Как настроить смартфоны и ПК. Информационный портал
  • Главная
  • Windows 10
  • Сила притяжения пластин конденсатора расчет. Относительная диэлектрическая проницаемость

Сила притяжения пластин конденсатора расчет. Относительная диэлектрическая проницаемость

Обкладки конденсатора, заряженные разноимённо, притягиваются друг к другу.

Механические силы, действующие на макроскопические заряженные тела, называют пондеромоторными .

Рассчитаем пондеромоторные силы, действующие на обкладки плоского конденсатора. При этом возможны два варианта:

    Конденсатор заряжен и отключён от заряженной батареи (в этом случае количество зарядов на пластинах остаётся постоянным q = const ).

При удалении одной обкладки конденсатора от другой совершается работа

за счёт которой увеличивается потенциальная энергия системы:

При этом dA = dW . Приравнивая правые части этих выражений, получаем

(12.67)

В данном случае при дифференцировании расстояние между пластинами обозначилось х.

    Конденсатор заряжен, но не отключён от батареи (в этом случае при перемещении одной из пластин конденсатора будет сохраняться постоянным напряжение (U = const ). В этом случае при удалении одной пластины от другой потенциальная энергия поля конденсатора уменьшается, так как происходит «утечка» зарядов с пластин, поэтому

Но
, тогда

Полученное выражение совпадает с формулой
. Оно может быть представлено и в другом виде, если вместо зарядаq ввести поверхностную плотность:

(12.68)

Поле однородно. Напряжённость поля конденсатора равна
, где х – расстояние между пластинами. Подставив в формулу
U 2 =E 2 x 2 , получим, что сила притяжения пластин плоского конденсатора

(12.69)

Эти силы действуют не только на пластины. Так как пластины, в свою очередь, давят на диэлектрик, помещённый между ними, и деформируют его, то в диэлектрике возникает давление

(S - площадь каждой пластины).

Давление, возникающее в диэлектрике, равно

(12.70)

Примеры решения задач

Пример 12. 5. К пластинам плоского воздушного конденсатора приложена разность потенциалов 1,5 кВ. Площадь пластин 150см 2 и расстояние между ними 5 мм. После отключения конденсатора от источника напряжения в пространство между пластинами вставили стекло (ε 2 =7).Определите:

1) разность потенциалов между пластинами после внесения диэлектрика; 2) ёмкость конденсатора до и после внесения диэлектрика; 3) поверхностную плотность заряда на пластинах до и после внесения диэлектрика.

Дано : U 1 =1,5кВ=1,5∙10 3 В; S=150см 2 =1,5∙10 -2 м 2 ; ε 1 =1; d=5мм=5∙10 -3 м.

Найти: 1) U 2 ; 2) С 1 С 2 ; 3) σ 1 , σ 2

Решение . Так как
(σ- поверхностная плотность зарядов на обкладках конденсатора), то до внесения диэлектрика σd=U 1 ε 0 ε 1 и после внесения диэлектрика σd=U 2 ε 0 ε 2 , поэтому

Ёмкость конденсатора до и после внесения диэлектрика

и

Заряд пластин после отключения от источника напряжения не меняется, т.е. q=const. Поэтому Поверхностная плотность заряда на пластинах до и после внесения диэлектрика

Ответ: 1) U 2 =214В; 2) С 1 =26,5пФ; С 2 =186пФ; 3) σ 1 = σ 2 =2.65 мкКл/м 2 .

Пример 12.7. Зазор между обкладками плоского конденсатора заполнен анизотропным диэлектриком, проницаемость ε которого изменяется в перпендикулярном к обкладкам направлении по линейному закону ε = α + βх от ε 1 до ε 2 , причём ε 2 > ε 1 . Площадь каждой обкладки S , расстояние между ними d . Найти ёмкость конденсатора.

Дано : S; d; ε 1 ; ε 2

Найти: С.

