Как настроить смартфоны и ПК. Информационный портал
  • Главная
  • Вконтакте
  • Программа для демонстрации сетевых атак. Технологии систем обнаружения сетевых атак

Программа для демонстрации сетевых атак. Технологии систем обнаружения сетевых атак

Злоумышленники редко бесцеремонно вторгаются в сеть с «оружием» в руках. Они предпочитают проверить, надежны ли запоры на двери и все ли окна закрыты. Они незаметно анализируют образцы трафика, входящего в вашу сеть и исходящего из нее, отдельные IP-адреса, а также выдают внешне нейтральные запросы, адресованные от­дельным пользователям и сетевым устройствам.

Для обнаружения этих искусно закамуфлированных врагов приходится устанавливать интеллектуальное программное обеспечение детектирования сетевых атак, обладающее высокой чувствительностью. Приоб­ретаемый продукт должен предупреждать админист­ратора не только о случаях явного нарушения систе­мы информационной безопасности, но и о любых подозрительных событиях, которые на первый взгляд кажутся совершенно безобидными, а в действительно­сти скрывают полномасштабную хакерскую атаку. Нет нужды доказывать, что о вся­кой активной попытке взлома системных паролей администратор должен быть изве­щен немедленно.

Современные корпорации находятся буквально под перекрестным огнем со сторо­ны злоумышленников, стремящихся похитить ценные сведения или просто вывести из строя информационные системы. Задачи, преследуемые в борьбе с хакерами, доста­точно очевидны:

– уведомление о предпринятой попытке несанкционированного доступа должно быть немедленным;

– отражение атаки и минимизация потерь (чтобы противостоять злоумышленни­ку, следует незамедлительно разорвать сеанс связи с ним);

– переход в контрнаступление (злоумышленник должен быть идентифицирован и наказан).

Именно такой сценарий использовался при тестировании четырех наиболее попу­лярных систем выявления сетевых атак из присутствующих сегодня на рынке:

– Intruder Alert;

– еTrust Intrusion Detection.

Характеристика указанных программных систем обнаружения сетевых атак при­ведена в табл. 3.2.

Программа BlackICE фирмы Network ICE - специализированное приложение-агент, предназначенное исключительно для выявления злоумышленников. Обнаружив непрошеного гостя, оно направляет отчет об этом событии управляющему модулю ICEcap, анализирующему информацию» поступившую от разных агентов, и стремяще­муся локализовать атаку на сеть.

Программное обеспечение Intruder Alert компании Alert Technologies больше похоже на инструментарий для специалистов в области информационной безопасности, посколь­ку оно предоставляет максимальную гибкость в определении стратегий защиты сети.

Пакет Centrax производства CyberSafe устроен по принципу «все в одном»: в его составе есть средства контроля за системой безопасности, мониторинга трафика, вы­явления атак и выдачи предупреждающих сообщений.



Система eTrust Intrusion Detection корпорации Computer Associates особенно силь­на функциями контроля за информационной безопасностью и управления стратегия­ми защиты, хотя и в этом продукте реализованы средства выдачи предупреждений в режиме реального времени, шифрования данных и обнаружения атак.

Таблица 3.2. Характеристика программных систем обнаружения сетевых атак
Программная система Производитель Характеристика системы
BlackICE (специализированное приложение-агент) Network ICE Устанавливается на компьютере удаленного поль­зователя или на узле корпоративной сети. Выдает предупреждение об атаке на экран мони­тора пользователя. Сообщает о попытке НСД на средства сетевого мониторинга. Имеет возможность загрузки свежих сигнатур ха­керских атак с сервера. Выявляет источник атаки сети.
Intruder Alert (инструментарий детектирования сетевых атак) Alert Technologies Выбирает стратегию защиты сети. Поддерживает высокий уровень набора правил се­тевой защиты. Загружает сигнатуры хакерских атак. Требует наличия опытных специалистов для об­служивания.
Centrax (инструментарий детектирования сетевых атак) Cyber Safe Контролирует систему безопасности сети. Осуществляет мониторинг трафика. Выдает предупреждающие сообщения о сетевой атаке. Требует наличия опытных специалистов для об­служивания.
eTrust Intrusion Detection (анализатор трафика сети сегмента) Computer Associates Управляет стратегиями защиты. Выдает предупреждения об атаке в режиме реаль­ного времени. Осуществляет мониторинг трафика. Предупреждает администратора о нарушениях стратегии защиты. Сообщает о наличии ненормативной лексики в электронной почте. Располагает информацией о злоумышленнике

Предупреждения, генерируемые агентами BlackICE, очень конкретны. Текст сооб­щений не заставит администратора усомниться в характере зарегистрированного со­бытия, а в большинстве случаев и в его важности. Кроме того, продукт позволяет ад­министратору настроить содержание собственных предупреждающих сообщений, но по большому счету в этом нет необходимости.

Весьма полезным свойством разработок Network ICE, а также пакета Intruder Alert является возможность загрузки самых свежих сигнатур хакерских атак с сервера.

