Как настроить смартфоны и ПК. Информационный портал
  • Главная
  • Windows 7, XP
  • Быстрый Тест На Беременность – Критерии Выбора И Механизм Действия. Критерии добротности теста

Быстрый Тест На Беременность – Критерии Выбора И Механизм Действия. Критерии добротности теста

Требования к идеальному критерию были выдвинуты в работе :
  • Критерий должен быть достаточным , т.е. показывать, когда некоторое конечное множество тестов достаточно для тестирования данной программы.
  • Критерий должен быть полным , т.е. в случае ошибки должен существовать тест из множества тестов, удовлетворяющих критерию, который раскрывает ошибку.
  • Критерий должен быть надежным , т.е. любые два множества тестов, удовлетворяющих ему, одновременно должны раскрывать или не раскрывать ошибки программы
  • Критерий должен быть легко проверяемым , например вычисляемым на тестах
  • Для нетривиальных классов программ в общем случае не существует полного и надежного критерия , зависящего от программ или спецификаций.Поэтому мы стремимся к идеальному общему критерию через реальные частные.

    Классы критериев

  • Структурные критерии используют информацию о структуре программы (критерии так называемого "белого ящика")
  • Функциональные критерии формулируются в описании требований к программному изделию (критерии так называемого "черного ящика" )
  • Критерии стохастического тестирования формулируются в терминах проверки наличия заданных свойств у тестируемого приложения, средствами проверки некоторой статистической гипотезы.
  • Мутационные критерии ориентированы на проверку свойств программного изделия на основе подхода Монте-Карло.
  • Структурные критерии (класс I).

    Структурные критерии используют модель программы в виде "белого ящика", что предполагает знание исходного текста программы или спецификации программы в виде потокового графа управления. Структурная информация понятна и доступна разработчикам подсистем и модулей приложения, поэтому данный класс критериев часто используется на этапах модульного и интеграционного тестирования (Unit testing, Integration testing).Структурные критерии базируются на основных элементах УГП, операторах, ветвях и путях.
  • Условие критерия тестирования команд (критерий С0) - набор тестов в совокупности должен обеспечить прохождение каждой команды не менее одного раза. Это слабый критерий, он, как правило, используется в больших программных системах, где другие критерии применить невозможно.
  • Условие критерия тестирования ветвей (критерий С1) - набор тестов в совокупности должен обеспечить прохождение каждой ветви не менее одного раза. Это достаточно сильный и при этом экономичный критерий, поскольку множество ветвей в тестируемом приложении конечно и не так уж велико. Данный критерий часто используется в системах автоматизации тестирования.
  • Условие критерия тестирования путей (критерий С2) - набор тестов в совокупности должен обеспечить прохождение каждого пути не менее 1 раз. Если программа содержит цикл (в особенности с неявно заданным числом итераций), то число итераций ограничивается константой (часто - 2, или числом классов выходных путей).
  • На приведен пример простой программы. Рассмотрим условия ее тестирования в соответствии со структурными критериями .

    1 public void Method (ref int x) { 2 if (x>17) 3 x = 17-x; 4 if (x==-13) 5 x = 0; 6 } Пример 3.1. Пример простой программы, для тестирования по структурным критериям

    1 void Method (int *x) { 2 if (*x>17) 3 *x = 17-*x; 4 if (*x==-13) 5 *x = 0; 6 } Пример 3.1.1. Пример простой программы, для тестирования по структурным критериям

    Тестовый набор из одного теста, удовлетворяет критерию команд (C0):(X,Y)={(x вх =30, x вых =0)} покрывает все операторы трассы 1-2-3-4-5-6Тестовый набор из двух тестов, удовлетворяет критерию ветвей (C1):(X,Y)={(30,0), (17,17)} добавляет 1 тест к множеству тестов для С0 и трассу 1-2-4-6. Трасса 1-2-3-4-5-6 проходит через все ветви достижимые в операторах if при условии true , а трасса 1-2-4-6 через все ветви, достижимые в операторах if при условии false .Тестовый набор из четырех тестов, удовлетворяет критерию путей (C2):(X,Y)={(30,0), (17,17), (-13,0), (21,-4)} Набор условий для двух операторов if c метками 2 и 4 приведен в

    Таблица 3.1. Условия операторов if
    (30,0) (17,17) (-13,0) (21,-4)
    2 if (x>17) > >
    4 if (x==-13) = =

    Критерий ветвей С2 проверяет программу более тщательно, чем критерии - C1, однако даже если он удовлетворен, нет оснований утверждать, что программа реализована в соответствии со спецификацией.Например, если спецификация задает условие, что|x|100 , невыполнимость которого можно подтвердить на тесте (-177,-177) . Действительно, операторы 3 и 4 на тесте (-177,-177) не изменят величину х=-177 и результат не будет соответствовать спецификации.Структурные критерии не проверяют соответствие спецификации, если оно не отражено в структуре программы. Поэтому при успешном тестировании программы по критерию C2 мы можем не заметить ошибку, связанную с невыполнением некоторых условий спецификации требований.

    Функциональные критерии (класс II)

    Функциональный критерий - важнейший для программной индустрии критерий тестирования. Он обеспечивает, прежде всего, контроль степени выполнения требований заказчика в программном продукте. Поскольку требования формулируются к продукту в целом, они отражают взаимодействие тестируемого приложения с окружением. При функциональном тестировании преимущественно используется модель "черного ящика". Проблема функционального тестирования - это, прежде всего, трудоемкость; дело в том, что документы, фиксирующие требования к программному изделию (Software requirement specification, Functional specification и т.п.), как правило, достаточно объемны, тем не менее, соответствующая проверка должна быть всеобъемлющей.Ниже приведены частные виды функциональных критериев .

