Как настроить смартфоны и ПК. Информационный портал
  • Главная
  • Windows 7, XP
  • Физическая и логическая организация памяти вычислительных систем. Организация памяти в вычислительных машинах

Физическая и логическая организация памяти вычислительных систем. Организация памяти в вычислительных машинах

Глава 11

Организация памяти вычислительных систем

В вычислительных системах, объединяющих множество параллельно работающих процессоров или машин, задача правильной организации памяти является одной из важнейших. Различие между быстродействием процессора и памяти всегда было камнем преткновения в однопроцессорных ВМ. Многопроцессорность ВС приводит еще к одной проблеме - проблеме одновременного доступа к памяти со стороны нескольких процессоров.

В зависимости от того, каким образом организована память многопроцессорных (многомашинных) систем, различают вычислительные системы с общей памятью (shared memory) и ВС с распределенной памятью (distributed memory). В системах с общей памятью (ее часто называют также совместно используемой или разделяемой памятью) намять ВС рассматривается как общин ресурс, и каждый из процессоров имеет полный доступ ко всему адресному пространству. Системы с обшей памятью называют сильно связанными (closely coupled systems). Подобное построение вычислительных систем имеет место как в классе SIMD, так и в классе MIMD. Иногда, чтобы подчеркнуть это обстоятельство, вводят специальные подклассы, используя для их обозначения аббревиатуры SM-SIMD (Shared Memory SIMD) и SM-MIMD (Shared Memory MIMD).

В варианте с распределенной памятью каждому из процессоров придается собственная память. Процессоры объединяются в сеть и могут при необходимости обмениваться данными, хранящимися в их памяти, передавая друг другу так называемые сообщения. Такой вид ВС называют слабо связанными (loosely coupled systems). Слабо связанные системы также встречаются как в классе SIMD, так и В классе MIMD, и иной раз, чтобы подчеркнуть данную особенность, вводят подклассы DM-SIMD (Distributed Memory SIMD) и DM-MIMD (Distributed Memory MIMD).

В некоторых случаях вычислительные системы с общей памятью называют мультипроцессорами, а системы с распределенной памятью - мцльтикомпьютерами.

Различие между общей и распределенной памятью - это разницу в структуре виртуальной памяти, то есть в том, как память выглядит со стороны процессора. Физически почти каждая система памяти разделена на автономные компоненты доступ к которым может производиться независимо. Общую память от распределенной отлипает то, каким образом подсистема памяти интерпретирует поступивший от процессора адрес ячейки. Для примера положим, что процессор выполняет команду load RO, i, означающую «Загрузить регистр R0 содержимым ячейки i». В случае общей памяти i - это глобальный адрес, и для любого процессора указывает на одну и ту же ячейку. В распределенной системе памяти i - это локальный адрес Если два процессора выполняют команду load RO, i, то каждый из них обращается к i-й ячейке в своем локальной памяти, то есть к разным ячейкам, и в регистры R0 могут быть загружены неодинаковые значения.

Различие между двумя системами памяти должно учитываться программистом, поскольку оно определяет способ взаимодействия частей распараллеленной программы. В варианте с общей памятью достаточно создать в памяти структуру данных и передавать в параллельно используемые подпрограммы ссылки на эту структуру. В системе с распределенной памятью необходимо в каждой локальной памяти иметь копию совместно используемых данных. Эти копии создаются путем вкладывания разделяемых данных в сообщения, посылаемые другим процессорам.

Память с чередованием адресов

Физически память вычислительной системы состоит из нескольких модулей (банков), при этом существенным вопросом является то, как в этом случае распределено адресное пространство (набор всех адресов, которые может сформировать процессор). Один из способов распределения виртуальных адресов по модулям памяти состоит в разбиении адресного пространства на последовательные блоки. Если память состоит из п банков, то ячейка с адресом i при поблочном разбиении будет находиться в банке с номером i/ n. В системе памяти с чередованием адресов (interleaved memory) последовательные адреса располагаются в различных банках: ячейка с адресом i находится в банке с номером i mod п. Пусть, например, память состоит из четырех банков, по 256 байт в каждом. В схеме, ориентированной на блочную адресацию, первому банку будут выделены виртуальные адреса 0-255, второму - 256-511 и т. д. В схеме с чередованием адресов последовательные ячейки в первом банке будут иметь виртуальные адреса 0, 4, 8, .... во втором банке - 1, 5, 9 и т. д. (рис. 11.1, а).

Распределение адресного пространства по модулям дает возможность одновременной обработки запросов на доступ к памяти, если соответствующие адреса относятся к разным банкам, Процессор может в одном из циклов затребовать доступ к ячейке i а в следующем цикле - к ячейке j. Если i и j находятся в разных банках, информация будет передана в последовательных циклах. Здесь под циклом понимается цикл процессора, в то время как полный цикл памяти занимает несколько циклов процессора. Таким образом, в данном случае процессор не должен ждать, пока будет завершен полный цикл обращения к ячейке i. Рассмотренный прием позволяет повысить пропускную способность: если система памяти состоит из

https://pandia.ru/text/78/264/images/image002_61.jpg" width="62" height="15"> Интервал между элементами называют шагом по индексу или «страйдом» (stride). Одним из интересных применений этого свойства может служить Доступ к матрицам. Если шаг по индексу на единицу больше числа строк в матрице, одиночный запрос на доступ к памяти возвратит все диагональные элементы матрицы (рис. 11.1,б). Ответственность за то, чтобы все извлекаемые элементы матрицы располагались в разных банках, ложится на программиста.

Модели архитектуры памяти вычислительных систем

В рамках как совместно используемой, так и распределенной памяти реализуется несколько моделей архитектур системы памяти.

DIV_ADBLOCK84">

Рис. 11.3. Общая память: а - объединение процессоров с помощью шины; б - система с локальными кэшами; в - производительность системы как функция от числа процессоров на шине; г - многопроцессорная ВС с общей памятью, состоящей из отдельных модулей

Альтернативный способ построения многопроцессорной ВС с общей памятью на основе НМЛ показан на рис. 11.3, г. Здесь шипа заменена коммутатором, маршрутизирующим запросы процессора к одному из нескольких модулей памяти. Несмотря на то что имеется несколько модулей памяти, все они входят в единое виртуальное адресное пространство. Преимущество такого подхода в том, что коммутатор и состоянии параллельно обслуживать несколько запросов. Каждый процессор может быть соединен со своим модулем памяти и иметь доступ к нему на максимально допустимой скорости. Соперничество между процессорами может возникнуть при попытке одновременного доступа к одному и тому же модулю памяти. В этом случае доступ получает только один процессор, а прочие - блокируются.

К сожалению, архитектура UMA не очень хорошо масштабируется. Наиболее распространенные системы содержат 4-8 процессоров, значительно реже 32-64 процессора. Кроме того, подобные системы нельзя отнести к отказоустойчивым, так как отказ одного процессора или модуля памяти влечет отказ всей ВС.

Другим подходом к построению ВС с общей памятью является неоднородный доступ к памяти, обозначаемый как NUM A (Non-Uniform Memory Access), Здесь по-прежнему фигурирует единое адресное пространство, но каждый процессор имеет локальную память. Доступ процессора к собственной локальной памяти производится напрямую, что намного быстрее, чем доступ к удаленной памяти через коммутатор или сеть. Такая система может быть дополнена глобальной памятью тогда локальные запоминающие устройства играют роль быстрой кэш-памяти для глобальной памяти. Подобная схема может улучшить производительность ВС, по не в состоянии неограниченно отсрочить выравнивание прямой производительности. При наличии у каждого процессора локальной кэш-памяти (рис. 11.3,6) существует высокая вероятность (р > 0,9) того, что нужные команда или данные уже находятся в локальной памяти. Разумная вероятность попадания в локальную память существенно уменьшает число обращений процессора к глобальной памяти и, таким образом, ведет к повышению эффективности. Место излома кривой производительности (верхняя кривая на рис. 11.3, в), соответствующее точке, в которой добавление процессоров еще остается эффективным, теперь перемещается в область 20 процессоров, а тонка, где кривая становится горизонтальной, - в область 30 процессоров.

В рамках концепции NUMA реализуется несколько различных подходов, обозначаемых аббревиатурами СОМА, CC- NUMA и NCC- NUMA.

В архитектуре только с кэш-памятью (СОМА, Cache Only Memory Architecture) локальная память каждого процессора построена как большая кэш-память для быстрого доступа со стороны «своего» процессора . Кэши всех процессоров в совокупности рассматриваются как глобальная память системы. Собственно глобальная память отсутствует. Принципиальная особенность концепции СОМА выражается в динамике. Здесь данные не привязаны статически к определенному модулю памяти и не имеют уникального адреса, остающегося неизменным в течение всего времени существования переменной. В архитектуре СОМА данные переносятся в кэш-память того процессора, который последним их запросил, при этом переменная не фиксирована уникальным адресом и в каждый момент времени может размещаться в любой физической ячейке. Перенос данных из одного локального кэша в другой не требует участия в этом процессе операционной системы, но подразумевает сложную и дорогостоящую аппаратуру управления памятью. Для организации такого режима используют так называемые каталоги кэшей. Отметим также, что последняя копия элемента данных никогда из кэш-памяти не удаляется.

Поскольку в архитектуре СОМА данные перемещаются в локальную кэш-память процессора-владельца, такие ВС в плане производительности обладают существенным преимуществом над другими архитектурами NUM А. С другой стороны, если единственная переменная или две различные переменные, хранящее в одной строке одного и того же кэша, требуются двум процессорам, эта строка кэша должна перемещаться между процессорами туда и обратно при каждом доступе к данным. Такие эффекты могут зависеть от деталей распределения памяти приводить к непредсказуемым ситуациям.