Попытки вывести из строя корпоративный сервер, который в результате вынужден на запросы об обслуживании отвечать отказом (denial-of-service), таят в себе довольно серьезную угрозу бизнесу компаний, предоставляющих своим клиентам услуги по глобальной сети. Суть нападения сводится к тому, что злоумышленник генерирует тысячи запросов SYN (на установление соединения), адресованных атакуемому сер­веру. Каждый запрос снабжается фальшивым адресом источника, что значительно зат­рудняет точную идентификацию самого факта атаки и выслеживание атакующего. Приняв очередной запрос SYN, сервер предполагает, что речь идет о начале нового сеанса связи и переходит в режим ожидания передачи данных. Несмотря на то, что данные после этого не поступают, сервер обязан выждать определенное время (макси­мум 45 с), перед тем как разорвать соединение. Если несколько тысяч таких ложных запросов будут направлены на сервер в течение считанных минут, он окажется пере­гружен, так что на обработку настоящих запросов о предоставлении того или иного сервиса ресурсов попросту не останется. Другими словами, в результате SYN-атаки настоящим пользователям будет отказано в обслуживании.

Во всех описываемых системах, за исключением eTrust Intrusion Detection корпо­рации Computer Associates, использована модель программных агентов, которые сна­чала инсталлируются на сетевых устройствах, а затем осуществляют сбор информа­ции о потенциальных атаках и пересылают ее на консоль. Агенты выявляют случаи нарушения установленных стратегий защиты и после этого генерируют соответству­ющие сообщения.

Системы на базе агентов являются наилучшим решением для коммутируемых се­тей, поскольку в таких сетях не существует какой-либо одной точки, через которую обязательно проходит весь трафик. Вместо того чтобы следить за единственным со­единением, агент осуществляет мониторинг всех пакетов, принимаемых или отправ­ляемых устройством, где он установлен. В результате злоумышленникам не удается «отсидеться» за коммутатором.

Сказанное можно проиллюстрировать на примере продукции фирмы Network ICE. Программе BlackICE отведена роль агента, устанавливаемого в полностью автоном­ной операционной среде, например, на компьютере удаленного пользователя либо на одном из узлов корпоративной сети передачи данных. Обнаружив хакера, атакующего удаленную машину, агент выдаст предупреждение непосредственно на ее экран. Если же аналогичное событие окажется зафиксировано в корпоративной сети, сообщение о попытке несанкционированного доступа будет передано другому приложению - ICEcap, содержащему средства сетевого мониторинга. Последнее собирает и сопос­тавляет информацию, поступающую от разных подчиненных ему агентов, и это дает ему возможность оперативно выявлять события, действительно угрожающие безопас­ности сети.

Система eTrust, напротив, основана на централизованной архитектуре. Она уста­навливается на центральном узле и анализирует трафик в подведомственном сетевом сегменте. Отсутствие агентов не позволяет данному продукту отслеживать все собы­тия в коммутируемой сети, поскольку в ней невозможно выбрать единственную «смот­ровую площадку», откуда вся сеть была бы видна как на ладони.

Пакет Intruder Alert и система Centrax производства CyberSafe представляют со­бой скорее инструментарий для построения собственной системы детектирования се­тевых атак. Чтобы в полной мере воспользоваться их возможностями, организация должна иметь в своем штате программистов соответствующей квалификации либо располагать бюджетом, позволяющим заказать подобную работу.

Несмотря на то, что все описываемые продукты легко инсталлировать, управление системами Intruder Alert и Centrax простым не назовешь. Скажем, если Centrax выда­ет предупреждающее сообщение неизвестного или неопределенного содержания (а такая ситуация не раз имела место в наших тестах), администратор вряд ли сумеет быстро определить, что же, собственно, произошло, особенно если для уточнения диагноза ему придется обратиться к файлам регистрации событий. Эти файлы отлича­ются исчерпывающей полнотой, однако разработчики, по-видимому, решили, что обыч­ному человеку достаточно только намекнуть, о чем может идти речь, и характер происходящего будет безошибочно идентифицирован. В регистрационных журналах этой системы присутствуют описания выданных предупреждений, но нет их идентификато­ров. Администратор видит адреса портов, к которым относились подозрительные зап­росы, либо параметры других операций, но не получает никакой информации о том, что же все это может означать.

Отмеченное обстоятельство значительно снижает ценность сообщений, выдавае­мых в режиме реального времени, поскольку невозможно сразу сообразить, отражает ли описание события реальную угрозу системе безопасности или это всего лишь по­пытка провести более тщательный анализ трафика. Иными словами, покупать назван­ные продукты имеет смысл лишь в том случае, если в штате вашей организации есть опытные специалисты по информационной безопасности.

Программное обеспечение eTrust Intrusion Detection корпорации Computer Associates представляет собой нечто большее, чем просто систему мониторинга сете­вой активности и выявления хакерских атак. Этот продукт способен не только декоди­ровать пакеты различных протоколов и служебный трафик, но и перехватывать их для последующего вывода на управляющую консоль в исходном формате. Система осуще­ствляет мониторинг всего трафика ТСРЯР и предупреждает администратора о случа­ях нарушения установленных стратегий в области информационной безопасности. Правда, эта разработка не поддерживает такого же уровня детализации наборов пра­вил, как Intruder Alert.

