Как настроить смартфоны и ПК. Информационный портал

Чтение и запись RFID меток. Модуль RC522 для Arduino

Данный проект был сделан по просьбе друга для установки на дверь в складское помещение. В дальнейшем было изготовлено ещё несколько по просьбе друзей и знакомых. Конструкция оказалась простой и надёжной. Работает данное устройство так: пропускает только те RFID-карты, которые были заранее занесены в память устройства.

Основные характеристики контроллера доступа:

RFID-карты формат EMmarin 125кгц

Микроконтроллер ATtiny13

Количество карт/брелков - 10.
Кнопка "OPEN" нормально разомкнутая, защищена от залипания.
Выход управления замком, сильноточный полевой транзистор, режим работы на защёлку (включается на время).

Питание - 12в.
Потребление в дежурном режиме - 35 мА.
Количество карт/брелков доступа - 10 шт.
Длина связи с кнопкой "OPEN" - 10 метров.
Тип выхода управления замком - открытый сток (мощный полевой транзистор, ток до 2А).

Принципиальная схема контроллера ограничения доступа на RFID-картах 125КГц (Em-Marin) на 10 карт (на микроконтроллере ATtiny13):

Если надо управлять электромагнитным замком, требуется установка выходного реле с требуемой контактной группой.

Внешний вид собранного RFID-валидатора:

Установка Fuse-битов в PonyProg:

Работа устройства, скачать видеоролик , записанный автором.
Также один из читателей опубликовал видео работы собранного устройства:

Инструкция по программированию

Рабочий режим - при подачи 12В на контроллер светодиод мигает 1Гц.
Режим программирования - светодиод мигает 2Гц.
При нажатии на кнопку "OPEN" серия коротких звуковых сигналов во временя открытия замка.

Звуковые сигналы

1 короткий сигнал - карта или брелок записан в память контроллера.
2 коротких сигнала - карта или брелок уже записан в памяти контроллера.
5 коротких сигнала - выход из режима программирования.
1 длинный сигнал - память карт-ключей стерта из контроллера.
Непрерывные короткие сигналы - память карт/ключей заполнена, максимально 10шт. (требуется отключение питания контроллера).

Запись МАСТЕР-КАРТЫ и времени открывания замка

1 - Выключить питание контроллера.
2 - Нажать кнопку "OPEN"
3 - Удерживая кнопку подключить питание к контроллеру, через 5 сек. контроллер "ПИСКНЕТ", светодиод будет мигать с частотой 2 Гц.
4 - Отпустить кнопку.
5 - Поднести в зону считывания карту или брелок, раздастся одиночный звуковой сигнал, Мастер-карта или брелок ЗАПИСАН, при этом запишется время открытия замка 1 сек.

6 - Удерживая карту или брелок в зоне считывания - считаем звуковые сигналы. Кол-во определяет требуемое время отрывания замка, приращение 1 сек., но не более 32 сек.
7 - Отключаем питание контроллера или выдерживаем паузу 30 сек.

Стирание всей памяти карт-брелков

1 - Рабочий режим.
2 - Нажимаем кнопку "OPEN" и удерживая подносим к считывателю МАСТЕР-карту или брелок и держим, через 5 сек раздастся продолжительный звуковой сигнал - память карт/брелков стёрта.
3 - Отпускаем кнопку отнимаем карту или брелок.

Сегодня я расскажу про RFID модуль RC522 , на базе чипа MFRC522. Питание 3.3В, дальность обнаружения до 6см. Предназначен для чтения и записи RFID меток с частотой 13.56 МГц. Частота в данном случае очень важна, так как RFID метки существуют в трех частотных диапазонах:


  • Метки диапазона LF (125—134 кГц)

  • Метки диапазона HF (13,56 МГц)

  • Метки диапазона UHF (860—960 МГц)

Конкретно этот модуль работает с метками диапазона HF, в частности с протоколом MIFARE.

Для работы с модулем можно использовать стандартную библиотеку RFID входящую в Arduino IDE, однако есть и другая библиотека, написанная специально под данный модуль - MFRC522 (1 Мб) . Обе библиотеки вполне удобны, однако в MFRC522 больше специальных функций, позволяющих максимально сократить итоговый код программы.

Подключение

Некоторые столкнуться с проблемой - название пинов в большинстве уроков и руководств может не соответствовать распиновке на вашем модуле. Если в скетчах указан пин SS, а на вашем модуле его нет, то скорее всего он помечен как SDA. Ниже я приведу таблицу подключения модуля для самых распространенных плат.