Модель кэш-когерентного доступа к неоднородной памяти (CC-NUMA, Сасhe Coherent Non-Uniform Memory Architecture) принципиально отличается от модели СОМА. В системе CC-NUMA используется не кэш-память, а обычная физически распределенная память. Не происходит никакого копирования страниц или данных между ячейками памяти. Нет никакой программно реализованной передачи сообщений. Существует просто одна карта памяти, с частями, физически связанными медным кабелем, и «умные» аппаратные средства. Аппаратно реализованная кэш-когерентность означает, что не требуется какого-либо программного обеспечения для сохранения множества копий обновленных данных или их передачи. Со всем этим справляется аппаратный уровень. Доступ к локальным модулям памяти в разных узлах системы может производиться одновременно и происходит быстрее, чем к удаленным модулям памяти.

Отличие модели с кэш-некогерентным доступом к неоднородной памяти (NCC-NUMA, Non-Cache Coherent Non-Uniform Memory Architecture) от CC-NUMA очевидно из названия. Архитектура памяти предполагает единое адресное пространство, но не обеспечивает согласованности глобальных данных на аппаратном уровне. Управление использованием таких данных полностью возлагается на программное обеспечение (приложения или компиляторы). Несмотря на это обстоятельство, представляющееся недостатком архитектуры, она оказывается весьма полезной при повышении производительности вычислительных систем с архитектурой памяти типа DSM, рассматриваемой в разделе «Модели архитектур распределенной памяти».

В целом, ВС с общей памятью, построенные по схеме NUMA, называют архитектурами с виртуальной общей памятью (virtual shared memory architectures). Данный вид архитектуры, в частности CC-NUMA, в последнее время рассматривается как самостоятельный и довольно перспективный вид вычислительных систем класса MIMD, поэтому такие ВС ниже будут обсуждены более подробно.

Модели архитектур распределенной памяти

В системе с распределенной памятью каждый процессор обладает собственной памятью и способен адресоваться только к ней. Некоторые авторы называют этот тип систем многомашинными ВС или мультикомпъютерами, подчеркивая тот факт, что блоки, из которых строится система, сами по себе являются небольшими вычислительными системами с процессором и памятью. Модели архитектур с распределенной памятью принято обозначать как архитектуры без прямого доступа к удаленной памяти (NORMA, No Remote Memory Access). Такое название следует из того факта, что каждый процессор имеет доступ только к своей локальной памяти. Доступ к удаленной памяти (локальной памяти другого процессора) возможен только путем обмена сообщениями с процессором, которому принадлежит адресуемая память.

Подобная организация характеризуется рядом достоинств. Во-первых, при доступе к данным не возникает конкуренции за шину или коммутаторы - каждый процессор может полностью использовать полосу пропускания тракта связи с собственной локальной памятью. Во-вторых, отсутствие общей шины означает, что нет и связанных с этим ограничений на число процессоров: размер системы ограничивает только сеть, объединяющая процессоры. В-третьих, снимается проблема когерентности кэш-памяти. Каждый процессор вправе самостоятельно менять свои Данные, не заботясь о согласовании копий данных в собственной локальной кэш-памяти с кэшами других процессоров.

Основной недостаток ВС с распределенной памятью заключается в сложности обмена информацией между процессорами. Если какой-то из процессоров нуждается в данных из памяти другого процессора, он должен обменяться с этим процессором сообщениями. Это приводит к двум видам издержек:

· требуется время для того, чтобы сформировать и переслать сообщение от одно! процессора к другому;

· для обеспечения реакции на сообщения от других процессоров принимающий процессор должен получить запрос прерывания и выполнить процедуру обработки этого прерывания.

Структура системы с распределенной памятью приведена на рис. 11.4. В левой! части (рис. 11.4, а) показан один процессорный элемент (ПЭ). Он включает в себя) собственно процессор (Р), локальную память (М) и два контроллера ввода/вывод (Ко и КД В правой части (рис. 11.4, б) показана четырехпроцессорная система, иллюстрирующая, каким образом сообщения пересылаются от одного процессор к другому. По отношению к каждому ПЭ все остальные процессорные элементы можно рассматривать просто как устройства ввода/вывода. Для посылки сообщения в другой ПЭ процессор формирует блок данных в своей локальной памяти и извещает свой локальный контроллер о необходимости передачи информации на внешнее устройство. По сети межсоединений это сообщение пересылается на приемный контроллер ввода/вывода принимающего ПЭ. Последний находит место для сообщения в собственной локальной памяти и уведомляет процессор-источник о получении сообщения.

DIV_ADBLOCK89">

Интересный вариант системы с распределенной памятью представляет собой; модель распределенной совместно используемой памяти (DSM, Distribute Shared Memory), известной также и под другим названием архитектуры с неоднородным доступом к памяти и программным обеспечением когерентности (SC-NUMA, Software-Coherent Non-Uniform Memory Architecture). Идея этой модели состоит в том, что ВС, физически будучи системой с распределенной памятью, благодаря операционной системе представляется пользователю как система с общей памятью. Это означает, что операционная система предлагает пользователю единое адресное пространство, несмотря на то что фактическое обращение к памяти «чужого» компьютера ВС по-прежнему обеспечивается путем обмена сообщениями.

Мультипроцессорная когерентность кэш - памяти

Мультипроцессорная система с разделяемой памятью состоит из двух или более независимых процессоров, каждый из которых выполняет либо часть большой программы, либо независимую программу. Все процессоры обращаются к командам и данным, хранящимся в общей основной памяти. Поскольку память является обобществленным ресурсом, при обращении к ней между процессорами возникает соперничество, в результате чего средняя задержка на доступ к памяти увеличивается. Для сокращения такой задержки каждому процессору придается локальная кэш-память, которая, обслуживая локальные обращения к памяти, во многих случаях предотвращает необходимость доступа к совместно используемой основной памяти. В свою очередь, оснащение каждого процессора локальной кэш-памятью приводит к так называемой проблеме когерентности или обеспечения согласо ванности кэш-памяти. Согласно , система является когерентной, если каждая операция чтения по какому-либо адресу, выполненная любым из процессоров, возвращает значение, занесенное в ходе последней операции записи по этому адресу, вне зависимости от того, какой из процессоров производил запись последним.

В простейшей форме проблему когерентности кэш-памяти можно пояснить следующим образом (рис 11.5). Пусть два процессора Рг и Рг связаны с общей памятью посредством шины. Сначала оба процессора читают переменную х. Копии блоков, содержащих эту переменную, пересылаются из основной памяти в локальные кэши обоих процессоров (рис. 11.5, а). Далее процессор Pt выполняет операцию увеличения значения переменной х на единицу. Так как копия переменной уже находится в кэш-памяти данного процессора, произойдет кэш-попадание и значение сбудет изменено только в кэш-памяти 1. Если теперь процессор Р2 вновь выполнит операцию чтения х, то также произойдет кэш-попадание и Р2 получит хранящееся в его кэш-памяти «старое» значение х (рис. 11.5, б).

Поддержание согласованности требует, чтобы при изменении элемента данных одним из процессоров соответствующие изменения были проведены в кэш-памяти остальных процессоров, где есть копия измененного элемента данных, а также в общей памяти. Схожая проблема возникает, кстати, и в однопроцессорных системах, где присутствует несколько уровней кэш-памяти. Здесь требуется согласовать содержимое кэшей разных уровней.

В решении проблемы когерентности выделяются два подхода: программный и аппаратный. В некоторых системах применяют стратегии, совмещающие оба подхода.

Программные способы решения проблемы когерентности

Программные приемы решения проблемы когерентности позволяют обойтись без дополнительного оборудования или свести его к минимуму .

Протокол Berkeley. Протокол Berkeley был применен в мультипроцес-сорной системе Berkeley, построенной на базе RISC-процессоров.

Снижение издержек, возникающих в результате кэш-промахов, обеспечивается благодаря реализованной в этом протоколе идее прав владения на строку кэша. Обычно владельцем прав на все блоки данных считается основная память. Прежде чем модифицировать содержимое строки в своей кэш-памяти, процессор должен получить права владения на данную строку. Эти права приобретаются с помощью специальных операций чтения и записи. Если при доступе к блоку, собственником которого в данный момент не является основная память, происходит кэш-промах, процессор, являющийся владельцем строки, предотвращает чтение из основной памяти и сам снабжает запросивший процессор данными из своей локальной кэш-памяти.

Другое улучшение - введение состояния совместного использования (shared). Когда процессор производит запись в одну из строк своей локальной кэш-памяти, он обычно формирует сигнал аннулирования копий изменяемого блока в других кэшах. В протоколе Berkeley сигнал аннулирования формируется только при условии, что в прочих кэшах имеются такие копии. Это позволяет существенно снизить непроизводительный трафик шины. Возможны следующие сценарии.

Прежде всего, каждый раз, когда какой-либо процессор производит запись в свою кэш-память, изменяемая строка переводится в состояние «измененная, частная» (PD, Private Dirty). Далее, если строка является совместно используемой, на шину посылается сигнал аннулирования, и во всех локальных кэшах, где есть копия данного блока данных, эти копии переводятся в состояние «недействительная» (I, Invalid). Если при записи имел место промах, процессор получает копию блока из кэша текущего хозяина запрошенного блока. Лишь после этих действий процессор производит запись в свой кэш.

При кэш-промахе чтения процессор посылает запрос владельцу блока, с тем чтобы получить наиболее свежую версию последнего, и переводит свою новую копию в состояние «только для чтения» (RO, Read Only). Если владельцем строки был другой процессор, он помечает свою копию блока как «разделяемую измененную» (SD, Shared Dirty).

Диаграмма состояний протокола Berkeley показана на рис. 11.10.