Однако детектирование попыток несанкционированного доступа и выдача предуп­реждающих сообщений - это только полдела. Программные средства сетевой защи­ты должны остановить действия хакера и принять контрмеры. В этом смысле наилуч­шее впечатление производят пакеты Intruder Alert и Centrax, те самые, что вызвали немалые нарекания по части настройки конфигурации. Если программы фирмы Network ICE и ПО eTrust мгновенно закрывают угрожающие сеансы связи, то системы Intruder Alert и Centrax идут еще дальше. Например, приложение компании Axent Technologies можно настроить таким образом, что оно будет запускать тот или иной командный файл в зависимости от характера зарегистрированных событий, скажем перезагружать сервер, который подвергся атаке, приводящей к отказу в обслуживании.

Отразив атаку, хочется сразу перейти в контрнаступление. Приложения Black-ICE и Centrax поддерживают таблицы с идентификаторами хакеров. Эти таблицы заполня­ются после прослеживания всего пути до «логовища», где затаился неприятель. Воз­можности программного обеспечения BlackICE особенно впечатляют, когда дело до­ходит до выявления источника атаки, расположенного внутри или вне сети: несмотря на многочисленные хитроумные маневры, нам так и не удалось сохранить инкогнито.

А вот система eTrust поражает степенью проникновения в характер деятельности каждого пользователя сети, зачастую даже не подозревающего о том, что он находит­ся под пристальным наблюдением. Одновременно этот пакет предоставляет наиболее полную (и, пожалуй, наиболее точную) информацию о злоумышленниках, даже о том, где они находятся.

Приложение Centrax способно создавать так называемые файлы-приманки, при­сваивая второстепенному файлу многозначительное название вроде «Ведомость.xls» и тем самым вводя в заблуждение излишне любопытных пользователей. Такой алго­ритм представляется нам слишком прямолинейным, но и он может сослужить неплохую службу: с его помощью удается «застукать» сотрудников за «прочесыванием» корпоративной сети на предмет выявления конфиденциальной информации.

Каждый из рассмотренных программных продуктов генерирует отчеты о подозри­тельных случаях сетевой активности. Высоким качеством таких отчетов и удобством работы с ними выделяются приложения ICEcap и eTrust Intrusion Detection. После­дний пакет отличается особенной гибкостью, возможно, потому, что ведет свое проис­хождение от декодера протоколов. В частности, администратор может проанализиро­вать сетевые события в проекции на отдельные ресурсы, будьте протоколы, станции-клиенты или серверы. В eTrust предусмотрено множество заранее разрабо­танных форматов отчетов. Их хорошо продуманная структура заметно облегчает об­наружение злоумышленников и позволяет наказать провинившихся пользователей.

Каждый продукт имеет свои сильные и слабые стороны, поэтому рекомендовать его можно только для решения определенных задач. Если речь идет о защите комму­тируемых сетей, неплохим выбором являются разработки Network ICE, Axent Technologies и CyberSafe. Пакет eTrust Intrusion Detection идеален для своевременно­го уведомления о случаях нарушения этики бизнеса, например, об употреблении не­нормативной лексики в сообщениях электронной почты. Системы Intruder Alert и Centrax - прекрасный инструментарии для консультантов по вопросам информаци­онной безопасности и организаций, располагающих штатом профессионалов в данной области. Однако тем компаниям, которые не могут себе позволить прибегнуть к услу­гам высокооплачиваемых специалистов, рекомендуем установить продукты компании Network ICE. Эти приложения заменят истинного эксперта по сетевой защите лучше любой другой системы из тех, что когда-либо попадалась нам на глаза.

Первые системы, позволявшие выявлять подозрительную сетевую активность в корпоративных интрасетях, появились без малого 30 лет назад. Можно вспомнить, например, систему MIDAS, разработанную в 1988 году. Однако это был скорее прототип.

Препятствием к созданию полноценных систем данного класса долгое время была слабая вычислительная мощность массовых компьютерных платформ, и по-настоящему работающие решения были представлены лишь спустя 10 лет. Несколько позже на рынок вышли первые коммерческие образцы систем обнаружения вторжений (СОВ, или IDS — Intrusion Detection Systems)…

На сегодня задача обнаружения сетевых атак — одна из важнейших. Ее значимость возросла ввиду усложнения как методов атак, так и топологии и состава современных интрасетей. Если прежде для выполнения успешной атаки злоумышленникам было достаточно использовать известный стек эксплойтов, теперь они прибегают к гораздо более изощренным методам, соревнуясь в квалификации со специалистами на стороне защиты.

Современные требования к IDS

Системы обнаружения вторжений, зарегистрированные в реестре российского программного обеспечения, в большинстве своем используют сигнатурные методы. Либо заявляют определение аномалий, но аналитика, как максимум, оперирует данными не детальнее типа протокола. «Плутон» же основан на глубоком анализе пакетов с определением программного обеспечения. «Плутон» накладывает данные пришедшего пакета на специфику данных хоста — более точная и гибкая аналитика.

Ранее поверхностный анализ и сигнатурные методы успешно выполняли свои функции (тогда злоумышленники пытались эксплуатировать уже известные уязвимости ПО). Но в современных условиях атаки могут быть растянуты во времени (так называемые APT), когда их трафик маскируется путем шифрования и обфускации (запутывания), тогда сигнатурные методы малоэффективны. Кроме того, современные атаки используют различные способы обхода IDS.

