безопасность. Основные определения

1.2 Угрозы информационной безопасности

1.3 Построение систем защиты от угроз нарушения конфиденциальности информации

1.3.1 Модель системы защиты

1.3.2 Организационные меры и меры обеспечения физической безопасности

1.3.3 Идентификация и аутентификация

1.3.4 Разграничение доступа

1.3.5 Криптографические методы обеспечения конфиденциальности информации

1.3.6 Методы защиты внешнего периметра

1.3.7 Протоколирование и аудит

1.4 Построение систем защиты от угроз нарушения целостности

1.4.1 Принципы обеспечения целостности

1.4.2 Криптографические методы обеспечения целостности информации

1.5 Построение систем защиты от угроз нарушения доступности

2. Программные средства защиты информации в КС

2.1 Безопасность на уровне операционной системы

2.2 Криптографические методы защиты

2.3 Шифрование дисков

2.4 Специализированные программные средства защиты информации

2.5 Архитектурные аспекты безопасности

2.6 Системы архивирования и дублирования информации

2.7 Анализ защищенности

Заключение

Глоссарий

Список использованных источников

Список сокращений

Введение

Прогресс подарил человечеству великое множество достижений, но тот же прогресс породил и массу проблем. Человеческий разум, разрешая одни проблемы, непременно сталкивается при этом с другими, новыми. Вечная проблема - защита информации. На различных этапах своего развития человечество решало эту проблему с присущей для данной эпохи характерностью. Изобретение компьютера и дальнейшее бурное развитие информационных технологий во второй половине 20 века сделали проблему защиты информации настолько актуальной и острой, насколько актуальна сегодня информатизация для всего общества.

Еще Юлий Цезарь принял решение защищать ценные сведения в процессе передачи. Он изобрел шифр Цезаря. Этот шифр позволял посылать сообщения, которые никто не мог прочитать в случае перехвата.

Данная концепция получила свое развитие во время Второй мировой войны. Германия использовала машину под названием Enigma для шифрования сообщений, посылаемых воинским частям.

Конечно, способы защиты информации постоянно меняются, как меняется наше общество и технологии. Появление и широкое распространение компьютеров привело к тому, что большинство людей и организаций стали хранить информацию в электронном виде. Возникла потребность в защите такой информации.

В начале 70-х гг. XX века Дэвид Белл и Леонард Ла Падула разработали модель безопасности для операций, производимых на компьютере. Эта модель базировалась на правительственной концепции уровней классификации информации (несекретная, конфиденциальная, секретная, совершенно секретная) и уровней допуска. Если человек (субъект) имел уровень допуска выше, чем уровень файла (объекта) по классификации, то он получал доступ к файлу, в противном случае доступ отклонялся. Эта концепция нашла свою реализацию в стандарте 5200.28 "Trusted Computing System Evaluation Criteria" (TCSEC) ("Критерий оценки безопасности компьютерных систем"), разработанном в 1983 г. Министерством обороны США. Из-за цвета обложки он получил название "Оранжевая книга".

"Оранжевая книга" определяла для каждого раздела функциональные требования и требования гарантированности. Система должна была удовлетворять этим требованиям, чтобы соответствовать определенному уровню сертификации.

Выполнение требований гарантированности для большинства сертификатов безопасности отнимало много времени и стоило больших денег. В результате очень мало систем было сертифицировано выше, чем уровень С2 (на самом деле только одна система за все время была сертифицирована по уровню А1 - Honeywell SCOMP) Коул Э. Руководство по защите от хакеров. - М.: Издательский дом "Вильямс", 2002 - С. 25 .

При составлении других критериев были сделаны попытки разделить функциональные требования и требования гарантированности. Эти разработки вошли в "Зеленую книгу" Германии в 1989 г., в "Критерии Канады" в 1990 г., "Критерии оценки безопасности информационных технологий" (ITSEC) в 1991 г. и в "Федеральные критерии" (известные как Common Criteria - "Общие критерии") в 1992 г. Каждый стандарт предлагал свой способ сертификации безопасности компьютерных систем.

ГОСТ 28147-89 -- советский и российский стандарт симметричного шифрования, введённый в 1990 году, также является стандартом СНГ. Полное название -- «ГОСТ 28147-89 Системы обработки информации. Защита криптографическая. Алгоритм криптографического преобразования». Блочный шифроалгоритм. При использовании метода шифрования с гаммированием, может выполнять функции поточного шифроалгоритма.

По некоторым сведениям А. Винокуров. Алгоритм шифрования ГОСТ 28147-89, его использование и реализация для компьютеров платформы Intel x86 (http://www.enlight.ru ) , история этого шифра гораздо более давняя. Алгоритм, положенный впоследствии в основу стандарта, родился, предположительно, в недрах Восьмого Главного управления КГБ СССР (ныне в структуре ФСБ), скорее всего, в одном из подведомственных ему закрытых НИИ, вероятно, ещё в 1970-х годах в рамках проектов создания программных и аппаратных реализаций шифра для различных компьютерных платформ.

С момента опубликования ГОСТа на нём стоял ограничительный гриф «Для служебного пользования», и формально шифр был объявлен «полностью открытым» только в мае 1994 года. История создания шифра и критерии разработчиков по состоянию на 2010 год не опубликованы.

Одна из проблем, связанных с критериями оценки безопасности систем, заключалась в недостаточном понимании механизмов работы в сети. При объединении компьютеров к старым проблемам безопасности добавляются новые. В "Оранжевой книге" не рассматривались проблемы, возникающие при объединении компьютеров в общую сеть, поэтому в 1987 г. появилась TNI (Trusted Network Interpretation), или "Красная книга". В "Красной книге" сохранены все требования к безопасности из "Оранжевой книги", сделана попытка адресации сетевого пространства и создания концепции безопасности сети. К сожалению, и "Красная книга" связывала функциональность с гарантированностью. Лишь некоторые системы прошли оценку по TNI, и ни одна из них не имела коммерческого успеха.

В наши дни проблемы стали еще серьезнее. Организации стали использовать беспроводные сети, появления которых "Красная книга" не могла предвидеть. Для беспроводных сетей сертификат "Красной книги" считается устаревшим.

Технологии компьютерных систем и сетей развиваются слишком быстро. Соответственно, также быстро появляются новые способы защиты информации. Поэтому тема моей квалификационной работы «Программные средства защиты информации в сетях» является весьма актуальной.

Объектом исследования является информация, передаваемая по телекоммуникационным сетям.

Предметом исследования является информационная безопасность сетей.

Основной целью квалификационной работы является изучение и анализ программных средств защиты информации в сетях. Для достижения указанной цели необходимо решить ряд задач:

Рассмотреть угрозы безопасности и их классификацию;

Охарактеризовать методы и средства защиты информации в сети, их классификацию и особенности применения;

Раскрыть возможности физических, аппаратных и программных средств защиты информации в компьютерных сетях (КС), выявить их достоинства и недостатки.

1. Основные положения теории информационной безопасности

1.1 Информационная безопасность. Основные определения

Термин «информация» разные науки определяют различными способами. Так, например, в философии информация рассматривается как свойство материальных объектов и процессов сохранять и порождать определённое состояние, которое в различных вещественно-энергетических формах может быть передано от одного объекта к другому. В кибернетике информацией принято называть меру устранения неопределённости. Мы же под информацией в дальнейшем будем понимать всё то, что может быть представлено в символах конечного (например, бинарного) алфавита.

Такое определение может показаться несколько непривычным. В то же время оно естественным образом вытекает из базовых архитектурных принципов современной вычислительной техники. Действительно, мы ограничиваемся вопросами информационной безопасности автоматизированных систем - а всё то, что обрабатывается с помощью современной вычислительной техники, представляется в двоичном виде.Цирлов В.Л. Основы информационной безопасности автоматизированных систем - «Феникс», 2008 - С. 8

Предметом нашего рассмотрения являются автоматизированные системы. Под автоматизированной системой обработки информации (АС) мы будем понимать совокупность следующих объектов:

1. Средств вычислительной техники;

2. Программного обеспечения;

3. Каналов связи;

4. Информации на различных носителях;

5. Персонала и пользователей системы.

Информационная безопасность АС рассматривается как состояние системы, при котором:

1. Система способна противостоять дестабилизирующему воздействию внутренних и внешних угроз.

2. Функционирование и сам факт наличия системы не создают угроз для внешней среды и для элементов самой системы.

На практике информационная безопасность обычно рассматривается как совокупность следующих трёх базовых свойств защищаемой информации:

? конфиденциальность, означающая, что доступ к информации могут получить только легальные пользователи;

? целостность, обеспечивающая, что во-первых, защищаемая информация может быть изменена только законными и имеющими соответствующие полномочия пользователями, а во-вторых, информация внутренне непротиворечива и (если данное свойство применимо) отражает реальное положение вещей;

? доступность, гарантирующая беспрепятственный доступ к защищаемой информации для законных пользователей.

Деятельность, направленную на обеспечение информационной безопасности, принято называть защитой информации.

Методы обеспечения информационной безопасности (Приложение А) весьма разнообразны.

Сервисы сетевой безопасности представляют собой механизмы защиты информации, обрабатываемой в распределённых вычислительных системах и сетях.

Инженерно-технические методы ставят своей целью обеспечение защиты информации от утечки по техническим каналам - например, за счёт перехвата электромагнитного излучения или речевой информации. Правовые и организационные методы защиты информации создают нормативную базу для организации различного рода деятельности, связанной с обеспечением информационной безопасности.

Теоретические методы обеспечения информационной безопасности, в свою очередь, решают две основных задачи. Первая из них - это формализация разного рода процессов, связанных с обеспечением информационной безопасности. Так, например, формальные модели управления доступом позволяют строго описать все возможные информационные потоки в системе - а значит, гарантировать выполнение требуемых свойств безопасности. Отсюда непосредственно вытекает вторая задача - строгое обоснование корректности и адекватности функционирования систем обеспечения информационной безопасности при проведении анализа их защищённости. Такая задача возникает, например, при проведении сертификации автоматизированных систем по требованиям безопасности информации.

1.2 Угрозы информационной безопасности

При формулировании определения информационной безопасности АС мы упоминали понятие угрозы. Остановимся на нём несколько подробнее.

Заметим, что в общем случае под угрозой принято понимать потенциально возможное событие, действие, процесс или явление, которое может привести к нанесению ущерба чьим-либо интересам. В свою очередь, угроза информационной безопасности автоматизированной системы - это возможность реализации воздействия на информацию, обрабатываемую в АС, приводящего к нарушению конфиденциальности, целостности или доступности этой информации, а также возможность воздействия на компоненты АС, приводящего к их утрате, уничтожению или сбою функционирования.

Классификация угроз может быть проведена по множеству признаков. Приведём наиболее распространённые из них. Цирлов В.Л. Основы информационной безопасности автоматизированных систем - «Феникс», 2008 - С. 10

1. По природе возникновения принято выделять естественные и искусственные угрозы.

Естественными принято называть угрозы, возникшие в результате воздействия на АС объективных физических процессов или стихийных природных явлений, не зависящих от человека. В свою очередь, искусственные угрозы вызваны действием человеческого фактора.

Примерами естественных угроз могут служить пожары, наводнения, цунами, землетрясения и т.д. Неприятная особенность таких угроз - чрезвычайная трудность или даже невозможность их прогнозирования.

2. По степени преднамеренности выделяют случайные и преднамеренные угрозы.

Случайные угрозы бывают обусловлены халатностью или непреднамеренными ошибками персонала. Преднамеренные угрозы обычно возникают в результате направленной деятельности злоумышленника.

В качестве примеров случайных угроз можно привести непреднамеренный ввод ошибочных данных, неумышленную порчу оборудования. Пример преднамеренной угрозы - проникновение злоумышленника на охраняемую территорию с нарушением установленных правил физического доступа.

3. В зависимости от источника угрозы принято выделять:

- Угрозы, источником которых является природная среда. Примеры таких угроз - пожары, наводнения и другие стихийные бедствия.

- Угрозы, источником которых является человек. Примером такой угрозы может служить внедрение агентов в ряды персонала АС со стороны конкурирующей организации.

- Угрозы, источником которых являются санкционированные программно-аппаратные средства. Пример такой угрозы - некомпетентное использование системных утилит.

- Угрозы, источником которых являются несанкционированные программно-аппаратные средства. К таким угрозам можно отнести, например, внедрение в систему кейлогеров.

4. По положению источника угрозы выделяют:

- Угрозы, источник которых расположен вне контролируемой зоны. Примеры таких угроз - перехват побочных электромагнитных излучений (ПЭМИН) или перехват данных, передаваемых по каналам связи; дистанционная фото- и видеосъёмка;

перехват акустической информации с использованием направленных микрофонов.