Сравнивая протоколы однократной записи и Berkeley, можно отметить следу-ющее. Оба протокола используют стратегию обратной записи, при которой изме-ненные блоки удерживаются в кэш-памяти как можно дольше. Основная память обновляется только при удалении строки из кэша. Верхняя граница общего количества транзакций записи на шине определяется той частью протокола однократной записи, где реализуется сквозная запись, так как последняя стратегия порождает на шине операцию записи при каждом изменении, инициированном процессором . Поскольку первая операция записи в протоколе однократной записи является сквозной, она производится даже если данные не являются совместно используемыми. Это влечет дополнительный трафик шины, который возрастает с увеличением емкости кэш-памяти. Доказано, что протокол однократной записи приводит к большему трафику шины по сравнению с протоколом Berkeley .







Попадание при чтении

Рис. 11.10. Протокол Berkeley

Для постоянно читаемой и обновляемой строки в протоколе однократной записи необходимы считывание этой строки в кэш, ее локальная модификация в кэше и обратная запись в память. Вся процедура требует двух операций на шине: чтения из основной памяти (ОП) и обратной записи в ОП. С другой стороны, протокол Berkeley исходит из получения прав на строку. Далее блок модифицируется в кэше. Если до удаления из кэша к строке не производилось обращение, число циклов шины будет таким же, как и в протоколе однократной записи. Однако более вероятно, что строка будет запрошена опять, тогда с позиций одиночной кэш-памяти обновление строки кэша нуждается только в одной операции чтения на шине. Таким образом, протокол Berkeley пересылает строки непосредственно между кэшами, в то время как протокол однократной записи передает блок из исходного кэша в основную память, а затем из ОП в запросившие кэши, что имеет следствием общую задержку системы памяти .

Протокол Illinois. Протокол Illinois, предложенный Марком Папамаркосом , также направлен на снижение трафика шины и, соответственно, времени ожидания процессором доступа к шине. Здесь, как и в протоколе Berkeley, главенствует идея прав владения блоком, но несколько измененная. В протоколе Illinois правом владения обладает любой кэш, где есть достоверная копия блока данных. В этом случае у одного и того же блока может быть несколько владельцев. Когда такое происходит, каждому процессору назначается определенный приоритет и источником информации становится владелец с более высоким приоритетом.

Как и в предыдущем случае, сигнал аннулирования формируется, лишь когда копии данного блока имеются и в других кэшах. Возможные сценарии для протокола Illinois представлены на рис. 11.11.

Рис. 11.11. Протокол Illinois

Каждый раз когда какой-либо процессор производит запись в свою кэш-память, изменяемая строка переводится в состояние «измененная частная» (PD, Private Dirty), Если блок данных является совместно используемым, на шину посылается сигнал аннулирования и во всех локальных кэшах, где есть копия данного блока, эти копии переводятся в состояние «недействительная» (I, Invalid). Если при записи случился промах, процессор получает копию из кэша текущего владельца запрошенного блока. Лишь после означенных действий процессор производит запись в свой кэш. Как видно, в этой части имеет место полное совпадение с протоколом Berkeley.

При кэш-промахе чтения процессор посылает запрос владельцу блока, с тем чтобы получить наиболее свежую версию последнего, и переводит свою новую копию в состояние «эксклюзивная» (Е, Exclusive) при условии, что он является единственным владельцем строки. В противном случае статус меняется на «разделяемая» (S, Shared).

Существенно, что протокол расширяем и тесно привязан как к коэффициенту кэш-промахов, так и к объему данных, которые являются общим достоянием мультипроцессорной системы.

Протокол Firefly. Протокол был предложен Такером и др. и реализован в мультипроцессорной системе Firefly Multiprocessor Workstation, разработанной в исследовательском центре Digital Equipment Corporation.

В протоколе Firefly используется запись с обновлением. Возможные состояния строки кэша совпадают с состояниями протокола Illinois (рис. 11.12). Отличие состоит в том, что стратегия обратной записи применяется только к тем строкам, которые находятся в состоянии PD или Е, в то время как применительно к строкам в состоянии S действует сквозная запись. Наблюдающие кэши при обновлении своих копий используют процедуру сквозной записи. Кроме того, наблюдающие кэши, обнаружившие у себя копию строки, возбуждают специальную «разделяемую» линию шины с тем, чтобы записывающий контроллер мог принять решение о том, в какое состояние переводить строку, в которую была произведена запись. «Разделяемая» линия при кэш-промахе чтения служит для информирования контроллера локальной кэш-памяти о месте, откуда поступила копия строки: из основной памяти или другого кэша. Таким образом, состояние S применяется только к тем данным, которые действительно используются совместно .

https://pandia.ru/text/78/264/images/image018_2.jpg" width="491 height=316" height="316">

Рис. 11.13. Протокол Dragon

Протокол MESI. Безусловно, среди известных протоколов наблюдения сам популярным является протокол MESI (Modified/Exclusive/Shared/Invalid). Протокол MESI широко распространен в коммерческих микропроцессорных системах, например на базе микропроцессоров Pentium и PowerPC. Так, его можно обнаружить во внутреннем кэше и контроллере внешнего кэша i82490 микропроцессора Pentium, в процессоре i860 и контроллере кэш-памяти МС88200 фирмы Моtorola.

Протокол был разработан для кэш-памяти с обратной записью. Одной из основных задач протокола MESI является откладывание на максимально возможный срок операции обратной записи кашированных данных в основную память BC. Это позволяет улучшить производительность системы за счет минимизации нужных пересылок информации между кэшами и основной памятью. Протокол MESI приписывает каждой кэш-строке одно из четырех состояний, которые контролируются двумя битами состояния MESI в теге данной строки. Статус кэш-строки может быть изменен как процессором, для которого эта кэш-память является локальной, так и другими процессорами мультипроцессорной «схемы. Управление состоянием кэш-строк может быть возложено и на внешние логические устройства. Одна из версий протокола предусматривает использование ранее рассмотренной схемы однократной записи.

Разделяемая (S, Shared) - строка в кэше совпадает с аналогичной строкой в основной памяти (данные достоверны) и может присутствовать в одном или нескольких из прочих кэшей.

Недействительная (I, Invalid) - кэш-строка, помеченная как недействительная, не содержит достоверных данных и становится логически недоступной.

Рис. 11.15. Последовательность смены состояний в протоколе MESI: а - процессор 1 читает х;

б - процессор 2 читает х; в - процессор 1 производит первую запись в х;

г - процессор 1 производит очередную запись в х

Порядок перехода строки кэш-памяти из одного состояния в другое зависит от: текущего статуса строки, выполняемой операции (чтение или запись), результата обращения в кэш (попадание или промах) и, наконец, от того, является ли строка совместно используемой или нет. На рис. 11.14 приведена диаграмма основных переходов без учета режима однократной записи.

Предположим, что один из процессоров делает запрос на чтение из строки, которой в текущий момент нет в его локальной кэш-памяти (промах при чтении). Запрос будет широковещательно передан по шине. Если ни в одном из кэшей не нашлось копии нужной строки, то ответной реакции от контроллеров наблюдения других процессоров не последует, строка будет считана в кэш запросившего процессора из основной памяти, а копии будет присвоен статус Е. Если в каком-либо из локальных кэшей имеется искомая копия, от соответствующего контроллера слежения поступит отклик, означающий доступ к совместно используемой строке. Все копии рассматриваемой строки во всех кэшах будут переведены в состояние S, вне зависимости от того, в каком состоянии они были до этого (И, Е или S).

Когда процессор делает запрос на запись в строку, отсутствующую в его локальной кэш-памяти (промах при записи), перед загрузкой в кэш-память строка должна быть считана из основной памяти (ОП) и модифицирована. Прежде чем процессор сможет загрузить строку, он должен убедиться, что в основной памяти действительно находится достоверная версия данных, то есть что в других кэшах отсутствует модифицированная копия данной строки. Формируемая в этом случае последовательность операций носит название чтения с намерением модифика ции (RWITM, Read With Intent To Modify). Если в одном из кэшей обнаружилась копия нужной строки, причем в состоянии М, то процессор, обладающий этой копией, прерывает RWITM-последовательность и переписывает строку в ОП, после чего меняет состояние строки в своем кэше на I. Затем RWITM-последовательность возобновляется и делается повторное обращение к основной памяти для считывания обновленной строки. Окончательным состоянием строки будет М, при котором ни в ОП, ни в других кэшах нет еще одной достоверной ее копии. Если копия строки существовала в другом кэше и не имела состояния М, то такая копия аннулируется и доступ к основной памяти производится немедленно.

Кэш-попадание при чтении не изменяет статуса читаемой строки. Если процессор выполняет доступ для записи в существующую строку, находящуюся в состоянии S, он передает на шину широковещательный запрос, с тем чтобы информировать другие кэши, обновляет строку в своем кэше и присваивает ей статус М. Все остальные копии строки переводятся в состояние I. Если процессор производит доступ по записи в строку, находящуюся в состоянии Е, единственное, что он должен сделать, - это произвести запись в строку и изменить ее состояние на М, поскольку другие копии строки в системе отсутствуют.

На рис. 11.15 показана типичная последовательность событий в системе из двух процессоров, запрашивающих доступ к ячейке х. Обращение к любой ячейке строки кэш-памяти рассматривается как доступ ко всей строке.

Проиллюстрируем этапы, когда процессор 2 пытается прочитать содержимое ячейки х" (рис. 11.16). Сперва наблюдается кэш-промах по чтению и процессор пытается обратиться к основной памяти. Процессор 1 следит за шиной, обнаруживает обращение к ячейке, копия которой есть в его кэш-памяти и находится в




Рис. 11.16. Переход из состояния Е в состояние S в протоколе MESI: а- процессор 2

читает х; б - процессор 1 производит обратную запись х" в основную память;

я - процессор 2 читает х" из основной памяти

состоянии М, поэтому он блокирует операцию чтения от процессора 2. Затем процессор 1 переписывает строку, содержащую х", в ОП и освобождает процессор 2, чтобы тот мог повторить доступ к основной памяти. Теперь процессор 2 получает строку, содержащую х", и загружает ее в свою кэш-память. Обе копии помечаются как S.

