Как настроить смартфоны и ПК. Информационный портал

Устойчивость к сбоям питания. Электрические сети и сбои питания

ВведениеКомпания OCZ хорошо известна как один из пионеров рынка потребительских SSD. Однако даже до того, как она была куплена Toshiba, её интересы простирались в том числе и на рынок серверных твердотельных накопителей. Несмотря на то, что до недавних пор у OCZ не было стабильных каналов закупок флеш-памяти, она не оставляла попыток создания высоконадёжных SSD, предназначенных для значительных нагрузок. Производство серверных SSD требует от производителя более тщательного подхода к проектированию аппаратной платформы, отдельной заботы об обеспечении безопасности хранения данных и специальных мер для придания накопителю гораздо более высокого ресурса записи. И инженерный потенциал OCZ позволял решать эти задачи. Впрочем, справедливости ради стоит отметить, что особых успехов в поставках серверных SSD в своей прошлой жизни компания всё-таки добиться не смогла.

Однако теперь всё поменялось. После банкротства и перехода под крыло Toshiba у OCZ появился надёжный источник для получения флеш-памяти, включая и её вариации с повышенным ресурсом. Пользуясь возникшей возможностью компания перевыпустила свои серверные SSD. На смену старым сериям Intrepid и Deneva пришла новая серия накопителей с интерфейсом SATA III, Intrepid 3000. Она включает в себя две линейки моделей, 3600 и 3800, и обе они доступны как по OEM, так и по розничным каналам.

Не будет преувеличением сказать, что, имея мощную поддержку в лице материнской компании, теперь OCZ предлагает очень интересные SSD для бизнес-приложений. С одной стороны они не уступает по характеристикам производительности и надёжности предложениям конкурентов, а с другой – обладают привлекательной ценой. Накопители Intrepid 3800 вполне могут использоваться в серверах со средней интенсивностью операций записи, так как их декларируемый ресурс очень высок и, например, для 800-гигабайтной версии он достигает 5,8 Пбайт данных. Серия Intrepid 3600 немного попроще, она позиционируется как решение для серверов с преобладающими операциями чтения, например, для веб-серверов или мультимедиа-серверов. Тем не менее, даже в этом случае ресурс записи очень неплох и достигает у 800-гигабайтной версии SSD величины 1,5 Пбайт. На самом деле Intrepid 3800 и 3600 мало отличаются друг от друга. Они используют одну и ту же аппаратную и программную платформу, и в обоих случаях в них используется 19-нм флеш-память компании Toshiba. Однако в накопители серии 3800 идёт более выносливая eMLC-память, в то время как серия 3600 довольствуется стандартными чипами MLC.

Память Toshiba – не единственное нововведение в серверных накопителях OCZ нового поколения. Ранее компания применяла в своих бизнес-накопителях контроллеры SandForce. Однако к сегодняшнему дню они изрядно устарели, а, кроме того, в этом случае возможности инженеров по изменению прошивки были достаточно ограничены, в результате чего у них не получалось внедрять какие-то интересные и уникальные решения. Поэтому с появлением серии Intrepid 3000 компания перешла на контроллер Marvell SS9187, микропрограмма для которого пишется специалистами OCZ полностью автономно. Это позволяет OCZ добавлять в свои накопители специальные серверные функции, востребованные в бизнес-среде. Следует заметить, что в ассортименте OCZ есть и серверные накопители на собственном контроллере Barefoot 3, но аппаратная платформа Marvell более привлекательна тем, что она относится к тщательно проверенным и общепризнанным в индустрии решением. Именно поэтому семейство Intrepid 3000 считается наиболее стабильным, живучим и отказоустойчивым решением.

Надо сказать, что и сама OCZ имеет немалый опыт использования контроллера Marvell SS9187 – вспомните серию накопителей Octane , основанную на чипах Everest 2, полученных на основе дизайна Marvell. Как видим, старые наработки инженеров OCZ не были выброшены в корзину, но теперь они неожиданно нашли место в серверном сегменте. И более того, теперь к ним добавлены новые функции для повышения надёжности. В их числе: проверка целостности данных на базе контрольных сумм на каждом этапе их обработки, расширенные алгоритмы контроля чётности и внутренние RAID-подобные механизмы распределения данных по разным чипам флеш-памяти с избыточностью. Всё это позволяет гарантировать крайне низкую вероятность ошибок, которая у Intrepid 3000 примерно на порядок ниже, чем у лучших накопителей для потребительского сегмента.

Мы получили на тесты накопитель Intrepid 3800 ёмкостью 800 Гбайт. Это – максимальный объём в линейке, который позволяет достигнуть наивысшей производительности во всём семействе Intrepid 3000. Скорости последовательных операций у этой модели дотягивают до 500 и 460 Мбайт в секунду при чтении и записи соответственно. А при случайных операциях с 4-килобайтными блоками быстродействие достигает 90 и 40 тысяч операций в секунду при чтении и записи. И, кстати, здесь имеется в виду установившаяся производительность, показываемая диском после нескольких часов активного использования. Именно поэтому эти числа кажутся не слишком впечатляющими на фоне скоростей потребительских SSD, где обычно указываются показатели, наблюдаемые на «свежем» флеш-диске.



Стоит отметить, что при разработке своего семейства накопителей Intrepid 3000 инженеры компании OCZ фокусировались не только на обеспечении лидирующей производительности, но и на постоянстве латентностей операций ввода-вывода. А это значит, что представители семейства Intrepid 3000 должны демонстрировать малый разброс скоростных параметров в течение времени, что очень важно для улучшения времени отклика при установке этих накопителей в RAID-массивы.

В дополнение к указанным скоростным показателям в числе характеристик семейства Intrepid 3000 значится надёжная защита данных от сбоев питания, поддержка аппаратного шифрования по стандарту AES-256 и высокое среднее время наработки на отказ на уровне 2 млн. часов. К не менее полезным свойствам рассматриваемой новинки следует отнести температурный мониторинг и расширенную SMART-статистику, которая позволяет получать детальную информацию о том, как себя чувствует SSD.

Спецификации и внутреннее устройство

Итак, спецификации твердотельных накопителей серии Intrepid 3800, использующей высоконадёжную eMLC память, выглядят следующим образом:



Как видно из характеристик, высоконадёжная eMLC NAND и дополнительное резервное пространство, недоступное пользователю, обеспечивают внушительный ресурс флеш-дисков серии Intrepid 3800. Именно поэтому такие предложения и ценятся потребителями из корпоративного сегмента. Однако высокая надёжность отражается и на цене. Подобные Intrepid 3800 твердотельные накопители примерно вдвое дороже обычных потребительских SSD похожего объёма.

Если же говорить о внешнем виде серверного накопителя Intrepid 3800, то он совершенно обычен. Этот SSD заключён в привычный корпус из стального сплава. Правда, учитывая, что устанавливаются такие диски в сервера, зачастую оборудованные специализированными корзинами, высота этого корпуса составляет не 7, а 9 мм. На лицевой поверхности SSD наклеена маркетинговая этикетка. С оборотной стороны – этикетка с маркировкой, серийными номерами и штрих-кодами.


Внутри корпуса обнаруживается не совсем типичная печатная плата, занимающая всё его внутреннее пространство. Следует заметить, что базовый контроллер примыкает к крышке корпуса через термопроводящую прокладку, чем обеспечивается его охлаждение. Однако в процессе работы этот чип всё равно очень сильно нагревается и даже может уходить в троттлинг, сбрасывая свою частоту. Во избежание таких ситуаций мы рекомендуем использовать Intrepid 3800 в хорошо продуваемых корпусах или специальных корзинах, укомплектованных вентиляторами.


Основной контроллер имеет достаточную неожиданную маркировку Indilinx IDX400M00-BC, но на самом деле это перемаркированная микросхема Marvell 88S9187. Подобная архитектура накопителя с использованием контроллера Marvell и собственной микропрограммы уже встречалась нам в потребительском флеш-диске OCZ Octane, который основывался на платформе Everest 2. Теперь же эта платформа обрела второе дыхание. Контроллер в ней поддерживает интерфейс SATA 6 Гбит/с и имеет 8-канальную архитектуру для подключения флеш-памяти. При этом в каждом канале допускается чередование устройств NAND с максимальной кратностью 16. Учитывая, что в рассматриваемом нами накопителе Intrepid 3800 800 Гбайт общий объём массива флеш-памяти составляет 1024 Гбайт, а используемые чипы eMLC флеш-памяти имеют объём по 64 Гбит, в нём возможности контроллера задействуются по максимуму.

Контроллер Marvell 88S9187 в Intrepid 3800 работает в паре с чипом оперативной памяти DDR3-1333 объёмом 1 Гбайт. Этот чип нужен для кэширования случайных операций и для хранения быстрой копии таблицы трансляции адресов.

Массив флеш-памяти в Intrepid 3800 800 Гбайт набран шестнадцатью чипами Toshiba TH58TEG8DDJBA8C, в каждом из которых собрано по восемь 64-гигабитных кристаллов. Память с подобной маркировкой встречается повсеместно и в обычных твердотельных накопителях, например, компании Plextor. Но в данном случае это – не простая MLC NAND с Toggle Mode интерфейсом, а eMLC-память, собранная из отборных кристаллов, имеющих ресурс перезаписи, существенно превышающий типичный.



Но самая любопытная часть начинки Intrepid 3800 – это установленный на дочерней плате суперконденсатор компании AVX, имеющий ёмкость 22 мФ. Такой конденсатор не только имеет внушительную ёмкость, но и способен выдавать достаточно высокий ток, что позволяет гарантировать корректное завершение в SSD всех внутренних процессов даже в случае перебоев или внезапных отключений питания. Плата с суперконденсатором подключается к основной плате посредством специального разъёма и плотно зажимается корпусом.

Программное обеспечение

Следует отметить, что для своих твердотельных накопителей, ориентированных на использование в серверной среде, компания OCZ разрабатывает специальное программное обеспечение StoragePeak 1000. Это приложение позволяет организовать централизованное и удалённое управление и мониторинг всех накопителей OCZ, имеющихся в серверах и прочих устройствах внутри сегмента сети.

Благодаря данному программному обеспечению системные администраторы имеют доступ к полной информации по накопителям, в том числе к сведениям по их производительности, надежности и работоспособности. Наряду с контролем функционирования StoragePeak 1000 предлагает настраиваемые системы оповещения о возникающих проблемах или о выходе каких-либо рабочих параметров SSD за указанные рамки. Варианты StoragePeak 1000 есть для различных операционных систем семейств Windows, CentOS и RHEL.

Помимо Intrepid 3800, программа StoragePeak 1000 может связываться и с накопителями других серверных серий, в частности, Z-Drive 4500 и R4, ZD-XL, Intrepid 3600, Saber 1000, Deneva 2 и Talos 2.



Подобно привычной утилите OCZ Toolbox, программное обеспечение StoragePeak 1000 обладает функциями удалённого обновления прошивок и Secure Erase. Также поддерживается журналирование параметров SMART и производительности. Работа с StoragePeak 1000 возможна в том числе и из командной строки.



Впрочем, обычная утилита OCZ Toolbox с Intrepid 3800 тоже работает, предоставляя пользователю вполне привычный набор возможностей, к которым добавляется ещё одна дополнительная функция – проверка работоспособности суперконденсатора AVX. Кстати сказать, наблюдение за состоянием этого конденсатора доступно и через обычный SMART-мониторинг, в котором добавлен отдельный параметр, описывающий его состояние.



Да и в целом набор значений SMART у Intrepid 3800 значительно расширен. Он позволяет гораздо более подробно, чем в потребительских SSD, контролировать состояние флеш-памяти, а также накапливает сведения об ошибках, возникающих на всех этапах работы с данными внутри твердотельного накопителя. Естественно, в Intrepid 3800 реализован и полноценный температурный мониторинг.

Тестовая система

Производительность твердотельного накопителя Intrepid 3800 800 Гбайт исследовалась при его работе в составе тестовой системы, основанной на интеловский платформе с процессором Core i5-4690K. Используемая материнская плата основывалась на наборе системной логики Z97, накопитель подключался к чипсетным портам SATA 6 Гбит/с.