- Угрозы, источник которых расположен в пределах контролируемой зоны.

Примерами подобных угроз могут служить применение подслушивающих устройств или хищение носителей, содержащих конфиденциальную информацию.

5. По степени воздействия на АС выделяют пассивные и активные угрозы. Пассивные угрозы при реализации не осуществляют никаких изменений в составе и структуре АС.

Реализация активных угроз, напротив, нарушает структуру автоматизированной системы.

Примером пассивной угрозы может служить несанкционированное копирование файлов с данными.

6. По способу доступа к ресурсам АС выделяют:

- Угрозы, использующие стандартный доступ. Пример такой угрозы - несанкционированное получение пароля путём подкупа, шантажа, угроз или физического насилия по отношению к законному обладателю.

- Угрозы, использующие нестандартный путь доступа. Пример такой угрозы - использование недекларированных возможностей средств защиты.

Критерии классификации угроз можно продолжать, однако на практике чаще всего используется следующая основная классификация угроз, основывающаяся на трёх введённых ранее базовых свойствах защищаемой информации:

1. Угрозы нарушения конфиденциальности информации, в результате реализации которых информация становится доступной субъекту, не располагающему полномочиями для ознакомления с ней.

2. Угрозы нарушения целостности информации, к которым относится любое злонамеренное искажение информации, обрабатываемой с использованием АС.

3. Угрозы нарушения доступности информации, возникающие в тех случаях, когда доступ к некоторому ресурсу АС для легальных пользователей блокируется.

Отметим, что реальные угрозы информационной безопасности далеко не всегда можно строго отнести к какой-то одной из перечисленных категорий. Так, например, угроза хищения носителей информации может быть при определённых условиях отнесена ко всем трём категориям.

Заметим, что перечисление угроз, характерных для той или иной автоматизированной системы, является важным этапом анализа уязвимостей АС, проводимого, например, в рамках аудита информационной безопасности, и создаёт базу для последующего проведения анализа рисков. Выделяют два основных метода перечисления угроз:

1. Построение произвольных списков угроз. Возможные угрозы выявляются экспертным путём и фиксируются случайным и неструктурированным образом.

Для данного подхода характерны неполнота и противоречивость получаемых результатов.

2. Построение деревьев угроз. Угрозы описываются в виде одного или нескольких деревьев. Детализация угроз осуществляется сверху вниз, и в конечном итоге каждый лист дерева даёт описание конкретной угрозы. Между поддеревьями в случае необходимости могут быть организованы логические связи.

Рассмотрим в качестве примера дерево угрозы блокирования доступа к сетевому приложению (Приложение Б).

Как видим, блокирование доступа к приложению может произойти либо в результате реализации DoS-атаки на сетевой интерфейс, либо в результате завершения работы компьютера. В свою очередь, завершение работы компьютера может произойти либо вследствие несанкционированного физического доступа злоумышленника к компьютеру, либо в результате использования злоумышленником уязвимости, реализующей атаку на переполнение буфера.

1.3 Построение систем защиты от угроз нарушения конфиденциальности информации

1.3.1 Модель системы защиты

При построении систем защиты от угроз нарушения конфиденциальности информации в автоматизированных системах используется комплексный подход. (Приложение В).

Как видно из приведённой схемы, первичная защита осуществляется за счёт реализуемых организационных мер и механизмов контроля физического доступа к АС. В дальнейшем, на этапе контроля логического доступа, защита осуществляется с использованием различных сервисов сетевой безопасности. Во всех случаях параллельно должен быть развёрнут комплекс инженерно-технических средств защиты информации, перекрывающих возможность утечки по техническим каналам.

Остановимся более подробно на каждой из участвующих в реализации защиты подсистем.

1.3.2 Организационные меры и меры обеспечения физической безопасности

Данные механизмы в общем случае предусматривают:

- развёртывание системы контроля и разграничения физического доступа к элементам автоматизированной системы.

- создание службы охраны и физической безопасности.

- организацию механизмов контроля за перемещением сотрудников и посетителей (с использованием систем видеонаблюдения, проксимити-карт и т.д.);

- разработку и внедрение регламентов, должностных инструкций и тому подобных регулирующих документов;

- регламентацию порядка работы с носителями, содержащими конфиденциальную информацию.

Не затрагивая логики функционирования АС, данные меры при корректной и адекватной их реализации являются крайне эффективным механизмом защиты и жизненно необходимы для обеспечения безопасности любой реальной системы.

1.3.3 Идентификация и аутентификация

Напомним, что под идентификацией принято понимать присвоение субъектам доступа уникальных идентификаторов и сравнение таких идентификаторов с перечнем возможных. В свою очередь, аутентификация понимается как проверка принадлежности субъекту доступа предъявленного им идентификатора и подтверждение его подлинности.

Тем самым, задача идентификации - ответить на вопрос «кто это?», а аутентификации - «а он ли это на самом деле?».

Всё множество использующих в настоящее время методов аутентификации можно разделить на 4 большие группы:

1. Методы, основанные на знании некоторой секретной информации.

Классическим примером таких методов является парольная защита, когда в качестве средства аутентификации пользователю предлагается ввести пароль - некоторую последовательность символов. Данные методы аутентификации являются наиболее распространёнными.

2. Методы, основанные на использовании уникального предмета. В качестве такого предмета могут быть использованы смарт-карта, токен, электронный ключ и т.д.

3. Методы, основанные на использовании биометрических характеристик человека. На практике чаще всего используются одна или несколько из следующих биометрических характеристик:

- отпечатки пальцев;

- рисунок сетчатки или радужной оболочки глаза;

- тепловой рисунок кисти руки;

- фотография или тепловой рисунок лица;

- почерк (роспись);

- голос.

Наибольшее распространение получили сканеры отпечатков пальцев и рисунков сетчатки и радужной оболочки глаза.

4. Методы, основанные на информации, ассоциированной с пользователем.

Примером такой информации могут служить координаты пользователя, определяемые при помощи GPS. Данный подход вряд ли может быть использован в качестве единственного механизма аутентификации, однако вполне допустим в качестве одного из нескольких совместно используемых механизмов.

Широко распространена практика совместного использования нескольких из перечисленных выше механизмов - в таких случаях говорят о многофакторной аутентификации.

Особенности парольных систем аутентификации

При всём многообразии существующих механизмов аутентификации, наиболее распространённым из них остаётся парольная защита. Для этого есть несколько причин, из которых мы отметим следующие:

- Относительная простота реализации. Действительно, реализация механизма парольной защиты обычно не требует привлечения дополнительных аппаратных средств.

- Традиционность. Механизмы парольной защиты являются привычными для большинства пользователей автоматизированных систем и не вызывают психологического отторжения - в отличие, например, от сканеров рисунка сетчатки глаза.

В то же время для парольных систем защиты характерен парадокс, затрудняющий их эффективную реализацию: стойкие пароли мало пригодны для использования человеком.

Действительно, стойкость пароля возникает по мере его усложнения; но чем сложнее пароль, тем труднее его запомнить, и у пользователя появляется искушение записать неудобный пароль, что создаёт дополнительные каналы для его дискредитации.

Остановимся более подробно на основных угрозах безопасности парольных систем. В общем случае пароль может быть получен злоумышленником одним из трёх основных способов:

1. За счёт использования слабостей человеческого фактора. Методы получения паролей здесь могут быть самыми разными: подглядывание, подслушивание, шантаж, угрозы, наконец, использование чужих учётных записей с разрешения их законных владельцев.

2. Путём подбора. При этом используются следующие методы:

- Полный перебор. Данный метод позволяет подобрать любой пароль вне зависимости от его сложности, однако для стойкого пароля время, необходимое для данной атаки, должно значительно превышать допустимые временные ресурсы злоумышленника.

- Подбор по словарю. Значительная часть используемых на практике паролей представляет собой осмысленные слова или выражения. Существуют словари наиболее распространённых паролей, которые во многих случаях позволяют обойтись без полного перебора.

Подбор с использованием сведений о пользователе. Данный интеллектуальный метод подбора паролей основывается на том факте, что если политика безопасности системы предусматривает самостоятельное назначение паролей пользователями, то в подавляющем большинстве случаев в качестве пароля будет выбрана некая персональная информация, связанная с пользователем АС. И хотя в качестве такой информации может быть выбрано что угодно, от дня рождения тёщи и до прозвища любимой собачки, наличие информации о пользователе позволяет проверить наиболее распространённые варианты (дни рождения, имена детей и т.д.).

3. За счёт использования недостатков реализации парольных систем. К таким недостаткам реализации относятся эксплуатируемые уязвимости сетевых сервисов, реализующих те или иные компоненты парольной системы защиты, или же недекларированные возможности соответствующего программного или аппаратного обеспечения.

При построении системы парольной защиты необходимо учитывать специфику АС и руководствоваться результатами проведённого анализа рисков. В то же время можно привести следующие практические рекомендации:

- Установление минимальной длины пароля. Очевидно, что регламентация минимально допустимой длины пароля затрудняет для злоумышленника реализацию подбора пароля путём полного перебора.

- Увеличение мощности алфавита паролей. За счёт увеличения мощности (которое достигается, например, путём обязательного использования спецсимволов) также можно усложнить полный перебор.

- Проверка и отбраковка паролей по словарю. Данный механизм позволяет затруднить подбор паролей по словарю за счёт отбраковки заведомо легко подбираемых паролей.

- Установка максимального срока действия пароля. Срок действия пароля ограничивает промежуток времени, который злоумышленник может затратить на подбор пароля. Тем самым, сокращение срока действия пароля уменьшает вероятность его успешного подбора.

- Установка минимального срока действия пароля. Данный механизм предотвращает попытки пользователя незамедлительно сменить новый пароль на предыдущий.

- Отбраковка по журналу истории паролей. Механизм предотвращает повторное использование паролей - возможно, ранее скомпрометированных.

- Ограничение числа попыток ввода пароля. Соответствующий механизм затрудняет интерактивный подбор паролей.

- Принудительная смена пароля при первом входе пользователя в систему. В случае, если первичную генерацию паролей для всех пользователь осуществляет администратор, пользователю может быть предложено сменить первоначальный пароль при первом же входе в систему - в этом случае новый пароль не будет известен администратору.

- Задержка при вводе неправильного пароля. Механизм препятствует интерактивному подбору паролей.

- Запрет на выбор пароля пользователем и автоматическая генерация пароля. Данный механизм позволяет гарантировать стойкость сгенерированных паролей - однако не стоит забывать, что в этом случае у пользователей неминуемо возникнут проблемы с запоминанием паролей.

Оценка стойкости парольных систем Цирлов В.Л. Основы информационной безопасности автоматизированных систем - «Феникс», 2008 - С. 16

Оценим элементарные взаимосвязи между основными параметрами парольных систем. Введём следующие обозначения:

- A - мощность алфавита паролей;

- L - длина пароля;

- S=AL - мощность пространства паролей;

- V - скорость подбора паролей;

- T - срок действия пароля;

- P - вероятность подбора пароля в течение его срока действия.

Очевидно, что справедливо следующее соотношение:

Обычно скорость подбора паролей V и срок действия пароля T можно считать известными. В этом случае, задав допустимое значение вероятности P подбора пароля в течение его срока действия, можно определить требуемую мощность пространства паролей S.

Заметим, что уменьшение скорости подбора паролей V уменьшает вероятность подбора пароля. Из этого, в частности, следует, что если подбор паролей осуществляется путём вычисления хэш-функции и сравнение результата с заданным значением, то большую стойкость парольной системы обеспечит применение медленной хэш-функции.

Методы хранения паролей

В общем случае возможны три механизма хранения паролей в АС:

1. В открытом виде. Безусловно, данный вариант не является оптимальным, поскольку автоматически создаёт множество каналов утечки парольной информации. Реальная необходимость хранения паролей в открытом виде встречается крайне редко, и обычно подобное решение является следствием некомпетентности разработчика.

2. В виде хэш-значения. Данный механизм удобен для проверки паролей, поскольку хэш-значения однозначно связаны с паролем, но при этом сами не представляют интереса для злоумышленника.

3. В зашифрованном виде. Пароли могут быть зашифрованы с использованием некоторого криптографического алгоритма, при этом ключ шифрования может храниться:

- на одном из постоянных элементов системы;

- на некотором носителе (электронный ключ, смарт-карта и т.п.), предъявляемом при инициализации системы;

- ключ может генерироваться из некоторых других параметров безопасности АС - например, из пароля администратора при инициализации системы.

Передача паролей по сети

Наиболее распространены следующие варианты реализации:

1. Передача паролей в открытом виде. Подход крайне уязвим, поскольку пароли могут быть перехвачены в каналах связи. Несмотря на это, множество используемых на практике сетевых протоколов (например, FTP) предполагают передачу паролей в открытом виде.