До сих пор рассматривалась версия протокола MESI без однократной записи. С учетом однократной записи диаграмма состояний, изображенная на рис. 11.14, немного видоизменяется. Все кэш-промахи при чтении вызывают переход в состояние S. Первое попадание при записи сопровождается переходом в состояние Е (так называемый переход однократной записи). Следующее попадание при записи влечет за собой изменение статуса строки на М.

Протоколы на основе справочника

Протоколы обеспечения когерентности на основе справочника характерны для сложных мультипроцессорных систем с совместно используемой памятью, где процессоры объединены многоступенчатой иерархической сетью межсоединений. Сложность топологии приводит к тому, что применение протоколов наблюдения с их механизмом широковещания становится дорогостоящим и неэффективным.

Протоколы на основе справочника предполагают сбор и отслеживание информации о содержимом всех локальных кэшей. Такие протоколы обычно реализуются с помощью централизованного контроллера, физически представляющего собой часть контроллера основной памяти. Собственно справочник хранится в основной памяти. Когда контроллер локальной кэш-памяти делает запрос, контроллер справочника обнаруживает такой запрос и формирует команды, необходимые для пересылки данных из основной памяти либо из другой локальной кэш-памяти, содержащей последнюю версию запрошенных данных. Центральный контроллер отвечает за обновление информации о состоянии локальных кэшей, поэтому он должен быть извещен о любом локальном действии, способном повлиять на состояние блока данных.

Справочник содержит множество записей, описывающих каждую кэшируемую ячейку ОП, которая может быть совместно использована процессорами системы. Обращение к справочнику производится всякий раз, когда один из процессоров изменяет копию такой ячейки в своей локальной памяти. В этом случае информация из справочника нужна для того, чтобы аннулировать или обновить копии измененной ячейки (или всей строки, содержащей эту ячейку) в прочих локальных кэшах, где такие копии имеются.

Для каждой строки общего пользования, копия которой может быть помещена в кэш-память, в справочнике выделяется одна запись, хранящая указатели на копии данной строки. Кроме того, в каждой записи выделен один бит модификации (D), показывающий, является ли копия «грязной» (D = 1 - dirty) или «чистой» (D = 0 - clean), то есть изменялось ли содержимое строки в кэш-памяти после того, как она была туда загружена. Этот бит указывает, имеет ли право процессор производить запись в данную строку.

В настоящее время известны три способа реализации протоколов обеспечения когерентности кэш-памяти на основе справочника: полный справочник, ограниченные справочники и сцепленные справочники.

В протоколе полного справочника единый централизованный справочник поддерживает информацию обо всех кэшах. Справочник хранится в основной памяти.


Рис. 11.17. Протокол обеспечения когерентности кэш-памяти с полным справочником

В системе из N процессоров каждая запись справочника будет содержать N однобитовых указателей. Если в соответствующей локальной кэш-памяти присутствует копия данных, бит-указатель устанавливается в 1, иначе - в 0. Схема с полным справочником показана на рис. 11.17. Здесь предполагается, что копия строки имеется в каждом кэше. Каждой строке придаются два индикатора состояния: бит достоверности (V, Valid) и бит владения (Р, Private). Если информация в строке корректна, ее V-бит устанавливается в 1. Единичное значение Р-бита указывает, что данному процессору предоставлено право на запись в соответствующую строку своей локальной кэш-памяти.

Предположим, что процессор 2 производит запись в ячейку х. В исходный момент процессор не получил еще разрешения на такую запись. Он формирует запрос к контроллеру справочника и ждет разрешения на продолжение операции. В ответ на запрос во все кэши, где есть копии строки, содержащей ячейку х, выдается сигнал аннулирования имеющихся копий. Каждый кэш, получивший этот сигнал, сбрасывает бит достоверности аннулируемой строки (V-бит) в 0 и возвращает контроллеру справочника сигнал подтверждения. После приема всех сигналов подтверждения контроллер справочника устанавливает в единицу бит модификации (D-бит) соответствующей записи справочника и посылает процессору 2 сигнал, разрешающий запись в ячейку х. С этого момента процессор 2 может продолжить запись в собственную копию ячейки х, а также в основную память, если в кэше реализована схема сквозной записи.

Основные проблемы протокола полного справочника связаны с большим количеством записей. Для каждой ячейки в справочнике системы из N процессоров требуется N+ 1 бит, то есть с увеличением числа процессоров коэффициент сложности возрастает линейно. Протокол полного справочника допускает наличие в каждом локальном кэше копий всех совместно используемых ячеек. На практике такая возможность далеко не всегда остается востребованной - в каждый конкретный момент обычно актуальны лишь одна или несколько копий. В протоколе с ограниченными справочниками копии отдельной строки вправе находиться только в ограниченном числе кэшей - одновременно может быть не более чем п копий строки, при этом число указателей в записях справочника уменьшается до п (п < N ). Чтобы однозначно идентифицировать кэш-память, хранящую копию, указатель вместо одного бита должен состоять из log2 N бит, а общая длина указателей в каждой записи справочника вместо N бит будет равна п log2 N бит. При постоянном значении п темпы роста коэффициента сложности ограниченного справочника по мере увеличения размера системы ниже, чем в случае линейной зависимости.

Когда одновременно требуется более чем п копий, контроллер принимает решение, какие из копий сохранить, а какие аннулировать, после чего производятся соответствующие изменения в указателях записей справочника.

Метод сцепленных справочников также имеет целью сжать объем справочника. В нем для хранения записей привлекается связный список, который может быть реализован как одно связный (однонаправленный) и двусвязный (двунаправленный).

Рис. 11.18. Протокол обеспечения когерентности кэш-памяти со сцепленным справочником

В односвязном списке (рис. 11.18) каждая запись справочника содержит указатель на копию строки в одном из локальных кэшей. Копии одноименных строк в разных кэшах системы образуют однонаправленную цепочку. Для этого в их тегах предусмотрено специальное поле, куда заносится указатель на кэш-память, содержащую следующую копию цепочки. В тег последней копии цепочки помещается специальный символ-ограничитель. Сцепленный справочник допускает цепочки длиной в N, то есть поддерживает N копий ячейки. При создании еще одной копии цепочку нужно разрушить, а вместо нее сформировать новую. Пусть, например, в процессоре 5 нет копии ячейки х и он обращается за ней к основной памяти. Указатель в справочнике изменяется так, чтобы указывать на кэш с номером 5, а указатель в кэше 5 - таким образом, чтобы указывать на кэш 2. Для этого контроллер основной памяти наряду с затребованными данными должен передать в кэш-память 5 также и указатель на кэш-память с номером 2. Лишь после того, как будет сформирована вся структура цепочки, процессор 5 получит разрешение на доступ к ячейке х. Если процессор производит запись в ячейку, то вниз по тракту, определяемому соответствующей цепочкой указателей, посылается сигнал аннулирования. Цепочка должна обновляться и при удалении копии из какой-либо кэш-памяти.

Двусвязный список поддерживает указатели как в прямом, так и в обратном направлениях. Это позволяет более эффективно вставлять в цепочку новые указатели или удалять из нее уже не нужные, но требует хранения большего числа указателей.

Схемы на основе справочника «страдают» от «заторов» в централизованном контроллере, а также от коммуникационных издержек в трактах между контроллерами локальных кэшей и центральным контроллером. Тем не менее они оказываются весьма эффективными в мультипроцессорных системах со сложной топологией взаимосвязей между процессорами, где невозможно реализовать протоколы наблюдения.

Ниже дана краткая характеристика актуальных на настоящее время протоколов обеспечения когерентности кэш-памяти на основе справочника. Для детального ознакомления с этими протоколами приведены ссылки на соответствующие литературные источники.

Протокол Tang. Здесь присутствует централизованный глобальный справочник, содержащий полную копию всей информации из каталогов каждого из локальных кэшей . Это приводит к проблеме узких мест, а также требует поиска соответствующих входов.

Протокол Censier. В схеме справочника Censier для указания того, какие процессоры содержат локальную копию данного блока памяти, используется битовый вектор указателей. Такой вектор имеется для каждого блока памяти. Недостатками метода является его неэффективность при большом числе процессоров, и, кроме того, для обновления строк кэша требуется доступ к основной памяти .

Протокол Archibald. Схема справочника Archibald - это пара замысловатых схем для иерархически организованных сетей процессоров. С детальным описанием этого протокола можно ознакомиться в .

Протокол Stenstrom. Справочник Stenstrom для каждого блока данных предусматривает шесть допустимых состояний. Этот протокол относительно прост и подходит для любых топологий межсоединений процессоров. Справочник хранится в основной памяти. В случае кэш-промаха при чтении происходит обращение к основной памяти, которая посылает сообщение кэш-памяти, являющейся владельцем блока, если такой находится. Получив это сообщение, кэш-владелец посылает затребованные данные, а также направляет сообщение всем остальным процессорам, совместно использующим эти данные, для того чтобы они обновили свои битовые векторы. Схема не очень эффективна при большом числе процессоров, однако в настоящее время это наиболее проработанный и широко распространенный протокол на основе справочника .

Контрольные вопросы

1. Проанализируйте влияние особенностей ВС с общей памятью и ВС с распределенной памятью на разработку программного обеспечения. Почему эти ВС называют соответственно сильно связанными и слабо связанными?

2. Поясните идею с чередованием адресов памяти. Из каких соображений выбирается механизм распределения адресов? Как он связан с классом архитектуры ВС?

3. Дайте сравнительную характеристику однородного и неоднородного доступов
к памяти.

4. В чем заключаются преимущества архитектуры СОМА?

5. Проведите сравнительный анализ моделей с кэш-когерентным и кэш-некогерентным доступом к неоднородной памяти.