    Тестирование пунктов спецификации - набор тестов в совокупности должен обеспечить проверку каждого тестируемого пункта не менее одного раза.

    Спецификация требований может содержать сотни и тысячи пунктов требований к программному продукту и каждое из этих требований при тестировании должно быть проверено в соответствии с критерием не менее чем одним тестом

    Тестирование классов входных данных - набор тестов в совокупности должен обеспечить проверку представителя каждого класса входных данных не менее одного раза.

    При создании тестов классы входных данных сопоставляются с режимами использования тестируемого компонента или подсистемы приложения, что заметно сокращает варианты перебора, учитываемые при разработке тестовых наборов. Следует заметить, что перебирая в соответствии с критерием величины входных переменных (например, различные файлы - источники входных данных), мы вынуждены применять мощные тестовые наборы. Действительно, наряду с ограничениями на величины входных данных, существуют ограничения на величины входных данных во всевозможных комбинациях, в том числе проверка реакций системы на появление ошибок в значениях или структурах входных данных. Учет этого многообразия - процесс трудоемкий, что создает сложности для применения критерия

    Тестирование правил - набор тестов в совокупности должен обеспечить проверку каждого правила, если входные и выходные значения описываются набором правил, некоторой грамматики.

    Следует заметить, что грамматика должна быть достаточно простой, чтобы трудоемкость разработки соответствующего набора тестов была реальной (вписывалась в сроки и штат специалистов, выделенных для реализации фазы тестирования)

    Тестирование классов выходных данных - набор тестов в совокупности должен обеспечить проверку представителя каждого выходного класса, при условии, что выходные результаты заранее расклассифицированы, причем отдельные классы результатов учитывают, в том числе, ограничения на ресурсы или на время (time out).

    При создании тестов классы выходных данных сопоставляются с режимами использования тестируемого компонента или подсистемы, что заметно сокращает варианты перебора, учитываемые при разработке тестовых наборов.

    Тестирование функций - набор тестов в совокупности должен обеспечить проверку каждого действия, реализуемого тестируемым модулем, не менее одного раза.

    Очень популярный на практике критерий, который, однако, не обеспечивает покрытия части функциональности тестируемого компонента, связанной со структурными и поведенческими свойствами, описание которых не сосредоточено в отдельных функциях (т.е. описание рассредоточено по компоненту).

    Критерий тестирования функций объединяет отчасти особенности структурных и функциональных критериев . Он базируется на модели "полупрозрачного ящика", где явно указаны не только входы и выходы тестируемого компонента, но также состав и структура используемых методов (функций, процедур) и классов.

    Комбинированные критерии для программ и спецификаций - набор тестов в совокупности должен обеспечить проверку всех комбинаций непротиворечивых условий программ и спецификаций не менее одного раза.

    При этом все комбинации непротиворечивых условий надо подтвердить, а условия противоречий следует обнаружить и ликвидировать.

    Пример применения функциональных критериев тестирования для разработки набора тестов по критерию классов входных данных

    Пусть для решения задачи тестирования системы "Система управления автоматизированным комплексом хранения подшипников" (см. Приложение 1, FS) был разработан следующий фрагмент спецификации требований:
  • Произвести опрос статуса склада (вызвать функцию GetStoreStat ). Добавить в журнал сообщений запись "СИСТЕМА: Запрошен статус СКЛАДА". В зависимости от полученного значения произвести следующие действия:
  • Произвести опрос терминала оси (вызвать функцию получения сообщения от терминала - GetAxlePar ). В журнал сообщений должно быть добавлено сообщение "СИСТЕМА: Запрошены параметры оси". В зависимости от возвращенного функцией GetAxlePar значения должны быть выполнены следующие действия ():
  • Определим классы входных данных для параметра - статус склада:
  • Статус склада = 0 (правильный).
  • Статус склада = 4 (правильный).
  • Статус склада = 16 (правильный).
  • Статус склада = 32 (правильный).
  • Статус склада = любое другое значение (ошибочный).
  • Теперь рассмотрим тестовые случаи:

    Тестовый случай 1 (покрывает класс 4):

    Статус склада - 32.

    Система запрашивает статус склада (вызов функции GetStoreStat ) и получает 32

    Тестовый случай 2 (покрывает класс 5):

    Состояние окружения (входные данные - X ):

    Статус склада - 12dfga.

    Ожидаемая последовательность событий (выходные данные - Y ):

    Система запрашивает статус склада (вызов функции GetStoreStat ) и согласно пункту спецификации при ошибочном значении статуса склада в журнал добавляется сообщение "СКЛАД: ОШИБКА: Неопределенный статус".

    Стохастические критерии (класс III)

    Стохастическое тестирование применяется при тестировании сложных программных комплексов - когда набор детерминированных тестов (X,Y) имеет громадную мощность. В случаях, когда подобный набор невозможно разработать и исполнить на фазе тестирования, можно применить следующую методику.
  • Разработать программы - имитаторы случайных последовательностей входных сигналов {x} .
  • Вычислить независимым способом значения {y} для соответствующих входных сигналов {x} и получить тестовый набор (X,Y) .
  • Протестировать приложение на тестовом наборе (X,Y) , используя два способа контроля результатов:
  • Критерии стохастического тестирования
  • Cтатистические методы окончания тестирования - стохастические методы принятия решений о совпадении гипотез о распределении случайных величин. К ним принадлежат широко известные: метод Стьюдента (St ), метод Хи-квадрат (χ 2 ) и т.п.
  • Метод оценки скорости выявления ошибок - основан на модели скорости выявления ошибок , согласно которой тестирование прекращается, если оцененный интервал времени между текущей ошибкой и следующей слишком велик для фазы тестирования приложения.