2. Передача паролей в виде хэш-значений иногда встречается на практике, однако обычно не имеет смысла - хэши паролей могут быть перехвачены и повторно переданы злоумышленником по каналу связи.

3. Передача паролей в зашифрованном виде в большинстве является наиболее разумным и оправданным вариантом.

1.3.4 Разграничение доступа

Под разграничением доступа принято понимать установление полномочий субъектов для полследующего контроля санкционированного использования ресурсов, доступных в системе. Принято выделять два основных метода разграничения доступа: дискреционное и мандатное.

Дискреционным называется разграничение доступа между поименованными субъектами и поименованными объектами.

Очевидно, что вместо матрицы доступа можно использовать списки полномочий: например, каждому пользователю может быть сопоставлен список доступных ему ресурсов с соответствующими правами, или же каждому ресурсу может быть сопоставлен список пользователей с указанием их прав на доступ к данному ресурсу.

Мандатное разграничение доступа обычно реализуется как разграничение доступа по уровням секретности. Полномочия каждого пользователя задаются в соответствии с максимальным уровнем секретности, к которому он допущен. При этом все ресурсы АС должны быть классифицированы по уровням секретности.

Принципиальное различие между дискреционным и мандатным разграничением доступа состоит в следующем: если в случае дискреционного разграничения доступа права на доступ к ресурсу для пользователей определяет его владелец, то в случае мандатного разграничения доступа уровни секретности задаются извне, и владелец ресурса не может оказать на них влияния. Сам термин «мандатное» является неудачным переводом слова mandatory - «обязательный». Тем самым, мандатное разграничение доступа следует понимать как принудительное.

1.3.5 Криптографические методы обеспечения конфиденциальности информации

В целях обеспечения конфиденциальности информации используются следующие криптографические примитивы:

1. Симметричные криптосистемы.

В симметричных криптосистемах для зашифрования и расшифрования информации используется один и тот же общий секретный ключ, которым взаимодействующие стороны предварительно обмениваются по некоторому защищённому каналу.

В качестве примеров симметричных криптосистем можно привести отечественный алгоритм ГОСТ 28147-89, а также международные стандарты DES и пришедший ему на смену AES.

2. Асимметричные криптосистемы.

Асимметричные криптосистемы характерны тем, что в них используются различные ключи для зашифрования и расшифрования информации. Ключ для зашифрования (открытый ключ) можно сделать общедоступным, с тем чтобы любой желающий мог зашифровать сообщение для некоторого получателя.

Получатель же, являясь единственным обладателем ключа для расшифрования (секретный ключ), будет единственным, кто сможет расшифровать зашифрованные для него сообщения.

Примеры асимметричных криптосистем - RSA и схема Эль-Гамаля.

Симметричные и асимметричные криптосистемы, а также различные их комбинации используются в АС прежде всего для шифрования данных на различных носителях и для шифрования трафика.

защита информация сеть угроза

1.3.6 Методы защиты внешнего периметра

Подсистема защиты внешнего периметра автоматизированной системы обычно включает в себя два основных механизма: средства межсетевого экранирования и средства обнаружения вторжений. Решая родственные задачи, эти механизмы часто реализуются в рамках одного продукта и функционируют в качестве единого целого. В то же время каждый из механизмов является самодостаточным и заслуживает отдельного рассмотрения.

Межсетевое экранирование http://www.infotecs.ru

Межсетевой экран (МЭ) выполняет функции разграничения информационных потоков на границе защищаемой автоматизированной системы. Это позволяет:

- повысить безопасность объектов внутренней среды за счёт игнорирования неавторизованных запросов из внешней среды;

- контролировать информационные потоки во внешнюю среду;

- обеспечить регистрацию процессов информационного обмена.

Контроль информационных потоков производится посредством фильтрации информации, т.е. анализа её по совокупности критериев и принятия решения о распространении в АС или из АС.

В зависимости от принципов функционирования, выделяют несколько классов межсетевых экранов. Основным классификационным признаком является уровень модели ISO/OSI, на котором функционирует МЭ.

1. Фильтры пакетов.

Простейший класс межсетевых экранов, работающих на сетевом и транспортном уровнях модели ISO/OSI. Фильтрация пакетов обычно осуществляется по следующим критериям:

- IP-адрес источника;

- IP-адрес получателя;

- порт источника;

- порт получателя;

- специфические параметры заголовков сетевых пакетов.

Фильтрация реализуется путём сравнения перечисленных параметров заголовков сетевых пакетов с базой правил фильтрации.

2. Шлюзы сеансового уровня

Данные межсетевые экраны работают на сеансовом уровне модели ISO/OSI. В отличие от фильтров пакетов, они могут контролировать допустимость сеанса связи, анализируя параметры протоколов сеансового уровня.

3. Шлюзы прикладного уровня

Межсетевые экраны данного класса позволяют фильтровать отдельные виды команд или наборы данных в протоколах прикладного уровня. Для этого используются прокси-сервисы - программы специального назначения, управляющие трафиком через межсетевой экран для определённых высокоуровневых протоколов (http, ftp, telnet и т.д.).

Порядок использования прокси-сервисов показан в Приложении Г.

Если без использование прокси-сервисов сетевое соединение устанавливается между взаимодействующими сторонами A и B напрямую, то в случае использования прокси-сервиса появляется посредник - прокси-сервер, который самостоятельно взаимодействует со вторым участником информационного обмена. Такая схема позволяет контролировать допустимость использования отдельных команд протоколов высокого уровня, а также фильтровать данные, получаемые прокси-сервером извне; при этом прокси-сервер на основании установленных политик может принимать решение о возможности или невозможности передачи этих данных клиенту A.

4. Межсетевые экраны экспертного уровня.

Наиболее сложные межсетевые экраны, сочетающие в себе элементы всех трёх приведённых выше категорий. Вместо прокси-сервисов в таких экранах используются алгоритмы распознавания и обработки данных на уровне приложений.

Большинство используемых в настоящее время межсетевых экранов относятся к категории экспертных. Наиболее известные и распространённые МЭ - CISCO PIX и CheckPoint FireWall-1.

Системы обнаружения вторжений

Обнаружение вторжений представляет собой процесс выявления несанкционированного доступа (или попыток несанкционированного доступа) к ресурсам автоматизированной системы. Система обнаружения вторжений (Intrusion Detection System, IDS) в общем случае представляет собой программно-аппаратный комплекс, решающий данную задачу.

Существуют две основных категории систем IDS:

1. IDS уровня сети.

В таких системах сенсор функционирует на выделенном для этих целей хосте в защищаемом сегменте сети. Обычно сетевой адаптер данного хоста функционирует в режиме прослушивания (promiscuous mode), что позволяет анализировать весь проходящий в сегменте сетевой трафик.

2. IDS уровня хоста.

В случае, если сенсор функционирует на уровне хоста, для анализа может быть использована следующая информация:

- записи стандартных средств протоколирования операционной системы;

- информация об используемых ресурсах;

- профили ожидаемого поведения пользователей.

Каждый из типов IDS имеет свои достоинства и недостатки. IDS уровня сети не снижают общую производительность системы, однако IDS уровня хоста более эффективно выявляют атаки и позволяют анализировать активность, связанную с отдельным хостом. На практике целесообразно использовать системы, совмещающие оба описанных подхода.

Существуют разработки, направленные на использование в системах IDS методов искусственного интеллекта. Стоит отметить, что в настоящее время коммерческие продукты не содержат таких механизмов.

1.3.7 Протоколирование и аудит active audit .narod.ru

Подсистема протоколирования и аудита является обязательным компонентом любой АС. Протоколирование, или регистрация, представляет собой механизм подотчётности системы обеспечения информационной безопасности, фиксирующий все события, относящиеся к вопросам безопасности. В свою очередь, аудит - это анализ протоколируемой информации с целью оперативного выявления и предотвращения нарушений режима информационной безопасности. Системы обнаружения вторжений уровня хоста можно рассматривать как системы активного аудита.

Назначение механизма регистрации и аудита:

- обеспечение подотчётности пользователей и администраторов;

- обеспечение возможности реконструкции последовательности событий (что бывает необходимо, например, при расследовании инцидентов, связанных с информационной безопасностью);

- обнаружение попыток нарушения информационной безопасности;

- предоставление информации для выявления и анализа технических проблем, не связанных с безопасностью.

Протоколируемые данные помещаются в регистрационный журнал, который представляет собой хронологически упорядоченную совокупность записей результатов деятельности субъектов АС, достаточную для восстановления, просмотра и анализа последовательности действий с целью контроля конечного результата.

Поскольку системные журналы являются основным источником информации для последующего аудита и выявления нарушений безопасности, вопросу защиты системных журналов от несанкционированной модификации должно уделяться самое пристальное внимание. Система протоколирования должна быть спроектирована таким образом, чтобы ни один пользователь (включая администраторов!) не мог произвольным образом модифицировать записи системных журналов.

Не менее важен вопрос о порядке хранения системных журналов. Поскольку файлы журналов хранятся на том или ином носителе, неизбежно возникает проблема переполнения максимально допустимого объёма системного журнала. При этом реакция системы может быть различной, например:

- система может быть заблокирована вплоть до решения проблемы с доступным дисковым пространством;

- могут быть автоматически удалены самые старые записи системных журналов;

- система может продолжить функционирование, временно приостановив протоколирование информации.

Безусловно, последний вариант в большинстве случаев является неприемлемым, и порядок хранения системных журналов должен быть чётко регламентирован в политике безопасности организации.

1.4 Построение систем защиты от угроз нарушения целостности

1.4.1 Принципы обеспечения целостности

Большинство механизмов, реализующих защиту информации от угроз нарушения конфиденциальности, в той или иной степени способствуют обеспечению целостности информации. В данном разделе мы остановимся более подробно на механизмах, специфичных для подсистемы обеспечения целостности. Сформулируем для начала основные принципы обеспечения целостности, сформулированные Кларком и Вилсоном:

1. Корректность транзакций.

Принцип требует обеспечения невозможности произвольной модификации данных пользователем. Данные должны модифицироваться исключительно таким образом, чтобы обеспечивалось сохранение их целостности.

2. Аутентификация пользователей.

Изменение данных может осуществляться только аутентифицированными для выполнения соответствующих действий пользователями.

3. Минимизация привилегий.

Процессы должны быть наделены теми и только теми привилегиями в АС, которые минимально достаточны для их выполнения.

4. Разделение обязанностей.

Для выполнения критических или необратимых операций требуется участие нескольких независимых пользователей.

На практике разделение обязанностей может быть реализовано либо исключительно организационными методами, либо с использованием криптографических схем разделения секрета.

5. Аудит произошедших событий.

Данный принцип требует создания механизма подотчётности пользователей, позволяющего отследить моменты нарушения целостности информации.

6. Объективный контроль.

Необходимо реализовать оперативное выделение данных, контроль целостности которых является оправданным.

Действительно, в большинстве случаев строго контролировать целостность всех данных, присутствующих в системе, нецелесообразно хотя бы из соображений производительности: контроль целостности является крайне ресурсоёмкой операцией.

7. Управление передачей привилегий.

Порядок передачи привилегий должен полностью соответствовать организационной структуре предприятия.

Перечисленные принципы позволяют сформировать общую структуру системы защиты от угроз нарушения целостности (Приложение Д).

Как видно из Приложения Д, принципиально новыми по сравнению с сервисами, применявшимися для построения системы защиты от угроз нарушения конфиденциальности, являются криптографические механизмы обеспечения целостности.

Отметим, что механизмы обеспечения корректности транзакций также могут включать в семя криптографические примитивы.

1.4.2 Криптографические методы обеспечения целостности информации

При построении систем защиты от угроз нарушения целостности информации используются следующие криптографические примитивы:

- цифровые подписи;

- криптографические хэш-функции;

- коды проверки подлинности.

Цифровые подписи

Цифровая подпись представляет собой механизм подтверждения подлинности и целостности цифровых документов. Во многом она является аналогом рукописной подписи - в частности, к ней предъявляются практически аналогичные требования:

1. Цифровая подпись должна позволять доказать, что именно законный автор, и никто другой, сознательно подписал документ.

2. Цифровая подпись должна представлять собой неотъемлемую часть документа.

Должно быть невозможно отделить подпись от документа и использовать её для подписвания других документов.

3. Цифровая подпись должна обеспечивать невозможность изменения подписанного документа (в том числе и для самого автора!).

4. Факт подписывания документа должен быть юридически доказуемым. Должен быть невозможным отказ от авторства подписанного документа.

В простейшем случае для реализации цифровой подписи может быть использован механизм, аналогичный асимметричной криптосистеме. Разница будет состоять в том, что для зашифрования (являющегося в данном случае подписыванием) будет использован секретный ключ, а для расшиврования, играющего роль проверки подписи, - общеизвестный открытый ключ.