Решение . Диэлектрическая проницаемостьε изменяется по линейному закону, ε = α + βх, где х отсчитывается от обкладки, у которой проницаемость равна ε 1 . Учитывая, что ε (0) = ε 1 , ε (d) = ε 2 , получаем зависимость
. Найдём разность потенциалов между обкладками:

Ёмкость конденсатора будет равна

Ответ:

Пример 12.7. Между пластинами плоского конденсатора, заряженного до разности потенциалов U , параллельно его обкладкам помещены два слоя диэлектриков. Толщина слоёв и диэлектрическая проницаемость диэлектриков соответственно равны d 1 , d 2 , ε 1 , ε 2 . Определите напряжённость электростатических полей в слоях диэлектриков.

Дано : U ; d 1 , d 2 , ε 1 , ε 2

Найти: E 1 , E 2 .

Решение . Напряжение на пластинах конденсатора, учитывая, что поле в пределах каждого из диэлектрических слоёв однородно,

U=E 1 d 1 +E 2 d 2 . (1)

Электрическое смещение в обоих слоях диэлектрика одинаково, поэтому можем записать

D=D 1 =D 2 = ε 0 ε 1 E 1 = ε 0 ε 2 E 2 (2)

Из выражения (1) и (2) найдём искомое

(3)

Из формулы (2) следует, что

Ответ:
;

Пример 12.7. Площадь пластин S плоского конденсатора равна 100см 2 . Пространство между пластинами заполнено вплотную двумя слоями диэлектриков – слюдяной пластинкой (ε 1 =7) толщиной d 1 =3,5 мм и парафина (ε 2 =2) толщиной d 2 =5 мм. Определите ёмкость этого конденсатора..

Дано : S =100см 2 =10 -2 м 2 ; ε 1 =7; d 1 =3,5мм=3.5∙10 -3 м;, ε 1 =2; d 1 =3,5мм=5∙10 -3 м;

Найти: С.

Решение . Ёмкость конденсатора

где = - заряд на пластинах конденсатора (- поверхностная плотность заряда на пластинах); =- разность потенциалов пластин, равная сумме напряжений на слоях диэлектрика: U=U 1 +U 2 . Тогда

(1)

Напряжения U 1 и U 2 найдём по формулам

;
(2)

где Е 1 и Е 2 – напряжённость электростатического поля в первом и втором слоях диэлектрика; D - электрическое смещение в диэлектриках (в обоих случаях одинаково). Приняв во внимание, что

И учитывая формулу (2), из выражения (1) найдём искомую ёмкость конденсатора

Ответ: С=29,5пФ.

Пример 12.7. Батарея из трёх последовательно соединённых конденсаторов С 1 =1мкФ; С 2 =2мкФ и С 3 =4мкФ подсоединены к источнику ЭДС. Заряд батареи конденсаторов q =40мкКл. Определите: 1) напряжения U 1 , U 2 и U 3 на каждом конденсаторе; 2) ЭДС источника; 3) ёмкость батареи конденсаторов.

Дано : С 1 =1мкФ=1∙10 -6 Ф; С 2 =2мкФ=2∙10 -6 Ф и С 3 =4мкФ=4∙10 -6 Ф;q=40мкКл=40∙10 -6 Ф.

Найти: 1) U 1 , U 2 , U 3 ; 2) ξ; 3) С.

Решение . При последовательном соединении конденсаторов заряды всех обкладок равны по модулю, поэтому

q 1 =q 2 =q 3 =q.

Напряжение на конденсаторах



ЭДС источника равна сумме напряжений каждого из последовательно соединённых конденсаторов:

ξ = U 1 + U 2 +U 3

При последовательном соединении суммируются величины, обратные ёмкостям каждого из конденсаторов:

Откуда искомая ёмкость батареи конденсаторов

Ответ: 1) U 1 = 40В; U 2 = 20В, U 3 = 10В; 2) Ɛ= 70В; 3) С= 0,571мкФ.

Пример 12.7. Два плоских воздушных конденсатора одинаковой ёмкости соединены последовательно и подключены к источнику ЭДС. Как и во сколько раз изменится заряд конденсаторов, если один из них погрузить в масло с диэлектрической проницаемостью ε=2,2 .

Дано : С 1 =С 2 = С;q=40мкКл=40∙10 -6 Ф; ε 1 =1; ε 2 =2,2.

Найти: .