MFRC522 Arduino Uno Arduino Mega Arduino Nano v3

Arduino Leonardo/ Micro

Arduino Pro Micro
RST 9 5 D9 RESET/ICSP-5 RST
SDA(SS) 10 53 D10 10 10
MOSI 11 (ICSP-4) 51 D11 ICSP-4 16
MISO 12 (ICSP-1 ) 50 D12 ICSP-1 14
SCK 13 (ICSP-3) 52 D13 ICSP-3 15
3.3V 3.3V 3.3V Стабилизатор 3,3В Стабилизатор 3,3В Стабилизатор 3,3В
GND GND GND GND GND GND

Пины управления SS(SDA) и RST задаются в скетче, так что если ваша плата отличается от той, что я буду использовать в своих примерах, а использую я UNO R3, указывайте пины из таблицы в начале скетча:


#define SS_PIN 10 #define RST_PIN 9

Пример №1: Считывание номера карты

Рассмотрим пример из библиотеки RFID - cardRead. Он не выдает данные из карты, а только ее номер, чего обычно бывает достаточно для многих задач.


#include #include #define SS_PIN 10 #define RST_PIN 9 RFID rfid(SS_PIN, RST_PIN); // Данные о номере карты храняться в 5 переменных, будем запоминать их, чтобы проверять, считывали ли мы уже такую карту int serNum0; int serNum1; int serNum2; int serNum3; int serNum4; void setup() { Serial.begin(9600); SPI.begin(); rfid.init(); } void loop() { if (rfid.isCard()) { if (rfid.readCardSerial()) { // Сравниваем номер карты с номером предыдущей карты if (rfid.serNum != serNum0 && rfid.serNum != serNum1 && rfid.serNum != serNum2 && rfid.serNum != serNum3 && rfid.serNum != serNum4) { /* Если карта - новая, то считываем*/ Serial.println(" "); Serial.println("Card found"); serNum0 = rfid.serNum; serNum1 = rfid.serNum; serNum2 = rfid.serNum; serNum3 = rfid.serNum; serNum4 = rfid.serNum; //Выводим номер карты Serial.println("Cardnumber:"); Serial.print("Dec: "); Serial.print(rfid.serNum,DEC); Serial.print(", "); Serial.print(rfid.serNum,DEC); Serial.print(", "); Serial.print(rfid.serNum,DEC); Serial.print(", "); Serial.print(rfid.serNum,DEC); Serial.print(", "); Serial.print(rfid.serNum,DEC); Serial.println(" "); Serial.print("Hex: "); Serial.print(rfid.serNum,HEX); Serial.print(", "); Serial.print(rfid.serNum,HEX); Serial.print(", "); Serial.print(rfid.serNum,HEX); Serial.print(", "); Serial.print(rfid.serNum,HEX); Serial.print(", "); Serial.print(rfid.serNum,HEX); Serial.println(" "); } else { /* Если это уже считанная карта, просто выводим точку */ Serial.print("."); } } } rfid.halt(); }

Скетч залился, светодиод питания на модуле загорелся, но модуль не реагирует на карту? Не стоит паниковать, или бежать искать "правильные" примеры работы. Скорее всего, на одном из пинов просто нет контакта - отверстия на плате немного больше чем толщина перемычки, так что стоит попробовать их переставить. На плате не горит светодиод? Попробуйте переставить перемычку, ведующую в 3.3В, и убедитесь, что на плате она подключена именно к 3.3В, подача питания в 5В может вашу плату запросто убить.

Допустим, все у вас заработало. Тогда, считывая модулем RFID метки, в мониторе последовательного порта увидим следующее:


Здесь я считывал 3 разных метки, и как видно все 3 он успешно считал.

Пример №2: Считывание данных с карты

Рассмотрим более проработанный вариант - будет считывать не только номер карты, но и все доступные для считывания данные. На этот раз возьмем пример из библиотеки MFRC522 - DumpInfo.


#include #include #define RST_PIN 9 // #define SS_PIN 10 // MFRC522 mfrc522(SS_PIN, RST_PIN); // Create MFRC522 instance void setup() { Serial.begin(9600); // Инициализируем монитор последовательного порта while (!Serial); // Ничего не делаем пока он не открыт (для Arduino на чипе ATMEGA32U4) SPI.begin(); // Инициализируем SPI шину mfrc522.PCD_Init(); // Инициализируем RFID модуль ShowReaderDetails(); // Выводим данные о модуле MFRC522 Serial.println(F("Scan PICC to see UID, type, and data blocks...")); } void loop() { // Ищем новую карту if (! mfrc522.PICC_IsNewCardPresent()) { return; } // Выбираем одну из карт if (! mfrc522.PICC_ReadCardSerial()) { return; } // Выводим данные с карты mfrc522.PICC_DumpToSerial(&(mfrc522.uid)); } void ShowReaderDetails() { // Получаем номер версии модуля byte v = mfrc522.PCD_ReadRegister(mfrc522.VersionReg); Serial.print(F("MFRC522 Software Version: 0x")); Serial.print(v, HEX); if (v == 0x91) Serial.print(F(" = v1.0")); else if (v == 0x92) Serial.print(F(" = v2.0")); else Serial.print(F(" (unknown)")); Serial.println(""); // Когда получаем 0x00 или 0xFF, передача данных нарушена if ((v == 0x00) || (v == 0xFF)) { Serial.println(F("WARNING: Communication failure, is the MFRC522 properly connected?")); } }