К сожалению, мы не смогли найти для серверного диска OCZ Intrepid 3800 800 Гбайт равноценный объект для сравнения. На момент проведения тестирования в сфере нашей досягаемости из предложений аналогичного предназначения оказался лишь Intel SSD DC S3500 объёмом 600 Гбайт. В отличие от OCZ Intrepid 3800 этот интеловский твердотельный накопитель базируется на обычной MLC NAND, однако следует иметь в виду, что в ассортименте компании Intel есть почти такие же флеш-диски Intel SSD DC S3700, базирующиеся на eMLC памяти. Иными словами, сравнение OCZ Intrepid 3800 и Intel SSD DC S3500 не лишено смысла. Оно как минимум позволяет понять, насколько прогрессивны характеристики продукта OCZ на фоне того, что предлагают для корпоративного сегмента другие производители.

В итоге, в тестовой платформе задействовался следующий набор оборудования:

Процессор: Intel Core i5-4690K (Haswell, 4 ядра, 3,5-3,9 ГГц, 4x256 Кбайт L2, 6 Мбайт L3);
Процессорный кулер: Noctua NH-U14S;
Материнская плата: ASUS Z97-Pro (LGA1150, Intel Z97 Express);
Память: 2x8 Гбайт DDR3-2133 SDRAM, 9-11-11-31 (G.Skill F3-2133C9D-16GTX);
Системный накопитель – Crucial M550 512 GB (CT512M550SSD1);
Тестовые накопители:

OCZ Intrepid 3800 800 Гбайт (IT3RSK41ET350-0800, прошивка);
Intel SSD DC S3500 600 Гбайт (SSDSC2BB600G401, прошивка);

Блок питания: Seasonic Platinum SS-760XP2 (80 Plus Platinum, 760 Вт).

Тестирование выполнялось в операционной системе Microsoft Windows 8.1 Professional x64 с использованием следующего комплекта драйверов:

Intel Chipset Driver 10.0.20;
Intel Management Engine Driver 10.0.0.1204;
Intel Rapid Storage Technology 13.2.4.1000;
Intel Graphics Accelerator Driver 10.18.10.3910.

Тестирование проводилось с использованием программного средства IOMeter 1.1.0.

Производительность

Десктопная производительность

Прежде чем перейти к тестированию OCZ Intrepid 3800 800 Гбайт при серверных нагрузках, мы решили уделить внимание тому, как может проявить себя этот SSD, будучи установленным в обычной десктопной системе. Для этого мы измерили его производительность популярным бенчмарком, входящим в состав Anvil’s Storage Utilities.



Как можно заметить по приведённому скриншоту, в сравнении с современными потребительскими SSD рассматриваемый OCZ Intrepid 3800 800 Гбайт не может похвастать никакими особенными достижениями. Более того, если бы речь шла о SATA SSD для персональных компьютеров, мы бы отнести этот флеш-диск к числу предложений среднего или даже нижнего уровня, так как скорости последовательного чтения и записи у него откровенно слабые, да и при произвольных операциях производительность оказывается существенно ниже, чем выдают многие популярные флеш-диски.

Впрочем, основываясь на этих результатах, совсем не нужно делать вывод о том, что OCZ Intrepid 3800 800 Гбайт – это медленный SSD. Просто у него несколько иное назначение, и высокие пиковые показатели в типичной десктопной среде ни о чём не говорят. Подобные OCZ Intrepid 3800 твердотельные накопители ориентированы на работу в условиях высоких нагрузок, когда дисковой подсистеме приходится сталкиваться с непрерывным и интенсивным потоком запросов. Поэтому всё дальнейшее тестирование проводилось в соответствии с принципами, сформулированными в методике SNIA, подразумевающей измерение скоростей и латентностей операций ввода вывода в условиях высокой нагрузки. То есть тогда, когда накопитель вынужден проводить операции высвобождения страниц флеш-памяти и сборки мусора «на лету», одновременно с обслуживанием поступающих запросов.

Стабилизация производительности и переходные процессы

В новом SSD флеш-память полностью свободна от каких-либо данных, поэтому накопитель, только извлечённый из упаковки, на первых порах демонстрирует существенно более высокую производительность. Однако со временем его флеш-память заполняется данными, и новые операции записи начинают требовать предварительной очистки блоков страниц флеш-памяти. Поэтому со временем производительность SSD снижается, и накопитель переходит в устойчивое «использованное» состояние. Для того чтобы проследить этот переходный процесс, мы проводим восьмичасовой цикл случайной записи данных (блоками по 4 Кбайт с глубиной очереди запросов 64 команды), по окончанию которого уже и измеряется «реальное» быстродействие накопителя.

В то же время наблюдение за переходным процессом в скорости работы SSD также представляет интерес. Показанный ниже график как раз и отображает падение производительности рассматриваемых накопителей под воздействием потока запросов на случайную запись 4-килобайтных блоков с глубиной очереди запросов 64 команды.



Приведённый график сразу же обнаруживает более высокую производительность OCZ Intrepid 3800 800 Гбайт, которая сохраняется на всём протяжении 8-часового теста. В то время как быстродействие этого SSD начинается с примерно 83 тысяч IOPS и снижается до 40 тысяч IOPS, показатели Intel SSD DC S3500 600 Гбайт гораздо хуже. В свежем состоянии интеловскому накопителю удаётся выдать лишь 65 тысяч IOPS, а в устойчивом состоянии его скорость – всего 15 тысяч IOPS.

Однако тут есть один нюанс. Несмотря на то, что OCZ Intrepid 3800 800 Гбайт работает быстрее, стабильность его скоростных показателей оставляет желать лучшего. Этот накопитель время от времени демонстрирует одномоментные несколькократные снижения производительности, а это – не очень хорошая модель поведения для серверных SSD, которые нередко собираются в RAID-массивы. Intel SSD DC S3500 же может похвастать куда более стабильной и предсказуемой скоростью, что является его несомненным достоинством. Но, справедливости ради, заметим, что провалы в производительности у накопителя OCZ встречаются не слишком часто, а примерно раз в одну-две минуты и имеют продолжительность в одну-две секунды.

Скорость случайных операций с 4K-блоками






При чтении OCZ Intrepid 3800 800 Гбайт заметно превосходит Intel SSD DC S3500 600 Гбайт. Существенная разница в результатах начинает наблюдаться при глубине очереди запросов 32 команды.






Ещё более впечатляющее преимущество OCZ Intrepid 3800 800 Гбайт выявляется при случайной записи. Оно есть при абсолютно любой очереди запросов. Кстати, обратите внимание – с ростом глубины очереди команд производительность серверных накопителей практически не увеличивается. Очевидно, что скорость в этом случае ограничивается необходимостью очистки блоков страниц флеш-памяти. Однако несмотря на это, латентность операций от глубины очереди зависит.






Скорость работы при произвольных смешанных операциях случайного чтения и записи демонстрирует достаточно интересную зависимость. Оба SSD демонстрируют наивысшую производительность в том случае, когда к операциям чтения записи не подмешиваются вообще. Но минимальная производительность у Intel SSD DC S3500 600 Гбайт и OCZ Intrepid 3800 800 Гбайт наблюдается при разных вариантах нагрузки. У OCZ Intrepid 3800 800 Гбайт чем больше операций записи, тем ниже скорость, а максимальное и минимальное значение величины IOPS различается в 2,25 раза. Для Intel SSD DC S3500 600 Гбайт же наиболее проблемная нагрузка – это когда на одну операцию чтения приходится четыре операции записи. А разрыв между максимальной и минимальной производительностью – больше чем у конкурента и достигает 3,5-кратного размера.

Скорость случайных операций с 8K-блоками






В серверной нагрузке скорость операций с блоками 8 Кбайт имеет не меньшее значение, чем производительность с 4 Кбайт блоками. Например, 8 Кбайт – типичный пакет данных, передаваемый базами данных. И в данном случае ситуация несколько отличается от того, что мы видели до этого. При случайном чтении 8 Кбайт блоками Intel SSD DC S3500 600 Гбайт оказывается немного быстрее OCZ Intrepid 3800 800 Гбайт, начиная с очереди глубиной 16 запросов.






Однако при записи всё возвращается на свои места. Здесь OCZ Intrepid 3800 800 Гбайт обгоняет Intel SSD DC S3500 600 Гбайт примерно в 2,5 раза. И вновь, как и при записи 4Кбайт блоками, мы видим, что количество IOPS (в отличие от латентности) практически не зависит от глубины очереди.






Тестирование при смешанной нагрузке позволяет сделать вывод о том, что отставание OCZ Intrepid 3800 800 Гбайт от Intel SSD DC S3500 600 Гбайт – это ситуация, свойственная лишь для нагрузки, состоящей исключительно из операций чтения. Если же к ним подмешивается любая, пусть даже небольшая, часть операций записи, лидерство возвращается к OCZ Intrepid 3800 800 Гбайт. При этом обратите внимание, добавление к чтениям запросов на произвольную запись информации приводит к снижению производительности, которое тем больше, чем больше доля записей. Иными словами, максимальное и минимальное значение производительности у обоих SSD наблюдается в тех случаях, когда имеет место «чистая» нагрузка, состоящая исключительно из чтений или записей соответственно.

Скорость последовательных операций



Любопытно, но по скорости последовательного чтения OCZ Intrepid 3800 800 Гбайт оказывается далеко не на лидирующих позициях. Он заметно отстаёт от Intel SSD DC S3500 600 Гбайт и, более того, показывает максимальную производительность лишь при очереди запросов в 32 команды, когда интеловский флеш-диск выдаёт наивысшее быстродействие уже при очереди в 16 команд.



Но при последовательной записи картина обратная. OCZ Intrepid 3800 800 Гбайт смотрится заметно выигрышнее, чем Intel SSD DC S3500 600 Гбайт, опережая его в 2-2,5 раза.



Приведённый график производительности при смешанной нагрузке вносит в картину дополнительную ясность. Как можно видеть, Intrepid 3800 прекрасно справляется со смешанной нагрузкой, когда наряду с операциями чтения на SSD хотя бы в минимальном объёме поступают и операции записи. Intel SSD DC S3500 600 Гбайт же напротив, в этом случае в скорости теряет.

Производительность при смешанной нагрузке

Тесты, проведённые в этом разделе, воссоздают нагрузку, характерную для тех или иных серверных приложений.









Intrepid 3800 800 Гбайт показывает лучший результат в сценариях, моделирующих сервер баз данных или файловый сервер, в то время как Intel SSD DC S3500 600 Гбайт быстрее конкурента при использовании в веб-сервере. Это вполне согласуется с той картиной, которая сложилась у нас до этого момента. Серверный SSD компании OCZ хорош при смешанных нагрузках и в тех случаях, когда существенная доля операций – это записи. Собственно, в такой среде он не только показывает отличное быстродействие, но и хорошо вписывается в неё благодаря своей высокой выносливости. Интеловский накопитель больше подходит для тех случаев, когда важна скорость чтения данных, а записи носят редкий характер.

Выводы

Хотя имя OCZ у многих ассоциируется в первую очередь с твердотельными накопителями для персональных компьютеров, эта компания достаточно давно пытается выйти на рынок систем хранения данных корпоративного класса. В ассортименте OCZ серверные SSD представлены уже несколько лет, но теперь они вышли на качественно новый уровень, предлагая как минимум не худшие возможности, чем в продукции лидеров этого рынка. Например, рассмотренный в этой статье Intrepid 3800 – это не просто высоконадёжный SSD, основанный на eMLC NAND с повышенной выносливостью. В дополнение к этому ему также свойственны и типичные функции лучших серверных флеш-дисков, в частности, усиленные контрольные суммы, проверка целостности данных на всех этапах их обработки, защита от сбоев питания, а также RAID-подобная избыточность массива флеш-памяти, защищающая от утраты информации при отказе NAND-кристаллов. Кроме того, для своих SSD корпоративного класса OCZ предлагает программное средство StoragePeak 1000, позволяющее легко организовать обслуживание всего парка накопителей по локальной сети.

В результате, Intrepid 3800 может стать достаточно удачным выбором для использования в файловых серверах или серверах баз данных. На это указывает и декларируемая надёжность: все технологии, реализованные в этом флеш-диске, позволяют в течение пятилетнего гарантийного срока ежедневно четырежды перезаписывать полную ёмкость этого SSD. Справедливости ради надо заметить, что серверные накопители вроде Intel SSD DC S3700 располагают заметно более высоким ресурсом, но для применений в серверной среде с небольшой и средней нагрузкой ресурса OCZ Intrepid 3800 более чем достаточно.