6. Сформулируйте достоинства и недостатки архитектуры без прямого доступа к удаленной памяти.

7. Объясните смысл распределенной и совместно используемой памяти.

8. Разработайте свой пример, иллюстрирующий проблему когерентности кэш-памяти.

9. Охарактеризуйте особенности программных способов решения проблемы когерентности, выделите их преимущества и слабые стороны.

10. Сравните методики записи в память с аннулированием и записи в память с трансляцией, акцентируя их достоинства и недостатки.

11. Дайте сравнительную характеристику методов для поддержания когерентности в мультипроцессорных системах.

12. Выполните сравнительный анализ известных вам протоколов наблюдения.

13. Какой из протоколов наблюдения наиболее популярен? Обоснуйте причины повышенного к нему интереса.

14. Дайте развернутую характеристику протоколов когерентности на основе справочника и способов их реализации. В чем суть отличий этих протоколов от протоколов наблюдения?

Классификация МКМД-систем

В МКМД-системе каждый процессорный элемент (ПЭ) выполняет свою про­грамму достаточно независимо от других ПЭ. В то же время процессорные элементы должны как-то взаимодействовать друг с другом. Различие в способе такого взаимодействия оп­ределяет условное деление МКМД-систем на ВС с общей памятью и системы с распределенной памятью (рис. 5.7).

В системах с общей памятью, которые характеризуют как сильно связанные, имеется общая память данных и команд, доступная всем процессорным элементам с помощью общей шины или сети соеди­нений. Такие системы называются мультипроцессорами. К этому типу относятся симметричные мультипроцессоры (UMA (SMP), Symmetric Multiprocessor), системы с неоднородным доступом к памяти (NUMA, Non-Uniform Memory Access) и системы, с так называемой, локальной памятью вместо кэш-памяти (COMA, Cache Only Memory Access).

Если все процессоры имеют равный доступ ко всем модулям памяти и всем устройствам ввода-вывода и каждый процессор взаимозаменяем с другими процессорами, то такая система называется SMP-системой. В системах с общей памятью все процессоры имеют равные возможности по доступу к единому адресному пространству. Единая память может быть построена как одноблочная или по модульному принципу, но обычно практикуется второй вариант.

SMP-системы относятся к архитектуре UMA. Вычислительные системы с общей памятью, где доступ любого процессора к памяти производится единообразно и занимает одинаковое время, называют системами с однородным доступом к памяти UMA (Uniform Memory Access).

С точки зрения уровней используемой памяти в архитектуре UMA рассматривают три варианта построения мультипроцессора:

Классическая (только с общей основной памятью);

С дополнительным локальным кэшем у каждого процессора;

С дополнительной локальной буферной памятью у каждого процессора (рис. 5.8).

С точки зрения способа взаимодействия процессоров с общими ресурсами (памятью и СВВ) в общем случае выделяют следующие виды архитектур UMA:

С общей шиной и временным разделением (7.9);

С координатным коммутатором;

На основе многоступенчатых сетей.

Использование только одной шины ограничивает размер мультипроцессора UMA до 16 или 32 процессоров. Чтобы получить больший размер, требуется другой тип коммуникационной сети. Самая простая схема соединения – координатный коммутатор (рис. 5.10). Координатные коммутаторы используются на протяжении многих десятилетий для соединения группы входящих линий с рядом выходящих линий произвольным образом.

Координатный коммутатор представляет собой неблокируемую сеть. Это значит, что процессор всегда будет связан с нужным блоком памяти, даже если какая-то линия или узел уже заняты. Более того, никакого предварительного планирования не требуется.


Координатные коммутаторы вполне применимы для систем средних размеров (рис. 5.11).


На основе коммутаторов 2x2 можно построить многоступенчатые сети. Один из возможных вариантов – сеть omega (рис. 5.12). Для n процессоров и n модулей памяти тредуется log 2 n ступеней, n/2 коммутаторов на каждую ступень, то есть всего (n/2)log 2 n коммутаторов на каждую ступень. Это намного лучше, чем n 2 узлов (точек пересечения), особенно для больших n.

Размер мультипроцессоров UMA с одной шиной обычно ограничивается до нескольких десятков процессоров, а для координатных мультипроцессоров или мультипроцессоров с коммутаторами требуется дорогое аппаратное обеспечение, и они ненамного больше по размеру. Чтобы получить более 100 процессоров, необходим иной доступ к памяти.

Для большей масштабируемости мультипроцессоров приспособлена архитектура с неоднородным доступом к памяти NUMA (NonUniform Memory Access). Как и мультипроцессоры UMA, они обеспечивают единое адресное пространство для всех процессоров, но, в отличие от машин UMA, доступ к локальным модулям памяти происходит быстрее, чем к удаленным.

В рамках концепции NUMA реализуется подходы, обозначаемые аббревиатурами NC-NUMA и CC-NUMA.

Если время доступа к удаленной памяти не скрыто (т.к. кэш-память отсутствует), то такая система называется NC-NUMA (No Caching NUMA – NUMA без кэширования) (рис. 5.13).

Если присутствуют согласованные КЭШи, то система называется CC-NUMA (Coherent Cache Non-Uniform Memory Architecture – NUMA с согласованной кэш-памятью) (7.14).

Основная память

Основная память - это запоминающее устройство, напрямую связанное с процессором и предназначенное для хранения выполняемых программ и данных непосредственно участвующих в операциях. Она имеет достаточное быстродействие, но ограниченный объем. Основная память делится на различные виды, основными из которых являются оперативная память (ОЗУ) и постоянное запоминающее устройство (ПЗУ) (рис.1).

ОЗУ предназначено для хранения информации (программ и данных), непосредственно участвующей в вычислительном процессе на текущем этапе функционирования.

ОЗУ служит для приема, хранения и выдачи информации. Именно в нем процессор «берет» программы и исходные данные для обработки, в нее он записывает полученные результаты. Название «оперативная» это память получила потому, что она работает очень быстро, так что процессору практически не приходится ждать при чтении данных из памяти и записи в память. Однако содержащие в ней данные сохраняются только пока компьютер включен. При выключении компьютера содержимое оперативной памяти стирается. Таким образом ОЗУ - энергозависимая память.

Рис. 1. Основные виды основной памяти

Часто для оперативной памяти используют обозначение RAM (random access memory, т.е. память с произвольным доступом). Под произвольным доступом понимают возможность непосредственного доступа к любой (произвольной) заданной ячейки памяти, причем время доступа для любой ячейки одинаково.

Основу ОЗУ составляют большие интегральные схемы, содержащие матрицы полупроводниковых запоминающих элементов (триггеров). Запоминающие элементы расположены на пересечении вертикальных и горизонтальных шин матрицы; запись и считывание информации осуществляется подачей электрических импульсов по тем каналам матрицы, которые соединены с элементами, принадлежащими выбранной ячейке памяти.

От количества установленной в компьютере оперативной памяти зависит не только возможность работать с ресурсоемкими программами, но и его производительность, поскольку при нехватке памяти в качестве ее логического расширения используется жесткий диск, время доступа к которому несравненно выше. Кроме объема ОП на производительность компьютера влияют также ее быстродействие и используемый способ обмена данными между микропроцессором и памятью.

ОП реализуется на микросхемах DRAM (динамическая ОП), характеризующейся по сравнению с другими разновидностями памяти низкой стоимостью и высокой удельной емкостью, но большим энергопотреблением и меньшим быстродействием. Каждый информационный байт (0 и 1) в DRAM хранится в виде заряда конденсатора. Из-за наличия токов утечки заряд конденсатора необходимо с определенной периодичностью обновлять. Из-за непрерывной потребности обновления такая память и называется динамической. Регенерация содержимого памяти требует дополнительного времени, а запись информации во время регенерации в память не допускается.

Стоимость оперативной памяти в последнее время резко упала (с лета 1995 до лета 1996 г. - более чем в 4 раза), поэтому большие запросы многих программ и операционных систем к оперативной памяти с финансовой точки зрения стали менее обременительны.

Для ускорения доступа к оперативной памяти на быстродействующих компьютерах используется стабильная сверхбыстродействующая КЭШ-память, которая располагается, как бы «между» микропроцессором и оперативной памятью и хранит копии наиболее часто используемых участков оперативной памяти. При обращении микропроцессора к памяти сначала производится поиск нужных данных из КЭШ-памяти. Поскольку время доступа к КЭШ-памяти в несколько раз меньше, чем к обычной памяти, а в большинстве случаев необходимые микропроцессору данные уже хранятся в КЭШ-памяти, среднее время доступа к памяти уменьшается. КЭШ-память реализуется на микросхеме SRAM (статическая ОП).

Для компьютеров на основе Intel-386DX или 80386SX размер КЭШ-памяти в 64 Кбайт является удовлетворительным, а 128 Кбайт вполне достаточным. Компьютеры на основе Intel-80486DX, DX2, DX4 и Pentium обычно оснащаются КЭШ-памятью емкостью 256 Кбайт.

Микропроцессоры серий 486 и Pentium содержат небольшую внутреннюю КЭШ-память, поэтому для однозначности терминологии иногда в технической литературе КЭШ-память, размещаемую на системной плате, называют КЭШ-памятью второго уровня.

В микропроцессоре Pentium Pro КЭШ-память второго уровня содержится в едином корпусе с самим процессором (можно сказать она встроена в микропроцессор).

Не обязательно иметь всю память, информация в которой должна меняться. Часть наиболее важной информации лучше постоянно хранить в памяти компьютера. Эту память называют постоянной. Данные в постоянную память занесены при ее изготовлении. Как правило, эти данные не могут быть изменены, выполняемые на компьютере программы могут только их считывать. Такой вид памяти обычно называют ROM (read only mеmory, или память только для чтения), или ПЗУ (постоянное запоминающее устройство).