Если предыдущий пример работал без ошибок, то и в этом проблем возникнуть не должно. Хотя, проездной на метро, без проблем выдававший номер карты в предыдущем примере, в этом оказался с неопределяемым типом данных, и модуль ничего кроме номера карты считать не смог.

Как результат, считав данные с карты, получим ее тип, идентификатор, и данные из 16 секторов памяти. Следует отметить, что карты стандарта MIFARE 1K состоят из 16 секторов, каждый сектор состоит из 4 блоков, а каждый блок содержит 16 байт данных.


Пример №3: Запись нового идентификатора на карту

В этом примере мы рассмотрим смену идентификатора карты (UID). Важно знать, что далеко не все карты поддерживают смену идентификатора. Карта может быть перезаписываемой, но это означает лишь перезаписываемость данных. К сожалению, те карты, которые были у меня на руках, перезапись UID не поддерживали, но код скетча я здесь на всякий случай приведу.


#include #include /* Задаем здесь новый UID */ #define NEW_UID {0xDE, 0xAD, 0xBE, 0xEF} #define SS_PIN 10 #define RST_PIN 9 MFRC522 mfrc522(SS_PIN, RST_PIN); MFRC522::MIFARE_Key key; void setup() { Serial.begin(9600); while (!Serial); SPI.begin(); mfrc522.PCD_Init(); Serial.println(F("Warning: this example overwrites the UID of your UID changeable card, use with care!")); for (byte i = 0; i < 6; i++) { key.keyByte[i] = 0xFF; } } void loop() { if (! mfrc522.PICC_IsNewCardPresent() || ! mfrc522.PICC_ReadCardSerial()) { delay(50); return; } // Считываем текущий UID Serial.print(F("Card UID:")); for (byte i = 0; i < mfrc522.uid.size; i++) { Serial.print(mfrc522.uid.uidByte[i] < 0x10 ? " 0" : " "); Serial.print(mfrc522.uid.uidByte[i], HEX); } Serial.println(); // Записываем новый UID byte newUid = NEW_UID; if (mfrc522.MIFARE_SetUid(newUid, (byte)4, true)) { Serial.println(F("Wrote new UID to card.")); } // Halt PICC and re-select it so DumpToSerial doesn"t get confused mfrc522.PICC_HaltA(); if (! mfrc522.PICC_IsNewCardPresent() || ! mfrc522.PICC_ReadCardSerial()) { return; } // Считываем данные с карты Serial.println(F("New UID and contents:")); mfrc522.PICC_DumpToSerial(&(mfrc522.uid)); delay(2000); }

Пример №4: Запись данных на карту

Вот и наконец то, до чего мы так долго добирались - запись данных на карту. Самая "сладкая" часть работы с модулем - возможность сделать копию уже существующей карты, что то добавить или изменить, это гораздо интереснее, чем простое считывание.

Изменим один из блоков данных на карте:


#include #include #define RST_PIN 9 #define SS_PIN 10 MFRC522 mfrc522(SS_PIN, RST_PIN); MFRC522::MIFARE_Key key; void setup() { Serial.begin(9600); while (!Serial); SPI.begin(); mfrc522.PCD_Init(); // Подготовим ключ // используем ключ FFFFFFFFFFFFh который является стандартом для пустых карт for (byte i = 0; i < 6; i++) { key.keyByte[i] = 0xFF; } Serial.println(F("Scan a MIFARE Classic PICC to demonstrate read and write.")); Serial.print(F("Using key (for A and B):")); dump_byte_array(key.keyByte, MFRC522::MF_KEY_SIZE); Serial.println(); Serial.println(F("BEWARE: Data will be written to the PICC, in sector #1")); } void loop() { // Ждем новую карту if (! mfrc522.PICC_IsNewCardPresent()) return; // Выбираем одну из карт if (! mfrc522.PICC_ReadCardSerial()) return; // Показываем подробности карты Serial.print(F("Card UID:")); dump_byte_array(mfrc522.uid.uidByte, mfrc522.uid.size); Serial.println(); Serial.print(F("PICC type: ")); byte piccType = mfrc522.PICC_GetType(mfrc522.uid.sak); Serial.println(mfrc522.PICC_GetTypeName(piccType)); // Проверяем совместимость if (piccType != MFRC522::PICC_TYPE_MIFARE_MINI && piccType != MFRC522::PICC_TYPE_MIFARE_1K && piccType != MFRC522::PICC_TYPE_MIFARE_4K) { Serial.println(F("This sample only works with MIFARE Classic cards.")); return; } // В этом примере мы используем первый сектор данных карты, блок 4 byte sector = 1; byte blockAddr = 4; byte dataBlock = { // Данные, которые мы запишем на карту 0x01, 0x02, 0x03, 0x04, // 1, 2, 3, 4, 0x05, 0x06, 0x07, 0x08, // 5, 6, 7, 8, 0x08, 0x09, 0xff, 0x0b, // 9, 10, 255, 12, 0x0c, 0x0d, 0x0e, 0x0f // 13, 14, 15, 16 }; byte trailerBlock = 7; byte status; byte buffer; byte size = sizeof(buffer); // Аутентификация Serial.println(F("Authenticating using key A...")); status = mfrc522.PCD_Authenticate(MFRC522::PICC_CMD_MF_AUTH_KEY_A, trailerBlock, &key, &(mfrc522.uid)); if (status != MFRC522::STATUS_OK) { Serial.print(F("PCD_Authenticate() failed: ")); Serial.println(mfrc522.GetStatusCodeName(status)); return; } // Показываем текущие данные сектора Serial.println(F("Current data in sector:")); mfrc522.PICC_DumpMifareClassicSectorToSerial(&(mfrc522.uid), &key, sector); Serial.println(); // Читаем данные из блока Serial.print(F("Reading data from block ")); Serial.print(blockAddr); Serial.println(F(" ...")); status = mfrc522.MIFARE_Read(blockAddr, buffer, &size); if (status != MFRC522::STATUS_OK) { Serial.print(F("MIFARE_Read() failed: ")); Serial.println(mfrc522.GetStatusCodeName(status)); } Serial.print(F("Data in block ")); Serial.print(blockAddr); Serial.println(F(":")); dump_byte_array(buffer, 16); Serial.println(); Serial.println(); // Аутентификация Serial.println(F("Authenticating again using key B...")); status = mfrc522.PCD_Authenticate(MFRC522::PICC_CMD_MF_AUTH_KEY_B, trailerBlock, &key, &(mfrc522.uid)); if (status != MFRC522::STATUS_OK) { Serial.print(F("PCD_Authenticate() failed: ")); Serial.println(mfrc522.GetStatusCodeName(status)); return; } // Записываем данные в блок Serial.print(F("Writing data into block ")); Serial.print(blockAddr); Serial.println(F(" ...")); dump_byte_array(dataBlock, 16); Serial.println(); status = mfrc522.MIFARE_Write(blockAddr, dataBlock, 16); if (status != MFRC522::STATUS_OK) { Serial.print(F("MIFARE_Write() failed: ")); Serial.println(mfrc522.GetStatusCodeName(status)); } Serial.println(); // Читаем данные снова, чтобы проверить, что запись прошла успешно Serial.print(F("Reading data from block ")); Serial.print(blockAddr); Serial.println(F(" ...")); status = mfrc522.MIFARE_Read(blockAddr, buffer, &size); if (status != MFRC522::STATUS_OK) { Serial.print(F("MIFARE_Read() failed: ")); Serial.println(mfrc522.GetStatusCodeName(status)); } Serial.print(F("Data in block ")); Serial.print(blockAddr); Serial.println(F(":")); dump_byte_array(buffer, 16); Serial.println(); Serial.println(F("Checking result...")); byte count = 0; for (byte i = 0; i < 16; i++) { if (buffer[i] == dataBlock[i]) count++; } Serial.print(F("Number of bytes that match = ")); Serial.println(count); if (count == 16) { Serial.println(F("Success:-)")); } else { Serial.println(F("Failure, no match:-(")); Serial.println(F(" perhaps the write didn"t work properly...")); } Serial.println(); // Выводим данные Serial.println(F("Current data in sector:")); mfrc522.PICC_DumpMifareClassicSectorToSerial(&(mfrc522.uid), &key, sector); Serial.println(); mfrc522.PICC_HaltA(); mfrc522.PCD_StopCrypto1(); } void dump_byte_array(byte *buffer, byte bufferSize) { for (byte i = 0; i < bufferSize; i++) { Serial.print(buffer[i] < 0x10 ? " 0" : " "); Serial.print(buffer[i], HEX); } }

И как результат, получаем карту с измененным блоком данных:


Теперь, научившись считывать и записывать блоки данных карты, вы можете поэксперементировать с метками, которые скорее всего есть у вас - пропуски, проездные общественного транспорта. Попробуйте считывать и записывать данные с этих карт, пара дубликатов пропуска никогда не помешает, так ведь?)