К тому же у OCZ Intrepid 3800 есть важное преимущество – высокое быстродействие. Как показало тестирование, при операциях записи или при смешанной нагрузке этот накопитель оказывается существенно быстрее интеловского SSD, который выигрывает у предложения OCZ лишь при чистых чтениях. А это значит, что аппаратная платформа Everest 2, разработанная OCZ на основе контроллера Marvell 88S9187 и собственной микропрограммы, оказалась хорошо приспособленной для работы в серверной среде. Фактически, с точки зрения производительности к Intrepid 3800 может быть лишь одна претензия – при непрерывной нагрузке его производительность периодически проседает. Частота подобных эпизодов не слишком высока, но в RAID-массивах с большим количеством участников использовать Intrepid 3800 мы бы всё-таки не рекомендовали.

Ну и в заключение хочется добавить, что OCZ Intrepid 3800 стоит примерно на 10-15 процентов дешевле конкурирующих SSD на базе eMLC-памяти с похожими характеристиками. И это делает его действительно интересным вариантом для бизнес-применений.

Электрическое питание компьютеров, равно как и любой другой высокотехнологичной техники, не было бы таким щепетильным моментом, если бы качество электроэнергии всегда находилось на одном неизменно высоком уровне. К сожалению, в жизни это далеко не так. Стопроцентных защит не бывает в принципе, но снизить зависимость вашего ПК от "недугов из розетки" можно, причем в десятки и сотни раз. Благо сегодня рынок просто переполнен различными фильтрами, стабилизаторами, источниками бесперебойного питания и прочими девайсами, которые созданы лишь для того, чтобы защитить основное оборудование. В рамках этого материала мы постараемся подробно описать все "недомогания" отечественных электросетей, и посоветовать оптимальные варианты защиты.

Качество электрической энергии…

Именно с такой формулировки начинается межгосударственный стандарт ГОСТ 13109-97, главный документ, согласно которому должны функционировать питающие сети общего назначения. Стандарт, как мы уже успели отметить, межгосударственный, поэтому все написанное ниже справедливо для Российской Федерации, Украины, Беларуси, Казахстана и еще целого ряда стран. Мы же, со своей стороны, не будет цитировать жесткие и косноязычные ГОСТовские определения того самого качества, а попытаемся объяснить все на более понятном языке. Итак, подавляющее большинство артефактов сетевого напряжения можно разделить на следующие группы:

Импульсные помехи

Импульсные помехи являются куда более опасными. Фактически они представляют собой короткие всплески напряжения, которые вклиниваются в нормальную синусоиду. Продолжительность их действия не велика и измеряется миллисекундами, но амплитуда напряжения может достигать десятков киловольт. Причиной могут стать природные катаклизмы, например, гроза или техногенные факторы - всплески при коммутации мощных индуктивных нагрузок на подстанциях и в промышленности. Хороший импульс с большой долей вероятности может обеспечить выход из строя любой современной техники, чайники, утюги и лампочки, естественно, не в счет. Однако и от них уже давно придуманы действенные меры защиты, которые реализованы в бытовых фильтрах удлинителях. Как это работает, читайте чуть ниже.

Кратковременные провалы и всплески напряжения бывают обусловлены целым букетом причин, и могут быть названы вполне нормальным явлением для любой сети,естественно, если время их действия и изменение амплитуды не противоречит ГОСТу. Провалы встречаются более часто, т.к. они провоцируются включением мощных потребителей. Если такие неприятности долговременны, периодичны или присутствуют постоянно, то это не очень хорошо сказывается на работе оборудования. Максимальное долговременное отклонение от стандарта не должно превышать ±10%. Т.е. напряжение в наших розетках может смело колебаться от 207 до 253 В. В общем, оно так и есть, и приборы рассчитаны на это. Однако порой допустимые 10% грубо не выдерживаются, и если при отклонении в минус блок питания просто отключит аппаратуру, то при отклонении в плюс может произойти непредсказуемое. Очевидно, что в таких ситуациях нужно использовать какие-то регуляторы напряжения, и они есть. Устройства, предназначенные для этих целей, так и называются "автоматический регулятор напряжения", иногда просто AVR как аббревиатура от английского варианта.

Отсутствие напряжения может быть вызвано аварией или отключением по целому ряду причин. Ситуация достаточно неприятная, т.к. отсутствие амплитуды или ее падение до крайне низкого значения приводит к немедленному выключения техники, когда компьютер не сохранит данные, а высокотехнологичное оборудование не завершит процесс положенным образом. В этом случае поможет лишь автономное электроснабжение, которое обеспечивается источниками бесперебойного питания.


Искажение формы

Наконец, самый редкий случай – сильное искажение формы сигнала или частоты . Такое возможно лишь из-за проблем энергоснабжающей организации. В общем, современные блоки питания к этому не сильно критичны, но если искажения слишком значительны, то исправить их нельзя, и опять же приходится прибегать к помощи ИБП.

Как это работает?

Несложно догадаться, что все техногенные электрические приборы, в частности, рассматриваемые в данной статье, функционируют с использованием типовых свойств некоторых радиоэлементов и простейших схем. Начать анализ защитного оборудования наиболее целесообразно с рассмотрения фильтров-удлинителей. Что же такое интересное установлено у них внутри, и чем они отличаются от обычных удлинителей? Все очень просто. По своей природе данные устройства способны защитить оборудование от импульсных и высокочастотных помех, а также перенапряжения. В основе импульсной защиты лежит использование варисторов.


Варисторы

Этот элемент имеет нелинейную зависимость тока от приложенного напряжения. Говоря проще, пока напряжение не превысило некий допуск, через варистор протекает крайне низкий ток. Как только амплитуда превышает установленный порог, варистор "открывается" и через него начинает протекать огромный ток. Перед варистором установлен предохранитель, который в большинстве современных конструкций является автоматическим и многоразовым, и, как только ток превышает номинальное значение (как правило, 10А), предохранитель размыкает цепь, отключая оборудование от сети. Такая защита достаточно действенна, хоть и имеет несколько минусов. Во-первых, защищаемая техника просто жестко отключается во время работы. Во-вторых, при сильном импульсе варисторы могут сгореть, оборудование останется в норме, а сам фильтр со сгоревшими элементами уже не будет обеспечивать протекции.


Простейший фильтр на одном варисторе

Самый простой фильтр-удлинитель оборудован как минимум одним варистором и предохранителем, девайсы получше имеют в своем составе минимум три варистора, которые включены треугольником между основными линиями (фаза, ноль и земля). Фильтрация высокочастотных помех осуществляется с помощью индуктивно-емкостных (LC) фильтров. Они работают по так называемому режекторному принципу, имея разное сопротивление для сигналов с различной частотой. Для сетевых 50 Гц они не представляют никакой преграды, а вот уже для 1000 Гц или для 10000Гц являются заслоном на пути к питаемому оборудованию. Как правило, честные производители всегда указывают ослабление сигнала в полосе частот, чем оно больше, тем лучше.


LC-фильтр

В более сложных случаях, когда напряжение в сети периодически не стабильно, целесообразно использовать автоматические регуляторы напряжения. Это несложное устройство содержит в своем составе автотрансформатор, релейный узел и блок измерения входного напряжения. Простая электронная схема все время следит за амплитудой в розетке, благо сегодня реализация подобной штуковины очень проста и дешева. Как только напряжение выходит за положенный допуск, реле включает повышающую или понижающую обмотку трансформатора. Среднестатистически подобные устройства могут держать на выходе 230±10% В, когда амплитуда на входе прыгает от 160 до 300 В. Основными параметрами здесь являются время замера и переключения, ну и, конечно же, мощность.


Источники бесперебойного питания

Источники бесперебойного питания являются самым надежным видом защиты, т.к. обеспечивают полную протекцию оборудования, и содержат в своем составе как все необходимые фильтры, так и регулятор напряжения. На сегодняшний день можно выделить два основных класса ИБП: линейно-интерактивные и on-line.

Линейно-интерактивные источники служат для бытовых целей, где защита нужна, но к ней не предъявляются слишком жесткие требования. Функционирование источников первого типа сводится к тому, что при наличии сетевого напряжения нагрузка просто питается от розетки через фильтр, как только амплитуда сигнала выходит за рамки допустимого, нагрузка мгновенно отключается от сети и начинает питаться от встроенного инвертора, который генерирует 230 В, используя энергию накопленную в аккумуляторных батареях.


Аккумуляторы

Линейно-интерактивные источники достаточно популярны, т.к. дешевы и надежны, однако, даже они могут не сработать в некоторых нештатных ситуациях. Когда это недопустимо, используют on-line ИБП или, как их еще называют, ИБП двойного преобразования. Напряжение сети понижается, и все время используется для зарядки АКБ, АКБ питает инвертор, к которому и подключена нагрузка. Получается, что мы фактически изолируем технику от сети, а даже при самых сложных внештатных ситуациях она останется цела. Оn-line ИБП стоят заметно дороже линейно-интерактивных, поэтому переплачивать за них имеет смысл лишь при реальной необходимости. Выбирая подобное устройство, вы невольно столкнетесь с множеством технических характеристик, обращать внимание стоит лишь на основные, как-то: время переключения, мощность, наличие AVR, параметры фильтра и время автономной работы. Кстати, напоследок о мощности. Производители всегда указывают ее в вольт-амперах (ВА), чтобы перевести ВА в Вт, их нужно умножить на коэффициент 0.6…07, плюс добавить 25% запаса. Пример: если ваш компьютер потребляет 300 Вт, то вам нужен (300/0.6)1.25=625 ВА ИБП.

Актуальные модели сетевых фильтров-удлинителей

Defender DFS 605 представляет собой один из самых простых, но при этом качественно сделанных фильтров. Для изготовления корпуса применен специальный ABS пластик, который в меньшей степени подвержен горению по сравнению с обычным материалом. Устройство позволяет подключать сразу шесть потребителей общей мощностью 2.2 кВт. Номинальная энергия поглощения импульсной помехи составляет 220 Дж. Неплохим плюсом данной модели можно считать тот факт, что имеется возможность выбора длины шнура: DFS 601 – 1.8 м, DFS 603 – 3 м, DFS 605 – 5 м.

SVEN OPTIMA опять же является очень простым и недорогим решением, что не мешает быть ему весьма популярным. Этот элементарный фильтр-удлинитель допускает подключение шести потребителей и обеспечивает защиту от импульсных и высокочастотных помех, параметры не выдающиеся: 150 Дж поглощаемой энергии и ослабление на ВЧ в 10 раз. Однако даже такая защита в разы лучше, чем ничего, тем более что стоит она совсем немного.

Power Cube РС-5 – детище отечественной компании ООО "Абралан", что не может быть неприятным. РС-5 – это продукт представляющий низшую касту подобных устройств, номинальная энергия поглощения не превышает 90 Дж. Но за свои $10 он все же обеспечивает надежную защиту и удобство подключения техники, которая может быть обесточена нажатием одной кнопки.

Defender DFS 805 относится уже к совершенно другому классу устройств, которые стоят на порядок выше моделей за $3…7. Данный фильтр обладает не только выдающимися параметрами: поглощение импульсной энергии - 714 Дж, ослабление помех – 50 дБ, но и реализует некоторые интересные функции включения оборудования. Так, здесь используется система master/slave, когда одна из розеток может управлять включением всех остальных. Т.е. если вы нажатием кнопки активируете этот режим, то питание к пяти розеткам поступит лишь тогда, когда начнется потребление энергии от главной шестой. Это достаточно удобно для комплекса аппаратуры, например, включаем телевизор, и сразу включается усилитель для акустики, плеер, и т.д., выключаем – все наоборот.

Defender SMART 100 может быть отнесен к устройствам высшего класса, т.к. обладает продвинутыми параметрами и функциями. Мощность нагрузки может составлять 3680 Вт, рассеиваемая энергия - 3672 Дж, ослабление ВЧ помех – до 75 дБ. Несложно заметить, что данная модель обладает выдающимся дизайном, а спереди расположен дисплей, отображающий значение подключенной токовой нагрузки. Розетки находятся сзади, всего их восемь штук: четыре из них являются постоянно подключенными, остальные реализуют функцию сбережения энергии. В заключение стоит отметить, что SMART 100 оборудован еще и такими приятными мелочами, как поворачивающийся на 90 градусов кабель, и функцией включения с любого пульта управления на ИК лучах.