  • Рис. 3.1.

    При формализации модели скорости выявления ошибок () использовались следующие обозначения:N - исходное число ошибок в программном комплексе перед тестированием,C - константа снижения скорости выявления ошибок за счет нахождения очередной ошибки,t 1 ,t 2 ,…t n - кортеж возрастающих интервалов обнаружения последовательности из n ошибок,T - время выявления n ошибок.Если допустить, что за время T выявлено n ошибок, то справедливо соотношение (1), утверждающее, что произведение скорости выявления i ошибки и времени выявления i ошибки есть 1 по определению:

    (1) (N-i+1)*C*t i = 1

    В этом предположении справедливо соотношение (2) для n ошибок:

    (2) N*C*t 1 +(N-1)*C*t 2 +…+(N-n+1)*C*t n =n N*C*(t 1 +t 2 +…+t n) - C*Σ(i-1)t i = n NCT - C*Σ(i-1)t i = n

    Если из (1) определить t i и просуммировать от 1 до n , то придем к соотношению (3) для времени T выявления n ошибок

    (3) Σ1/(N-i+1) = TC

    Если из (2) выразить C , приходим к соотношению (4):

    (4) C = n/(NT - Σ(i-1)t i)

    Наконец, подставляя C в (3), получаем окончательное соотношение (5), удобное для оценок:

    (5) Σ1/(N-i+1) = n/(N - 1/T*Σ(i-1)t i)

    Если оценить величину N приблизительно, используя известные методы оценки числа ошибок в программе , или данные о плотности ошибок для проектов рассматриваемого класса из исторической базы данных проектов, и, кроме того, использовать текущие данные об интервалах между ошибками t 1 ,t 2 …t n , полученные на фазе тестирования, то, подставляя эти данные в (5), можно получить оценку t n+1 -временного интервала необходимого для нахождения и исправления очередной ошибки (будущей ошибки).Если t n+1 >Td - допустимого времени тестирования проекта, то тестирование заканчиваем, в противном случае продолжаем поиск ошибок.Наблюдая последовательность интервалов ошибок t 1 ,t 2 …t n , и время, потраченное на выявление n ошибок T=Σt i , можно прогнозировать интервал времени до следующей ошибки и уточнять в соответствии с (4) величину C .Критерий Moranda очень практичен, так как опирается на информацию, традиционно собираемую в процессе тестирования.

    Мутационный критерий (класс IV).

    Постулируется, что профессиональные программисты пишут сразу почти правильные программы, отличающиеся от правильных мелкими ошибками или описками типа - перестановка местами максимальных значений индексов в описании массивов, ошибки в знаках арифметических операций, занижение или завышение границы цикла на 1 и т.п. Предлагается подход, позволяющий на основе мелких ошибок оценить общее число ошибок, оставшихся в программе.Подход базируется на следующих понятиях: Мутации - мелкие ошибки в программе. Мутанты - программы, отличающиеся друг от друга мутациями .Метод мутационного тестирования - в разрабатываемую программу P вносят мутации , т.е. искусственно создают программы-мутанты P1 , P2 ... Затем программа P и ее мутанты тестируются на одном и том же наборе тестов (X,Y) .Если на наборе (X,Y) подтверждается правильность программы P и, кроме того, выявляются все внесенные в программы-мутанты ошибки, то набор тестов (X,Y) соответствует мутационному критерию , а тестируемая программа объявляется правильной .Если некоторые мутанты не выявили всех мутаций , то надо расширять набор тестов (X,Y) и продолжать тестирование.

    Пример применения мутационного критерия

    Тестируемая программа P приведена на . Для нее создается две программы-мутанта P1 и P2 .В P1 изменено начальное значение переменной z с 1 на 2 ().В P2 изменено начальное значение переменной i с 1 на 0 и граничное значение индекса цикла с n на n-1 ().При запуске тестов (X,Y) = {(x=2,n=3,y=8),(x=999,n=1,y=999), (x=0,n=100,y=0 } выявляются все ошибки в программах-мутантах и ошибка в основной программе, где в условии цикла вместо n стоит n-1 :

    // Метод вычисляет неотрицательную // степень n числа x static public double PowerNonNeg(double x, int n) { double z=1; if (n>0) { for (int i=1;n-1> Пример 3.2. Основная программа P

    double PowerNonNeg(double x, int n) { double z=1; int i; if (n>0) { for (i=1;n-1> Пример 3.2.1. Основная программа P

    Измененное начальное значение переменной z в мутанте Р1 помечено светлым тоном:

    // Метод вычисляет неотрицательную // степень n числа x static public double PowerMutant1(double x, int n) { double z=2; if (n>0) { for (int i=1;n>=i;i++) { z = z*x; } } else Console.WriteLine("Ошибка! Степень числа n должна быть больше 0."); return z; } Пример 3.3. Программа мутант P1.

    double PowerMutant1(double x, int n) { double z=2; int i; if (n>0) { for (i=1;n>=i;i++) { z = z*x; } } else printf("Ошибка! Степень числа n должна быть больше 0. "); return z; } Пример 3.3.1. Программа мутант P1.