В результате трудозатраты на конфигурирование и поддержку традиционных систем обнаружения вторжений могут превысить разумные пределы, и зачастую бизнес приходит к выводу, что такое занятие — только лишняя трата ресурсов. В результате IDS существует формально, выполняя лишь задачу присутствия, а информационные системы предприятия остаются по-прежнему беззащитными. Такая ситуация чревата еще большими потерями.

IDS нового поколения

СОВ ПАК «Плутон», разработанный компанией «Инфосистемы Джет» — это высокопроизводительный комплекс нового поколения для обнаружения сетевых атак. В отличие от традиционных IDS «Плутон» сочетает в себе одновременный анализ сетевых пакетов сигнатурным и эвристическим методами с сохранением данных окружения, предоставляет глубокую аналитику и расширение набора данных для расследования. Передовые методы определения потенциальных угроз, которые дополняются ретроспективными данными о сетевом окружении, трафике, а также логами системы, делают «Плутон» важным элементом системы защиты информации предприятия. Система способна выявлять признаки компьютерных атак и аномалий в поведении узлов сети в каналах связи пропускной способностью более 1 Гбит/с.

Помимо обнаружения признаков компьютерных атак на информационные системы «Плутон» обеспечивает серьезную защиту собственных компонентов, а также защиту каналов связи: в случае отказа оборудования соединение не будет прервано. Все компоненты «Плутон» функционируют в замкнутой программной среде — это делает невозможным запуск стороннего программного кода и служит дополнительной гарантией от заражения вредоносной программой. Поэтому можно быть уверенным, что «Плутон» не станет для злоумышленников «окном» в вашу сеть и не превратится в «головную боль» для сетевиков и безопасников.

«Плутон» тщательно следит за своим «здоровьем», контролируя целостность конфигурации компонентов системы, данных о собранных сетевых событиях информационной безопасности и сетевом трафике. Тем самым обеспечивается корректность функционирования компонентов системы и, соответственно, стабильность ее работы. А применение специальных сетевых плат в составе компонентов решения позволяет исключить разрыв каналов связи даже при полном выходе оборудования из строя или отключении электропитания.

Принимая во внимание сложности внедрения систем обнаружения вторжений, а также постоянное увеличение пропускной способности каналов связи, мы предусмотрели возможность гибкого горизонтального масштабирования компонентов комплекса. Если возникнет необходимость подключить к системе дополнительные сетевые сенсоры, для этого будет достаточно установить дополнительный сервер управления, связав его в кластер с существующим. При этом вычислительные мощности обоих серверов будут логически объединены в единый ресурс. Таким образом увеличение производительности системы становится очень простой задачей. Кроме того, система обладает отказоустойчивой архитектурой: в случае отказа одного из компонентов поток событий автоматически перенаправляется на резервные компоненты кластера.

В основе «Плутон» лежит наш более чем 20-летний опыт развертывания и эксплуатации комплексных систем защиты. Мы знаем наиболее частые проблемы заказчиков и недостатки современных решений класса IDS. Наша экспертиза позволила выявить наиболее актуальные задачи и помогла найти оптимальные пути их решения.

На текущий момент идет покомпонентная сертификация комплекса «Плутон» по требованиям к системам обнаружения вторжений уровня сети (2-й класс защиты) и на отсутствие недекларированных возможностей (2-й уровень контроля).

Функции «Плутон»:

Выявление в сетевом трафике признаков компьютерных атак, в том числе распределенных во времени, сигнатурным и эвристическим методами;

Контроль аномальной активности узлов сети и выявление признаков нарушения корпоративной политики безопасности;

. накопление и хранение:

— ретроспективных данных об обнаруженных событиях информационной безопасности с настраиваемой глубиной хранения;

— инвентаризационной информации о сетевых узлах (профиле хоста);

— информации о сетевых коммуникациях узлов, в том числе статистики потребления трафика (от сетевого до прикладного уровня по модели OSI);

— метаданных о передаваемых между узлами сети файлах;

Передача результатов анализа сетевого трафика во внешние системы защиты для повышения эффективности выявления инцидентов ИБ различного типа;

Предоставление доказательной базы по фактам компьютерных атак и сетевых коммуникаций для расследования инцидентов.

Порядок действий при обнаружении сетевых атак.

1. Классификация сетевых атак

1.1. Снифферы пакетов

Сниффер пакетов представляет собой прикладную программу, которая использует сетевую карту, работающую в режиме promiscuous mode (в этом режиме все пакеты, полученные по физическим каналам, сетевой адаптер отправляет приложению для обработки ). При этом сниффер перехватывает все сетевые пакеты, которые передаются через определенный домен.

1.2. IP-спуфинг

IP-спуфинг происходит, когда хакер, находящийся внутри системы или вне ее выдает себя за санкционированного пользователя. Это можно сделать двумя способами. Во-первых, хакер может воспользоваться IP-адресом, находящимся в пределах диапазона санкционированных IP-адресов, или авторизованным внешним адресом, которому разрешается доступ к определенным сетевым ресурсам. Атаки IP-спуфинга часто являются отправной точкой для прочих атак. Классический пример — атака DoS, которая начинается с чужого адреса, скрывающего истинную личность хакера.