В IBM PC - совместимом компьютере в постоянное памяти хранятся программы для проверки оборудования, компьютера, инициирования загрузки операционной системы (ОС) и выполнения базовых функций по обслуживанию устройств компьютера. Поскольку большая часть этих программ связана с обслуживанием ввода-вывода, часто содержимое постоянной памяти называется BIOS (Basic Input - output System, или базовая система ввода -вывода).

Во многих компьютерах устанавливается BIOS на основе ФЛЕШ-памяти. Такая память может быть изменена программами, что позволяет обновлять BIOS с помощью специальных программ, без замены материнской платы или микросхемы BIOS.

Во всех компьютерах, кроме очень старых, в BIOS содержится также программа настройки конфигурации компьютера (SETUP). Она позволяет установить некоторые характеристики устройств компьютера (типы видеоконтроллера, жестких дисков и дисководов для дискет, часть также режимы работы с оперативной памятью, запрос пароля при начальной загрузке и т.д.). Как правило, программа настройки конфигурации вызывается, если пользователь во время начальной загрузки нажмет определенную клавишу или комбинацию клавиш (чаще всего клавишу Del).

Емкость ФЛЕШ-памяти от 32 Кбайт до 2 Мбайт, время доступа по считыванию 0,06 мкс, время записи одного байта примерно 10 мкс; ФЛЕШ-память - энергонезависимое ЗУ.

Кроме обычной оперативной памяти и постоянной памяти, в компьютере имеется небольшой участок памяти для хранения параметров конфигурации компьютера. Его часто называют CMOS-памятью, поскольку эта память обычно выполняется по технологии CMOS (complementary metal-oxide semiconductor), обладающей низким энергопотреблением. Содержимое CMOS-памяти не изменяется при выключении электропитания компьютера, поскольку для ее электропитания используется специальный аккумулятор.

Таким образом, емкость основной памяти состоит из миллионов отдельных ячеек памяти емкостью 1 байт каждая. Общая емкость основной памяти современных ПК обычно лежит в пределах от 1 до 4 Гбайт. Емкость ОЗУ на один два порядка превышает емкость ПЗУ: ПЗУ занимает на новых системных платах до 2 Мбайт), остальное объем ОЗУ.

ОРГАНИЗАЦИЯ ПАМЯТИ В ВЫЧИСЛИТЕЛЬНЫХ МАШИНАХ

Назначение, основные параметры и

Классификация видов памяти

Устройства памяти (запоминающие устройства) ВМ предназначены для записи, хранения и считывания информации, представленной в цифровой форме /2,3/. Устройства памяти, как и процессоры, оперируют с двумя видами информации – программами и данными, поэтому характеристики памяти во многом определяют производительность и функциональные возможности ВМ.

Устройства памяти работают в двух режимах – обращения к памяти и хранения . В режиме обращения в память осуществляется запись информации или производится чтение информации из памяти. Если к памяти не обращаются, она переходит режим хранения.

Основными параметрами, характеризующими устройства памяти, являются информационная емкость (объем), быстродействие, энергопотребление и стоимость /2,5,8/.

Информационная емкость (объем) устройства памяти определяется максимальным количеством хранимой информации и измеряется в байтах, Кбайтах, Мбайтах, Гбайтах и Тбайтах.

1 Кбайт = 2 10 байт; 1Мбайт = 2 20 байт; 1Гбайт = 2 30 байт и 1Тбайт = 2 40 байт.

Быстродействие памяти характеризуется следующими основными параметрами:

временем выборки (доступа) t В, определяемым временным интервалом между моментами подачи сигнала выборки (начала цикла чтения) и получением считанных данных на выходе памяти;

длительностью цикла обращения t Ц , который определяется минимально допустимым временным интервалом между следующими друг за другом обращениями к памяти. Учитывая, что под обращением к памяти понимается запись или чтение, иногда разделяют длительность цикла чтения t Ц.ЧТ . и длительность цикла записи t Ц.ЗП. для видов памяти, у которых эти длительности циклов различны, т.е. t Ц.ЧТ. ≠ t Ц.ЗП .

В общем случае цикл обращения состоит из фазы выборки (доступа) и фазы регенерации (восстановления) памяти, поэтому t Ц > t В.

Быстродействие памяти можно также характеризовать скоростью передачи записываемых или считываемых данных и измерять в Мбайтах/сек.

Энергопотребление для многих видов памяти в режиме обращения существенно выше, чем в режиме хранения. Энергонезависимая память в режиме хранения вообще не потребляет электроэнергию. Но ряд видов памяти, например, электронная динамическая, в режиме хранения требуют циклов регенерации, поэтому энергопотребление в этом режиме сопоставимо с энергопотреблением в режиме обращения.

Для сравнения разных видов памяти удобно использовать приведенные к одной ячейке (т.е. удельные) энергопотребление и стоимость устройств памяти.

Важным параметром памяти является также разрядность шины данных памяти, определяющая количество байт, с которыми операция чтения или записи может выполняться одновременно.

Устройства памяти ВМ можно классифицировать по различным признакам: по физическому принципу работы, по функциональному назначению, по способу организации, необходимости электропитания в режиме хранения и т.д.

По физическому принципу работы память классифицируется на электронную, магнитную, оптическую, магнитно – оптическую.

Электронная память выполняется на полупроводниковых элементах и реализуется в виде БИС. Электронная память разделяется на статическую и динамическую.

В БИС статической памяти в качестве элементарных ячеек памяти применяются статические триггеры на биполярных или полевых транзисторах. Как известно, число устойчивых состояний триггера равно двум, что позволяет использовать его для хранения единицы информации – бита. Ячейки памяти для хранения байт и слов используют соответственно 8 и 16 триггеров.

В БИС динамической памяти в качестве элементарных ячеек памяти применяются электрические конденсаторы. Наличие заряда соответствует хранению логической «1», отсутствие заряда – хранению логического «0». В качестве запоминающих конденсаторов используются либо межэлектродные емкости МОП транзисторов, либо специально созданные в кристалле БИС МОП конденсаторы. Фрагмент структурной схемы динамической памяти, содержащий две ячейки 1 и 2, изображен на рис.6.1.

Каждая элементарная ячейка памяти содержит запоминающий МОП конденсатор С (десятые доли пФ) и транзисторный ключ Т, подключающий этот конденсатор к шине данных. Затвор транзисторного МОП – ключа соединен с соответствующим выходом дешифратора адреса. При выборе ячейки ключ Т открывается и подключает конденсатор С к шине данных. Далее, в зависимости от вида команды: запись (WR) или чтение (RD) - через соответствующий усилитель производится запись входных данных (DI) или чтение выходных данных (DO).

Динамическая память по сравнению со статической существенно проще, дешевле и обеспечивает очень высокую степень интеграции, т.е. более высокую удельную емкость. Но по сравнению со статической динамическая память обладает меньшим быстродействием и требует периодической регенерации (восстановления) информации в элементарных ячейках. Другими словами, необходимо периодически восстанавливать заряд на запоминающих конденсаторах С, которые с течением времени саморазряжаются, т.е. «теряют» информацию. Для этого через каждые несколько миллисекунд (mсек) производятчтение информации из ячеек памяти и затем повторную запись информации, что позволяет восстанавливать заряд на запоминающих конденсаторах C. Необходимость организации периодических циклов регенерации (Refresh Cycles) несколько усложняет управление динамической памятью.

Для типовых модулей электронной памяти время выборки t В составляет единицы – десятки наносекунд (nсек ), а информационная емкость – десятки – сотни Мбайт.

Статическая и динамическая электронная память является энергозависимой , т.е. при отключении электропитания информация в ячейках не сохраняется. Существует также энергонезависимая электронная память – постоянные запоминающие устройства (ПЗУ), информация из которых в процессе работы ВМ может только считываться. Ячейки памяти ПЗУ будут рассмотрены ниже.

Магнитная память основана на наличии у ряда магнитных материалов (например, окиси железа) двух устойчивых состояний остаточного намагничивания противоположного знака. Такие магнитные материалы характеризуются прямоугольной петлей гистерезиса B = f(H) , и из них выполняется рабочий магнитный слой, наносимый на поверхность различных подвижных носителей – магнитных дисков. Для записи и чтения информации используются магнитные головки, представляющие собой миниатюрные катушки индуктивности, намотанные на магнитном сердечнике с зазором. При записи магнитная головка намагничивает участок магнитного слоя, проходящий под рабочим зазором, в направлении, определяемом направлением протекающего тока. При считывании намагниченные участки поверхности проходят около индуктивной головки считывания и наводят в ней импульсы э.д.с. Устройства памяти, использующие этот принцип, имеют очень низкую удельную стоимость хранения информации, являются энергонезависимыми, но, являясь электромеханическими, по быстродействию, надежности и энергопотреблению существенно уступают электронной памяти. Для НЖМД скорость передачи данных достигает десятков Мбайт/сек, а информационная емкость – сотен Гбайт.



В оптической памяти для хранения информации используется изменение оптических свойств (в основном, степени отражения) поверхности носителя. Оптический носитель выполняется в виде диска (Compact Disk - CD), отражающий слой (металлическое напыление) которого покрыт слоем органического красителя. При записи луч лазера модулируется потоком записываемых бит и в определенных местах дорожки выжигает ямки в слое красителя. За счет разницы коэффициента отражения ямок и невыжженных участков поверхности при считывании возникает модуляция яркости отраженного луча, которая кодирует считываемую с CD информацию. Производятся различные типы оптических CD дисков: CD-ROM (Read Only Memory) – позволяющие только считывать записанную матричным способом информацию, CD-R (Recordable) – допускающие хотя бы однократную запись на диск и многократное считывание, CD-RW (ReWritable) – позволяющие многократную перезапись на диск (и конечно же, считывание). Оптические диски дешевы и имеют значительную (до одного Гбайта) информационную емкость, являются энергонезависимыми и легко сменяемыми, но по быстродействию, надежности и энергопотреблению, как и магнитные диски, существенно уступают электронной памяти.