    Измененное начальное значение переменной i и границы цикла в мутанте P2 помечено светлым тоном:

    // Метод вычисляет неотрицательную // степень n числа x static public double PowerMutant2(double x, int n) { double z=1; if (n>0) { for (int i=0;n-1>=i;i++) { z = z*x; } } else Console.WriteLine("Ошибка! Степень числа n должна быть больше 0"); return z; } Пример 3.4. Программа-мутант P2.

    double PowerMutant2(double x, int n) { double z=1; int i; if (n>0) { for (i=0;n-1>=i;i++) { z = z*x; } } else printf("Ошибка! Степень числа n должна быть больше 0. "); return z; } Пример 3.4.1. Программа-мутант P2.

    1. Критерий должен быть достаточным , т.е. показывать, когда некоторое конечное множество тестов достаточно для тестирования данной программы.
    2. Критерий должен быть полным , т.е. в случае ошибки должен существовать тест из множества тестов, удовлетворяющих критерию, который раскрывает ошибку.
    3. Критерий должен быть надежным , т.е. любые два множества тестов, удовлетворяющих ему, одновременно должны раскрывать или не раскрывать ошибки программы
    4. Критерий должен быть легко проверяемым , например вычисляемым на тестах

    Для нетривиальных классов программ в общем случае не существует полного и надежного критерия , зависящего от программ или спецификаций.

    Поэтому мы стремимся к идеальному общему критерию через реальные частные.

    Классы критериев

    1. Структурные критерии используют информацию о структуре программы (критерии так называемого "белого ящика")
    2. Функциональные критерии формулируются в описании требований к программному изделию (критерии так называемого "черного ящика" )
    3. Критерии стохастического тестирования формулируются в терминах проверки наличия заданных свойств у тестируемого приложения, средствами проверки некоторой статистической гипотезы.
    4. Мутационные критерии ориентированы на проверку свойств программного изделия на основе подхода Монте-Карло.

    Структурные критерии (класс I).

    Структурные критерии используют модель программы в виде "белого ящика", что предполагает знание исходного текста программы или спецификации программы в виде потокового графа управления. Структурная информация понятна и доступна разработчикам подсистем и модулей приложения, поэтому данный класс критериев часто используется на этапах модульного и интеграционного тестирования ( Unit testing , Integration testing ).

    Структурные критерии базируются на основных элементах УГП, операторах, ветвях и путях.

    • Условие критерия тестирования команд (критерий С0) - набор тестов в совокупности должен обеспечить прохождение каждой команды не менее одного раза. Это слабый критерий, он, как правило, используется в больших программных системах, где другие критерии применить невозможно.
    • Условие критерия тестирования ветвей (критерий С1) - набор тестов в совокупности должен обеспечить прохождение каждой ветви не менее одного раза. Это достаточно сильный и при этом экономичный критерий, поскольку множество ветвей в тестируемом приложении конечно и не так уж велико. Данный критерий часто используется в системах автоматизации тестирования .
    • Условие критерия тестирования путей (критерий С2) - набор тестов в совокупности должен обеспечить прохождение каждого пути не менее 1 раза. Если программа содержит цикл (в особенности с неявно заданным числом итераций), то число итераций ограничивается константой (часто - 2, или числом классов выходных путей).
    Таблица 3.1. Условия операторов if
    (30,0) (17,17) (-13,0) (21,-4)
    2 if (x>17) > >
    4 if (x==-13) =

    Критерий путей С2 проверяет программу более тщательно, чем критерии - C1, однако даже если он удовлетворен, нет оснований утверждать, что


    Требования к идеальному критерию тестирования
    Критерий должен быть достаточным.
    Критерий должен быть полным.
    Критерий должен быть надежным.
    Критерий должен быть легко проверяемым
    Для нетривиальных классов программ в общем случае не существует полного и надежного критерия, зависящего от программ или спецификаций.
    Поэтому мы стремимся к идеальному общему критерию через реальные частные.

    Классы критериев
    Структурные
    Функциональные
    Критерии стохастического тестирования формулируются в терминах проверки наличия заданных свойств у тестируемого приложения, средствами проверки некоторой статистической гипотезы.
    Мутационные критерии ориентированы на проверку свойств программного изделия на основе подхода Монте-Карло.

    Структурные критерии
    - используют модель программы в виде "белого ящика", что предполагает знание исходного текста программы или спецификации программы в виде потокового графа управления. Данный класс критериев часто используется на этапах модульного и интеграционного тестирования (Unit testing, Integration testing)

    Структурные критерии базируются на основных элементах УГП, операторах, ветвях и путях.
    Условие критерия тестирования команд (критерий С0) - набор тестов в совокупности должен обеспечить прохождение каждой команды не менее одного раза. Это слабый критерий, он, как правило, используется в больших программных системах, где другие критерии применить невозможно.
    Условие критерия тестирования ветвей (критерий С1) - набор тестов в совокупности должен обеспечить прохождение каждой ветви не менее одного раза. Это достаточно сильный и при этом экономичный критерий, поскольку множество ветвей в тестируемом приложении конечно и не так уж велико. Данный критерий часто используется в системах автоматизации тестирования.
    Условие критерия тестирования путей (критерий С2) - набор тестов в совокупности должен обеспечить прохождение каждого пути не менее 1 раз. Если программа содержит цикл (в особенности с неявно заданным числом итераций), то число итераций ограничивается константой (часто - 2, или числом классов выходных путей)..