Топовой моделью компании SVEN является фильтр Platinum . Главной его «фишкой» является раздельное включение потребителей, когда для каждой розетки используется свой отдельный выключатель. Кроме того, изделие обладает неплохими техническими параметрами и достаточно удобно в использовании. Фильтр можно просто положить на пол или закрепить на стене.

Не стоит забывать и о некоторых дорогих продуктах, например, АРС PH6T3-RS . Да, его цена заметно отличается от среднестатистических показателей, однако оно того стоит, т.к. АРС предлагает беспрецедентно высокое качество изготовления и защиты. Приятным дополнением данного образца является сетевой кабель, который может поворачиваться на 180 градусов, и удобный держатель для проводов.

Актуальные модели сетевых стабилизаторов

АРС Line-R 600 можно назвать одним из лучших автоматических регуляторов на рынке, он прост, но максимально надежен и неприхотлив. В основе его функционирования лежит переключение обмоток трансформатора реле, которые управляются популярным микроконтроллером. На передней панели расположены три индикатора, поэтому пользователь всегда будет знать, в каком режиме находится устройство. Если мощность 600 ВА мала для вашего компьютера, то можно прибегнуть к покупке более мощного варианта на 1200 ВА.

Mustek PowerMate 625 является регулятором из разряда "попроще". Однако за свои деньги он обеспечивает нормальную мощность, имеет две розетки для подключения оборудования и дополнительную протекцию телефонной линии. Входное напряжение составляет 192 – 272 В, на выходе же мы получаем 230±10% В.

Бренд Krauler пришел на отечественный рынок достаточно недавно, но продукция, продаваемая под этой маркой, весьма достойная. В частности, регулятор VR-N1000VA может работать в широчайшем входном диапазоне напряжений от 140 до 260 В, обеспечивая точность на выходе не хуже ±8%. Тип работы релейный. Приятным бонусом можно считать цифровой индикатор амплитуд напряжения на передней панели. Да и цена около $35 за 1000 ВА мощности более чем приятная.

SVEN NEO R 1000 – модель достаточно обыденная с технической точки зрения, но при этом очень удобная для использования. Корпус выполнен в форм-факторе небольшого кубика, который подключается к сети, и в него же включаются две вилки защищаемого оборудования. Входное напряжении может составлять 150 -280 В, а выходное - 195 -248 В. Как видно, нижняя граница может значительно отклоняться от номинала; это не так опасно как отклонение вверх, но все равно не стоит подключать к данному устройству приборы, которые плохо переносят возможную просадку до 195 В.

Defender AVR iPOWER 1000 является одним из новейших продуктов компании, и разработан с учетов всех современных веяний. Корпус выполнен с явным дизайнерским изыском из негорючего пластика, а на передней панели расположен ЖК индикатор со всеми необходимыми данными.

Актуальные модели источников бесперебойного питания

SOCOMEC SICON NETYS PL 750 – продукт малоизвестного на наших просторах производителя, однако качество данного решения не вызывает никаких нареканий. Источник сделан максимально удобным, т.к. все шесть розеток для стандартных вилок расположены на задней панели. Заявленные технические характеристики полностью соответствуют реальным. Минусом ИБП SOCOMEC SICON можно считать крайне нефункциональное и «сбойное» программное обеспечение. Однако мониторинг параметров работы требуется не всегда, поэтому зачастую на подобный недостаток можно закрыть глаза.

IPPON Back Verso на пару с Back Office представляют класс исключительно офисных бесперебойников, о чем, в первую очередь, говорит их мощность. Обе модели выпускаются в двух конфигурациях, обеспечивая 400 или 600 ВА на выходе. Этого вполне достаточно для питания нетребовательных "печатных машинок". Время автономной работы при нагрузке близкой к номинальной не превышает несколько минут, поэтому при отключении электричества сразу следует завершать все процессы. Если требуется протекция более мощного оборудования, то следует посмотреть в сторону линеек Smart Power Pro и Smart Winner этого же производителя.

Компания SVEN предлагает целый ряд бюджетных решений, достаточно удачным из которых можно считать Power Pro+ 825 . Эта модель сделана по всем современным требованиям и оснащена портом USB для подключения компьютера. От некоторых «одноклассников» ее отличает батарея повышенной емкости (9 Ач против стандартных 7 Ач), что увеличивает время автономной работы.

Одну из лидирующих позиций на рынке ИБП занимает компания АРС, предлагающая не просто сотни различных моделей, а вообще комплексный подход к решению проблем электропитания и защиты оборудования. Для дома мы рекомендуем модель APC BACK-UPS 900 . Она отличается высочайшим качеством изготовления и самым современным уровнем схемотехники.

Powercom WOW-700U является еще одним представителем удобных ИБП, т.к. корпус устройства выполнен в виде обычного удлинителя. Во всем остальном это стандартный бесперебойник, причем с достаточно симпатичными параметрами. Время автономной работы с одним компьютером составляет около 10 минут, время зарядки – не более 6 часов.

Неплохой по качеству является и серия Black Star компании Powerman. Здесь можно выбрать мощность от 400 до 1500 ВА. Удобство использования обусловлено установкой обычных розеток на задней панели корпуса. У более слабых моделей их две, у мощных – три.

Здравствуйте. Эта статья посвящена программе настройки BIOS, позволяющей пользователю изменять основные настройки системы. Параметры настройки хранятся в энергонезависимой памяти CMOS и сохраняются при выключении питания компьютера.

ВХОД В ПРОГРАММУ НАСТРОЙКИ

Чтобы войти в программу настройки BIOS, включите компьютер и сразу же нажмите клавишу . Чтобы изменить дополнительные настройки BIOS, нажмите в меню BIOS комбинацию «Ctrl+F1». Откроется меню дополнительных настроек BIOS.

УПРАВЛЯЮЩИЕ КЛАВИШИ

< ?> Переход к предыдущему пункту меню
< ?> Переход к следующему пункту
< ?> Переход к пункту слева
< ?> Переход к пункту справа
Выбрать пункт
Для главного меню - выход без сохранения изменений в CMOS. Для страниц настроек и сводной страницы настроек - закрыть текущую страницу и вернуться в главное меню

<+/PgUp> Увеличить числовое значение настройки или выбрать другое значение из списка
<-/PgDn> Уменьшить числовое значение настройки или выбрать другое значение из списка
Краткая справка (только для страниц настроек и сводной страницы настроек)
Подсказка по выделенному пункту
Не используется
Не используется
Восстановить предыдущие настройки из CMOS (только для сводной страницы настроек)
Установить безопасные настройки BIOS по умолчанию
Установить оптимизированные настройки BIOS по умолчанию
Функция Q-Flash
Информация о системе
Сохранить все изменения в CMOS (только для главного меню)

СПРАВОЧНАЯ ИНФОРМАЦИЯ

Главное меню

В нижней части экрана отображается описание выбранной настройки.

Сводная страница настроек / Страницы настроек

При нажатии клавиши F1 появляется окно с краткой подсказкой о возможных вариантах настройки и назначении соответствующих клавиш. Для закрытия окна нажмите .

Главное меню (на примере версии BIOS Е2)

При входе в меню настройки BIOS (Award BIOS CMOS Setup Utility) открывается главное меню (рис.1), в котором можно выбрать любую из восьми страниц настроек и два варианта выхода из меню. С помощью клавиш со стрелками выберите нужный пункт. Для входа в подменю нажмите .

Рис.1: Главное меню

Если вам не удается найти нужную настройку, нажмите «Ctrl+F1» и поищите ее в меню дополнительных настроек BIOS.

Standard CMOS Features (Стандартные настройки BIOS)

На этой странице содержатся все стандартные настройки BIOS.

Advanced BIOS Features (Дополнительные настройки BIOS)

На этой странице содержатся дополнительные настройки Award BIOS.

Integrated Peripherals (Встроенные периферийные устройства)

На этой странице производится настройка всех встроенных периферийных устройств.

Power Management Setup (Настройки управления питанием)

На этой странице производится настройка режимов энергосбережения.

PnP/PCI Configurations (Настройка ресурсов РnР и PCI)

На этой странице производится настройка ресурсов для устройств

PCI и РnР ISA PC Health Status (Мониторинг состояния компьютера)

На этой странице отображаются измеренные значения температуры, напряжения и частоты вращения вентиляторов.

Frequency/Voltage Control (Регулировка частоты и напряжения)

На этой странице можно изменить тактовую частоту и коэффициент умножения частоты процессора.

Для достижения максимальной производительности установите в пункте «Тор Performance» значение «Enabled».

Load Fail-Safe Defaults (Установить безопасные настройки по умолчанию)

Безопасные настройки по умолчанию гарантируют работоспособность системы.

Load Optimized Defaults (Установить оптимизированные настройки по умолчанию)

Оптимизированные настройки по умолчанию соответствуют оптимальным рабочим характеристикам системы.

Set Supervisor password (Задание пароля администратора)

На этой странице Вы можете задать, изменить или снять пароль. Эта опция позволяет ограничить доступ к системе и настройкам BIOS либо только к настройкам BIOS.

Set User password (Задание пароля пользователя)

На этой странице Вы можете задать, изменить или снять пароль, позволяющий ограничить доступ к системе.

Save & Exit Setup (Сохранение настроек и выход)

Сохранение настроек в CMOS и выход из программы.

Exit Without Saving (Выход без сохранения изменений)

Отмена всех сделанных изменений и выход из программы настройки.

Standard CMOS Features (Стандартные настройки BIOS)

Рис.2: Стандартные настройки BIOS

Date (Дата)

Формат даты: <день недели>, <месяц>, <число>, <год>.

День недели - день недели определяется BIOS по введенной дате; его нельзя изменить непосредственно.

Месяц - название месяца, с января по декабрь.

Число - день месяца, от 1 до 31 (или максимального числа дней в месяце).

Год - год, от 1999 до 2098.

Time (Время)

Формат времени: <часы> <минуты> <секунды>. Время вводится в 24-часовом формате, например, 1 час дня записывается как 13:00:00.

IDE Primary Master, Slave / IDE Secondary Master, Slave (Дисковые накопители IDE)

В этом разделе определяются параметры дисковых накопителей, установленных в компьютере (от С до F). Возможны два варианта задания параметров: автоматически и вручную. При определении вручную параметры накопителя задаёт пользователь, а в автоматическом режиме параметры определяются системой. Имейте в виду, что введенная информация должна соответствовать типу вашего диска.

Если вы укажете неверные сведения, диск не будет нормально работать. При выборе варианта User Туре (Задается пользователем) вам потребуется заполнить приведенные ниже пункты. Введите данные с клавиатуры и нажмите . Необходимая информация должна содержаться в документации к жесткому диску или компьютеру.

CYLS - Количество цилиндров

HEADS - Количество головок

PRECOMP - Предкомпенсация при записи

LANDZONE - Зона парковки головки

SECTORS - Количество секторов

Если один из жестких дисков не установлен, выберите пункт NONE и нажмите .

Drive А / Drive В (Флоппи-дисководы)

В этом разделе задаются типы флоппи-дисководов А и В, установленных в компьютере. -

None - Флоппи-дисковод не установлен
360К, 5.25 in. Стандартный 5.25-дюймовый флоппи-дисковод типа PC емкостью 360 Кбайт
1.2М, 5.25 in. 5.25-дюймовый флоппи-дисковод типа АТ с высокой плотностью записи емкостью 1,2 Мбайт
(3.5-дюймовый дисковод, если включена поддержка режима 3).
720К, 3.5 in. 3.5-дюймовый дисковод с двусторонней записью; емкость 720 Кбайт

1.44М, 3.5 in. 3.5-дюймовый дисковод с двусторонней записью; емкость 1.44 Мбайт

2.88М, 3.5 in. 3.5-дюймовый дисковод с двусторонней записью; емкость 2.88 Мбайт.

Floppy 3 Mode Support (for Japan Area) (Поддержка режима 3 - только для Японии)

Disabled Обычный флоппи-дисковод. (Настройка по умолчанию)
Drive А Флоппи-дисковод А поддерживает режим 3.
Drive В Флоппи-дисковод В поддерживает режим 3.
Both Флоппи-дисководы А и В поддерживают режим 3.

Halt on (Прерывание загрузки)

Данная настройка определяет, при обнаружении каких ошибок загрузка системы будет остановлена.