По функциональному назначению устройства памяти можно классифицировать на сверхоперативные запоминающие устройства (СОЗУ), оперативные запоминающие устройства (ОЗУ), постоянные запоминающие устройства (ПЗУ) и внешние запоминающие устройства (ВЗУ).

ОЗУ предназначено для хранения программ (системных, прикладных) и данных, непосредственно используемых ЦП в текущее время. Длительности циклов чтения и записи для оперативной памяти, как правило, одинаковы. Обычно в качестве ОЗУ применяется динамическая память объемом до единиц Гбайт в зависимости от назначения и области применения МС.

СОЗУ или кэш-память (Cache Memory) – это небольшого объема быстродействующая память, у которой длительность цикла обращения t Ц. меньше длительности машинного цикла процессора. Поэтому при обращении к кэш-памяти не требуется вводить такты ожидания процессора в машинные циклы обращения к памяти. Кэш-память является буферной памятью между ОЗУ и ЦП и выполняется на базе статической памяти. Кэш хранит копии блоков (страниц) программ и данных тех областей ОЗУ, к которым происходили последние обращения, а также каталог – список их текущего соответствия областям ОЗУ. При каждом обращении к оперативной памяти контроллер кэш-памяти по каталогу проверяет, есть ли действительная копия затребованного блока (страницы) в кэш. Если копия там есть, то это случай кэш-попадания , и обращение за данными или кодом происходит только к кэш-памяти. Если действительной копии там нет, то это случай кэш-промаха , и в кэш записывается требуемый блок (страница) из ОЗУ, причем запись производится на место предварительно удаленного из кэш в ОЗУ наименее актуального блока (страницы), т.е. блока информации, число обращений к которому было наименьшим. За счет присущих программам и данным таких фундаментальных свойств, как пространственная и временная локальности /2,7,13/ число кэш-попаданий во много раз превышает число кэш-промахов даже при небольших (единицы – десятки Кбайт) объемах кэш памяти. Поэтому использование кэш-памяти значительно повышает производительность ВМ. Обычно кэш реализуется по трехуровневой схеме: первичный кэш (L1 Cache), объемом десятки Кбайт, и вторичный кэш (L2 Cache), объемом сотни Кбайт, размещается в кристалле МП, кэш третьего уровня (L3 Cache), единицы Мбайт устанавливают на системной плате или в корпусе МП.

ПЗУ – это электронная энергонезависимая память, которая применяется для хранения неизменяемой или редко изменяемой в течении времени эксплуатации ВМ информации: системного ПО (BIOS), прикладного ПО для встраиваемых и бортовых ВМ, наборов таблиц, параметров конфигурации различных систем и т.п. Основным режимом работы ПЗУ является чтение, что и обуславливает другое общее название такой памяти ROM (Read Only Memory). Запись информации в ПЗУ, называемая программированием, обычно существенно сложнее, требует больших затрат времени и энергии, чем чтение.

ВЗУ предназначены для энергонезависимого хранения больших объемов определенным образом структурированной информации: файлов, баз данных, архивов. Характерной особенностью внешней памяти является то, что ее устройства оперируют блоками информации, а не байтами или словами, как это позволяет оперативная память. Кроме того, процессор может осуществлять доступ к ВЗУ только через оперативную память. В качестве ВЗУ обычно используется дисковые (НЖМД, CD) накопители, позволяющие хранить сотни Гбайт информации.

Буферная электронная память включается в состав контроллеров различных внешних устройств, решающих задачи отображения и ввода информации, задачи коммуникации, преобразования сигналов и т.п. Наличие буферной памяти позволяет согласовать существенно различные скорости передачи информации системной шины и внешних устройств, сократить время использования каждым из внешних устройств системной шины и увеличить производительность ВМ.

Способ организации памяти определяется методом размещения и поиска информации в ЗУ. По этому признаку различают адресную, ассоциативную и стековую организацию памяти.

В адресной памяти для обращения к ячейкам памяти используются их адреса , под которыми понимаются коды номеров ячеек памяти. Адресная организация памяти позволяет обращаться к ячейкам памяти по их адресам в произвольном порядке, причем длительность цикла обращения является одинаковой для всех ячеек независимо от адреса. Поэтому для названия такой память также используется термин «запоминающие устройства с произвольной выборкой (ЗУПВ)» или RAM (Random Access Memory). Адресную организацию памяти имеют, например, ОЗУ и ПЗУ.

В ассоциативной памяти (АЗУ) поиск информации производится не по адресам ячеек памяти, а по их содержимому или его части. В общем случае запрос к ассоциативной памяти осуществляется заданием перечня разрядов, по которым следует производить поиск ячейки памяти, и заданием содержания выделенных разрядов. Перечень разрядов для поиска задается в регистре-маске. Этот регистр имеет такую же разрядность, как и ячейка памяти АЗУ, и содержит единицы только в тех разрядах, по которым ведется поиск. В регистре-контексте задается содержание этих разрядов, и его разрядность равна разрядности регистра-маски.

Если ячейка с заданной комбинацией нулей и единиц находится, АЗУ формирует положительный ответ с указанием адреса найденной ячейки. Далее адрес передается в дешифратор адреса, и все содержимое такой ячейки можно считать или записать в нее новое содержимое. В противном случае АЗУ формирует отрицательный ответ на запрос.

Поиск информации по контексту в АЗУ осуществляется одновременно по всем ячейкам памяти, поэтому АЗУ во много раз быстрее ЗУПВ, но и стоят значительно дороже. В современных вычислительных системах АЗУ применяются, например, в составе кэш-памяти.

Стековая память (Stack), так же как и ассоциативная является безадресной. Стек можно рассматривать как совокупность ячеек, образующих одномерный массив, в котором соседние ячейки связаны друг с другом разрядными цепями передачи слов. В этой памяти запись и чтение производятся по правилу «последнее записанное считывается первым» или «Last Input First Output (LIFO)». Поэтому стек называют «магазинной» памятью с обратным порядком считывания. Обычно стек организуют в оперативной памяти. Количество слов в стеке определяется регистром-указателем стека SP, а запись в стек и чтение из него производится соответственно командами PUSH и POP. Широкое применение стековая память находит, как уже было рассмотрено выше, при обработке прерываний и вызове подпрограмм.

Наряду со стековой памятью большое распространение получила «магазинная» память с прямым порядком считывания, т.е. «первое записанное считывается первым» или «First Input First Output (FIFO)». Эта память называется буферной и, как и стек, организуется в ОЗУ.

Организация подсистемы памяти в ПК

Запоминающие устройства (ЗУ) подсистемы памяти ПК можно выстроить в следующую иерархию (табл. 9.1):

Таблица 9.1. Иерархия подсистемы памяти ПК
Тип ЗУ 1985 г. 2000 г.
Время выборки Типичный объем Цена / байт Время выборки Типичный объем Цена / байт
Сверхоперативные ЗУ (регистры) 0,2 5 нс 16/32 бит $ 3 - 100 0,01 1 нс 32/64/128 бит $ 0,1 10
Быстродействующее буферное ЗУ (кэш) 20 100 нс 8Кб - 64Кб ~ $ 10 0,5 - 2 нс 32Кб 1Мб $ 0,1 - 0,5
Оперативное (основное) ЗУ ~ 0,5 мс 1Мб - 256Мб $ 0,02 1 2 нс 20 нс 128Мб - 4Гб $ 0,01 0,1
Внешние ЗУ (массовая память) 10 - 100 мс 1Мб - 1Гб $ 0,002 - 0,04 5 - 20 мс 1Гб - 0,5Тб $ 0,001 - 0,01

Регистры процессора составляют его контекст и хранят данные, используемые исполняющимися в конкретный момент командами процессора. Обращение к регистрам процессора происходит, как правило, по их мнемоническим обозначениям в командах процессора.

Кэш используется для согласования скорости работы ЦП и основной памяти. В вычислительных системах используют многоуровневый кэш: кэш I уровня (L1), кэш II уровня (L2) и т.д. В настольных системах обычно используется двухуровневый кэш, в серверных - трехуровневый. Кэш хранит команды или данные, которые с большой вероятностью в ближайшее время поступят процессору на обработку. Работа кэш-памяти прозрачна для программного обеспечения, поэтому кэш-память обычно программно недоступна.

Оперативная память хранит, как правило, функционально-законченные программные модули (ядро операционной системы, исполняющиеся программы и их библиотеки, драйверы используемых устройств и т.п.) и их данные, непосредственно участвующие в работе программ, а также используется для сохранения результатов вычислений или иной обработки данных перед пересылкой их во внешнее ЗУ, на устройство вывода данных или коммуникационные интерфейсы.

Каждой ячейке оперативной памяти присвоен уникальный адрес. Организационные методы распределения памяти предоставляют программистам возможность эффективного использования всей компьютерной системы. К таким методам относят сплошную ("плоскую") модель памяти и сегментированную модель памяти. При использовании сплошной модели (flat model) памяти программа оперирует единым непрерывным адресным пространством линейным адресным пространством, в котором ячейки памяти нумеруются последовательно и непрерывно от 0 до 2n-1, где n - разрядность ЦП по адресу. При использовании сегментированной модели (segmented model) для программы память представляется группой независимых адресных блоков, называемых сегментами. Для адресации байта памяти программа должна использовать логический адрес, состоящий из селектора сегмента и смещения. Селектор сегмента выбирает определенный сегмент, а смещение указывает на конкретную ячейку в адресном пространстве выбранного сегмента.