На этом все, подписывайтесь, и следите за публикациями. В следующий раз я расскажу и покажу, как на стандартный символьный дисплей 1602 добавлять пользовательские символы, фактически добавляя на дисплей графику.

RFID (радиочастотная идентификация) использует электромагнитные поля для автоматической идентификации и отслеживания тегов, прикрепленных к объектам. Теги содержат электронно сохраненную информацию. Пассивные метки собирают энергию от радиосигналов соседнего RFID-считывателя. Активные теги имеют локальный источник питания (например, аккумулятор) и могут работать в сотнях метров от считывающего устройства. В отличие от штрих-кода, тег не должен находиться в пределах видимости прибора, поэтому он может быть встроен в отслеживаемый объект. RFID - это один из методов автоматической идентификации и сбора данных.

Применение

RFID-метки используются во многих отраслях промышленности. Например, считыватель RFID, прикрепленный к автомобилю во время производства, может использоваться для отслеживания прогресса по конвейерной линии. Фармацевтические препараты с маркировкой можно отслеживать через склады. Имплантация RFID-микрочипов в домашний скот позволяет идентифицировать животных.

Поскольку метки RFID могут быть прикреплены к деньгам, одежде и имуществу или имплантированы в животных и людей, возможность читать личную информацию без согласия пользователя вызывает серьезную проблему конфиденциальности. Эти риски привели к разработке стандартных спецификаций, касающихся вопросов безопасности личных данных. Теги также могут использоваться в магазинах для ускорения оформления заказа и предотвращения краж.

История

В 1945 году Леон Термен изобрел прослушивающее устройство для Советского Союза, которое повторно передавало радиоволны с добавленной аудиоинформацией. Звуковые колебания при вибрации влияли на диафрагму, которая слегка меняла форму резонатора, модулировавшего отраженную радиочастоту. Несмотря на то что это устройство было скрытым прибором для прослушивания, а не идентификационным тегом, оно считается предшественником USB RFID-считывателя, поскольку активировалось аудиоволнами из внешнего источника. Транспондеры по-прежнему используются большинством работающих самолетов. А раньше подобная технология, такая как считыватель RFID-меток, регулярно использовалась союзниками и Германией во Второй мировой войне для идентификации самолетов.

Устройство Марио Кардулло, запатентованное 23 января 1973 года, было первым истинным предшественником современной RFID, поскольку это был пассивный радиоприемник с памятью. Первоначальное устройство было пассивным, с питанием от опросного сигнала. Оно было продемонстрировано в 1971 году администрации Нью-Йорка и другим потенциальным пользователям и состояло из транспондера с 16-разрядной памятью для использования в качестве платного устройства. Основной патент Cardullo охватывает использование радиочастот, звука и света в качестве среды передачи.

Область использования

Первоначальный бизнес-план, представленный инвесторам в 1969 году, демонстрировал следующие сферы применения считывателя RFID:

  • использование в транспорте (идентификация автомобильных транспортных средств, автоматическая система оплаты, электронный номерной знак, электронный манифест, маршрутизация транспортного средства, мониторинг эффективности транспортных средств);
  • банковское дело (электронная чековая книжка, электронная кредитная карта);
  • персонала, автоматические ворота, наблюдение); медицинская отрасль (идентификация, история пациентов).

Ранняя демонстрация отраженной мощности (модулированного обратного рассеяния) RFID-меток, как пассивных, так и полупассивных, была выполнена Стивеном Деппом, Альфредом Коелле и Робертом Фрайманом в Национальной лаборатории Лос-Аламоса в 1973 году. Портативная система работала на частоте 915 МГц и использовала 12-битные теги. Этот метод применяется большинством современных UHFID и микроволновых RFID-считывателей. В современной жизни такие устройства очень востребованы.

Спецификация

Система радиочастотной идентификации использует метки, прикрепленные к идентифицируемым объектам. При изготовлении RFID-считывателя своими руками следует учитывать, что двусторонние радиопередатчики-приемники, называемые запросчиками или считывателями, посылают сигнал тегу и считывают его ответ. Метки RFID могут быть пассивными, активными или пассивными. Активный тег имеет встроенный аккумулятор и периодически передает его ID-сигнал. Пассивный аккумулятор (BAP) имеет небольшую батарею на борту и активируется при наличии считывателя RFID. Пассивная бирка дешевле и меньше, потому что у нее нет батареи. Вместо этого тег использует радиоволну, переданную считывателем. Однако для работы пассивного тега он должен быть освещен уровнем мощности примерно в тысячу раз сильнее, чем для передачи сигнала. Это влияет на интерференцию и облучение.