Порядок использования цифровой подписи в данном случае будет следующим:

1. Документ зашифровывается секретным ключом подписывающего, и зашифрованная копия распространяется вместе с оригиналом документа в качестве цифровой подписи.

2. Получатель, используя общедоступный открытый ключ подписывающего, расшифровывает подпись, сличает её с оригиналом и убеждается, что подпись верна.

Нетрудно убедиться, что данная реализация цифровой подписи полностью удовлетворяет всем приведённым выше требованиям, но в то же время имеет принципиальный недостаток: объём передаваемого сообщения возрастает как минимум в два раза. Избавиться от этого недостатка позволяет использование хэш-функций.

Криптографические хэш-функции

Функция вида y=f(x) называется криптографической хэш-функцией, если она удовлетворяет следующим свойствам:

1. На вход хэш-функции может поступать последовательность данных произвольной длины, результат же (называемый хэш, или дайджест) имеет фиксированную длину.

2. Значение y по имеющемуся значению x вычисляется за полиномиальное время, а значение x по имеющемуся значению y почти во всех случаях вычислить невозможно.

3. Вычислительно невозможно найти два входных значения хэш-функции, дающие идентичные хэши.

4. При вычислении хэша используется вся информация входной последовательности.

5. Описание функции является открытым и общедоступным.

Покажем, как хэш-функции могут быть использованы в схемах цифровой подписи. Если подписывать не само сообщение, а его хэш, то можно значительно сократить объём передаваемых данных.

Подписав вместо исходного сообщения его хэш, мы передаём результат вместе с исходным сообщением. Получатель расшифровывает подпись и сравнивает полученный результат с хэшем сообщения. В случае совпадения делается вывод о том, что подпись верна.

2 . Программные средства защиты информации в КС

Под программными средствами защиты информации понимают специальные программы, включаемые в состав программного обеспечения КС исключительно для выполнения защитных функций.

К основным программным средствам защиты информации относятся:

* программы идентификации и аутентификации пользователей КС;

* программы разграничения доступа пользователей к ресурсам КС;

* программы шифрования информации;

* программы защиты информационных ресурсов (системного и прикладного программного обеспечения, баз данных, компьютерных средств обучения и т. п.) от несанкционированного изменения, использования и копирования.

Надо понимать, что под идентификацией, применительно к обеспечению информационной безопасности КС, понимают однозначное распознавание уникального имени субъекта КС. Аутентификация означает подтверждение того, что предъявленное имя соответствует данному субъекту (подтверждение подлинности субъекта) 8 Биячуев Т.А. Безопасность корпоративных сетей. Учебное пособие / под ред. Л.Г.Осовецкого - СПб.: СПбГУ ИТМО, 2004, с 64. .

Также к программным средствам защиты информации относятся:

* программы уничтожения остаточной информации (в блоках оперативной памяти, временных файлах и т. п.);

* программы аудита (ведения регистрационных журналов) событий, связанных с безопасностью КС, для обеспечения возможности восстановления и доказательства факта происшествия этих событий;

* программы имитации работы с нарушителем (отвлечения его на получение якобы конфиденциальной информации);

* программы тестового контроля защищенности КС и др.

К преимуществам программных средств защиты информации относятся:

* простота тиражирования;

* гибкость (возможность настройки на различные условия применения, учитывающие специфику угроз информационной безопасности конкретных КС);

* простота применения -- одни программные средства, например шифрования, работают в «прозрачном» (незаметном для пользователя) режиме, а другие не требуют от пользователя ни каких новых (по сравнению с другими программами) навыков;

* практически неограниченные возможности их развития путем внесения изменений для учета новых угроз безопасности информации.

К недостаткам программных средств защиты информации относятся:

* снижение эффективности КС за счет потребления ее ресурсов, требуемых для функционирование программ защиты;

* более низкая производительность (по сравнению с выполняющими аналогичные функции аппаратными средствами защиты, например шифрования);

* пристыкованность многих программных средств защиты (а не их встроенность в программное обеспечение КС, рис. 4 и 5), что создает для нарушителя принципиальную возможность их обхода;

* возможность злоумышленного изменения программных средств защиты в процессе эксплуатации КС.

2 .1 Безопасность на уровне операционной системы

Операционная система является важнейшим программным компонентом любой вычислительной машины, поэтому от уровня реализации политики безопасности в каждой конкретной ОС во многом зависит и общая безопасность информационной системы.

Операционная система MS-DOS является ОС реального режима микропроцессора Intel, а потому здесь не может идти речи о разделении оперативной памяти между процессами. Все резидентные программы и основная программа используют общее пространство ОЗУ. Защита файлов отсутствует, о сетевой безопасности трудно сказать что-либо определенное, поскольку на том этапе развития ПО драйверы для сетевого взаимодействия разрабатывались не фирмой MicroSoft, а сторонними разработчиками.

Семейство операционных систем Windows 95, 98, Millenium - это клоны, изначально ориентированные на работу в домашних ЭВМ. Эти операционные системы используют уровни привилегий защищенного режима, но не делают никаких дополнительных проверок и не поддерживают системы дескрипторов безопасности. В результате этого любое приложение может получить доступ ко всему объему доступной оперативной памяти как с правами чтения, так и с правами записи. Меры сетевой безопасности присутствуют, однако, их реализация не на высоте. Более того, в версии Windows 95 была допущена основательная ошибка, позволяющая удаленно буквально за несколько пакетов приводить к "зависанию" ЭВМ, что также значительно подорвало репутацию ОС, в последующих версиях было сделано много шагов по улучшению сетевой безопасности этого клона Зима В., Молдовян А., Молдовян Н. Безопасность глобальных сетевых технологий. Серия "Мастер". - СПб.: БХВ-Петербург, 2001, с. 124. .

Поколение операционных систем Windows NT, 2000 уже значительно более надежная разработка компании MicroSoft. Они являются действительно многопользовательскими системами, надежно защищающими файлы различных пользователей на жестком диске (правда, шифрование данных все же не производится и файлы можно без проблем прочитать, загрузившись с диска другой операционной системы - например, MS-DOS). Данные ОС активно используют возможности защищенного режима процессоров Intel, и могут надежно защитить данные и код процесса от других программ, если только он сам не захочет предоставлять к ним дополнительного доступа извне процесса.

За долгое время разработки было учтено множество различных сетевых атак и ошибок в системе безопасности. Исправления к ним выходили в виде блоков обновлений (англ. service pack).

Подобные документы

    Изучение основных методов защиты от угроз конфиденциальности, целостности и доступности информации. Шифрование файлов являющихся конфиденциальной собственностью. Использование цифровой подписи, хеширование документов. Защита от сетевых атак в интернете.

    курсовая работа , добавлен 13.12.2015

    Классификация информации по значимости. Категории конфиденциальности и целостности защищаемой информации. Понятие информационной безопасности, источники информационных угроз. Направления защиты информации. Программные криптографические методы защиты.

    курсовая работа , добавлен 21.04.2015

    Понятие защиты умышленных угроз целостности информации в компьютерных сетях. Характеристика угроз безопасности информации: компрометация, нарушение обслуживания. Характеристика ООО НПО "Мехинструмент", основные способы и методы защиты информации.

    дипломная работа , добавлен 16.06.2012

    Проблемы защиты информации в информационных и телекоммуникационных сетях. Изучение угроз информации и способов их воздействия на объекты защиты информации. Концепции информационной безопасности предприятия. Криптографические методы защиты информации.

    дипломная работа , добавлен 08.03.2013

    Необходимость защиты информации. Виды угроз безопасности ИС. Основные направления аппаратной защиты, используемые в автоматизированных информационных технологиях. Криптографические преобразования: шифрование и кодирование. Прямые каналы утечки данных.

    курсовая работа , добавлен 22.05.2015

    Понятие информационной безопасности, понятие и классификация, виды угроз. Характеристика средств и методов защиты информации от случайных угроз, от угроз несанкционированного вмешательства. Криптографические методы защиты информации и межсетевые экраны.

    курсовая работа , добавлен 30.10.2009

    Виды умышленных угроз безопасности информации. Методы и средства защиты информации. Методы и средства обеспечения безопасности информации. Криптографические методы защиты информации. Комплексные средства защиты.

    реферат , добавлен 17.01.2004

    Развитие новых информационных технологий и всеобщая компьютеризация. Информационная безопасность. Классификация умышленных угроз безопасности информации. Методы и средства защиты информации. Криптографические методы защиты информации.

    курсовая работа , добавлен 17.03.2004

    Концепция обеспечения безопасности информации в ООО "Нейрософт"; разработка системы комплексной защиты. Информационные объекты фирмы, степень их конфиденциальности, достоверности, целостности; определение источников угроз и рисков, выбор средств защиты.

    курсовая работа , добавлен 23.05.2013

    Основные виды угроз безопасности экономических информационных систем. Воздействие вредоносных программ. Шифрование как основной метод защиты информации. Правовые основы обеспечения информационной безопасности. Сущность криптографических методов.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

1. Средства защиты информации

2. Аппаратные средства защиты информации

2.1 Задачи аппаратного обеспечения защиты информации

2.2 Виды аппаратных средств защиты информации

3. Программные средства защиты информации

3.1 Средства архивации информации

3.2 Антивирусные программы

3.3 Криптографические средства

3.4 Идентификация и аутентификация пользователя

3.5 Защита информации в КС от несанкционированного доступа

3.6 Другие программные средства защиты информации

Заключение

Список использованных источников

Вв едение

По мере развития и усложнения средств, методов и форм автоматизации процессов обработки информации повышается уязвимость защиты информации.

Основными факторами, способствующими повышению этой уязвимости, являются:

· Резкое увеличение объемов информации, накапливаемой, хранимой и обрабатываемой с помощью ЭВМ и других средств автоматизации;

· Сосредоточение в единых базах данных информации различного назначения и различных принадлежностей;

· Резкое расширение круга пользователей, имеющих непосредственный доступ к ресурсам вычислительной системы и находящимся в ней данных;

· Усложнение режимов функционирования технических средств вычислительных систем: широкое внедрение многопрограммного режима, а также режимов разделения времени и реального времени;

· Автоматизация межмашинного обмена информацией, в том числе и на больших расстояниях.

В этих условиях возникает уязвимость двух видов: с одной стороны, возможность уничтожения или искажения информации (т.е. нарушение ее физической целостности), а с другой - возможность несанкционированного использования информации (т.е. опасность утечки информации ограниченного пользования).

Основными потенциально возможными каналами утечки информации являются:

· Прямое хищение носителей и документов;

· Запоминание или копирование информации;

· Несанкционированное подключение к аппаратуре и линиям связи или незаконное использование "законной" (т.е. зарегистрированной) аппаратуры системы (чаще всего терминалов пользователей).

1. Средства защиты информации

Средства защиты информации - это совокупность инженерно-технических, электрических, электронных, оптических и других устройств и приспособлений, приборов и технических систем, а также иных вещных элементов, используемых для решения различных задач по защите информации, в том числе предупреждения утечки и обеспечения безопасности защищаемой информации.

В целом средства обеспечения защиты информации в части предотвращения преднамеренных действий в зависимости от способа реализации можно разделить на группы:

· Аппаратные (технические) средства. Это различные по типу устройства (механические, электромеханические, электронные и др.), которые аппаратными средствами решают задачи защиты информации. Они либо препятствуют физическому проникновению, либо, если проникновение все же состоялось, доступу к информации, в том числе с помощью ее маскировки. Первую часть задачи решают замки, решетки на окнах, сторожа, защитная сигнализация и др. Вторую -- генераторы шума, сетевые фильтры, сканирующие радиоприемники и множество других устройств, «перекрывающих» потенциальные каналы утечки информации или позволяющих их обнаружить. Преимущества технических средств связаны с их надежностью, независимостью от субъективных факторов, высокой устойчивостью к модификации. Слабые стороны -- недостаточная гибкость, относительно большие объем и масса, высокая стоимость.

· Программные средства включают программы для идентификации пользователей, контроля доступа, шифрования информации, удаления остаточной (рабочей) информации типа временных файлов, тестового контроля системы защиты и др. Преимущества программных средств -- универсальность, гибкость, надежность, простота установки, способность к модификации и развитию. Недостатки -- ограниченная функциональность сети, использование части ресурсов файл-сервера и рабочих станций, высокая чувствительность к случайным или преднамеренным изменениям, возможная зависимость от типов компьютеров (их аппаратных средств).

· Смешанные аппаратно-программные средства реализуют те же функции, что аппаратные и программные средства в отдельности, и имеют промежуточные свойства.