Обычно IP-спуфинг ограничивается вставкой ложной информации или вредоносных команд в обычный поток данных, передаваемых между клиентским и серверным приложением или по каналу связи между одноранговыми устройствами. Для двусторонней связи хакер должен изменить все таблицы маршрутизации, чтобы направить трафик на ложный IP-адрес. Некоторые хакеры, однако, даже не пытаются получить ответ от приложений. Если главная задача состоит в получении от системы важного файла, ответы приложений не имеют значения.

Если же хакеру удается поменять таблицы маршрутизации и направить трафик на ложный IP-адрес, хакер получит все пакеты и сможет отвечать на них так, будто он является санкционированным пользователем.

1.3. Отказ в обслуживании (Denial of Service — DoS )

DoS является наиболее известной формой хакерских атак. Против атак такого типа труднее всего создать стопроцентную защиту.

Наиболее известные разновидности DoS:

  • TCP SYN Flood Ping of Death Tribe Flood Network (TFN );
  • Tribe Flood Network 2000 (TFN2K );
  • Trinco;
  • Stacheldracht;
  • Trinity.

Атаки DoS отличаются от атак других типов. Они не нацелены на получение доступа к сети или на получение из этой сети какой-либо информации. Атака DoS делает сеть недоступной для обычного использования за счет превышения допустимых пределов функционирования сети, операционной системы или приложения.

В случае использования некоторых серверных приложений (таких как Web-сервер или FTP-сервер ) атаки DoS могут заключаться в том, чтобы занять все соединения, доступные для этих приложений и держать их в занятом состоянии, не допуская обслуживания обычных пользователей. В ходе атак DoS могут использоваться обычные Интернет-протоколы, такие как TCP и ICMP (Internet Control Message Protocol ). Большинство атак DoS опирается не на программные ошибки или бреши в системе безопасности, а на общие слабости системной архитектуры. Некоторые атаки сводят к нулю производительность сети, переполняя ее нежелательными и ненужными пакетами или сообщая ложную информацию о текущем состоянии сетевых ресурсов. Этот тип атак трудно предотвратить, так как для этого требуется координация действий с провайдером. Если трафик, предназначенный для переполнения вашей сети, не остановить у провайдера, то на входе в сеть вы это сделать уже невозможно, потому что вся полоса пропускания будет занята. Когда атака этого типа проводится одновременно через множество устройств, атака является распределенной DoS (DDoS — distributed DoS ).

1.4. Парольные атаки

Хакеры могут проводить парольные атаки с помощью целого ряда методов, таких как простой перебор (brute force attack ), троянский конь, IP-спуфинг и сниффинг пакетов. Хотя логин и пароль часто можно получить при помощи IP-спуфинга и снифинга пакетов, хакеры часто пытаются подобрать пароль и логин, используя для этого многочисленные попытки доступа. Такой подход носит название простого перебора (brute force attack ). Часто для такой атаки используется специальная программа, которая пытается получить доступ к ресурсу общего пользования (например, к серверу ). Если в результате хакер получает доступ к ресурсам, он получает его на правах обычного пользователя, пароль которого был подобран. Если этот пользователь имеет значительные привилегии доступа, хакер может создать для себя «проход» для будущего доступа, который будет действовать даже если пользователь изменит свой пароль и логин.

Еще одна проблема возникает, когда пользователи применяют один и тот же (пусть даже очень хороший ) пароль для доступа ко многим системам: корпоративной, персональной и системам Интернет. Поскольку устойчивость пароля равна устойчивости самого слабого хоста, хакер, узнавший пароль через этот хост, получает доступ ко всем остальным системам, где используется тот же пароль.

1.5. Атаки типа Man-in-the-Middle

Для атаки типа Man-in-the-Middle хакеру нужен доступ к пакетам, передаваемым по сети. Такой доступ ко всем пакетам, передаваемым от провайдера в любую другую сеть, может, к примеру, получить сотрудник этого провайдера. Для атак этого типа часто используются снифферы пакетов, транспортные протоколы и протоколы маршрутизации. Атаки проводятся с целью кражи информации, перехвата текущей сессии и получения доступа к частным сетевым ресурсам, для анализа трафика и получения информации о сети и ее пользователях, для проведения атак типа DoS, искажения передаваемых данных и ввода несанкционированной информации в сетевые сессии.

1.6. Атаки на уровне приложений

Атаки на уровне приложений могут проводиться несколькими способами. Самый распространенный из них состоит в использовании слабостей серверного программного обеспечения (sendmail, HTTP, FTP ). Используя эти слабости, хакеры могут получить доступ к компьютеру от имени пользователя, работающего с приложением (обычно это бывает не простой пользователь, а привилегированный администратор с правами системного доступа ). Сведения об атаках на уровне приложений широко публикуются, чтобы дать возможность администраторам исправить проблему с помощью коррекционных модулей (патчей ). Главная проблема с атаками на уровне приложений состоит в том, что они часто пользуются портами, которым разрешен проход через межсетевой экран. К примеру, хакер, эксплуатирующий известную слабость Web-сервера, часто использует в ходе атаки ТСР порт 80. Поскольку Web-сервер предоставляет пользователям Web-страницы, межсетевой экран должен предоставлять доступ к этому порту. С точки зрения межсетевого экрана, атака рассматривается как стандартный трафик для порта 80.