19 сентября 2013 в 18:32

Бюджетный UHF RFID считыватель и его развитие

  • Беспроводные технологии

Здравствуйте, досточтимые леди и джентльмены.
Самый дешевый UHF RFID считыватель или считыватель стандарта EPC Gen2 стоит в розницу никак не меньше 200 USD.

Как можно сделать работоспособный UHF RFID считыватель из деталей за 10 USD, и как можно было бы из этого извлечь пользу, рассказано ниже.

Большинство современных RFID считывателей стандарта EPC Gen2 использует специализированные микросхемы. Их выпускают компании Impinj, AMS и Phychips. Самые дешевые микросхемы стоят около 20 USD в партиях по 1000 штук. RFID считыватели получаются замечательные: мощные, шустрые и дальнобойные - но дорогие.
Весной этого года в Интернете появилась статья "Simple Low Cost UHF RFID Reader " о том, как из распространенных радиодеталей стоимостью около 5 USD в рознице собрать действующий RFID считыватель. Идея вроде как проста, но до реализации дошло только недавно. Предпосылка к разработке базируется на том, что очень часто вблизи от антенны нужно не спеша считать пару тройку меток, и платить много денег за считыватель скорострельностью 200-500 меток в секунду ни к чему. Блок схема считывателя представлена на картинке.


Её прелесть в простоте. Основой является обычный микроконтроллер, который формирует на ножке GPIO сигналы стандарта EPC Gen2, нужные для опроса метки. Сигналы передаются на микросхему трансмиттера Melexis TH72035, затем на антенну через каплер (coupler) Johanson 0910CF15B0100. Приемник собран на одном компараторе MAX931 по следующей схеме.


Логические сигналы с приемника поступают на другой вывод GPIO микропроцессора. Получаем простой софтовый UHF RFID считыватель. Конечно, написать софтовый EPC Gen2 RFID считыватель - это не фунт изюму. Но если четко определить цели и использовать только нужное подмножество протокола EPC Gen2, то задача упрощается значительно.
Авторы описываемого проекта одной из целей его дальнейшего развития считают размещение всех компонентов RFID считывателя на одной плате. Но не будет ли интереснее пойти в противоположном направлении? То есть разделить считыватель на физически обособленные функциональные модули и потом из разных модулей строить RFID считыватель с необходимыми характеристиками. Всё, что внизу, только идея, без детальной проработки.

Понятно, что главный модуль - микропроцессорный. Наверное, сделать его нужно на Cortex-M0, вывести на разъемы UART и USB с целью управления считывателем. Для подключения модуля приемопередатчика использовать разъем на 6 контактов: Rx, Tx, 2 на питание приемопередатчика, 2 GPIO. Таких разъемов можно сделать 2-4, насколько выводов микропроцессора хватит.
Модуль приемопередатчика подключаться к микропроцессорному модулю будет напрямую или через короткий кабель. Пожалуй, надо делать несколько вариантов модулей приемопередатчика с разной мощность и ценой, но одинаковым разъемом. 5-ый контакт разъема можно использовать для включения приемопередатчика, а 6-ой можно использовать под какой-то датчик при необходимости. Имеет смысл сделать печатную плату приемопередатчика с металлизированными торцевыми полуотверстиями. Тогда её можно будет припаивать к печатным платам с разными антеннами или печатной плате с коаксиальным разъемом SMA.
Итак, соединив микропроцессорный модуль и модуль приемопередатчика, мы получаем RFID считыватель. Но только ради этого городить огород не стоит. Пойдем дальше. Воткнем в 6-контактный разъем микропроцессорного модуля вместо приемопередатчика плату с драйвером RS422 и розеткой RJ45 (пара 1 - прием, пара 2 - передача, 3 - питание, 4 - GPIO). Такую же воткнем в приемопередатчик. Понятно, что теперь можно соединять микропроцессорный модуль и приемопередатчик с помощью любого патч-корда или использовать для соединения офисную СКС. В общем, антенна от микропроцессорного модуля может располагаться весьма далече. И никакого коаксиала.
Ну и это еще не всё :) RS422 - это шина. В приемопередатчике можно разместить микросхему D-триггера. Модули приемопередатчика соединить последовательно патч-кордами. Правда необходим второй разъем RJ45 или Т-разветвитель, если вместо D-триггера поставить синхронный счетчик. С помощью двух GPIO в четвертой паре UTP можно выбирать нужный приемопередатчик. Получается распределенный RFID считыватель, как на картинке.