    Функциональные критерии
    - важнейший для программной индустрии критерий тестирования. Он обеспечивает, прежде всего, контроль степени выполнения требований заказчика в программном продукте. Отражают взаимодействие тестируемого приложения с окружением. Используется модель "черного ящика". Проблема:трудоемкость; дело в том, что документы, фиксирующие требования к программному изделию (Software requirement specification, Functional specification и т.п.), достаточно объемны.

    Тестирование пунктов спецификации - набор тестов в совокупности должен обеспечить проверку каждого тестируемого пункта не менее одного раза.
    Тестирование классов входных данных - набор тестов в совокупности должен обеспечить проверку представителя каждого класса входных данных не менее одного раза. При создании тестов классы входных данных сопоставляются с режимами использования тестируемого компонента или подсистемы приложения, что заметно сокращает варианты перебора, учитываемые при разработке тестовых наборов. Следует заметить, что мы вынуждены применять мощные тестовые наборы. Действительно, наряду с ограничениями на величины входных данных, существуют ограничения на величины входных данных во всевозможных комбинациях, в том числе проверка реакций системы на появление ошибок в значениях или структурах входных данных. Учет этого многообразия - процесс трудоемкий, что создает сложности для применения критерия
    Тестирование правил - набор тестов в совокупности должен обеспечить проверку каждого правила, если входные и выходные значения описываются набором правил некоторой грамматики.
    Тестирование классов выходных данных - набор тестов в совокупности должен обеспечить проверку представителя каждого выходного класса, при условии, что выходные результаты заранее расклассифицированы, причем отдельные классы результатов учитывают, в том числе, ограничения на ресурсы или на время (time out). При создании тестов классы выходных данных сопоставляются с режимами использования тестируемого компонента или подсистемы, что заметно сокращает варианты перебора, учитываемые при разработке тестовых наборов.
    Тестирование функций - набор тестов в совокупности должен обеспечить проверку каждого действия, реализуемого тестируемым модулем, не менее одного раза. Не обеспечивает покрытия части функциональности тестируемого компонента, связанной со структурными и поведенческими свойствами, описание которых не сосредоточено в отдельных функциях (т.е. описание рассредоточено по компоненту). Критерий тестирования функций объединяет отчасти особенности структурных и функциональных критериев. Он базируется на модели "полупрозрачного ящика", где явно указаны не только входы и выходы тестируемого компонента, но также состав и структура используемых методов (функций, процедур) и классов.
    Комбинированные критерии для программ и спецификаций - набор тестов в совокупности должен обеспечить проверку всех комбинаций непротиворечивых условий программ и спецификаций не менее одного раза.

    Стохастические критерии
    - применяется при тестировании сложных программных комплексов - когда набор детерминированных тестов имеет громадную мощность. В случаях, когда подобный набор невозможно разработать и исполнить на фазе тестирования

    Необходимо разработать программы - имитаторы случайных последовательностей входных сигналов{x}. Вычислить независимым способом значения {y} для соответствующих входных сигналов {x} и получить тестовый набор (X,Y). Протестировать приложение на тестовом наборе (X,Y), используя два способа контроля результатов:
    Детерминированный контроль - проверка соответствия вычисленного значения y значению y, полученному в результате прогона теста на наборе {x} - случайной последовательности входных сигналов, сгенерированной имитатором.
    Стохастический контроль - проверка соответствия множества значений {y}, полученного в результате прогона тестов на наборе входных значений {x}, заранее известному распределению результатов F(Y).

    В этом случае множество Y неизвестно (его вычисление невозможно), но известен закон распределения данного множества..

    Критерии стохастического тестирования
    Cтатистические методы окончания тестирования - стохастические методы принятия решений о совпадении гипотез о распределении случайных величин. К ним принадлежат широко известные: метод Стьюдента, метод Хи-квадрат.
    Метод оценки скорости выявления ошибок - основан на модели скорости выявления ошибок, согласно которой тестирование прекращается, если оцененный интервал времени между текущей ошибкой и следующей слишком велик для фазы тестирования приложения.

    Мутационный критерий (класс IV).
    - Постулируется, что профессиональные программисты пишут сразу почти правильные программы, отличающиеся от правильных мелкими ошибками или описками типа - перестановка местами максимальных значений индексов в описании массивов, ошибки в знаках арифметических операций, занижение или завышение границы цикла на 1 и т.п. Предлагается подход, позволяющий на основе мелких ошибок оценить общее число ошибок, оставшихся в программе.

    Мутации - мелкие ошибки в программе.
    Мутанты - программы, отличающиеся друг от друга мутациями.

    Метод мутационного тестирования - в разрабатываемую программу P вносят мутации, т.е. искусственно создают программы-мутанты P1, P2... Затем программа P и ее мутанты тестируются на одном и том же наборе тестов (X,Y).
    Если на наборе (X,Y) подтверждается правильность программы P и, кроме того, выявляются все внесенные в программы-мутанты ошибки, то набор тестов (X,Y) соответствует мутационному критерию, а тестируемая программа объявляется правильной.

    Тестирование информационных систем

    1.2. Критерии тестирования.

    Можно выделить требования к идеальному критерию тестирования:

    · Критерий должен быть достаточным, т.е. показывать, когда некоторое конечное множество тестов достаточно для тестирования данной программы.

    · Критерий должен быть полным, т.е. в случае ошибки должен существовать тест из множества тестов, удовлетворяющих критерию, который раскрывает ошибку.