1.7. Сетевая разведка

Сетевой разведкой называется сбор информации о сети с помощью общедоступных данных и приложений. При подготовке атаки против какой-либо сети хакер, как правило, пытается получить о ней как можно больше информации. Сетевая разведка проводится в форме запросов DNS, эхо-тестирования (ping sweep) и сканирования портов. Запросы DNS помогают понять, кто владеет тем или иным доменом и какие адреса этому домену присвоены. Эхо-тестирование (ping sweep ) адресов, раскрытых с помощью DNS, позволяет увидеть, какие хосты реально работают в данной среде. Получив список хостов, хакер использует средства сканирования портов, чтобы составить полный список услуг, поддерживаемых этими хостами. И, наконец, хакер анализирует характеристики приложений, работающих на хостах. В результате добывается информация, которую можно использовать для взлома.

1.8. Злоупотребление доверием

Этот тип действий не является «атакой» или «штурмом» . Он представляет собой злонамеренное использование отношений доверия, существующих в сети. Примером является система, установленная с внешней стороны межсетевого экрана, имеющая отношения доверия с системой, установленной с его внутренней стороны. В случае взлома внешней системы, хакер может использовать отношения доверия для проникновения в систему, защищенную межсетевым экраном.

1.9. Переадресация портов

Переадресация портов представляет собой разновидность злоупотребления доверием, когда взломанный хост используется для передачи через межсетевой экран трафика, который в противном случае был бы обязательно отбракован. Примером приложения, которое может предоставить такой доступ, является netcat.

1.10. Несанкционированный доступ

Несанкционированный доступ не может считаться отдельным типом атаки. Большинство сетевых атак проводятся ради получения несанкционированного доступа. Чтобы подобрать логин telnet, хакер должен сначала получить подсказку telnet на своей системе. После подключения к порту telnet на экране появляется сообщение «authorization required to use this resource» (для пользования этим ресурсов нужна авторизация ). Если после этого хакер продолжит попытки доступа, они будут считаться «несанкционированными» . Источник таких атак может находиться как внутри сети, так и снаружи.

1.11. Вирусы и приложения типа «троянский конь»

Рабочие станции клиентов очень уязвимы для вирусов и троянских коней. «Троянский конь» — это не программная вставка, а настоящая программа, которая выглядит как полезное приложение, а на деле выполняет вредную роль.

2. Методы противодействия сетевым атакам

2.1. Смягчить угрозу сниффинга пакетов можно с помощью следующих средств:

2.1.1. Аутентификация - Сильные средства аутентификации являются первым способом защиты от сниффинга пакетов. Под «сильным» мы понимаем такой метод аутентификации, который трудно обойти. Примером такой аутентификации являются однократные пароли (OTP — One-Time Passwords ). ОТР — это технология двухфакторной аутентификации, при которой происходит сочетание того, что у вас есть, с тем, что вы знаете. Под «карточкой» (token ) понимается аппаратное или программное средство, генерирующее (по случайному принципу ) уникальный одномоментный однократный пароль. Если хакер узнает этот пароль с помощью сниффера, эта информация будет бесполезной, потому что в этот момент пароль уже будет использован и выведен из употребления. Этот способ борьбы со сниффингом эффективен только для борьбы с перехватом паролей.

2.1.2. Коммутируемая инфраструктура - Еще одним способом борьбы со сниффингом пакетов в сетевой среде является создание коммутируемой инфраструктуры, при этом хакеры могут получить доступ только к трафику, поступающему на тот порт, к которому они подключены. Коммутируемая инфраструктуры не ликвидирует угрозу сниффинга, но заметно снижает ее остроту.

2.1.3. Анти-снифферы - Третий способ борьбы со сниффингом заключается в установке аппаратных или программных средств, распознающих снифферы, работающие в вашей сети. Эти средства не могут полностью ликвидировать угрозу, но, как и многие другие средства сетевой безопасности, они включаются в общую систему защиты. Так называемые «анти-снифферы» измеряют время реагирования хостов и определяют, не приходится ли хостам обрабатывать «лишний» трафик.

2.1.4. Криптография - Самый эффективный способ борьбы со сниффингом пакетов не предотвращает перехвата и не распознает работу снифферов, но делает эту работу бесполезной. Если канал связи является криптографически защищенным, это значит, что хакер перехватывает не сообщение, а зашифрованный текст (то есть непонятную последовательность битов).

2.2. Угрозу спуфинга можно ослабить (но не устранить) с помощью следующих мер:

2.2.1. Контроль доступа - Самый простой способ предотвращения IP-спуфинга состоит в правильной настройке управления доступом. Чтобы снизить эффективность IP-спуфигна, контроль доступа настраивается на отсечение любого трафика, поступающего из внешней сети с исходным адресом, который должен располагаться внутри вашей сети. Это помогает бороться с IP-спуфингом, когда санкционированными являются только внутренние адреса. Если санкционированными являются и некоторые адреса внешней сети, данный метод становится неэффективным.