· Организационные средства складываются из организационно-технических (подготовка помещений с компьютерами, прокладка кабельной системы с учетом требований ограничения доступа к ней и др.) и организационно-правовых (национальные законодательства и правила работы, устанавливаемые руководством конкретного предприятия). Преимущества организационных средств состоят в том, что они позволяют решать множество разнородных проблем, просты в реализации, быстро реагируют на нежелательные действия в сети, имеют неограниченные возможности модификации и развития. Недостатки -- высокая зависимость от субъективных факторов, в том числе от общей организации работы в конкретном подразделении.

По степени распространения и доступности выделяются программные средства, другие средства применяются в тех случаях, когда требуется обеспечить дополнительный уровень защиты информации.

2. Аппаратные средства защиты информации

К аппаратным средствам защиты относятся различные электронные, электронно-механические, электронно-оптические устройства. К настоящему времени разработано значительное число аппаратных средств различного назначения, однако наибольшее распространение получают следующие:

· специальные регистры для хранения реквизитов защиты: паролей, идентифицирующих кодов, грифов или уровней секретности;

· устройства измерения индивидуальных характеристик человека (голоса, отпечатков) с целью его идентификации;

· схемы прерывания передачи информации в линии связи с целью периодической проверки адреса выдачи данных.

· устройства для шифрования информации (криптографические методы).

Для защиты периметра информационной системы создаются:

· системы охранной и пожарной сигнализации;

· системы цифрового видео наблюдения;

· системы контроля и управления доступом.

Защита информации от ее утечки техническими каналами связи обеспечивается следующими средствами и мероприятиями:

· использованием экранированного кабеля и прокладка проводов и кабелей в экранированных конструкциях;

· установкой на линиях связи высокочастотных фильтров;

· построение экранированных помещений («капсул»);

· использование экранированного оборудования;

· установка активных систем зашумления;

· создание контролируемых зон.

2.1 Задачи аппаратного обеспе чения защиты инфо рмации

Использование аппаратных средств защиты информации позволяет решать следующие задачи:

· проведение специальных исследований технических средств на наличие возможных каналов утечки информации;

· выявление каналов утечки информации на разных объектах и в помещениях;

· локализация каналов утечки информации;

· поиск и обнаружение средств промышленного шпионажа;

· противодействие НСД (несанкционированному доступу) к источникам конфиденциальной информации и другим действиям.

По назначению аппаратные средства классифицируют на средства обнаружения, средства поиска и детальных измерений, средства активного и пассивного противодействия. При этом по тех возможностям средства защиты информации могут быть общего на значения, рассчитанные на использование непрофессионалами с целью получения общих оценок, и профессиональные комплексы, позволяющие проводить тщательный поиск, обнаружение и измерения все характеристик средств промышленного шпионажа.

Поисковую аппаратуру можно подразделить на аппаратуру поиска средств съема информации и исследования каналов ее утечки.

Аппаратура первого типа направлена на поиск и локализацию уже внедренных злоумышленниками средств НСД. Аппаратура второго типа предназначается для выявления каналов утечки информации. Определяющими для такого рода систем являются оперативность исследования и надежность полученных результатов.

Профессиональная поисковая аппаратура, как правило, очень дорога, и требует высокой квалификации работающего с ней специалиста. В связи с этим, позволить ее могут себе организации, постоянно проводящие соответствующие обследования. Так что если Вам нужно провести полноценное обследование - прямая дорога к ним.

Конечно, это не значит, что нужно отказаться от использования средств поиска самостоятельно. Но доступные поисковые средства достаточно просты и позволяют проводить профилактические мероприятия в промежутке между серьезными поисковыми обследованиями.

2.2 Виды аппаратных средств защиты информации

Специализированная сеть хранения SAN (Storage Area Network) обеспечивает данным гарантированную полосу пропускания, исключает возникновение единой точки отказа системы, допускает практически неограниченное масштабирование как со стороны серверов, так и со стороны информационных ресурсов. Для реализации сетей хранения наряду с популярной технологией Fiber Channel в последнее время все чаще используются устройства iSCSI.

Дисковые хранилища отличаются высочайшей скоростью доступа к данным за счет распределения запросов чтения/записи между несколькими дисковыми накопителями. Применение избыточных компонентов и алгоритмов в RAID массивах предотвращает остановку системы из-за выхода из строя любого элемента - так повышается доступность. Доступность, один из показателей качества информации, определяет долю времени, в течение которого информация готова к использованию, и выражается в процентном виде: например, 99,999% («пять девяток») означает, что в течение года допускается простой информационной системы по любой причине не более 5 минут. Удачным сочетанием большой емкости, высокой скорости и приемлемой стоимости в настоящее время являются решения с использованием накопителей Serial ATA и SATA 2 .

Ленточные накопители (стримеры, автозагрузчики и библиотеки) по-прежнему считаются самым экономичным и популярным решением создания резервной копии. Они изначально созданы для хранения данных, предоставляют практически неограниченную емкость (за счет добавления картриджей), обеспечивают высокую надежность, имеют низкую стоимость хранения, позволяют организовать ротацию любой сложности и глубины, архивацию данных, эвакуацию носителей в защищенное место за пределами основного офиса. С момента своего появления магнитные ленты прошли пять поколений развития, на практике доказали свое преимущество и по праву являются основополагающим элементом практики backup (резервного копирования).

Помимо рассмотренных технологий следует также упомянуть обеспечение физической защиты данных (разграничение и контроль доступа в помещения, видеонаблюдение, охранная и пожарная сигнализация), организация бесперебойного электроснабженияоборудования.

Рассмотрим примеры аппаратных средств.

1) eToken - Электронный ключ eToken - персональное средство авторизации, аутентификации и защищённого хранения данных, аппаратно поддерживающее работу с цифровыми сертификатами и электронной цифровой подписью (ЭЦП). eToken выпускается в форм-факторах USB-ключа, смарт-карты или брелока. Модель eToken NG-OTP имеет встроенный генератор одноразовых паролей. Модель eToken NG-FLASH имеет встроенный модуль flash-памяти объемом до 4 ГБ. Модель eToken PASS содержит только генератор одноразовых паролей. Модель eToken PRO (Java) аппаратно реализует генерацию ключей ЭЦП и формирование ЭЦП. Дополнительно eToken могут иметь встроенные бесконтактные радио-метки (RFID-метки), что позволяет использовать eToken также и для доступа в помещения.

Модели eToken следует использовать для аутентификации пользователей и хранения ключевой информации в автоматизированных системах, обрабатывающих конфиденциальную информацию, до класса защищенности 1Г включительно. Они являются рекомендуемыми носителями ключевой информации для сертифицированных СКЗИ (КриптоПро CSP, Крипто-КОМ, Домен-К, Верба-OW и др.)

2) Комбинированный USB-ключ eToken NG-FLASH - одно из решений в области информационной безопасности от компании Aladdin. Он сочетает функционал смарт-карты с возможностью хранения больших объёмов пользовательских данных во встроенном модуле. Он сочетает функционал смарт-карты с возможностью хранения больших пользовательских данных во встроенном модуле flash-памяти. eToken NG-FLASH также обеспечивает возможность загрузки операционной системы компьютера и запуска пользовательских приложений из flash-памяти.

Возможные модификации:

По объёму встроенного модуля flash-памяти: 512 МБ; 1, 2 и 4 ГБ;

Сертифицированная версия (ФСТЭК России);

По наличию встроенной радио-метки;

По цвету корпуса.

3. Программные средства защиты информации

Программные средства - это объективные формы представления совокупности данных и команд, предназначенных для функционирования компьютеров и компьютерных устройств с целью получения определенного результата, а также подготовленные и зафиксированные на физическом носителе материалы, полученные в ходе их разработок, и порождаемые ими аудиовизуальные отображения

Программными называются средства защиты данных, функционирующие в составе программного обеспечения. Среди них можно выделить и подробнее рассмотреть следующие:

· средства архивации данных;

· антивирусные программы;

· криптографические средства;

· средства идентификации и аутентификации пользователей;

· средства управления доступом;

· протоколирование и аудит.

Как примеры комбинаций вышеперечисленных мер можно привести:

· защиту баз данных;

· защиту операционных систем;

· защиту информации при работе в компьютерных сетях.

3 .1 Средства архивации информации

Иногда резервные копии информации приходится выполнять при общей ограниченности ресурсов размещения данных, например владельцам персональных компьютеров. В этих случаях используют программную архивацию. Архивация это слияние нескольких файлов и даже каталогов в единый файл -- архив, одновременно с сокращением общего объема исходных файлов путем устранения избыточности, но без потерь информации, т. е. с возможностью точного восстановления исходных файлов. Действие большинства средств архивации основано на использовании алгоритмов сжатия, предложенных в 80-х гг. Абрахамом Лемпелем и Якобом Зивом. Наиболее известны и популярны следующие архивные форматы:

· ZIP, ARJ для операционных систем DOS и Windows;

· TAR для операционной системы Unix;

· межплатформный формат JAR (Java ARchive);

· RAR (все время растет популярность этого формата, так как разработаны программы позволяющие использовать его в операционных системах DOS, Windows и Unix).

Пользователю следует лишь выбрать для себя подходящую программу, обеспечивающую работу с выбранным форматом, путем оценки ее характеристик - быстродействия, степени сжатия, совместимости с большим количеством форматов, удобности интерфейса, выбора операционной системы и т.д. Список таких программ очень велик - PKZIP, PKUNZIP, ARJ, RAR, WinZip, WinArj, ZipMagic, WinRar и много других. Большинство из этих программ не надо специально покупать, так как они предлагаются как программы условно-бесплатные (Shareware) или свободного распространения (Freeware). Также очень важно установить постоянный график проведения таких работ по архивации данных или выполнять их после большого обновления данных.

3 .2 Антивирусные программы

Э то программы разработанные для защиты информации от вирусов. Неискушенные пользователи обычно считают, что компьютерный вирус - это специально написанная небольшая по размерам программа, которая может "приписывать" себя к другим программам (т.е. "заражать" их), а также выполнять нежелательные различные действия на компьютере. Специалисты по компьютерной вирусологии определяют, что обязательным (необходимым) свойством компьютерного вируса является возможность создавать свои дубликаты (не обязательно совпадающие с оригиналом) и внедрять их в вычислительные сети и/или файлы, системные области компьютера и прочие выполняемые объекты. При этом дубликаты сохраняют способность к дальнейшему распространению. Следует отметить, что это условие не является достаточным, т.е. окончательным. Вот почему точного определения вируса нет до сих пор, и вряд ли оно появится в обозримом будущем. Следовательно, нет точно определенного закона, по которому “хорошие” файлы можно отличить от “вирусов”. Более того, иногда даже для конкретного файла довольно сложно определить, является он вирусом или нет.

Особую проблему представляют собой компьютерные вирусы. Это отдельный класс программ, направленных на нарушение работы системы и порчу данных. Среди вирусов выделяют ряд разновидностей. Некоторые из них постоянно находятся в памяти компьютера, некоторые производят деструктивные действия разовыми "ударами".

Существует так же целый класс программ, внешне вполне благопристойных, но на самом деле портящих систему. Такие программы называют "троянскими конями". Одним из основных свойств компьютерных вирусов является способность к "размножению" - т.е. самораспространению внутри компьютера и компьютерной сети.

С тех пор, как различные офисные прикладные программные средства получили возможность работать со специально для них написанными программами (например, для Microsoft Office можно писать приложения на языке Visual Basic) появилась новая разновидность вредоносных программ - МакроВирусы. Вирусы этого типа распространяются вместе с обычными файлами документов, и содержатся внутри них в качестве обычных подпрограмм.

С учетом мощного развития средств коммуникации и резко возросших объемов обмена данными проблема защиты от вирусов становится очень актуальной. Практически, с каждым полученным, например, по электронной почте документом может быть получен макровирус, а каждая запущенная программа может (теоретически) заразить компьютер и сделать систему неработоспособной.

Поэтому среди систем безопасности важнейшим направлением является борьба с вирусами. Существует целый ряд средств, специально предназначенных для решения этой задачи. Некоторые из них запускаются в режиме сканирования и просматривают содержимое жестких дисков и оперативной памяти компьютера на предмет наличия вирусов. Некоторые же должны быть постоянно запущены и находиться в памяти компьютера. При этом они стараются следить за всеми выполняющимися задачами.