NO Errors Загрузка системы будет продолжена несмотря на любые ошибки. Сообщения об ошибках выводятся на экран.
All Errors Загрузка будет прервана, если BIOS обнаружит любую ошибку.
All, But Keyboard Загрузка будет прервана при любой ошибке, за исключением сбоя клавиатуры. (Настройка по умолчанию)
Ail, But Diskette Загрузка будет прервана при любой ошибке, за исключением сбоя флоппи-дисковода.
All, But Disk/Key Загрузка будет прервана при любой ошибке, за исключением сбоя клавиатуры или диска.

Memory (Память)

В этом пункте выводятся размеры памяти, определяемые BIOS при самотестировании системы. Изменить эти значения вручную нельзя.
Base Memory (Базовая память)
При автоматическом самотестировании BIOS определяет объем базовой (или обычной) памяти, установленной в системе.
Если на системной плате установлена память объемом 512 Кбайт, на экран выводится значение 512 К, если же на системной плате установлена память объемом 640 Кбайт или более, выводится значение 640 К.
Extended Memory (Расширенная память)
При автоматическом самотестировании BIOS определяет размер установленной в системе расширенной памяти. Расширенная память - это оперативная память с адресами выше 1 Мбайт в системе адресации центрального процессора.

Advanced BIOS Features (Дополнительные настройки BIOS)

Рис.З: Дополнительные настройки BIOS

First / Second / Third Boot Device
(Первое/второе/третье загрузочное устройство)
Floppy Загрузка с флоппи-диска.
LS120 Загрузка с дисковода LS120.
HDD-0-3 Загрузка с жесткого диска от 0 до 3.
SCSI Загрузка с SCSI-устройства. Загрузка с ZIP-дисковода.
USB-FDD Загрузка с флоппи-дисковода с интерфейсом USB.
USB-ZIP Загрузка с ZIP-устройства с интерфейсом USB.
USB-CDROM Загрузка с CD-ROM с интерфейсом USB.
USB-HDD Загрузка с жесткого диска с интерфейсом USB.
LAN Загрузка через локальную сеть.

Boot Up Floppy Seek (Определение типа флоппи-дисковода при загрузке)

В процессе самотестирования системы BIOS определяет тип флоппи-дисковода - 40-дорожечный или 80-дорожечный. Дисковод емкостью 360 Кбайт является 40-дорожечным, а дисководы на 720 Кб, 1,2 Мбайт и 1,44 Мбайт - 80-дорожечными.

Enabled BIOS определяет тип дисковода - 40- или 80-дорожечный. Имейте в виду, что BIOS не различает дисководы 720 Кбайт, 1,2 Мбайт и 1,44 Мбайт, поскольку все они являются 80-дорожечными.

Disabled BIOS не будет определять тип дисковода. При установке дисковода на 360 Кбайт никакого сообщения на экран не выводится. (Настройка по умолчанию)

Password Check (Проверка пароля)

System Если при запросе системы не ввести правильный пароль, компьютер не загрузится и доступ к страницам настроек будет закрыт.
Setup Если при запросе системы не ввести правильный пароль, компьютер загрузится, однако доступ к страницам настроек будет закрыт. (Настройка по умолчанию)

CPU Hyper-Threading (Многопоточный режим работы процессора)

Disabled Режим Hyper Threading отключен.
Enabled Режим Hyper Threading включен. Обратите внимание, что эта функция реализуется только в том случае, если операционная система поддерживает многопроцессорную конфигурацию. (Настройка по умолчанию)

DRAM Data Integrity Mode (Контроль целостности данных в памяти)

Опция позволяет установить режим контроля ошибок в оперативной памяти, если используется память типа ЕСС.

ЕСС Режим ЕСС включен.
Non-ECC Режим ЕСС не используется. (Настройка по умолчанию)

Init Display First (Порядок активизации видеоадаптеров)
AGP Активизировать первым видеоадаптер AGP. (Настройка по умолчанию)
PCI Активизировать первым видеоадаптер PCI.

Integrated Peripherals (Встроенные периферийные устройства)

Рис.4: Встроенные периферийные устройства

On-Chip Primary PCI IDE (Встроенный контроллер 1 канала IDE)

Enabled Встроенный контроллер 1 канала IDE включен. (Настройка по умолчанию)

Disabled Встроенный контроллер 1 канала IDE отключен.
On-Chip Secondary PCI IDE (Встроенный контроллер 2 канала IDE)

Enabled Встроенный контроллер 2 канала IDE включен. (Настройка по умолчанию)

Disabled Встроенный контроллер 2 канала IDE отключен.

IDE1 Conductor Cable (Tип шлейфа, подключенного к IDE1)


АТА66/100 К IDE1 подключен шлейф типа АТА66/100. (Убедитесь, что ваши устройство IDE и шлейф поддерживают режим АТА66/100.)
АТАЗЗ К IDE1 подключен шлейф типа АТАЗЗ. (Убедитесь, что ваши устройство IDE и шлейф поддерживают режим АТАЗЗ.)

IDE2 Conductor Cable (Тип шлейфа, подключенного к ШЕ2)
Auto Автоматически определяется BIOS. (Настройка по умолчанию)
АТА66/100/133 К IDE2 подключен шлейф типа АТА66/100. (Убедитесь, что ваши устройство IDE и шлейф поддерживают режим АТА66/100.)
АТАЗЗ К IDE2 подключен шлейф типа АТАЗЗ. (Убедитесь, что ваши устройство IDE и шлейф поддерживают режим АТАЗЗ.)

USB Controller (Контроллер USB)

Если вы не используете встроенный контроллер USB, отключите здесь эту опцию.

Enabled Контроллер USB включен. (Настройка по умолчанию)
Disabled Контроллер USB отключен.

USB Keyboard Support (Поддержка USB-клавиатуры)

При подключении USB-клавиатуры задайте в этом пункте значение “Enabled”.

Enabled Поддержка USB-клавиатуры включена.
Disabled Поддержка USB-клавиатуры отключена. (Настройка по умолчанию)

USB Mouse Support (Поддержка мыши USB)

При подключении мыши USB задайте в этом пункте значение “Enabled”.

Enabled Поддержка мыши USB включена.
Disabled Поддержка мыши USB отключена. (Настройка по умолчанию)

АС97 Audio (Аудиоконтроллер АС’97)

Auto Встроенный аудиоконтроллер АС’97 включен. (Настройка по умолчанию)
Disabled Встроенный аудиоконтроллер АС’97 отключен.

Onboard H/W LAN (Встроенный сетевой контроллер)

Enable Встроенный сетевой контроллер включен. (Настройка по умолчанию)
Disable Встроенный сетевой контроллер отключен.
Onboard LAN Boot ROM (Загрузочное ПЗУ встроенного сетевого контроллера)

Использование ПЗУ встроенного сетевого контроллера для загрузки системы.

Enable Функция включена.
Disable Функция отключена. (Настройка по умолчанию)

Onboard Serial Port 1 (Встроенный последовательный порт 1)

Auto BIOS устанавливает адрес порта 1 автоматически.
3F8/IRQ4 Включить встроенный последовательный порт 1, присвоив ему адрес 3F8.(Настройка по умолчанию)
2F8/IRQ3 Включить встроенный последовательный порт 1, присвоив ему адрес 2F8.

3E8/IRQ4 Включить встроенный последовательный порт 1, присвоив ему адрес ЗЕ8.

2E8/IRQ3 Включить встроенный последовательный порт 1, присвоив ему адрес 2Е8.

Disabled Отключить встроенный последовательный порт 1.

Onboard Serial Port 2 (Встроенный последовательный порт 2)

Auto BIOS устанавливает адрес порта 2 автоматически.
3F8/IRQ4 Включить встроенный последовательный порт 2, присвоив ему адрес 3F8.

2F8/IRQ3 Включить встроенный последовательный порт 2, присвоив ему адрес 2F8. (Настройка по умолчанию)
3E8/IRQ4 Включить встроенный последовательный порт 2, присвоив ему адрес ЗЕ8.

2E8/IRQ3 Включить встроенный последовательный порт 2, присвоив ему адрес 2Е8.

Disabled Отключить встроенный последовательный порт 2.

Onboard Parallel port (Встроенный параллельный порт)

378/IRQ7 Включить встроенный LPT-порт, присвоив ему адрес 378 и назначив прерывание IRQ7. (Настройка по умолчанию)
278/IRQ5 Включить встроенный LPT-порт, присвоив ему адрес 278 и назначив прерывание IRQ5.
Disabled Отключить встроенный LPT-порт.

3BC/IRQ7 Включить встроенный LPT-порт, присвоив ему адрес ЗВС и назначив прерывание IRQ7.

Parallel Port Mode (Режим работы параллельного порта)

SPP Параллельный порт работает в обычном режиме. (Настройка по умолчанию)
ЕРР Параллельный порт работает в режиме Enhanced Parallel Port.
ЕСР Параллельный порт работает в режиме Extended Capabilities Port.
ЕСР+ЕРР Параллельный порт работает в режимах ЕСР и ЕРР.

ЕСР Mode Use DMA (Канал DMA, используемый в режиме ЕСР)

3 Режим ЕСР использует канал DMA 3. (Настройка по умолчанию)
1 Режим ЕСР использует канал DMA 1.

Game Port Address (Адрес игрового порта)

201 Установить адрес игрового порта равным 201. (Настройка по умолчанию)
209 Установить адрес игрового порта равным 209.
Disabled Отключить функцию.

Midi Port Address (Адрес MIDI-порта)

290 Установить адрес MIDI-порта равным 290.
300 Установить адрес MIDI-порта равным 300.
330 Установить адрес MIDI-порта равным 330. (Настройка по умолчанию)
Disabled Отключить функцию.
Midi Port IRQ (Прерывание для MIDI-порта)

5 Назначить MIDI-порту прерывание IRQ 5.
10 Назначить MIDI-порту прерывание IRQ 10. (Настройка по умолчанию)

Power Management Setup (Настройки управления питанием)

Рис.5: Настройки управления питанием

ACPI Suspend Туре (Тип режима ожидания ACPI)

S1(POS) Установить режим ожидания S1. (Настройка по умолчанию)
S3(STR) Установить режим ожидания S3.

Power LED in SI state (Индикатор питания в режиме ожидания S1)

Blinking В режиме ожидания (S1) индикатор питания мигает. (Настройка по умолчанию)

Dual/OFF В режиме ожидания (S1):
a. Если используется одноцветный индикатор, в режиме S1 он гаснет.
b. Если используется двухцветный индикатор, в режиме S1 он меняет цвет.
Soft-offby PWR BTTN (Программное выключение компьютера)

Instant-off При нажатии кнопки питания компьютер выключается сразу. (Настройка по умолчанию)
Delay 4 Sec. Для выключения компьютера кнопку питания следует удерживать нажатой в течение 4 сек. При кратковременном нажатии кнопки система переходит в режим ожидания.
РМЕ Event Wake Up (Пробуждение по событию РМЕ)

Disabled Функция пробуждения по событию РМЕ отключена.

ModemRingOn (Пробуждение по сигналу модема)

Disabled Функция пробуждения по сигналу модема/локальной сети отключена.
Enabled Функция включена. (Настройка по умолчанию)

Resume by Alarm (Включение по часам)

В пункте Resume by Alarm можно задать дату и время включения компьютера.


Enabled Функция включения компьютера в заданное время включена.

Если функция включена, задайте следующие значения:

Date (of Month) Alarm: День месяца, 1-31
Time (hh: mm: ss) Alarm: Время (чч: мм: cc): (0-23): (0-59): (0-59)

Power On By Mouse (Пробуждение по двойному щелчку мыши)

Disabled Функция отключена. (Настройка по умолчанию)
Double Click Пробуждение компьютера при двойном щелчке мыши.

Power On By Keyboard (Включение по сигналу с клавиатуры)

Password Для включения компьютера необходимо ввести пароль длиной от 1 до 5 символов.
Disabled Функция отключена. (Настройка по умолчанию)
Keyboard 98 Если на клавиатуре имеется кнопка включения, при нажатии на нее компьютер включается.

КВ Power ON Password (Задание пароля для включения компьютера с клавиатуры)

Enter Введите пароль (от 1 до 5 буквенно-цифровых символов) и нажмите Enter.

AC Back Function (Поведение компьютера после временного исчезновения напряжения в сети)

Memory После восстановления питания компьютер возвращается в то состояние, в котором он находился перед отключением питания.
Soft-Off После подачи питания компьютер остается в выключенном состоянии. (Настройка по умолчанию)
Full-On После восстановления питания компьютер включается.