    · Критерий должен быть надежным, т.е. любые два множества тестов, удовлетворяющих ему, одновременно должны раскрывать или не раскрывать ошибки программы.

    · Критерий должен быть легко проверяемым, например, вычисляемым на тестах.

    Для нетривиальных классов программ в общем случае не существует полного и надежного критерия, зависящего от программ или спецификаций. Поэтому, как правило, стремятся к идеальному общему критерию через реальные частные.

    Классы критериев:

    · Структурные критерии используют информацию о структуре программы (критерии так называемого «белого ящика»).

    · Функциональные критерии формулируются в описании требований к программному изделию (критерии так называемого «черного ящика»).

    · Критерии стохастического тестирования формулируются в терминах проверки наличия заданных свойств у тестируемого приложения, средствами проверки некоторой статистической теории.

    · Мутационные критерии ориентированы на проверку свойств программного изделия на основе подхода Монте-Карло.

    Структурные критерии (класс I).

    Структурные критерии используют модель программы в виде «белого ящика», что предполагает знание исходного текста программы или спецификации программы в виде потокового графа управления. Структурная информация понятна и доступна разработчикам подсистем и модулей приложения, поэтому данный класс критериев часто используется на этапах модульного и интеграционного тестирования.

    Структурные критерии базируются на основных элементах УГП, операторах, ветвях и путях.

    · Условие критерия тестирования команд (критерий С0) - набор тестов в совокупности должен обеспечить прохождение каждой команды не менее одного раза. Это слабый критерий, используется в больших программных системах, где другие критерии применить невозможно.

    · Условие критерия тестирования ветвей (критерий С1) - набор тестов в совокупности должен обеспечить прохождение каждой ветви не менее одного раза. Это достаточно сильный и при этом экономичный критерий. Данный критерий часто используется в системах автоматизации тестирования.

    · Условие критерия тестирования путей (критерий С2) - набор тестов в совокупности должен обеспечить прохождение каждого пути не менее одного раза. Если программа содержит цикл (в особенности с неявно заданным числом итераций), то число итераций ограничивается константой (часто - 2, или числом классов выходных путей).

    Структурные критерии не проверяют соответствие спецификации, если

    оно не отражено в структуре программы.

    Функциональные критерии (класс II).

    Функциональный критерий - важнейший для программной индустрии критерий тестирования. Он обеспечивает, прежде всего, контроль степени выполнения требований заказчика в программном продукте. Поскольку требования формулируются к продукту в целом, они отражают взаимодействие тестируемого приложения с окружением. При функциональном тестировании преимущественно используется модель «черного ящика». Проблема функционального тестирования - это, прежде всего, трудоемкость; дело в том, что документы, фиксирующие требования к программному изделию (Software requirement specification, Functional specification и т.п.), как правило, достаточно объемны, тем не менее, соответствующая проверка должна быть всеобъемлющей.

    Ниже приведены частные виды функциональных критериев.

    · Тестирование пунктов спецификации - набор тестов в совокупности должен обеспечить проверку каждого тестируемого пункта не менее одного раза. Спецификация требований может содержать сотни и тысячи пунктов требований к программному продукту и каждое из этих требований при тестировании должно быть проверено в соответствии с критерием не менее чем одним тестом.

    · Тестирование классов входных данных - набор тестов в совокупности должен обеспечить проверку представителя каждого класса входных данных не менее одного раза. при создании тестов классы входных данных сопоставляются с режимами использования тестируемого компонента или подсистемы приложения, что заметно сокращает варианты перебора, учитываемые при разработке тестовых наборов. Следует заметить, что, перебирая в соответствии с критерием величины входных переменных (например, различные файлы - источники входных данных), мы вынуждены применять мощные тестовые наборы. Действительно, наряду с ограничениями на величины входных данных, существуют ограничения на величины входных данных во всевозможных комбинациях, в том числе проверка реакций системы на появление ошибок в значениях или структурах входных данных. Учет этого многообразия - процесс трудоемкий, что создает сложности для применения критерия.

    · Тестирование правил - набор тестов в совокупности должен обеспечить проверку каждого правила, если входные и выходные значения описываются набором правил некоторой грамматики. Следует заметить, что грамматика должна быть достаточно простой, чтобы трудоемкость разработки соответствующего набора тестов была реальной (вписывалась в сроки и штат специалистов, выделенных для реализации фазы тестирования).

    · Тестирование классов выходных данных - набор тестов в совокупности должен обеспечить проверку представителя каждого выходного класса, при условии, что выходные результаты заранее расклассифицированы, причем отдельные классы результатов указывают, в том числе ограничения на ресурсы или на время (time out).
    При создании тестов классы выходных данных сопоставляются с режимами использования тестируемого компонента или подсистемы, что заметно сокращает варианты перебора, учитываемые при разработке тестовых наборов.

    · Тестирование функций - набор тестов в совокупности должен обеспечить проверку каждого действия, реализуемого тестируемым модулем, не менее одного раза. Очень популярный на практике критерий, который, однако, не обеспечивает покрытия части функциональности тестируемого компонента, связанной со структурными и поведенческими свойствами, описание которых не сосредоточено в отдельных функциях (т.е. описание рассредоточено по компоненту).

    Критерий тестирования функций объединяет отчасти особенности структурных и функциональных критериев. Он базируется на модели «полупрозрачного ящика», где явно указаны не только входы и выходы тестируемого компонента, но также состав и структура используемых методов (функций, процедур) и классов.