На казахстанском рынке программного обеспечения наибольшую популярность завоевал пакет AVP, разработанный лабораторией антивирусных систем Касперского. Это универсальный продукт, имеющий версии под самые различные операционные системы. Также существуют следующие виды: Acronis AntiVirus, AhnLab Internet Security, AOL Virus Protection, ArcaVir, Ashampoo AntiMalware, Avast!, Avira AntiVir, A-square anti-malware, BitDefender, CA Antivirus, Clam Antivirus, Command Anti-Malware, Comodo Antivirus, Dr.Web, eScan Antivirus, F-Secure Anti-Virus, G-DATA Antivirus, Graugon Antivirus, IKARUS virus.utilities, Антивирус Касперского, McAfee VirusScan, Microsoft Security Essentials, Moon Secure AV, Multicore antivirus, NOD32, Norman Virus Control, Norton AntiVirus, Outpost Antivirus, Panda и т.д.

Методы обнаружения и удаления компьютерных вирусов.

Способы противодействия компьютерным вирусам можно разделить на несколько групп:

· профилактика вирусного заражения и уменьшение предполагаемого ущерба от такого заражения;

· методика использования антивирусных программ, в том числе обезвреживание и удаление известного вируса;

Способы обнаружения и удаления неизвестного вируса:

· Профилактика заражения компьютера;

· Восстановление пораженных объектов;

· Антивирусные программы.

Профилактика заражения компьютера.

Одним из основных методов борьбы с вирусами является, как и в медицине, своевременная профилактика. Компьютерная профилактика предполагает соблюдение небольшого числа правил, которое позволяет значительно снизить вероятность заражения вирусом и потери каких-либо данных.

Для того чтобы определить основные правила компьютерной гигиены, необходимо выяснить основные пути проникновения вируса в компьютер и компьютерные сети.

Основным источником вирусов на сегодняшний день является глобальная сеть Internet. Наибольшее число заражений вирусом происходит при обмене письмами в форматах Word. Пользователь зараженного макро-вирусом редактора, сам того не подозревая, рассылает зараженные письма адресатам, которые в свою очередь отправляют новые зараженные письма и т.д. Выводы - следует избегать контактов с подозрительными источниками информации и пользоваться только законными (лицензионными) программными продуктами.

Восстановление пораженных объектов

В большинстве случаев заражения вирусом процедура восстановления зараженных файлов и дисков сводится к запуску подходящего антивируса, способного обезвредить систему. Если же вирус неизвестен ни одному антивирусу, то достаточно отослать зараженный файл фирмам-производителям антивирусов и через некоторое время (обычно -- несколько дней или недель) получить лекарство - “update” против вируса. Если же время не ждет, то обезвреживание вируса придется произвести самостоятельно. Для большинства пользователей необходимо иметь резервные копии своей информации.

Основная питательная среда для массового распространения вируса в ЭВМ - это:

· слабая защищенность операционной системы (ОС);

· наличие разнообразной и довольно полной документации по OC и “железу” используемой авторами вирусов;

· широкое распространение этой ОС и этого “железа”.

3 .3 Криптографические средства

криптографический архивация антивирусный компьютерный

Механизмами шифрования данных для обеспечения информационной безопасности общества является криптографическая защита информациипосредством криптографического шифрования.

Криптографические методы защиты информации применяются для обработки, хранения и передачи информации на носителях и по сетям связи. Криптографическая защита информации при передаче данных на большие расстояния является единственно надежным способом шифрования.

Криптография - это наука, которая изучает и описывает модель информационной безопасности данных. Криптография открывает решения многих проблем информационной безопасности сети: аутентификация, конфиденциальность, целостность и контроль взаимодействующих участников.

Термин «Шифрование» означает преобразование данных в форму, не читабельную для человека и программных комплексов без ключа шифрования-расшифровки. Криптографические методы защиты информации дают средства информационной безопасности, поэтому она является частью концепции информационной безопасности.

Криптографическая защита информации (конфиденциальность)

Цели защиты информации в итоге сводятся к обеспечению конфиденциальности информации и защите информации в компьютерных системах в процессе передачи информации по сети между пользователями системы.

Защита конфиденциальной информации, основанная на криптографической защите информации, шифрует данные при помощи семейства обратимых преобразований, каждое из которых описывается параметром, именуемым «ключом» и порядком, определяющим очередность применения каждого преобразования.

Важнейшим компонентом криптографического метода защиты информации является ключ, который отвечает за выбор преобразования и порядок его выполнения. Ключ - это некоторая последовательность символов, настраивающая шифрующий и дешифрующий алгоритм системы криптографической защиты информации. Каждое такое преобразование однозначно определяется ключом, который определяет криптографический алгоритм, обеспечивающий защиту информации и информационную безопасность информационной системы.

Один и тот же алгоритм криптографической защиты информации может работать в разных режимах, каждый из которых обладает определенными преимуществами и недостатками, влияющими на надежность информационной безопасности.

Основы информационной безопасности криптографии (Целостность данных)

Защита информации в локальных сетяхи технологии защиты информации наряду с конфиденциальностью обязаны обеспечивать и целостность хранения информации. То есть, защита информации в локальных сетях должна передавать данные таким образом, чтобы данные сохраняли неизменность в процессе передачи и хранения.

Для того чтобы информационная безопасность информации обеспечивала целостность хранения и передачи данных необходима разработка инструментов, обнаруживающих любые искажения исходных данных, для чего к исходной информации придается избыточность.

Информационная безопасность с криптографией решает вопрос целостности путем добавления некой контрольной суммы или проверочной комбинации для вычисления целостности данных. Таким образом, снова модель информационной безопасности является криптографической - зависящей от ключа. По оценке информационной безопасности, основанной на криптографии, зависимость возможности прочтения данных от секретного ключа является наиболее надежным инструментом и даже используется в системах информационной безопасности государства.

Как правило, аудит информационной безопасности предприятия, например, информационной безопасности банков, обращает особое внимание на вероятность успешно навязывать искаженную информацию, а криптографическая защита информации позволяет свести эту вероятность к ничтожно малому уровню. Подобная служба информационной безопасности данную вероятность называет мерой лимитостойкости шифра, или способностью зашифрованных данных противостоять атаке взломщика.

3 .4 Идентификация и аутентификация пользователя

Прежде чем получить доступ к ресурсам компьютерной системы, пользователь должен пройти процесс представления компьютерной системе, который включает две стадии:

* идентификацию - пользователь сообщает системе по ее запросу свое имя (идентификатор);

* аутентификацию - пользователь подтверждает идентификацию, вводя в систему уникальную, не известную другим пользователям информацию о себе (например, пароль).

Для проведения процедур идентификации и аутентификации пользователя необходимы:

* наличие соответствующего субъекта (модуля) аутентификации;

* наличие аутентифицирующего объекта, хранящего уникальную информацию для аутентификации пользователя.

Различают две формы представления объектов, аутентифицирующих пользователя:

* внешний аутентифицирующий объект, не принадлежащий системе;

* внутренний объект, принадлежащий системе, в который переносится информация из внешнего объекта.

Внешние объекты могут быть технически реализованы на различных носителях информации - магнитных дисках, пластиковых картах и т. п. Естественно, что внешняя и внутренняя формы представления аутентифицирующего объекта должны быть семантически тождественны.

3 .5 Защита информации в КС от несанкционированного доступа

Для осуществления несанкционированного доступа злоумышленник не применяет никаких аппаратных или программных средств, не входящих в состав КС. Он осуществляет несанкционированный доступ, используя:

* знания о КС и умения работать с ней;

* сведения о системе защиты информации;

* сбои, отказы технических и программных средств;

* ошибки, небрежность обслуживающего персонала и пользователей.

Для защиты информации от несанкционированного доступа создается система разграничения доступа к информации. Получить несанкционированный доступ к информации при наличии системы разграничения доступа возможно только при сбоях и отказах КС, а также используя слабые места в комплексной системе защиты информации. Чтобы использовать слабости в системе защиты, злоумышленник должен знать о них.

Одним из путей добывания информации о недостатках системы защиты является изучение механизмов защиты. Злоумышленник может тестировать систему защиты путем непосредственного контакта с ней. В этом случае велика вероятность обнаружения системой защиты попыток ее тестирования. В результате этого службой безопасности могут быть предприняты дополнительные меры защиты.

Гораздо более привлекательным для злоумышленника является другой подход. Сначала получается копия программного средства системы защиты или техническое средство защиты, а затем производится их исследование в лабораторных условиях. Кроме того, создание неучтенных копий на съемных носителях информации является одним из распространенных и удобных способов хищения информации. Этим способом осуществляется несанкционированное тиражирование программ. Скрытно получить техническое средство защиты для исследования гораздо сложнее, чем программное, и такая угроза блокируется средствами и методами обеспечивающими целостность технической структуры КС. Для блокирования несанкционированного исследования и копирования информации КС используется комплекс средств и мер защиты, которые объединяются в систему защиты от исследования и копирования информации. Таким образом, система разграничения доступа к информации и система защиты информации могут рассматриваться как подсистемы системы защиты от несанкционированного доступа к информации.

3 .6 Другие програм мные средства защиты информации

Межсетевые экраны (также называемые брандмауэрами или файрволами -- от нем. Brandmauer, англ. firewall -- «противопожарная стена»). Между локальной и глобальной сетями создаются специальные промежуточные серверы, которые инспектируют и фильтруют весь проходящий через них трафик сетевого/транспортного уровней. Это позволяет резко снизить угрозу несанкционированного доступа извне в корпоративные сети, но не устраняет эту опасность полностью. Более защищенная разновидность метода -- это способ маскарада (masquerading), когда весь исходящий из локальной сети трафик посылается от имени firewall-сервера, делая локальную сеть практически невидимой.

Межсетевые экраны

Proxy-servers (proxy - доверенность, доверенное лицо). Весь трафик сетевого/транспортного уровней между локальной и глобальной сетями запрещается полностью -- маршрутизация как таковая отсутствует, а обращения из локальной сети в глобальную происходят через специальные серверы-посредники. Очевидно, что при этом обращения из глобальной сети в локальную становятся невозможными в принципе. Этот метод не дает достаточной защиты против атак на более высоких уровнях -- например, на уровне приложения (вирусы, код Java и JavaScript).

VPN (виртуальная частная сеть) позволяет передавать секретную информацию через сети, в которых возможно прослушивание трафика посторонними людьми. Используемые технологии: PPTP, PPPoE, IPSec.

Заключение

Основные выводы о способах использования рассмотренных выше средств, методов и мероприятий защиты, сводится к следующему:

1. Наибольший эффект достигается тогда, когда все используемые средства, методы и мероприятия объединяются в единый, целостный механизм защиты информации.

2. Механизм защиты должен проектироваться параллельно с созданием систем обработки данных, начиная с момента выработки общего замысла построения системы.

3. Функционирование механизма защиты должно планироваться и обеспечиваться наряду с планированием и обеспечением основных процессов автоматизированной обработки информации.

4. Необходимо осуществлять постоянный контроль функционирования механизма защиты.

С писок использованных источников

1. «Программно - аппаратные средства обеспечения информационной безопасности вычислительных сетей», В.В. Платонов, 2006 г.

2. «Искусственный интеллект. Книга 3. Программные и аппаратные средства», В.Н. Захарова, В.Ф. Хорошевская.

3. www.wikipedia.ru

5. www.intuit.ru

Размещено на Allbest.ru

Подобные документы

    Общие и программные средства для защиты информации от вирусов. Действие компьютерных вирусов. Резервное копирование информации, разграничение доступа к ней. Основные виды антивирусных программ для поиска вирусов и их лечения. Работа с программой AVP.

    реферат , добавлен 21.01.2012

    Особенности и принципы безопасности программного обеспечения. Причины создания вирусов для заражения компьютерных программ. Общая характеристика компьютерных вирусов и средств нейтрализации их. Классификация методов защиты от компьютерных вирусов.

    реферат , добавлен 08.05.2012

    Разрушительное действие компьютерных вирусов - программ, способных к саморазмножению и повреждающих данные. Характеристика разновидностей вирусов и каналов их распространения. Сравнительный обзор и тестирование современных антивирусных средств защиты.

    курсовая работа , добавлен 01.05.2012

    Назначение антивирусной программы для обнаружения, лечения и профилактики инфицирования файлов вредоносными объектами. Метод соответствия определению вирусов в словаре. Процесс заражения вирусом и лечения файла. Критерии выбора антивирусных программ.

    презентация , добавлен 23.12.2015

    Средства защиты информации. Профилактические меры, позволяющие уменьшить вероятность заражения вирусом. Предотвращение поступления вирусов. Специализированные программы для защиты. Несанкционированное использование информации. Методы поиска вирусов.

    реферат , добавлен 27.02.2009

    Ознакомление с основными средствами архивации данных, антивирусными программами, криптографическими и другими программными средствами защиты информации. Аппаратные ключи защиты, биометрические средства. Способы охороны информации при работе в сетях.

    дипломная работа , добавлен 06.09.2014

    Появление компьютерных вирусов, их классификация. Проблема борьбы антивирусных программ с компьютерными вирусами. Проведение сравнительного анализа современных антивирусных средств: Касперского, Panda Antivirus, Nod 32, Dr. Web. Методы поиска вирусов.