Организационные методы распределения памяти позволяют организовать вычислительную систему, в которой рабочее адресное пространство программы превышает размер фактически имеющейся в системе оперативной памяти, при этом недостаток оперативной памяти заполняется за счет внешней более медленной или более дешевой памяти (винчестер, флэш-память и т.п.) Такую концепцию называют виртуальной памятью. При этом линейное адресное пространство может быть отображено на пространство физических адресов либо непосредственно (линейный адрес есть физический адрес), либо при помощи механизма страничной трансляции. Во втором случае линейное адресное пространство делится на страницы одинакового размера, которые составляют виртуальную память. Страничная трансляция обеспечивает отображение требуемых страниц виртуальной памяти в физическое адресное пространство.

Кроме реализации системы виртуальной памяти внешние ЗУ используются для долговременного хранения программ и данных в виде файлов.

Кэш-память

Кэш-память представляет собой быстродействующее ЗУ, размещенное на одном кристалле с ЦП или внешнее по отношению к ЦП. Кэш служит высокоскоростным буфером между ЦП и относительно медленной основной памятью. Идея кэш-памяти основана на прогнозировании наиболее вероятных обращений ЦП к оперативной памяти. В основу такого подхода положен принцип временной и пространственной локальности программы.



Если ЦП обратился к какому-либо объекту оперативной памяти, с высокой долей вероятности ЦП вскоре снова обратится к этому объекту. Примером этой ситуации может быть код или данные в циклах. Эта концепция описывается принципом временной локальности, в соответствии с которым часто используемые объекты оперативной памяти должны быть "ближе" к ЦП (в кэше).

Для согласования содержимого кэш-памяти и оперативной памяти используют три метода записи:

  • Сквозная запись (write through) - одновременно с кэш-памятью обновляется оперативная память.
  • Буферизованная сквозная запись (buffered write through) - информация задерживается в кэш-буфере перед записью в оперативную память и переписывается в оперативную память в те циклы, когда ЦП к ней не обращается.
  • Обратная запись (write back) - используется бит изменения в поле тега, и строка переписывается в оперативную память только в том случае, если бит изменения равен 1.

Как правило, все методы записи, кроме сквозной, позволяют для увеличения производительности откладывать и группировать операции записи в оперативную память.

В структуре кэш-памяти выделяют два типа блоков данных:

  • память отображения данных (собственно сами данные, дублированные из оперативной памяти);
  • память тегов (признаки, указывающие на расположение кэшированных данных в оперативной памяти).

Пространство памяти отображения данных в кэше разбивается на строки - блоки фиксированной длины (например, 32, 64 или 128 байт). Каждая строка кэша может содержать непрерывный выровненный блок байт из оперативной памяти. Какой именно блок оперативной памяти отображен на данную строку кэша, определяется тегом строки и алгоритмом отображения. По алгоритмам отображения оперативной памяти в кэш выделяют три типа кэш-памяти:

  • полностью ассоциативный кэш;
  • кэш прямого отображения;
  • множественный ассоциативный кэш.

Для полностью ассоциативного кэша характерно, что кэш-контроллер может поместить любой блок оперативной памяти в любую строку кэш-памяти (рис. 9.1). В этом случае физический адрес разбивается на две части: смещение в блоке (строке кэша) и номер блока. При помещении блока в кэш номер блока сохраняется в теге соответствующей строки. Когда ЦП обращается к кэшу за необходимым блоком, кэш-промах будет обнаружен только после сравнения тегов всех строк с номером блока.

Одно из основных достоинств данного способа отображения - хорошая утилизация оперативной памяти, т.к. нет ограничений на то, какой блок может быть отображен на ту или иную строку кэш-памяти. К недостаткам следует отнести сложную аппаратную реализацию этого способа, требующую большого количества схемотехники (в основном компараторов), что приводит к увеличению времени доступа к такому кэшу и увеличению его стоимости.

Увеличить изображение
Рис. 9.1. Полностью ассоциативный кэш 8х8 для 10-битного адреса

Альтернативный способ отображения оперативной памяти в кэш - это кэш прямого отображения (или одновходовый ассоциативный кэш). В этом случае адрес памяти (номер блока) однозначно определяет строку кэша, в которую будет помещен данный блок. Физический адрес разбивается на три части: смещение в блоке (строке кэша), номер строки кэша и тег. Тот или иной блок будет всегда помещаться в строго определенную строку кэша, при необходимости заменяя собой хранящийся там другой блок. Когда ЦП обращается к кэшу за необходимым блоком, для определения удачного обращения или кэш-промаха достаточно проверить тег лишь одной строки.

Очевидными преимуществами данного алгоритма являются простота и дешевизна реализации. К недостаткам следует отнести низкую эффективность такого кэша из-за вероятных частых перезагрузок строк. Например, при обращении к каждой 64-й ячейке памяти в системе на рис. 9.2 кэш-контроллер будет вынужден постоянно перегружать одну и ту же строку кэш-памяти, совершенно не задействовав остальные.

Увеличить изображение
Рис. 9.2. Кэш прямого отображения 8х8 для 10-битного адреса

Несмотря на очевидные недостатки, данная технология нашла успешное применение, например, в МП Motorola MC68020, для организации кэша инструкций первого уровня (рис. 9.3). В данном микропроцессоре реализован кэш прямого отображения из 64 строк по 4 байт. Тег строки, кроме 24 бит, задающих адрес кэшированного блока, содержит бит значимости, определяющий действительность строки (если бит значимости 0, данная строка считается недействительной и не вызовет кэш-попадания). Обращения к данным не кэшируются.

Увеличить изображение
Рис. 9.3. Схема организации кэш-памяти в МП Motorola MC68020

Компромиссным вариантом между первыми двумя алгоритмами является множественный ассоциативный кэш или частично-ассоциативный кэш (рис. 9.4). При этом способе организации кэш-памяти строки объединяются в группы, в которые могут входить 2, 4, : строк. В соответствии с количеством строк в таких группах различают 2-входовый, 4-входовый и т.п. ассоциативный кэш. При обращении к памяти физический адрес разбивается на три части: смещение в блоке (строке кэша), номер группы (набора) и тег. Блок памяти, адрес которого соответствует определенной группе, может быть размещен в любой строке этой группы, и в теге строки размещается соответствующее значение. Очевидно, что в рамках выбранной группы соблюдается принцип ассоциативности. С другой стороны, тот или иной блок может попасть только в строго определенную группу, что перекликается с принципом организации кэша прямого отображения. Для того чтобы процессор смог идентифицировать кэш-промах, ему надо будет проверить теги лишь одной группы (2/4/8/: строк).

Увеличить изображение
Рис. 9.4. Двухвходовый ассоциативный кэш 8х8 для 10-битного адреса

Данный алгоритм отображения сочетает достоинства как полностью ассоциативного кэша (хорошая утилизация памяти, высокая скорость), так и кэша прямого доступа (простота и дешевизна), лишь незначительно уступая по этим характеристикам исходным алгоритмам. Именно поэтому множественный ассоциативный кэш наиболее широко распространен (табл. 9.2).

Таблица 9.2. Характеристики подсистемы кэш-памяти у ЦП IA-32
Intel486 Pentium Pentium MMX P6 Pentium 4
L1 кэш команд
Тип 4-вх. ассоц. 2-вх. ассоц. 4-вх. ассоц. 4-вх. ассоц. 8-вх. ассоц.
Размер строки, байт -
Общий объем, Кбайт 8/16 8/16 12Кmops
L1 кэш данных
Тип Общий с кэш инструкций 2-вх. ассоц. 4-вх. ассоц. 2/4-вх. ассоц. 4-вх. ассоц.
Размер строки, байт
Общий объем, Кбайт 8/16
L2 кэш
Тип Внешний внешний 4-вх. ассоц. 4-вх. ассоц. 8-вх. ассоц.
Размер строки, байт
Общий объем, Кбайт 256/512 128-2048 256/512

Примечания: В Intel-486 используется единый кэш команд и данных первого уровня. В Pentium Pro L1 кэш данных - 8 Кбайт 2-входовый ассоциативный, в остальных моделях P6 - 16 Кбайт 4-входовый ассоциативный. В Pentium 4 вместо L1 кэша команд используется L1 кэш микроопераций (кэш трассы).

Для организации кэш-памяти можно использовать принстонскую архитектуру (смешанный кэш для команд и данных, например, в Intel-486). Это очевидное (и неизбежное для фон-неймановских систем с внешней по отношению к ЦП кэш-памятью) решение не всегда бывает самым эффективным. Разделение кэш-памяти на кэш команд и кэш данных (кэш гарвардской архитектуры) позволяет повысить эффективность работы кэша по следующим соображениям:

  • Многие современные процессоры имеют конвейерную архитектуру, при которой блоки конвейера работают параллельно. Таким образом, выборка команды и доступ к данным команды осуществляется на разных этапах конвейера, а использование раздельной кэш-памяти позволяет выполнять эти операции параллельно.
  • Кэш команд может быть реализован только для чтения, следовательно, не требует реализации никаких алгоритмов обратной записи, что делает этот кэш проще, дешевле и быстрее.

Именно поэтому все последние модели IA-32, начиная с Pentium, для организации кэш-памяти первого уровня используют гарвардскую архитектуру.

Критерием эффективной работы кэша можно считать уменьшение среднего времени доступа к памяти по сравнению с системой без кэш-памяти. В таком случае среднее время доступа можно оценить следующим образом:

T ср = (T hit x R hit) + (T miss x (1 R hit))

где T hit - время доступа к кэш-памяти в случае попадания (включает время на идентификацию промаха или попадания), T miss - время, необходимое на загрузку блока из основной памяти в строку кэша в случае кэш-промаха и последующую доставку запрошенных данных в процессор, R hit - частота попаданий.

Очевидно, что чем ближе значение R hit к 1, тем ближе значение T ср к T hit . Частота попаданий определяется в основном архитектурой кэш-памяти и ее объемом. Влияние наличия и отсутствия кэш-памяти и ее объема на рост производительности ЦП показано в табл. 9.3.

Лучшие статьи по теме