    · Комбинированные критерии для программ и спецификаций - набор тестов в совокупности должен обеспечить проверку всех комбинаций непротиворечивых условий программ и спецификаций не менее одного раза. При этом все комбинации непротиворечивых условий надо подтвердить, а условия противоречий следует обнаружить и ликвидировать.

    Стохастические критерии (класс III).

    Стохастическое тестирование применяется при тестировании сложных программных комплексов - когда набор детерминированных тестов (X, Y) имеет громадную мощность. В случаях, когда подобный набор невозможно разработать и исполнить на фазе тестирования, можно применить следующую методику.

    · Разработать программы-имитаторы случайных последовательных входных сигналов {x}.

    · Вычислить независимым способом значения {y} для соответствующих входных сигналов {y} и получить тестовый набор {X,Y}.

    · Протестировать приложение на тестовом наборе {X,Y}, используя два способа контроля результатов:

    1. Детерминированный контроль - проверка соответствия вычисленного значения значению y, полученному в результате прогона теста на наборе {x} - случайной последовательности входных сигналов, сгенерированной имитатором.

    2. Стохастический контроль - проверка соответствия множества {}, полученного в результате прогона тестов на наборе значений {x}, заранее известному распределению результатов F(Y). В этом случае множество y неизвестно (его вычисление невозможно), но известен закон распределения данного множества.

    Критерии стохастического тестирования:

    · Статистические методы окончания тестирования - стохастические методы принятия решений о совпадении гипотез о распределении случайных величин. К ним принадлежат широко известные: метод Стьюдента (St), метод Хи-квадрат (x 2) и т.п.

    · Метод оценки скорости выявления ошибок - основан на модели скорости выявления ошибок, согласно которой тестирование прекращается, если оцененный интервал времени между текущей ошибкой и следующей слишком велик для фазы тестирования приложения.

    Мутационный критерий (класс IV).

    Постулируется, что профессиональные программисты пишут сразу почти правильные программы, отличающиеся от правильных мелкими ошибками или описками типа - перестановка местами максимальных значений индексов в описании массивов, ошибки в знаках арифметических операций, занижение или завышение границы цикла на 1 и т.п. Предлагается подход, позволяющий на основе мелких ошибок оценить общее число ошибок, оставшихся в программе.

    Подход базируется на следующих понятиях:

    Мутации - мелкие ошибки в программе.

    Мутанты - программы, отличающиеся друг от друга мутациями.

    Метод мутационного тестирования - в разрабатываемую программу P вносят мутации, т.е. искусственно создают программы-мутанты P1, P2…Затем программа P и ее мутанты тестируются на одном и том же наборе тестов {X,Y}.

    Если на наборе {X,Y} подтверждается правильность программы P и, кроме того, выделяются все внесенные в программы-мутанты ошибки, то набор тестов (X,Y) соответствует мутационному критерию, а тестируемая программа объявляется правильной.

    Если некоторые мутанты не выявили всех мутаций, то надо расширять набор тестов (X,Y) и продолжать тестирование.

    Автоматизированная WEB-система тестирования студентов

    Процесс тестирования данного программного продукта был разделен на 2 этапа: · тестирование пользовательской страницы представлено в таблице №11. Таблица №11...

    Автоматизированная кроссплатформенная система тестирования студентов

    Процесс тестирования данного программного продукта был разделен на 2 этапа: · тестирование пользовательского продукта представлено в таблице №11. Таблица №11...

    Исследование алгоритмов управления ресурсами однопроцессорных серверов при оперативной обработке задач (алгоритмы SPT и RR)

    Используются следующие критерии, позволяющие сравнивать алгоритмы краткосрочных планировщиков: 1. утилизация CPU (использование) CPU utilization. утилизация CPU теоретически может находиться в пределах от 0 до 100%...

    Классификация автоматизированных систем управления

    Классификация АСУ существенным образом зависит от критериев классификации...

    Концепция построения дистрибутива

    Как известно, по сей день человечество придумало лишь два способа управления программным обеспечением - сборку их непосредственно из пакетов исходных текстов и установку из перекомпилированных бинарных пакетов. В соответствие...

    Обоснование выбора самого престижного ВУЗа г. Перми

    Определим критерии, по которым я буду оценивать предложенные альтернативы. Я выделил 7 основных критериев: 1. Мнение общественности. Это самый важный критерий, на котором основывается имидж ВУЗа. 2. Узнаваемость. Известность ВУЗа также важна...

    Проект локальной вычислительной сети второго этажа школы № 19

    Основным критерием приемки является соответствие готового проекта требованиям заказчика, а также качество выполняемых работ...

    Разработка web-сайта "Магазин детских игрушек"

    5. Подсистема вывода на экран справочной системы для пользователя; 6. Подсистема вывода на экран сведений о программе. 2...

    Разработка мультимедийного электронного учебника

    Размещено на http://www.allbest...

    Разработка мультимедийного электронного учебника по дисциплине "Компьютерные сети"

    Одним из критериев выбора хостинга является используемая операционная система, поскольку от этого зависит программное обеспечение, которое будет поддерживать функциональность тех или иных сервисов...

    Тестирование ЛВС АКБ

    Для описания состояния сети был выбран метод пороговых значений суть которого заключается в сравнении каждого измеряемого значения с табличным рекомендуемым значением...

    Очень часто приходится сталкиваться с вопросом «Что автоматизировать в первую очередь?» Автоматизация не делается ради автоматизации: хочется видеть результат процесса, который давал бы положительный ROI (подробнее о расчете ROI можно прочитать ).

    Почему важно использовать автоматизацию?