    курсовая работа , добавлен 27.11.2010

    История появления компьютерных вирусов как разновидности программ, особенностью которых является саморепликация. Классификация компьютерных вирусов, пути их распространения. Меры предосторожности от заражения компьютера. Сравнение антивирусных программ.

    курсовая работа , добавлен 06.08.2013

    Семиуровневая архитектура, основные протоколы и стандарты компьютерных сетей. Виды программных и программно-аппаратных методов защиты: шифрование данных, защита от компьютерных вирусов, несанкционированного доступа, информации при удаленном доступе.

    контрольная работа , добавлен 12.07.2014

    Цели и задачи отдела "Информатизации и компьютерных технологий" Брянской городской администрации. Характер и уровень конфиденциальности обрабатываемой информации. Состав комплекса технических средств. Программно-аппаратные средства защиты информации.

    Резкое увеличение объемов информации, накапливаемой, хранимой и обрабатываемой с помощью ЭВМ и других средств автоматизации.

    Сосредоточение в единых базах данных информации различного назначения и различных принадлежностей.

    Резкое расширение круга пользователей, имеющих непосредственный доступ к ресурсам вычислительной системы и находящимся в ней данных.

    Усложнение режимов функционирования технических средств вычислительных систем: широкое внедрение многопрограммного режима, а также режимов разделения времени и реального времени.

    Автоматизация межмашинного обмена информацией, в том числе и на больших расстояниях.

В этих условиях возникает уязвимость двух видов: с одной стороны, возможность уничтожения или искажения информации (т.е. нарушение ее физической целостности), а с другой - возможность несанкционированного использования информации (т.е. опасность утечки информации ограниченного пользования). Второй вид уязвимости вызывает особую озабоченность пользователей ЭВМ.

Основными потенциально возможными каналами утечки информации являются:

    Прямое хищение носителей и документов.

    Запоминание или копирование информации.

    Несанкционированное подключение к аппаратуре и линиям связи или незаконное использование "законной" (т.е. зарегистрированной) аппаратуры системы (чаще всего терминалов пользователей).

    Несанкционированный доступ к информации за счет специального приспособления математического и программного обеспечения.

Методы защиты информации.

Можно выделить три направления работ по защите информации: теоретические исследования, разработка средств защиты и обоснование способов использования средств защиты в автоматизированных системах.

В теоретическом плане основное внимание уделяется исследованию уязвимости информации в системах электронной обработки информации, явлению и анализу каналов утечки информации, обоснованию принципов защиты информации в больших автоматизированных системах и разработке методик оценки надежности защиты.

К настоящему времени разработано много различных средств, методов, мер и мероприятий, предназначенных для защиты информации, накапливаемой, хранимой и обрабатываемой в автоматизированных системах. Сюда входят аппаратные и программные средства, криптографическое закрытие информации, физические меры организованные мероприятия, законодательные меры. Иногда все эти средства защиты делятся на технические и нетехнические, причем, к техническим относят аппаратные и программные средства и криптографическое закрытие информации, а к нетехническим - остальные перечисленные выше.

а) аппаратные методы защиты.

К аппаратным средствам защиты относятся различные электронные, электронно-механические, электронно-оптические устройства. К настоящему времени разработано значительное число аппаратных средств различного назначения, однако наибольшее распространение получают следующие:

Специальные регистры для хранения реквизитов защиты: паролей, идентифицирующих кодов, грифов или уровней секретности,

Генераторы кодов, предназначенные для автоматического генерирования идентифицирующего кода устройства,

Устройства измерения индивидуальных характеристик человека (голоса, отпечатков) с целью его идентификации,

Специальные биты секретности, значение которых определяет уровень секретности информации, хранимой в ЗУ, которой принадлежат данные биты,

Схемы прерывания передачи информации в линии связи с целью периодической проверки адреса выдачи данных.

Особую и получающую наибольшее распространение группу аппаратных средств защиты составляют устройства для шифрования информации (криптографические методы).

б) программные методы защиты.

К программным средствам защиты относятся специальные программы, которые предназначены для выполнения функций защиты и включаются в состав программного обеспечения систем обработки данных. Программная защита является наиболее распространенным видом защиты, чему способствуют такие положительные свойства данного средства, как универсальность, гибкость, простота реализации, практически неограниченные возможности изменения и развития и т.п. По функциональному назначению их можно разделить на следующие группы:

Идентификация технических средств (терминалов, устройств группового управления вводом-выводом, ЭВМ, носителей информации), задач и пользователей,

Определение прав технических средств (дни и время работы, разрешенные к использованию задачи) и пользователей,

Контроль работы технических средств и пользователей,

Регистрация работы технических средств и пользователей при обработки информации ограниченного использования,

Уничтожения информации в ЗУ после использования,

Сигнализации при несанкционированных действиях,

Вспомогательные программы различного назначения: контроля работы механизма защиты, проставления грифа секретности на выдаваемых документах.

в) резервное копирование.

Резервное копирование информации заключается в хранении копии программ на носителе: стримере, гибких носителях, оптических дисках, жестких дисках. На этих носителях копии программ могут находится в нормальном (несжатом) или заархивированном виде. Резервное копирование проводится для сохранения программ от повреждений (как умышленных, так и случайных), и для хранения редко используемых файлов.

При современном развитии компьютерных технологий требования к запоминающим устройствам в локальной сети растут гораздо быстрее, чем возможности. Вместе с геометрическим ростом емкости дисковых подсистем программам копирования на магнитную ленту за время, отпущенное на резервирование, приходится читать и записывать все большие массивы данных. Еще более важно, что программы резервирования должны научиться таким образом управлять большим количеством файлов, чтобы пользователям не было чересчур сложно извлекать отдельные файлы.

Большинство наиболее популярных современных программ резервирования предоставляют, в том или ином виде, базу данных о зарезервированных файлах и некоторую информацию о том, на какой ленте находятся последние зарезервированные копии. Гораздо реже встречается возможность интеграции (или по крайней мере сосуществования) с технологией структурированного, или иерархического хранения информации (HSM, Hierarchical Storage Management).

HSM помогает увеличить емкость доступного пространства жесткого диска на сервере за счет перемещения статичных файлов (к которым последнее время не обращались) на менее дорогие альтернативные запоминающие устройства, такие как оптические накопители или накопители на магнитной ленте. HSM оставляет на жестком диске фиктивный файл нулевой длины, уведомляющий о том, что реальный файл перенесен. В таком случае, если пользователю потребуется предыдущая версия файла, то программное обеспечение HSM сможет быстро извлечь его с магнитной ленты или с оптического накопителя.

г) криптографическое шифрование информации.

Криптографическое закрытие (шифрование) информации заключается в таком преобразовании защищаемой информации, при котором по внешнему виду нельзя определить содержание закрытых данных. Криптографической защите специалисты уделяют особое внимание, считая ее наиболее надежной, а для информации, передаваемой по линии связи большой протяженности, - единственным средством защиты информации от хищений.

Основные направления работ по рассматриваемому аспекту защиты можно сформулировать таким образом:

Выбор рациональных систем шифрования для надежного закрытия информации,

Обоснование путей реализации систем шифрования в автоматизированных системах,

Разработка правил использования криптографических методов защиты в процессе функционирования автоматизированных систем,

Оценка эффективности криптографической защиты.

К шифрам, предназначенным для закрытия информации в ЭВМ и автоматизированных системах, предъявляется ряд требований, в том числе: достаточная стойкость (надежность закрытия), простота шифрования и расшифрования от способа внутримашинного представления информации, нечувствительность к небольшим ошибкам шифрования, возможность внутримашинной обработки зашифрованной информации, незначительная избыточность информации за счет шифрования и ряд других. В той или иной степени этим требованиям отвечают некоторые виды шифров замены, перестановки, гаммирования, а также шифры, основанные на аналитических преобразованиях шифруемых данных.

Шифрование заменой (иногда употребляется термин "подстановка") заключается в том, что символы шифруемого текста заменяются символами другого или того же алфавита в соответствии с заранее обусловленной схемой замены.

Шифрование перестановкой заключается в том, что символы шифруемого текста переставляются по какому-то правилу в пределах какого-то блока этого текста. При достаточной длине блока, в пределах которого осуществляется перестановка, и сложном и неповторяющемся порядке перестановке можно достигнуть достаточной для практических приложений в автоматизированных системах стойкости шифрования.

Шифрование гаммированием заключается в том, что символы шифруемого текста складываются с символами некоторой случайной последовательности, именуемой гаммой. Стойкость шифрования определяется главным образом размером (длиной) неповторяющейся части гаммы. Поскольку с помощью ЭВМ можно генерировать практически бесконечную гамму, то данный способ считается одним из основных для шифрования информации в автоматизированных системах. Правда, при этом возникает ряд организационно-технических трудностей, которые, однако, не являются не преодолимыми.

Шифрование аналитическим преобразованием заключается в том, что шифруемый текст преобразуется по некоторому аналитическому правилу (формуле). Можно, например, использовать правило умножения матрицы на вектор, причем умножаемая матрица является ключом шифрования (поэтому ее размер и содержание должны сохранятся в тайне), а символы умножаемого вектора последовательно служат символы шифруемого текста.

Особенно эффективными являются комбинированные шифры, когда текст последовательно шифруется двумя или большим числом систем шифрования (например, замена и гаммирование, перестановка и гаммирование). Считается, что при этом стойкость шифрования превышает суммарную стойкость в составных шифрах.

Каждую из рассмотренных систем шифрования можно реализовать в автоматизированной системе либо программным путем, либо с помощью специальной аппаратуры. Программная реализация по сравнению с аппаратной является более гибкой и обходится дешевле. Однако аппаратное шифрование в общем случае в несколько раз производительнее. Это обстоятельство при больших объемах закрываемой информации имеет решающее значение.

д) физические меры защиты.

Следующим классом в арсенале средств защиты информации являются физические меры. Это различные устройства и сооружения, а также мероприятия, которые затрудняют или делают невозможным проникновение потенциальных нарушителей в места, в которых можно иметь доступ к защищаемой информации. Чаще всего применяются такие меры:

Физическая изоляция сооружений, в которых устанавливается аппаратура автоматизированной системы, от других сооружений,

Ограждение территории вычислительных центров заборами на таких расстояниях, которые достаточны для исключения эффективной регистрации электромагнитных излучений, и организации систематического контроля этих территорий,

Организация контрольно-пропускных пунктов у входов в помещения вычислительных центров или оборудованных входных дверей специальными замками, позволяющими регулировать доступ в помещения,

Организация системы охранной сигнализации.

е) организационные мероприятия по защите информации.

Следующим классом мер защиты информации являются организационные мероприятия. Это такие нормативно-правовые акты, которые регламентируют процессы функционирования системы обработки данных, использование ее устройств и ресурсов, а также взаимоотношение пользователей и систем таким образом, что несанкционированный доступ к информации становится невозможным или существенно затрудняется. Организационные мероприятия играют большую роль в создании надежного механизма защиты информации. Причины, по которым организационные мероприятия играют повышенную роль в механизме защиты, заключается в том, что возможности несанкционированного использования информации в значительной мере обуславливаются нетехническими аспектами: злоумышленными действиями, нерадивостью или небрежностью пользователей или персонала систем обработки данных. Влияние этих аспектов практически невозможно избежать или локализовать с помощью выше рассмотренных аппаратных и программных средств, криптографического закрытия информации и физических мер защиты. Для этого необходима совокупность организационных, организационно-технических и организационно-правовых мероприятий, которая исключала бы возможность возникновения опасности утечки информации подобным образом.

Основными мероприятиями в такой совокупности являются следующие:

Мероприятия, осуществляемые при проектировании, строительстве и оборудовании вычислительных центров (ВЦ),

Мероприятия, осуществляемые при подборе и подготовки персонала ВЦ (проверка принимаемых на работу, создание условий при которых персонал не хотел бы лишиться работы, ознакомление с мерами ответственности за нарушение правил защиты),

Организация надежного пропускного режима,

Организация хранения и использования документов и носителей: определение правил выдачи, ведение журналов выдачи и использования,

Контроль внесения изменений в математическое и программное обеспечение,

Организация подготовки и контроля работы пользователей,

Одно из важнейших организационных мероприятий - содержание в ВЦ специальной штатной службы защиты информации, численность и состав которой обеспечивали бы создание надежной системы защиты и регулярное ее функционирование.

Заключение.

Основные выводы о способах использования рассмотренных выше средств, методов и мероприятий защиты, сводится к следующему:

    Наибольший эффект достигается тогда, когда все используемые средства, методы и мероприятия объединяются в единый, целостный механизм защиты информации.