PnP/PCI Configurations (Настройка PnP/PCI)

Рис.6: Настройка устройств PnP/PCI

PCI l/PCI5 IRQ Assignment (Назначение прерывания для PCI 1/5)

Auto Автоматическое назначение прерывания для устройств PCI 1/5. (Настройка по умолчанию)
3, 4, 5, 7, 9, 10, 11, 12, 15 Назначение для устройств PCI 1/5 прерывания IRQ 3, 4, 5, 7, 9, 10, 11, 12, 15.

РСI2 IRQ Assignment (Назначение прерывания для PCI2)

Auto Автоматическое назначение прерывания для устройства PCI 2. (Настройка по умолчанию)
3, 4, 5, 7, 9, 10, 11, 12, 15 Назначение для устройства PCI 2 прерывания IRQ 3, 4, 5, 7, 9, 10, 11, 12, 15.

РОЗ IRQ Assignment (Назначение прерывания для PCI 3)

Auto Автоматическое назначение прерывания для устройства PCI 3. (Настройка по умолчанию)

3, 4, 5, 7, 9, 10, 11, 12, 15 Назначение для устройства PCI 3 прерывания IRQ 3, 4, 5, 7, 9, 10, 11, 12, 15.
PCI 4 IRQ Assignment (Назначение прерывания для PCI 4)

Auto Автоматическое назначение прерывания для устройства PCI 4. (Настройка по умолчанию)

3, 4, 5, 7, 9, 10, 11, 12, 15 Назначение для устройства PCI 4 прерывания IRQ 3, 4, 5, 7, 9, 10, 11, 12, 15.

PC Health Status (Мониторинг состояния компьютера)

Рис.7: Мониторинг состояния компьютера

Reset Case Open Status(Возврат датчика вскрытия корпуса в исходное состояние)

Case Opened (Вскрытие корпуса)

Если корпус компьютера не вскрывался, в пункте «Case Opened» отображается «No» (Нет). Если корпус был вскрыт, в пункте «Case Opened» отображается «Yes» (Да).

Чтобы сбросить показания датчика, установите в пункте «Reset Case Open Status» значение «Enabled» и выйдите из BIOS с сохранением настроек. Компьютер перезагрузится.
Current Voltage (V) Vcore / VCC18 / +3.3 V / +5V / +12V (Текущие значения напряжения в системе)

В этом пункте отображаются автоматически измеренные основные напряжения в системе.

Current CPU Temperature (Текущее значение температуры процессора)

В этом пункте отображается измеренная температура процессора.

Current CPU/SYSTEM FAN Speed (RPM) (Текущая частота вращения вентиляторов)

В этом пункте отображается измеренная частота вращения вентиляторов процессора и корпуса.

CPU Warning Temperature (Выдача предупреждения при повышении температуры процессора)

Disabled Температура процессора не контролируется. (Настройка по умолчанию)
60°С / 140°F Предупреждение выдается при превышении значения температуры 60°С.
70°С / 158°F Предупреждение выдается при превышении значения температуры 70°С.

80°С / 176°F Предупреждение выдается при превышении значения температуры 80°С.

90°С / 194°F Предупреждение выдается при превышении значения температуры 90°С.

CPU FAN Fail Warning (Выдача предупреждения об остановке вентилятора процессора)

Disabled Функция отключена. (Настройка по умолчанию)

SYSTEM FAN Fail Warning (Выдача предупреждения об остановке вентилятора корпуса)

Disabled Функция отключена. (Настройка по умолчанию)
Enabled При остановке вентилятора выдается предупреждение.

Frequency/Voltage Control (Регулировка частоты/напряжения)

Рис.8: Регулировка частоты/напряжения

CPU Clock Ratio (Коэффициент умножения частоты процессора)

Если коэффициент умножения частоты процессора фиксирован, эта опция в меню отсутствует. - 10Х- 24Х Значение устанавливается в зависимости от тактовой частоты процессора.

CPU Host Clock Control (Управление базовой частотой процессора)

Замечание: Если система зависает до загрузки утилиты настройки BIOS, подождите 20 сек. По истечении этого времени система перезагрузится. При перезагрузке будет установлено значение базовой частоты процессора, задаваемое по умолчанию.

Disabled Отключить функцию. (Настройка по умолчанию)
Enabled Включить функцию управления базовой частотой процессора.

CPU Host Frequency (Базовая частота процессора)

100MHz - 355MHz Установить значение базовой частоты процессора в пределах от 100 до 355 МГц.

PCI/AGP Fixed (Фиксированные частоты PCI/AGP)

Для регулировки тактовых частот AGP/PCI выберите в этом пункте значение 33/66, 38/76, 43/86 или Disabled (Отключено).
Host/DRAM Clock Ratio (Отношение тактовой частоты памяти к базовой частоте процессора)

Внимание! Если значение в этом пункте задано неверно, компьютер не сможет загрузиться. В этом случае следует сбросить настройки BIOS.

2.0 Частота памяти = Базовая частота X 2.0.
2.66 Частота памяти = Базовая частота X 2.66.
Auto Частота устанавливается по данным SPD модуля памяти. (Значение по умолчанию)

Memory Frequency (Mhz) (Тактовая частота памяти (МГц))

Значение определяется базовой частотой процессора.

PCI/AGP Frequency (Mhz) (Тактовая частота PCI /AGP (МГц))

Частоты устанавливаются в зависимости от значения опции CPU Host Frequency или PCI/AGP Divider.

CPU Voltage Control (Регулировка напряжения питания процессора)

Напряжение питания процессора можно повысить на величину от 5.0% до 10.0%. (Значение по умолчанию: номинальное)

DIMM OverVoltage Control (Повышение напряжения питания памяти)

Normal Напряжение питания памяти равно номинальному. (Значение по умолчанию)
+0.1V Напряжение питания памяти повышено на 0.1 В.
+0.2V Напряжение питания памяти повышено на 0.2 В.
+0.3V Напряжение питания памяти повышено на 0.3 В.

Только для опытных пользователей! Неправильная установка может привести к поломке компьютера!

AGP OverVoltage Control (Повышение напряжения питания платы AGP)

Normal Напряжение питания видеоадаптера равно номинальному. (Значение по умолчанию)
+0.1V Напряжение питания видеоадаптера повышено на 0.1 В.
+0.2V Напряжение питания видеоадаптера повышено на 0.2 В.
+0.3V Напряжение питания видеоадаптера повышено на 0.3 В.

Только для опытных пользователей! Неправильная установка может привести к поломке компьютера!

Top Performance (Максимальная производительность)

Рис.9: Максимальная производительность

Top Performance (Максимальная производительность)

Для достижения наибольшей производительности системы задайте в пункте «Тор Performance» значение «Enabled».

Disabled Функция отключена. (Настройка по умолчанию)
Enabled Режим максимальной производительности.

При включении режима максимальной производительности увеличивается скорость работы аппаратных компонентов. На работу системы в этом режиме оказывают влияние как аппаратная, так и программная конфигурации. Например, одна и та же аппаратная конфигурация может хорошо работать под Windows NT, но не работать под Windows ХР. Поэтому в случае, если возникают проблемы с надежностью или стабильностью работы системы, рекомендуем отключить эту опцию.

Load Fail-Safe Defaults (Установка безопасных настроек по умолчанию)

Рис.10: Установка безопасных настроек по умолчанию

Load Fail-Safe Defaults (Установка безопасных настроек по умолчанию)

Безопасные настройки по умолчанию - это значения параметров системы, наиболее безопасные с точки зрения работоспособности системы, но обеспечивающие минимальное быстродействие.

Load Optimized Defaults (Установка оптимизированных настроек по умолчанию)

При выборе этого пункта меню загружаются стандартные настройки параметров BIOS и набора микросхем, автоматически определяемые системой.

Set Supervisor/User Password (Задание пароля администратора/пароля пользователя)

Рис.12: Задание пароля

При выборе этого пункта меню в центре экрана появится приглашение для ввода пароля.

Введите пароль длиной не более 8 знаков и нажмите . Система попросит подтвердить пароль. Введите этот же пароль еще раз и нажмите . Чтобы отказаться от ввода пароля и перейти в главное меню, нажмите .

Чтобы отменить пароль, в ответ на приглашение ввести новый пароль нажмите . В подтверждение того, что пароль отменён, появится сообщение «PASSWORD DISABLED». После снятия пароля система перезагрузится и вы сможете свободно войти в меню настроек BIOS.

Меню настроек BIOS позволяет задать два разных пароля: пароль администратора (SUPERVISOR PASSWORD) и пароль пользователя (USER PASSWORD). Если пароли не заданы, любой пользователь может получить доступ к настройкам BIOS. При задании пароля для доступа ко всем настройкам BIOS необходимо ввести пароль администратора, а для доступа только к основным настройкам - пароль пользователя.

Если в меню дополнительных настроек BIOS в пункте «Password Check» вы выберете параметр “System”, система будет запрашивать пароль при каждой загрузке компьютера или попытке входа в меню настроек BIOS.

Если в меню дополнительных настроек BIOS в пункте «Password Check» вы выберете “Setup”, система будет запрашивать пароль только при попытке войти в меню настроек BIOS.

Save & Exit Setup (Сохранение настроек и выход)

Рис.13: Сохранение настроек и выход

Для сохранения сделанных изменений и выхода из меню настроек нажмите «Y». Для возврата в меню настроек нажмите «N».

Exit Without Saving (Выход без сохранения изменений)

Рис.14: Выход без сохранения изменений

Для выхода из меню настроек BIOS без сохранения сделанных изменений нажмите «Y». Для возврата в меню настроек BIOS нажмите «N».

Ответ: Краткое описание

1. Перебои и аварийные ситуации в отечественных электрических сетях
2. Пониженное напряжение (провалы электропитания)
3. Повышенное напряжение
4. Высоковольтные импульсные всплески
5. Полное отключение напряжения
6. Шумы и помехи в электрической сети
7. Нестабильность частоты сети
8. Гармонические колебания и искажения напряжения

Перебои и аварийные ситуации в отечественных электрических сетях

Сегодня по статистическим данным отклонение напряжения в городских электрических сетях в пределах 15% принято считать нормой. На практике данный показатель часто выходит и за эти пределы. Кроме того нередки случаи возникновения гармонических колебаний, импульсных всплесков и искажений формы напряжения, появления шумов и помех, а также колебаний частоты сети.

Проблемы некачественного электроснабжения могут быть вызваны различными причинами, но все они ведут к существенным изменениям параметров сетевого питания, что в свою очередь отрицательно сказывается на работе всей подключенной техники. В результате электрооборудование выходит из строя, а пользователь вынужден тратиться на его ремонт или чего хуже замену. В связи с этим, очень важно знать какие факторы могут приводить к подобным ситуациям и по каким причинам данные сбои имеют место.

Пониженное напряжение (провалы электропитания)

Одна из наиболее часто возникающих проблем, связанных с электроснабжением – это провалы питающего напряжения. Такие ситуации могут возникать по следующим причинам:
- из-за перегрузки электрической сети;
- нестабильной работы системы регулирования напряжения в магистрали;
- подключение энергоемких потребителей, суммарная мощность которых равна или приближается по значению к общей мощности определенного участка электросети.

Возможными последствиями пониженного напряжения могут быть:

Перегрузка блоков питания различной электронной техники, что ведет к снижению срока ее службы;
- внезапное отключение электрооборудования при снижении напряжения ниже уровня, необходимого для его работы;
- поломка электродвигателей;
- потеря важной информации на компьютере.

Повышенное напряжение

Следующая не менее опасная аварийная ситуация в электрической магистрали – это повышение или резкие скачки напряжения, которые могут возникать по причине:
- недогруженности сети (например, в ночное время, когда большинство электропотребителей выключены);
- резкого отключения мощной нагрузки;
- недостаточно эффективной работы системы регулирования электропитанием.

Данные ситуации могут привести к следующим последствиям:
- выходу из строя оборудования;
- аварийному отключению аппаратуры и потери критически важных данных (касательно компьютерной и серверной техники).

Высоковольтные импульсные всплески

Нередко в электрических сетях возникают такие негативные явления, как высоковольтные всплески напряжения, носящие импульсный характер. Они могут быть вызваны:

Коммутацией электроаппаратов;
- атмосферными и газовыми разрядами (так называемое «атмосферное» электричесвто);
- включением и отключением мощных электропотребителей;
- введением в эксплуатацию отдельных частей энергосистемы после аварий.