Зачем нужен USB: а для того, чтобы уметь присоединить считыватель к планшетнику с Android.

Решение применимо, где не нужна большая скорость считывания меток и дальнобойность.
1. Для гастрономов не годится. Это RFID магазины будущего. А RFID магазины настоящего - это универмаги (обувь и одежда). Там RFID считыватели уже используются в примерочных (вместе в интерактивным дисплеем), на кассах и умных полках с товаром.
2. Склады с европоддонами (цепочка модулей приемопередатчика там, где находятся левые углы палет).
3. Пропускная система на разные массовые мероприятия.
4. Наверняка где-то ещё.

Схема эмулятора RFID транспондера стандарта EM-Marine (EM4100).
Бесконтактные карты стандарта Em-Marine являются на сегодняшний день наиболее популярным средством идентификации в нашей стране и используются для идентификации пользователей в системах контроля и управления доступом (СКУД).
Второй, не менее популярной, областью применения карт Em-Marine является их использование в системах логического доступа при авторизации пользователей по ID номеру карты в операционной системе компьютера и рабочих приложениях и тп.

Карты и брелки Em-Marine.
Соответственно подобные системы идентификации очень распространены и могут представлять интерес для реализации собственных систем идентификации и автоматизации. Поскольку протокол обмена и аппаратная часть подобных низкочастотных систем является более простой для самостоятельной реализации собственных устройств большинство радиолюбительских конструкций тематики RFID посвящена низкочастотным системам.

Рабочая частота карт Em-Marine составляет 125 КГц. Для их чтения используются специализированные считыватели бесконтактных карт (считыватели RFID). Взаимодействие идентификатора с таким считывателем осуществляется дистанционно.
Вариантов внешнего исполнения данных идентификаторов существует огромное количество: пропуска Em-Marine изготавливаются в виде тонких и толстых карт, браслетов для аквапарков, различных брелоков, радио-меток для интеграции в RFID-изделия.
Для стандарта транспондеров EM4100 карта содержит 64 бита данных, при этом карты, как правило, не перезаписываемые. Для удобства регистрации карт код, записанный в карте, продублирован печатью на одной из сторон карты. Кодировка передаваемых транспондером данных - манчестер кодирование. При этом периоды сигнала передаваемого транспондером являются кратными частоте 125Кгц - частота сигнала считывателя транспондеров. Сами транспондеры реализованы без внешнего питания (пассивный тэг), питание осуществляется за счет контура LC (катушка и конденсатор) при попадании тэга в зону действия поля считывателя карт. Тактирование транспондера также осуществляется сигналом считывателя - 125Кгц. Поэтому параметры результирующего сигнала в манчестер кодировке являются кратными сигналу 125Кгц.

Схема взаимодействия транспондера и считывателя RFID.
Для более полного понимания рассмотрим структуру пакета RFID транспондера формата EMMarine EM4100. Приведено описание (на английском, взято из анноутов) формата пакета транспондера.
“…….EM4100 compatible RFID transponders carry 64 bits of Read Only memory. This means that information can be read from the Tag but no data can be changed, or new data written to the card once the card has been programmed with the initial data. The format of the data is as shown here.
1 1 1 1 1 1 1 1 1 9 bit header bits, all 1"s
8 bit version number D00 D01 D02 D03 P0
or customer ID.
D04 D05 D06 D07 P1
D08 D09 D10 D11 P2 Each group of 4 bits
D12 D13 D14 D15 P3 is followed by an Even 32 Data Bits
D16 D17 D18 D19 P4 parity bit
D20 D21 D22 D23 P5
D24 D25 D26 D27 P6
D28 D29 D30 D31 P7
D32 D33 D34 D35 P8
D36 D37 D38 D39 P9
4 column Parity bits PC0 PC1 PC2 PC3 S0 1 stop bit (0)
The first 9 bits are logic 1“.
Соответственно мы имеем 9 стартовых бит пакета (всегда логическая 1), 11 групп по 4 бит данных с 1 битом четности по строке, 4 бита четности по столбцам в конце пакета, завершающий бит (всегда 0).
Для примера возьмем транспондер с данными номера 06001259E3.
1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 1 1 0 1 0 0 1 1 0 0 1 0 00
0 6 0 0 1 2 5 9 E 3

Байт с данными 0x06 считается номером версии. На картах EM-Marine, которые попадались мне, выбиты десятичные значения соответствующие последним 3 байтам пакета. В любом случае нам нужно будет для реализации воспроизводить все 64 бита пакета согласно данному описанию.
Теперь обратимся внимательно к описанию модуляции данных транспондера. Данные взяты из анноута AN680. На рисунке сделал отметки красным относительно интересующих нас диаграмм.