    Механизм защиты должен проектироваться параллельно с созданием систем обработки данных, начиная с момента выработки общего замысла построения системы.

    Функционирование механизма защиты должно планироваться и обеспечиваться наряду с планированием и обеспечением основных процессов автоматизированной обработки информации.

    Необходимо осуществлять постоянный контроль функционирования механизма защиты.

Основные направления защиты

Стандартность архитектурных принципов построения, оборудования и программного обеспечения персональных компьютеров (ПК) и ряд других причин определяют сравнительно легкий доступ профессионала к информации, находящейся в ПК. Если персональным компьютером пользуется группа лиц, то может возникнуть необходимость в ограничении доступа к информации различных потребителей.

Несанкционированным доступом к информации ПК будем называть ознакомление, обработку, копирование, применение различных вирусов, в том числе разрушающих программные продукты, а также модификацию или уничтожение информации в нарушение установленных правил разграничения доступа.

В защите информации ПК от несанкционированного доступа можно выделить три основных направления:

– первое ориентируется на недопущение нарушителя к вычислительной среде и основывается на специальных программно-технических средствах опознавания пользователя;

– второе связано с защитой вычислительной среды и основывается на создании специального программного обеспечения по защите информации;

– третье направление связано с использованием специальных средств защиты информации ПК от несанкционированного доступа (экранирование, фильтрация, заземление, электромагнитное зашумление, ослабление уровней электромагнитных излучений и наводок с помощью поглощающих согласованных нагрузок).

Программные методы защиты информации предусматривают использование специальных программ для защиты от несанкционированного доступа, защиты информации от копирования, модификации и разрушения.

Защита от несанкционированного доступа предусматривает:

– идентификацию и аутентификацию субъектов и объектов;

– разграничение доступа к вычислительным ресурсам и информации;

– контроль и регистрацию действий с информацией и программами.

Процедура идентификации и аутентификации предполагает проверку того, может ли данный субъект быть допущен к ресурсам (идентификация ) и является ли субъект, осуществляющий доступ (или объект, к которому осуществляется доступ), тем за кого себя выдаёт (аутентификация ).

В программных процедурах идентификации обычно используются различные методы. В основном это пароли (простые, сложные, одноразовые) и специальные идентификаторы или контрольные суммы для аппаратуры, программ и данных. Для аутентификации используются аппаратно-программные методы.

После выполнения процедур идентификации и аутентификации пользователь получает доступ к системе и далее осуществляется программная защита информации на трех уровнях: аппаратуры, программного обеспечения и данных.



Защита аппаратуры и программного обеспечения предусматривает управление доступом к вычислительным ресурсам (к отдельным устройствам, к ОЗУ, к операционной системе, к служебным или личным программам пользователя, клавиатуре, дисплею, принтеру, дисководу).

Защита информации на уровне данных разрешает выполнение только разрешенных регламентом действий над данными, а также обеспечивает защиту информации при ее передаче по каналам связи.

Управление доступом предусматривает:

– избирательную защиту ресурсов (отказ пользователя А на доступ к базе данных В, но разрешение доступа к базе данных С);

– предоставление и лишение доступа по всем видам и уровням доступа (администрирование);

– идентификацию и документирование любых нарушений правил доступа и попыток нарушения;

– учет и хранение информации о защите ресурсов и о разрешенных допусках к ним.

В основе программных методов защиты информации лежитзащита по паролю. Парольная защита может быть преодолена с помощью утилит, используемых для отладки программного обеспечения и восстановления информации, а также с помощью программ вскрытия пароля. Утилиты системной отладки позволяют обойти защиту. Программы вскрытия пароля используют перебор символов для угадывания пароля. Время, необходимое для угадывания пароля методом простого перебора комбинаций, возрастает в геометрической прогрессии при увеличения длины пароля.

Для сохранения секретности необходимо придерживаться следующих рекомендаций по выбору пароля:

– минимальная длина пароля должна быть не менее 8 –10 символов;

– для пароля следует использовать расширенный алфавит, вводя в него символы и сигнатуры;

– не следует в качестве пароля использовать стандартные слова, так как в Интернете имеются словари типовых паролей, с помощью которых может быть определен установленный вами типовой пароль;

– система защиты должна блокировать вход в систему после определенного количества неудачных попыток входа;

– время входа в систему должно быть ограничено временем рабочего дня.

Програмные средства - это объективные формы представления совокупности данных и команд, предназначенных для функционирования компьютеров и компьютерных устройств с целью получения определенного результата, а также подготовленные и зафиксированные на физическом носителе материалы, полученные в ходе их разработок, и порождаемые ими аудиовизуальные отображения. К ним относятся:

Программное обеспечение (совокупность управляющих и обрабатывающих программ). Состав:

Системные программы (операционные системы, программы технического обслуживания);

Прикладные программы (программы, которые предназначены для решения задач определенного типа, например редакторы текстов, антивирусные программы, СУБД и т.п.);

Инструментальные программы (системы программирования, состоящие из языков программирования: Turbo C, Microsoft Basic и т.д. и трансляторов – комплекса программ, обеспечивающих автоматический перевод с алгоритмических и символических языков в машинные коды);

Машинная информация владельца, собственника, пользователя.

Подобную детализацию я провожу, чтобы потом более четко понять суть рассматриваемого вопроса, чтобы более четко выделить способы совершения компьютерных преступлений, предметов и орудий преступного посягательства, а также для устранения разногласий по поводу терминологии средств компьютерной техники. После детального рассмотрения основных компонентов, представляющих в совокупности содержание понятия компьютерного преступления, можно перейти к рассмотрению вопросов, касающихся основных элементов криминалистической характеристики компьютерных преступлений.

К программным средствам защиты относятся специальные программы, которые предназначены для выполнения функций защиты и включаются в состав программного обеспечения систем обработки данных. Программная защита является наиболее распространенным видом защиты, чему способствуют такие положительные свойства данного средства, как универсальность, гибкость, простота реализации, практически неограниченные возможности изменения и развития и т.п. По функциональному назначению их можно разделить на следующие группы:

Идентификация технических средств (терминалов, устройств группового управления вводом-выводом, ЭВМ, носителей информации), задач и пользователей;

Определение прав технических средств (дни и время работы, разрешенные к использованию задачи) и пользователей;

Контроль работы технических средств и пользователей;

Регистрация работы технических средств и пользователей при обработки информации ограниченного использования;

Уничтожения информации в ЗУ после использования;

Сигнализации при несанкционированных действиях;

Вспомогательные программы различного назначения: контроля работы механизма защиты, проставления грифа секретности на выдаваемых документах.

Антивирусная защита

Безопасность информации - один из важнейших параметров любой компьютерной системы. Для ее обеспечения создано большое количество программных и аппаратных средств. Часть из них занимается шифрованием информации, часть - разграничением доступа к данным. Особую проблему представляют собой компьютерные вирусы. Это отдельный класс программ, направленных на нарушение работы системы и порчу данных. Среди вирусов выделяют ряд разновидностей. Некоторые из них постоянно находятся в памяти компьютера, некоторые производят деструктивные действия разовыми "ударами". Существует так же целый класс программ, внешне вполне благопристойных, но на самом деле портящих систему. Такие программы называют "троянскими конями". Одним из основных свойств компьютерных вирусов является способность к "размножению" - т.е. самораспространению внутри компьютера и компьютерной сети.

С тех пор, как различные офисные прикладные программные средства получили возможность работать со специально для них написанными программами (например, для Microsoft Office можно писать приложения на языке Visual Basic) появилась новая разновидность вредоносных программ - т.н. МакроВирусы. Вирусы этого типа распространяются вместе с обычными файлами документов, и содержатся внутри них в качестве обычных подпрограмм.

Не так давно (этой весной) прокатилась эпидемия вируса Win95.CIH и его многочисленных подвидов. Этот вирус разрушал содержимое BIOS компьютера, делая невозможной ее работу. Часто приходилось даже выбрасывать испорченные этим вирусом материнские платы.

С учетом мощного развития средств коммуникации и резко возросших объемов обмена данными проблема защиты от вирусов становится очень актуальной. Практически, с каждым полученным, например, по электронной почте документом может быть получен макровирус, а каждая запущенная программа может (теоретически) заразить компьютер и сделать систему неработоспособной.

Поэтому среди систем безопасности важнейшим направлением является борьба с вирусами. Существует целый ряд средств, специально предназначенных для решения этой задачи. Некоторые из них запускаются в режиме сканирования и просматривают содержимое жестких дисков и оперативной памяти компьютера на предмет наличия вирусов. Некоторые же должны быть постоянно запущены и находиться в памяти компьютера. При этом они стараются следить за всеми выполняющимися задачами.

На российском рынке программного обеспечения наибольшую популярность завоевал пакет AVP, разработанный лабораторией антивирусных систем Касперского. Это универсальный продукт, имеющий версии под самые различные операционные системы.

Антивирус Касперского (AVP) использует все современные типы антивирусной защиты: антивирусные сканнеры, мониторы, поведенческие блокираторы и ревизоры изменений. Различные версии продукта поддерживают все популярные операционные системы, почтовые шлюзы, межсетевые экраны (firewalls), web-серверы. Система позволяет контролировать все возможные пути проникновения вирусов на компьютер пользователя, включая Интернет, электронную почту и мобильные носители информации. Средства управления Антивируса Касперского позволяют автоматизировать важнейшие операции по централизованной установке и управлению, как и на локальном компьютере, так и в случае комплексной защиты сети предприятия. Лаборатория Касперского предлагает три готовых решения антивирусной защиты, расчитанные на основные категории пользователей. Во-первых, антивирусная защита для домашних пользователей (одна лицензия для одного компьютера). Во-вторых, антивирусная защита для малого бизнеса (до 50 рабочих станций в сети). В третьих, антивирусная защита для корпоративных пользователей (свыше 50 рабочих станций в сети).Безвозвратно прошли времена, когда для полной уверенности в сохранности от "заразы" было достаточно не пользоваться "случайными" дискетами и раз-другой в неделю запускать на машине утилиту Aidstest R, проверяющую жесткий диск компьютера на наличие подозрительных объектов. Во-первых, расширился спектр областей, в которых эти объекты могут оказаться. Электронная почта с присоединенными "вредными" файлами, макровирусы в офисных (в основном речь идет о Microsoft Office) документах, "троянские кони" - все это появилось сравнительно недавно. Во-вторых, перестал оправдывать себя подход периодических ревизий жесткого диска и архивов - такие проверки приходилось бы проводить слишком часто, и они отнимали бы слишком много ресурсов системы.

На смену устаревшим системам защиты пришло новое поколение, способное отследить и нейтрализовать "угрозу" на всех ответственных участках - от электронной почты до копирования файлов между дисками. При этом современные антивирусы организовывают постоянную защиту - это означает, что они постоянно находятся в памяти и анализируют обрабатываемую информацию.

Одним из наиболее известных и повсеместно применяемых пакетов антивирусной защиты является AVP от Лаборатории Касперского. Этот пакет существует в большом количестве различных вариантов. Каждый из них предназначен для решения определенного круга задач обеспечения безопасности, и обладает рядом специфических свойств.

Системы защиты, распространяемые Лабораторией Касперского, разделяются на три основных категории, в зависимости от видов решаемых ими задач. Это защита для малого бизнеса, защита для домашних пользователей и защита для корпоративных клиентов.

В AntiViral Toolkit Pro входят программы, позволяющие защищать рабочие станции, управляемые различными ОС - сканеры AVP для DOS, Windows 95/98/NT, Linux, мониторы AVP для Windows 95/98/NT, Linux, файловые сервера - монитор и сканер AVP для Novell Netware, монитор и сканер для NT сервера, WEB-сервера - ревизор диска AVP Inspector для Windows, почтовые сервера Microsoft Exchange - AVP для Microsoft Exchange и шлюзы.

AntiViral Toolkit Pro включает в себя программы-сканеры и программы-мониторы. Мониторы позволяют организовать более полный контроль, необходимый на самых ответственных участках сети.

В сетях Windows 95/98/NT AntiViral Toolkit Pro позволяет проводить с помощью программного комплекса AVP Сетевой Центр Управления централизованное администрирование всей логической сети с рабочего места ее администратора.

Концепция AVP позволяет легко и регулярно обновлять антивирусные программы, путем замены антивирусных баз - набора файлов с расширением.AVC, которые на сегодняшний день позволяют обнаруживать и удалять более 50000 вирусов. Обновления к антивирусным базам выходят и доступны с сервера Лаборатории Касперского ежедневно. На данный момент пакет антивирусных программ AntiViral Toolkit Pro (AVP) имеет одну из самых больших в мире антивирусных баз.


Похожая информация.


Лучшие статьи по теме