Даже учитывая кратковременность данного перенапряжения, его воздействия может оказаться достаточно для таких серьезных последствий, как:
- пробой изоляции;
- короткое замыкание;
- поломка чувствительной техники.

Полное отключение напряжения

Также не исключены ситуации полного обесточивания всего оборудования, подключенного к электрической сети. Источником такого исхода событий могут стать:
- срабатывание предохранителей при чрезмерных перегрузках на линии электропередач;
- аварии в электрических магистралях;
- непрофессиональные и неквалифицированные действия персонала.

Результаты полного отключения напряжения:

Потеря важной информации;
- поломка винчестеров, установленных в ПК и серверах;
- выход из строя блоков питания различного электрооборудования.

Шумы и помехи в электрической сети

Негативно влияют на работу электронной аппаратуры и колебания электрического сигнала, называемые шумами или помехами. Причин их возникновения может быть несколько:

Влияние электроприборов, функционирующих в непосредственной близости;
- коммутация мощных электропотребителей.

Сбои в работе многих программ и приложений, а также сложности в передачи данных;
- некачественное изображение на экранах и мониторах рабочих станции, а также различных видеосистем.

Нестабильность частоты сети

Нестабильность частоты электрической сети является одним из самых ярких показателей правильности работы энергосистемы в целом, либо какой-то ее отдельной части. Вызваны данные колебания могут быть одной из следующих причин:
- сильной перегрузкой в электрической магистрали;
- из-за потери управления энергосистемой.

Несмотря на то, что, в общем, на работу компьютерной техники изменение частоты сетевого напряжения не оказывает критического влияния, подобные явления приводят к перегреву силовых трансформаторов. А это, как известно, может негативно сказаться на стабильности и продолжительности функционирования многих электроприборов.

Гармонические колебания и искажения напряжения

Кроме появления дополнительных помех в сети, искажению может также подвергаться и сам синусоидальный сигнал питающего напряжения. Предпосылками таких влияний могут стать:

Преобладание в сети нелинейной нагрузки, в состав которой входят импульсные блоки питания. Это в основном компьютеры, сетевое, серверное и коммуникационное оборудование;
- перегрузка нейтрального кабеля;
- неправильно спроектированные электрокоммуникации, работающие с нелинейными нагрузками.

Искажение форм напряжения ведет к появлению помех в работе чувствительной техники, к которой в первую очередь относят измерительные приборы, теле- и радиосистемы.

С приближением холодов данная тема систематически возникает на страницах компьютерной периодики. Мы не собираемся нарушать эти традиции и в дополнение к уже сказанному ( , ) предлагаем материал, который поможет избежать множества неприятностей, связанных с вопросами обеспечения безопасного режима питания для вашей компьютерной техники. Какие перебои случаются в сетях электропитания?

Все неполадки в энергосетях можно классифицировать примерно следующим образом: полное отключение питания, пониженное или повышенное напряжение, высоковольтные всплески, кратковременные провалы напряжения, отклонение частоты от номинального значения (50 Hz), искажение синусоидальной формы напряжения.

Почему возникают неполадки в электросетях?

Сбои в электропитании вызываются самыми различными причинами: например грозами, происходящими вблизи линий электропередачи, неустойчивой работой генераторов, авариями на подстанциях, разрывами или выгоранием проводки, плохими контактами. Кроме того, отклонения от нормы напряжения в сети возникают вследствие включения/выключения мощного электрооборудования (лифтов, сварочных аппаратов, моторов, холодильников и т. д.) или, наконец, обусловливаются электромагнитными наводками и радиопомехами от работы бытовых электроприборов микроволнового излучения или радиопередатчиков.

Чем грозят сбои в электропитании домашнему компьютеру?

Некачественное электропитание крайне отрицательно воздействует на наших электронных любимцев. Во-первых, оно может привести к потере данных в памяти, а регулярные сбои неминуемо чреваты появлением bad-секторов на дисках (чаще всего в системной области). Во-вторых, сильные всплески напряжения способны вывести из строя блоки питания, а также некоторые микросхемы. В-третьих, систематические проблемы с электроэнергией вызывают преждевременное старение аппаратуры. Кстати сказать, нередко различные блокировки клавиатуры и "зависания" компьютера, которые, на наш взгляд, объясняются ошибками в программе, на самом деле могут быть обусловлены некачественным энергоснабжением.

Так ли уж важно заземлять компьютер? У моих знакомых, например, ПК прекрасно работает и без заземления.

Заземлять компьютер важно не только для его устойчивой работы, но и для вас самих, точнее, для сохранения вашего здоровья. Известно, что на корпусе компьютера существует потенциал порядка 100—110 В — напряжение немаленькое. Попасть под него можно, например, случайно прикоснувшись к неокрашенным металлическим частям корпуса компьютера и одновременно к батарее отопления. Если компьютер заземлен, удара током не последует — разряд уйдет в землю через соответствующий провод с низким сопротивлением, а не через вас.

Кроме того, производители вычислительной техники, приводя свои изделия в соответствие с жесткими современными нормами безопасности, постоянно уменьшают уровень их электромагнитных излучений. Однако многие из этих усилий сводятся к нулю из-за банального отсутствия заземления.

Проблема заземления станет особенно актуальной, если вы построите домашнюю сеть. Отдельные компьютеры в ней, естественно, будут подключаться к различным источникам питания, сетевой же кабель начнет играть роль своеобразного моста для выравнивания потенциалов. Возникающие при этом токи способны вывести сетевое оборудование из строя.

Итак, заземление необходимо, чтобы: 1) исключить поражение человека током; 2) уменьшить неблагоприятное воздействие электромагнитных излучений; 3) понизить влияние внешних наводок на компьютерную систему; 4) обеспечить нормальную работу аппаратуры в сети.

Если на металлическом корпусе компьютера присутствует потенциал, грозящий при неосторожном обращении с ПК перейти через нас в землю, то почему их не выпускают, например, в пластмассовых корпусах?

Все дело в том, что для "компьютерной начинки" просто необходим металлический кожух, чтобы, с одной стороны, экранировать электромагнитные излучения самого ПК, а с другой — уменьшить наводки и радиопомехи извне. Для обеспечения элементарной безопасности металлические корпуса покрываются довольно толстым слоем краски, не проводящей электричество, а некоторые "брэнды" действительно изготовляют пластиковые корпуса, но, открыв такой ПК, вы все равно внутри обнаружите металлический экран, скрепленный с пластмассой.

В моей квартире отсутствует заземляющий контур. Как мне обеспечить заземление ПК?

Ксожалению, во многих домах, сданных в эксплуатацию до 1996—1998 гг., в розетках нет контакта, предназначенного для заземления аппаратуры. Более того, бывают случаи, когда такие контакты в розетках имеются, но только к ним не подведены соответствующие провода. Нередко отечественные Кулибины сами пытаются исправить такое положение вещей, что иногда приводит к плачевным последствиям. Поэтому лучше проводку заземляющего контура доверить опытным специалистам. Да! Возможно, при этом придется слегка нарушить дизайн только что отремонтированной квартиры. Да! Необходимо будет вложить дополнительные средства. Но нужно отважиться на эти действия, чтобы раз и навсегда решить для себя данную проблему. Поверьте, игра стоит свеч! Здоровье все равно дороже, да и не забывайте народную мудрость — скупой платит дважды.

Главное, не пытайтесь обойтись "половинчатыми" или временными мерами, и давайте сразу договоримся, чего делать ни в коем случае нельзя, даже если вам это порекомендуют тысячи "продвинутых" знакомых. Никогда не заземляйте аппаратуру на: 1) батарею парового (водяного) отопления (вдруг соседу вздумается ее переварить?); 2) водопровод (во-первых, в нем и так встречаются блуждающие токи, и вовсе не обязательно их пускать на компьютер, а во-вторых, систематический ток с корпуса компьютера в землю вызовет активную коррозию труб); 3) газопровод (надеюсь, вы не из рода камикадзе); 4) молниеотвод (кажется, мы собрались защищать компьютер, а не пускать его "в расход"); 5) "нулевой" контакт обычной розетки (если не хотите, чтобы на корпус компьютера попало напряжение 220 В).

Могу ли я для заземления компьютера воспользоваться "зануляющим" контуром электроплиты?

Действительно, для заземления бытовой электроаппаратуры иногда используют "зануляющий" контакт электроплиты, но лучше будет взять "ноль" с распределительного щитка на лестничной площадке и развести его к соответствующим контактам розеток европейского образца.

На дачах и в частных домах заземление легко организовать самостоятельно. Для этого можно забить в грунт металлическую трубу диаметром 100 мм и длиной 2,5—3 м и приварить к ней провод сечением 5 мм. Для разводки по квартире достаточно использовать медную проволоку сечением 1,5—2 мм. И все же, еще раз подчеркну, для решения подобных задач лучше пригласить специалиста.

Я снимаю квартиру. О том, чтобы в ней провести заземление, речь не идет. Имею компьютер — не совсем современный, но для работы хватает. По роду занятий приходится много печатать, причем как на стареньком матричном, так и на струйном принтере. У меня почему-то уже второй раз выгорает LPT-порт. На работе мне сказали, что это из-за отсутствия заземления. Что мне делать?

Похоже, вы нередко подключаете печатающие устройства к компьютеру, предварительно не обесточив все изделия, что в вашем случае делать не рекомендуется. При этом на корпусах ПК и принтера существуют различные потенциалы. В результате при соединении устройств с помощью интерфейсного кабеля появляется уравнивающий электрический ток силой в несколько десятков миллиампер, чего вполне достаточно, чтобы вывести из строя параллельный порт. Если бы ПК и принтер были надежно заземлены на общий контур, проблемы разности потенциалов не возникало бы. В данном же случае, чтобы иметь возможность "горячего" подключения принтера, необходимо предварительно соединить корпуса ПК и принтера отдельным стальным многожильным или медным проводом для выравнивания потенциалов.

В нашей квартире заземление подведено, розетка в моей комнате расположена за шкафом, поэтому для подключения компьютера и других устройств я использую переноску-разветвлитель. Вилку, правда, пришлось обрезать (не помещается между шкафом и стеной) и запитать удлинитель непосредственно с проводов разводки. Однако недавно, делая ремонт, я обнаружил, что эти контакты сильно окислились и значительно выгорели, даже изолента расплавилась. В чем причина? Какие нормы электрической безопасности не соблюдены?

Как известно, для прокладки электросетей в наших квартирах применяются алюминиевые провода. Удлинители же выполняются из меди. При скручивании меди с алюминием образуется гальваническая пара, металл в месте контакта активно окисляется и разрушается, сопротивление растет, а значит, увеличивается и выделение тепла, что в конце концов может привести к выгоранию проводки и даже к пожару. Выход следующий: при соединении проводов необходимо использовать специальные переходники. Можно также применять обыкновенные стальные винты с гайками, при этом концы проводов разделяют с помощью шайбы.

От каких неприятностей может уберечь компьютер сетевой фильтр?

Основное назначение сетевых фильтров состоит в том, чтобы, с одной стороны, защищать аппаратуру от кратковременных (до 5 мс) бросков напряжения величиной до 6000 В (например, вследствие удара молнии), а с другой — беречь сеть от проникновения в нее помех от самого компьютера. Кроме того, многие фильтры включают в себя средства подавления электромагнитных наводок и радиопомех.

Большинство сетевых фильтров отводят броски питания через заземление, поэтому в случае его отсутствия ваш фильтр превращается просто в дорогостоящий удлинитель. Правда, часто для компенсации пиковых бросков питания используются высокоемкие конденсаторы, но и в этом случае заземление необходимо для защиты самого фильтра.

Сетевой фильтр не спасет вас при долговременном понижении напряжения в сети, при резких его перепадах или при внезапном отключении питания. От простейшего ИБП (источник бесперебойного питания) сетевой фильтр отличается отсутствием резервного источника энергии.

Следует также помнить, что в сетевые фильтры не следует подключать мощные нагрузки — утюги, электрочайники, стиральные машины и т. д.

Зачем покупать дополнительный сетевой фильтр, если большинство блоков питания ПК оснащены встроенным?