2.2.2. Фильтрация RFC 2827 - пресечение попытки спуфинга чужих сетей пользователями корпоративной сети. Для этого необходимо отбраковывать любой исходящий трафик, исходный адрес которого не является одним из IP-адресов Банка. Этот тип фильтрации, известный под названием «RFC 2827», может выполнять и провайдер (ISP ). В результате отбраковывается весь трафик, который не имеет исходного адреса, ожидаемого на определенном интерфейсе.

2.2.3. Наиболее эффективный метод борьбы с IP-спуфингом тот же, что и в случае со сниффингом пакетов: необходимо сделать атаку абсолютно неэффективной. IP-спуфинг может функционировать только при условии, что аутентификация происходит на базе IP-адресов. Поэтому внедрение дополнительных методов аутентификации делает этот вид атак бесполезными. Лучшим видом дополнительной аутентификации является криптографическая. Если она невозможна, хорошие результаты может дать двухфакторная аутентификация с использованием одноразовых паролей.

2.3. Угроза атак типа DoS может снижаться следующими способами:

2.3.1. Функции анти-спуфинга - правильная конфигурация функций анти-спуфинга на ваших маршрутизаторах и межсетевых экранах поможет снизить риск DoS. Эти функции, как минимум, должны включать фильтрацию RFC 2827. Если хакер не сможет замаскировать свою истинную личность, он вряд ли решится провести атаку.

2.3.2. Функции анти-DoS - правильная конфигурация функций анти-DoS на маршрутизаторах и межсетевых экранах может ограничить эффективность атак. Эти функции ограничивают число полуоткрытых каналов в любой момент времени.

2.3.3. Ограничение объема трафика (traffic rate limiting ) – договор с провайдером (ISP ) об ограничении объем трафика. Этот тип фильтрации позволяет ограничить объем некритического трафика, проходящего сети. Обычным примером является ограничение объемов трафика ICMP, который используется только для диагностических целей. Атаки (D ) DoS часто используют ICMP.

2.3.4. Блокирование IP адресов – после анализа DoS атаки и выявления диапазона IP адресов, с которых осуществляется атака, обратиться к провайдеру для их блокировки.

2.4. Парольных атак можно избежать, если не пользоваться паролями в текстовой форме. Одноразовые пароли и/или криптографическая аутентификация могут практически свести на нет угрозу таких атак. Не все приложения, хосты и устройства поддерживают указанные выше методы аутентификации.

При использовании обычных паролей, необходимо придумать такой пароль, который было бы трудно подобрать. Минимальная длина пароля должна быть не менее восьми символов. Пароль должен включать символы верхнего регистра, цифры и специальные символы (#, %, $ и т.д. ). Лучшие пароли трудно подобрать и трудно запомнить, что вынуждает пользователей записывать пароли на бумаге.

2.5. Эффективно бороться с атаками типа Man-in-the-Middle можно только с помощью криптографии. Если хакер перехватит данные зашифрованной сессии, у него на экране появится не перехваченное сообщение, а бессмысленный набор символов. Заметим, что, если хакер получит информацию о криптографической сессии (например, ключ сессии ), это может сделать возможной атаку Man-in-the-Middle даже в зашифрованной среде.

2.6. Полностью исключить атаки на уровне приложений невозможно. Хакеры постоянно открывают и публикуют в Интернете все новые уязвимые места прикладных программ. Самое главное — хорошее системное администрирование.

Меры, которые можно предпринять, чтобы снизить уязвимость для атак этого типа:

  • чтение и/или анализ лог-файлов операционных систем и сетевые лог-файлов с помощью специальных аналитических приложений;
  • своевременное обновление версий операционных систем и приложений и установка последних коррекционных модулей (патчей );
  • использование систем распознавания атак (IDS ).

2.7. Полностью избавиться от сетевой разведки невозможно. Если отключить эхо ICMP и эхо-ответ на периферийных маршрутизаторах, вы избавитесь от эхо-тестирования, но потеряете данные, необходимые для диагностики сетевых сбоев. Кроме того, сканировать порты можно и без предварительного эхо-тестирования. Просто этой займет больше времени, так как сканировать придется и несуществующие IP-адреса. Системы IDS на уровне сети и хостов обычно хорошо справляются с задачей уведомления администратора о ведущейся сетевой разведке, что позволяет лучше подготовиться к предстоящей атаке и оповестить провайдера (ISP ), в сети которого установлена система, проявляющая чрезмерное любопытство.

2.8. Риск злоупотребления доверием можно снизить за счет более жесткого контроля уровней доверия в пределах своей сети. Системы, расположенные с внешней стороны межсетевого экрана, никогда не должны пользоваться абсолютным доверием со стороны защищенных экраном систем. Отношения доверия должны ограничиваться определенными протоколами и, по возможности, аутентифицироваться не только по IP-адресам, но и по другим параметрам.

2.9. Основным способом борьбы с переадресацией портов является использование надежных моделей доверия (см. п. 2.8 ). Кроме того, помешать хакеру установить на хосте свои программные средства может хост-система IDS (HIDS ).