Теперь подробнее опишем нужные нам диаграммы. Сигнал CLK тактирования - это и есть сигнал считывателя RFID, о чем уже было сказано ранее. Данные в кодировке NRZ следует подготовить транспондеру в соответствии с записанными данными пакета (64 бит). Видно, что реализация кодирования NRZ по пакету транспондера элементарная и требует минимальных затрат ресурсов. Собственно разбираем пакет на битовый поток и меняем логическое значения сигнала по 0 и 1 в данных и все. Для получения результирующего сигнала делаем программно XOR текущего состояния сигнала в формате NRZ и CLK тактирующего сигнала считывателя. В итоге получаем манчестер кодирование результирующего сигнала. Подробнее про манчестер кодирование описывать не буду - данные можно найти в отдельных анноутах. Для более подробного описания методов модуляции можно ознакомиться с данными из “Modulation Methods H.R. Walker Data Systems 05/01/04(reviewed 4/18/10)”, мною изучались именно данные примеры. Главное, что с минимальными затратами ресурсов мы можем таким образом реализовать транспондер формата EM-Marine. Для примера можно взять контроллер AVR серии tiny45 (можно и на tiny13 сделать). На контроллере tiny45 тестировалось поскольку именно такой оказался в наличии для экспериментов.
Теперь представим функциональную схему транспондера на основе модели в Proteus для контроллера tiny45.

Функциональная схема транспондера в Proteus.

Вот так выглядит сигнал генерируемый транспондером. Красным отмечено начало пакета.
По схеме видно, что ножка контроллера T0 (PORTB.2) используется для подачи тактового сигнала для 8 битного таймера TIMER0. В программе реализовано прерывание по совпадению на таймере TIMER0 (TIM0_COMPA). Тактирование установлено от внешнего сигнала для данного таймера. Для нас тактовым сигналом является 125Кгц от считывателя карт. На схеме удалено все, что касается питания контроллера и цепей тактирования от считывателя. В реальной схеме сам контроллер тактируется от кварца 4 Мгц установленного между 2 и 3 ножкой контроллера. Также можно добавить блокировочные конденсаторы для кварца по 22 pF на данных ножках контроллера.
Настройки симуляции Proteus для контроллера указанны следующим образом:

При программировании контроллера tiny45 фьюзы (биты конфигурации) устанавливаем таким же образом, как указано на рисунке.2. Для тактирования контроллера используется кварц 4 Мгц.
Относительно реализации внешней схемы обвязки контроллера рассмотрим данный вопрос подробнее. Для примеров были взяты материалы RFID Handbook (E2E_chapter03-rfid-handbook) где описываются фундаментальные принципы построения RFID систем. Сам документ прилагается к статье. Рассмотрим пример схемы пассивного транспондера (часть схемы на странице 46). Для понимания я сделал пометки на схеме красным цветом.
Видно, что мы имеем приемный контур на L1C1, который служит для питания схемы транспондера и тактирования. Все что касается счетчика-делителя IC1(4024), логических элементов IC3 (7400) можем смело выкидывать - нам это не потребуется. Делитель для таймера реализован настройками таймера без внешних делителей - счетчиков, логическая часть также реализована программно. Однако данный пример позволяет более полно понять работу пассивной схемы транспондера. Максимальное расстояние считывания для транспондера данного формата составляет 200см. В реальности большинство схем работает на расстояниях 2-10см. Параметры контура емкости и индуктивности LC подбираются максимально точно на резонансную частоту 125Кгц. Для примера использовался контур с емкостью 1nF и катушкой 60 витков на оправке диаметром 50мм проволокой ПЭВ 0.2. Рассчитать нужный контур можно в специальной программе (можно рассчитать контур для прямоугольно катушки, печатной и тп.). Главное подобрать точные номиналы под частоту 125 Кгц иначе расстояние считывания и чувствительность схемы значительно ухудшатся. При плохо настроенных контурах будет работать только при поднесении катушки транспондера вплотную к считывателю. Устройство работает по принципу Full Duplex (FDX) - генерация данных транспондера непрерывно при наличии питания схемы. Тактирование схемы от считывателя и передача данных осуществляется непрерывно. Некоторые схемы транспондеров используют схему работы HDX (Half Duplex) - считыватель излучает в импульсном режиме, транспондер передает данные в промежутках данных импульсов зарядки от считывателя. Это относится, например к TIRIS транспондерам от Texas Instruments.

Схема пассивного транспондера на основе схемы из RFID Handbook.


С учетом той части схемы, которая нам не нужна на основе оригинальной схемы, получаем схему обвязки контроллера в таком виде.



Как вам эта статья?

Лучшие статьи по теме