Действительно, практически любой современный блок питания компьютера или периферийного устройства имеет простейший встроенный сетевой фильтр, который предназначен для подавления высокочастотных помех питающей сети. Однако импульсным броскам амплитуды напряжения до 4—6 тысяч вольт, которые изредка случаются в сети, они противостоять не в силах.

На какие характеристики необходимо обращать внимание при выборе фильтра?

Впервую очередь — на суммарную мощность нагрузки. Она должна быть по крайней мере около 2 кВт. При превышении этого значения в хорошем фильтре обязательно сработает автоматический предохранитель, который разомкнет цепь. Далее поинтересуйтесь (если есть в этом необходимость), способен ли фильтр защищать модем, обеспечивая барьер на пути возможного проникновения в систему опасных скачков напряжения через телефонную линию. Ну и наконец, гарантия и сервисное обслуживание! Три года — это минимум. Для именитого и серьезного производителя такой срок — не проблема.

Можно ли включать компьютер через стабилизатор для телевизора?

Как известно, основная задача стабилизаторов — вы-равнивать напряжение до стандартных 220 В при его отклонении на 30—50 В. Если другие неприятности в сети встречаются редко, то стабилизатор способен частично решить ваши проблемы при условии, что он обеспечивает выходную мощность не менее 200 Вт. Для компьютера хватит, а вот монитор в этом случае все равно придется запитывать напрямую через розетку. Предпочтительнее использовать так называемые активные стабилизаторы напряжения. Феррорезонансные устройства для этих целей подходят меньше, поскольку в случае резких скачков напряжения они способны вывести из строя блоки питания компьютерных устройств.

Для чего служит UPS?

ИБП (UPS — Uninterruptible Power System) в первую очередь необходим для защиты ПК от длительных спадов напряжения, а также для обеспечения работы компьютера на сравнительно короткий промежуток времени после исчезновения напряжения в сети, чтобы пользователь смог корректно завершить работу приложений или переключиться на резервный источник питания (например, мобильный дизель-генератор). Как правило, большинство источников бесперебойного питания обладают свойствами сетевых фильтров. Так, они могут справляться со скачками напряжения до 1000 В, однако более мощных всплесков им не выдержать. Поэтому имеет смысл совместно использовать сетевой фильтр и UPS, подсоединив последний к розетке первого (но ни в коем случае не наоборот!). Кроме того, к оставшимся свободным розеткам фильтра можно подключить принтер, сканер и прочие периферийные устройства, питание которых в данный момент нет необходимости организовывать через ИБП. Сетевой фильтр в таком случае обеспечит им элементарную защиту.

На что следует обращать внимание при выборе UPS?

Вот основные характеристики ИБП, которые следует брать во внимание при выборе источника.

1. Мощность. Выражается в вольт-амперах (B·A). Суммарная мощность подключаемых устройств не должна превышать мощности, обеспечиваемой UPS.

2. Диапазон входного напряжения. Задается минимальным и максимальным допустимыми значениями напряжений в сети, при которых ИБП еще способен поддерживать номинальное напряжение на выходе, не переключаясь на питание от аккумуляторов. Чем шире этот диапазон, тем дольше прослужат батареи.

3. Время автономной работы. Зависит как от емкости батарей, так и от величины нагрузки.

4. Срок службы аккумуляторов. Этот параметр существенно зависит от условий эксплуатации: частоты переключения в автономный режим, условий зарядки, окружающей среды. Обычно срок службы аккумуляторов составляет 3—5 лет.

5. Время переключения ИБП на батарею и обратно. Естественно, чем оно меньше, тем лучше.

6. Наличие в UPS средств фильтрации питания, подавляющих импульсные броски напряжения.

7. Способ уведомления пользователя о начале работы компьютера от батарей, предусмотренный в UPS.

8. Возможность самостоятельной замены батарей.

9. Обеспечение защиты телефонных линий (если вы пользуетесь модемом).

10. Наличие функции "холодного" старта, т. е. возможности включить ИБП при отсутствии напряжения в сети. Она будет полезной во время длительного пропадания питания, если вдруг, к примеру, понадобится прочитать сообщения e-mail.

При покупке многофункциональных и дорогих источников питания особое внимание обращайте на известность торговой марки и сервисное обслуживание, которое обеспечивает продавец.

ИБП какого класса лучше использовать в зависимости от существующих условий?

Вопрос сложный, интересный и, пожалуй, не имеющий однозначного ответа. Тем не менее давайте попробуем с ним разобраться.

Источники типа off-line являются самыми простыми и наиболее дешевыми, а следовательно, на них чаще других останавливают свой выбор домашние пользователи. Однако данные ИБП плохо защищают ПК от длительных "проседаний" сети и кратковременных всплесков напряжения, изменений его частоты и формы. Практически все недорогие модели ИБП типа off-line пропускают входное напряжение "транзитом", никак его не корректируя. Ряд изделий не имеют средств управления компьютером, и при возникновении аварийных ситуаций единственная их реакция — достаточно громкий звуковой сигнал. Таким образом, ИБП резервного типа не годятся для работы в местах с низким качеством электропитания, их целесообразнее использовать в сетях со стабильным напряжением, но сравнительно частыми отключениями питания. Иногда источники типа off-line для снижения стоимости устройств заключают в дешевые пластиковые корпуса, а это означает полное отсутствие экранирования полей, наводимых трансформатором, ввиду чего такой ИБП нельзя располагать вблизи монитора.

Линейно-интерактивные ИБП (line-interactive UPS) обеспечивают довольно неплохую стабилизацию питания. Обычно они управляются микропроцессором, который осуществляет мониторинг линии, реагируя на различные отклонения электрических параметров от номинальных значений. Данные устройства могут быть рекомендованы, когда отключения питания редки, зато часты длительные спады напряжения. Одним из главных преимуществ данных ИБП перед устройствами off-line является широкий диапазон допустимых входных напряжений. К недостаткам такого рода устройств следует отнести слабую защиту от флуктуаций частоты и формы входного напряжения. Line-intеractive UPS — это, как правило, наилучшее соотношение цены и функциональности.

ИБП типа on-line обеспечивают на сегодняшний день наиболее высокий уровень защиты. Качество питания, предоставляемое ими, значительно лучше, чем у иных устройств. Полностью регенерируя входное напряжение, они надежно предохраняют нагрузку от таких нарушений, как изменение частоты и формы входного напряжения. Практически все on-line ИБП оснащены специальной обводной шиной, которая позволяет при кратковременных перегрузках и наличии напряжения в сети не обесточивать подключенное оборудование. Данные ИБП — естественный выбор там, где необходимо обеспечить надежную работу критически важных приложений. Очень часто такие устройства позволяют выставлять приоритет для отключаемой нагрузки, чтобы более разумно распорядиться зарядом батарей в случае отключения внешнего питания.

У нас дома два компьютера. Можно ли приобрести один ИБП для всех ПК или лучше для каждой машины установить свой собственный?

Если оба компьютера расположены недалеко друг от друга, например в пределах одной комнаты, то, конечно же, можно приобрести для них один общий ИБП мощностью примерно 1,0—1,2 кВ·А. Но вот стоит ли это делать? Вопрос спорный. Удобства от такого решения сомнительные. Допустим, вы закончили работу и случайно, по привычке, выключили UPS (если, конечно, модель допускает такие действия) в то время, когда ваш сын загружал из Internet жизненно важную для него информацию. Конфликт неизбежен!

О экономии средств также говорить не приходится: чаще всего два равноценных по классу ИБП от одного и того же производителя (в нашем случае на 500 В·А) в сумме стоят примерно столько же, сколько и один UPS "удвоенной мощности" (на 1000 В·А). Так что я все же посоветовал бы приобрести отдельный источник для каждого компьютера.

Я слышал, что существуют ИБП, которые можно встраивать в корпус компьютера. В каком случае имеет смысл их использовать?

Для многих пользователей поддержка долговременной работы компьютера без электричества не нужна. Основное, что требуется от UPS, — это обеспечение качественного энергоснабжения компьютера, а также возможность автономного питания ПК от аккумуляторов (в случае исчезновения напряжения в сети) в течение некоторого времени, достаточного для корректного завершения работы.

Сегодня существует довольно много моделей внутренних UPS. По ряду причин они не получили у нас широкого распространения. Такие изделия иногда вставляют в свободный пятидюймовый слот корпуса ПК, например ИБП SI300 производства компании Beam Tech Electronics . Данный источник является весьма "интеллектуальным" устройством, однако основной его недостаток — сильное выделение тепла внутри ПК. Необходимо серьезное охлаждение.

Среди прочих внутренних ИБП можно выделить PowerCard производства компании Guardian On Board . По сути, это обыкновенный UPS мощностью 420 В·А с весьма средними показателями. Интерфейс PCI — в некотором смысле бутафория (для связи с компьютером используется COM-порт), однако если не установить карту в свободный слот PCI и не проинсталлировать соответствующее ПО, UPS работать не будет. Батареи крепятся внутри корпуса с помощью специальных липучек, рядом с PCI-картой, на которой расположена электроника ИБП. Общая масса такого изделия составляет 2,3 кг. В принципе, все красиво, незаметно, компактно и, кстати, не сопровождается обильным выделением тепла, но зато и не обеспечиваются стабилизация напряжения и защита от скачков напряжения.

Для чего необходимо программное обеспечение, входящее в комплект поставки ИБП?

ПО, поставляемое с недорогими моделями ИБП, обычно доступно для бесплатной загрузки с сайтов производителей. Как правило, у такого ПО фиксированный набор функций: мониторинг электрической сети на входе и параметров питающего напряжения на выходе, контроль за состоянием батарей, а также управление защищаемым компьютером и уведомление пользователя о потенциальных и случившихся проблемах.

Приложения, поставляющиеся с дорогими моделями ИБП, позволяют осуществлять тестирование и диагностику UPS, мониторинг электросети, вести журнал регистрации событий, дистанционно управлять ИБП по коммутируемой линии, автоматически присваивать имена закрываемым файлам при завершении работы ПК, оповещать пользователя о проблемах с энергоснабжением по электронной почте или пейджинговой связи и даже отслеживать состояние окружающей среды.

Производители ИБП обычно выражают мощность в вольт-амперах (В·А), в то время как на блоках питания компьютеров и многих других электробытовых устройств мощность указывается в ваттах (Вт). Строго говоря, здесь речь идет о разных величинах — полной и активной мощностях. Для перевода одних единиц в другие можно воспользоваться формулой 1 В·А = 1,5 Вт. Такое соответствие весьма приблизительно, тем не менее кое-какие ориентиры дает.

1. Находим сумму мощностей всех устройств, которые планируем подключить к ИБП, например, игрового компьютера с 17-дюймовым монитором (всего около 220 Вт).

2. Воспользуемся приведенной выше формулой: 220 x 1,5 = 330 В·А.

3. Кроме того, многие производители UPS советуют увеличить полученное таким образом значение на 20%: 330 + 66 ~ 400 В·А. Итак, в данном случае неплохо бы приобрести ИБП мощностью 420 В·А, а если с запасом, то и 450, или все 500 В·А (поскольку эти характеристики у большинства производителей имеют строгую дискретизацию).

Вот, в целом, и вся арифметика.

Для того чтобы узнать активную мощность конкретного устройства, нужно заглянуть либо в руководство пользователя, либо в табличку, расположенную на задней стороне корпуса устройства. Там обязательно указывают хотя бы одну из двух величин: ватты (Вт) или амперы (А). Если указаны ватты — это то, что надо. В противном случае активную мощность придется вычислять самому: силу тока в амперах необходимо умножить на 220. Полученное значение и будет искомой активной мощностью в ваттах.

Какие правила необходимо соблюдать при эксплуатации ИБП?

Каких-то особых рекомендаций не существует. В первую очередь с ИБП нужно обращаться так же, как и со многими электробытовыми приборами: не касаться устройства влажными руками; если ИБП долго находился при низкой температуре, дать ему нагреться до комнатной. Кроме того, не следует подключать к источнику устройства, превышающие его мощность (в этом случае UPS просто отключит нагрузку), по возможности держать батарею на "плавающей" или постоянной подзарядке — это продлит срок ее службы. Любопытно, что срок эксплуатации подзаряжаемой батареи значительно превышает срок ее хранения. Объясняется это тем, что некоторые естественные процессы старения приостанавливаются вследствие постоянной подзарядки. Для источников типа on-line (они намного сильнее нагреваются, чем off-line) необходимо обеспечивать дополнительную вентиляцию.

Лучшие статьи по теме