2.10. Способы борьбы с несанкционированным доступом достаточно просты. Главным здесь является сокращение или полная ликвидация возможностей хакера по получению доступа к системе с помощью несанкционированного протокола. В качестве примера можно рассмотреть недопущение хакерского доступа к порту telnet на сервере, который предоставляет Web-услуги внешним пользователям. Не имея доступа к этому порту, хакер не сможет его атаковать. Что же касается межсетевого экрана, то его основной задачей является предотвращение самых простых попыток несанкционированного доступа.

2.11. Борьба с вирусами и «троянскими конями» ведется с помощью эффективного антивирусного программного обеспечения, работающего на пользовательском уровне и на уровне сети. Антивирусные средства обнаруживают большинство вирусов и «троянских коней» и пресекают их распространение.

3. Алгоритм действий при обнаружении сетевых атак

3.1. Большая часть сетевых атак блокируется автоматически установленными средствами защиты информации (межсетевые экраны, средства доверенной загрузки, сетевые маршрутизаторы, антивирусные средства и т.п. ).

3.2. К атакам, требующим вмешательства персонала для их блокировки или снижения тяжести последствий относятся атаки типа DoS.

3.2.1. Выявление DoS атаки осуществляется путем анализа сетевого трафика. Начало атаки характеризуется «забиванием » каналов связи с помощью ресурсоемких пакетов с поддельными адресами. Подобная атака на сайт интернет-банкинга усложняет доступ легитимных пользователей и веб-ресурс может стать недоступным.

3.2.2. В случае выявления атаки системный администратор выполняет следующие действия:

  • осуществляет ручное переключение маршрутизатора на резервный канал и обратно с целью выявления менее загруженного канала (канала с более широкой пропускной способностью);
  • выявляет диапазон IP – адресов, с которых осуществляется атака;
  • отправляет провайдеру заявку на блокировку IP адресов из указанного диапазона.

3.3. DoS атака, как правило, используется для маскировки успешно проведенной атаки на ресурсы клиента с целью затруднить ее обнаружение. Поэтому при выявлении DoS атаки необходимо провести анализ последних транзакций с целью выявления необычных операций, осуществить (при возможности) их блокировку, связаться с клиентами по альтернативному каналу для подтверждения проведенных транзакций.

3.4. В случае получения от клиента информации о несанкционированных действиях осуществляется фиксация всех имеющихся доказательств, проводится внутреннее расследование и подается заявление в правоохранительные органы.

Скачать ZIP файл (24151)

Пригодились документы - поставь «лайк»:

Основным назначением данной программы является обнаружение хакерских атак. Как известно, первой фазой большинства хакерских атак является инвентаризация сети и сканирование портов на обнаруженных хостах. Сканирование портов помогает произвести определение типа операционной системы и обнаружить потенциально уязвимые сервисы (например, почту или WEB-сервер). После сканирования портов многие сканеры производят определение типа сервиса путем передачи тестовых запросов и анализа ответа сервера. Утилита APS проводит обмен с атакующим и позволяет однозначно идентифицировать факт атаки.


Кроме этого, назначением утилиты является:

  • обнаружение разного рода атак (в первую очередь сканирования портов и идентификации сервисов) и появления в сети программ и сетевых червей (в базе APS более сотни портов, используемых червями и Backdoor - компонентами);
  • тестирование сканеров портов и сетевой безопасности (для проверки работы сканера необходимо запустить на тестовом компьютере APS и провести сканирование портов - по протоколам APS нетрудно установить, какие проверки провидит сканер и в какой последовательности);
  • тестирование и оперативный контроль за работой Firewall - в этом случае утилита APS запускается на компьютере с установленным Firewall и проводится сканирование портов и (или иные атаки) против ПК. Если APS выдает сигнал тревоги, то это является сигналом о неработоспособности Firewall или о его неправильной настройке. APS может быть постоянно запущен за защищенном при помощи Firewall компьютере для контроля за исправным функционирование Firewall в реальном времени;
  • блокировка работы сетевых червей и Backdoor модулей и их обнаружение - принцип обнаружения и блокирования основан на том, что один и тот-же порт может быть открыт на прослушивание только один раз. Следовательно, открытие портов, используемых троянскими и Backdoor программами до их запуска помешает их работе, после запуска - приведет к обнаружению факта использования порта другой программой;
  • тестирование антитроянских и программ, систем IDS - в базе APS заложено более сотни портов наиболее распространенных троянских программ. Некоторые антитроянских средства обладают способностью проводить сканирование портов проверяемого ПК (или строить список прослушиваемых портов без сканирования при помощи API Windows) - такие средства должны сообщать о подозрении на наличие троянских программы (с выводом списка "подозрительных" портов) - полученный список легко сравнить со списком портов в базе APS и сделать выводы о надежность применяемого средства.

Принцип работы программы основан на прослушивании портов, описанных в базе данных. База данных портов постоянно обновляется. База данных содержит краткое описание каждого порта - краткие описания содержат или названия использующих порт вирусов, или название стандартного сервиса, которому этот порт соответствует. При обнаружении попытки подключения к прослушиваемому порту программа фиксирует факт подключения в протоколе, анализирует полученные после подключения данные и для некоторых сервисов передает так называемый баннер - некоторый набор текстовых или бинарных данных,передаваемых реальным сервисом после подключения.

Лучшие статьи по теме