    Принято считать, что автоматизация тестирования действует как инструмент поддержки ручного тестирования, но на самом деле важно понять, что автоматизация – это наилучший способ не просто сэкономить время, но и повысить эффективность, широту охвата и точность тестирования, ведь повторяющиеся задачи в условиях ручного подхода подвергаются риску человеческих ошибок. Автоматизация не превосходит и не заменяет ручное тестирование, но дополняет его. Подобно управлению тестированием автоматизация также нуждается в разработке стратегии с надлежащим планированием, мониторингом и контролем. Автоматизаторы не только изучают новые способы автоматизации, но и принимают много продуманных решений. Автоматизация при правильной реализации может стать преимуществом для команды, проекта и организации.
    Существует много преимуществ автоматизации, мы упомянем следующие:

    • ускоряет выполнение обычных задач, таких как дымовые и регрессионные тесты;
    • помогает при подготовке тестовых данных;
    • оптимизирует выполнение тестовых примеров, связанных со сложной бизнес-логикой;
    • облегчает проведение кроссплатформенных тест-кейсов (например, при проверке разных ОС, браузеров и т.д.);
    • отлично подходит для выполнения тест-кейсов, которые трудно или даже невозможно выполнить вручную;
    • хорошо помогает в тех случаях, когда количество итераций при выполнении заранее неизвестно.

    При этом не стоит забывать, что автоматизировать весь процесс тестирования программного обеспечения сложно и экономически неэффективно как из-за дороговизны инструментов тестирования, так и из-за вероятности нестабильного характера определенных разделов приложения. Ситуации на проекте сильно влияет на выбор области для автоматизации (будь то автоматизация тестов для регресса или автоматизация, которая покажет узкие места в частых сборках). Описывая все возможные варианты, мы рискуем получить целую книгу, а потому рассмотрим лишь наиболее часто встречающуюся ситуацию: необходимо автоматизировать набор регрессии.

    Итак, каковы критерии выбора тест-кейсов для автоматизации?

    Одна из самых частых ошибок, которые делают тестировщики, – выбор неправильных тестов для автоматизации. Нужно внимательно проанализировать и наметить кандидатов для автоматизации с учетом наиболее важного фактора, а именно ROI; другими словами, необходимо выяснить способы получения более высокой и положительной ROI. Для этого придется предпринять ряд действий:

    • определить частоту выполнения тестового примера (запускают его для каждой новой сборки или один раз, но с большим объемом ввода?);
    • выяснить, является тест-кейс критичным для бизнеса или охватывает полный сквозной сценарий;
    • убедиться, что анализ результатов автотеста не будет превышать время, которое затрачивается при ручном тестировании (в противном случае он потеряет свою актуальность для автоматизации);
    • учесть вероятность обнаружения ошибок (ввести тесты, которые чаще всего показывают ошибки и слабые места);
    • понять, может ли тест стать блокирующим для важной функции или функциональности, которая имеет решающее значение для бизнеса.

    Какие типы тестов следует исключать из тестирования автоматизации?

    Перечислим случаи, при которых тесты-кейсы нужно отфильтровать от автоматизации:

    • тесты юзабилити, требующие ручного вмешательства для проверки ошибок или отклонения от ожидаемого поведения;
    • тестовые примеры, включающие в себя установку или не нуждающиеся в повторном исполнении функции (тем не менее, вы должны автоматизировать тесты, предполагающие объемные входные данные);
    • избегайте автоматизировать тесты, которые могут привести к непредсказуемым результатам (например, новый функционал, временные тесты, проверка даты истечения срока действия);
    • UX-тесты, которые включают проверку повторной калибровки объектов на разных размерах экрана.

    Что дальше?

    Исходя из вышеперечисленных факторов отбора, мы получим сценарии, которые будут участвовать в отборе для автоматизации.
    Следующим шагом будет разбиение тестируемого приложения на модули. Для каждого модуля анализируем и идентифицируем тест-кейсы, которые будут выполняться с различным набором данных, на различных средах (ОС/Браузер) и со сложной бизнес-логикой, используют большой объем данных (в том числе и специальных) и применяются различными пользователями.

    Рассмотрим процесс на примере. У нас есть модуль с созданием заявок в системе, для которого мы отбираем тест-кейсы, участвующие в процессе создания заявки. После того, как все тесты выписаны, мы отмечаем, выполняется ли хотя бы одно из условий определенное нами выше (рис.1).

    По клику на картинку откроется полная версия.
    Y – условие выполняется
    N – Условие не выполняется
    Таким образом, мы получаем 3 тест-кейса, которые можно начать автоматизировать, и 2 тест-кейса, не требующих автоматизации. Мы выполнили самую важную задачу и добрую половину работы: беспорядок новой темы превращается в подробный план того, что нужно сделать.

    Вывод


    Чаще всего мы предпочитаем автоматизировать набор регрессии, поскольку он содержит большее количество тестовых примеров, а его функционал уже стабилен (то есть, не меняется от сборки к сборке). В этом случае мы можем разбить регрессионные наборы на модули и принять решение о запуске соответствующего пакета в соответствии с требованиями к выпуску.
    Вместо автоматизации всего набора мы выбираем фазовую автоматизацию. Другими словами, мы следуем прототипу модели для разработки пакета автоматизации.

    Итак, создавайте структуру или фреймворк с реализацией меньшего количества тестовых примеров, а затем улучшайте его, добавляя все больше примеров.

    Любите тестировщика в себе, а не себя в тестировании!

    Лучшие статьи по теме