Решение . При последовательном соединении конденсаторов заряды обоих конденсаторов равны по модулю. До погружения в диэлектрик (в масло) заряд каждого конденсатора

где ξ = U 1 + U 2 (при последовательном соединении конденсаторов ЭДС источника равна сумме напряжений каждого из конденсаторов).

После погружения одного из конденсаторов в диэлектрик заряды конденсаторов опять одинаковы и соответственно на первом и втором конденсаторах равны

q= CU 1 =ε 2 CU 2

(учли, что ε 1 =1), откуда, если учесть, что ξ = U 1 + U 2 , найдём

(2)

Поделив (2) на (1), найдём искомое отношение

Ответ:
, т.е. заряд конденсаторов возрастает в 1,37 раз.

Пример 12.7. Конденсаторы ёмкостями С каждый соединены так, как указано на рис.а. определите ёмкость С общ этого соединения конденсаторов. .

Решение . Если отключить от цепи конденсатор С 4 , то получится соединение конденсаторов, которое легко рассчитывается. Поскольку ёмкости всех конденсаторов одинаковы (С 2 =С 3 и С 5 =С 6), обе параллельные ветви симметричны, поэтому потенциалы точек А и В, одинаково расположенные в ветвях, должны быть равны. Конденсатор С 4 подключен, таким образом, к точкам с нулевой разностью потенциалов. Следовательно, конденсатор С 4 не заряжен, т.е. его можно исключить и схему, представленную в условии задачи, упростить (рис.б).

Эта схема- из трёх параллельных ветвей, две из которых содержат по два последовательно включённых конденсаторов

Ответ: С общ =2С.

Пример 12.7. Плоский воздушный конденсатор ёмкостью С 1 =4пФ заряжен до разности потенциалов U 1 =100В. После отключения конденсатора от источника напряжения расстояние между обкладками конденсатора увеличили в два раза. Определите: 1) разность потенциалов U 2 на обкладках конденсатора после их раздвижения; 2) работу внешних сил по раздвижению пластин.

Дано : С 1 =4пФ=4∙10 -12 Ф; U 1 =100В;d 2 =2d 1 .

Найти: 1) U 2 ;2)A.

Решение . Заряд обкладок конденсатора после отключения от источника напряжения не меняется, т.е. Q=const. Поэтому

С 1 U 1 = С 2 U 2 , (1)

где С 2 и U 2 - соответственно ёмкость и разность потенциалов на обкладках конденсатора после их раздвижения.

Учитывая, что ёмкость плоского конденсатора
, из формулы (1) получим искомую разность потенциалов

(2)

После отключения конденсатора от источника напряжения систему двух заряженных обкладок можно рассматривать как замкнутую, для которой выполняется закон сохранения энергии: работа А внешних сил равна изменению энергии системы

А= W 2 - W 1 (3)

где W 1 и W 2 – соответственно энергия поля конденсатора в начальном и конечном состояниях.

Учитывая, что
и
(q – const), из формулы (3) получим искомую работу внешних сил

[учли, что q=C 1 U 1 и формулу (2)].

Ответ : 1) U 2 =200В;2)A=40нДж.

Пример 12.7. Сплошной шар из диэлектрика радиусом R =5см заряжен равномерно с объёмной плотностью ρ=5нКл/м 3 . Определите энергию электростатического поля, заключённую в окружающем шар пространстве.

Дано : R=5см=5∙10 -2 м; ρ=5нКл/м 3 = 5∙10 -9 Кл/м 3 .

Найти: W.

Решение . Поле заряженного шара сферически симметрично, поэтому объёмная плотность заряда одинакова во всех точках, расположенных на равных расстояниях от центра шара.

Энергия в элементарном сферическом слое (он выбран за пределами диэлектрика, где следует определить энергию) объёмомdV (см. рисунок)

где dV=4πr 2 dr (r – радиус элементарного сферического слоя; dr - его толщина);
(ε=1 – поле в вакууме; Е – напряженность электростатического поля).

Напряжённость Е найдём по теореме Гаусса для поля в вакууме, причём в качестве замкнутой поверхности мысленно выберем сферу радиусом r (см. рисунок). В данном случае внутрь поверхности попадает весь заряд шара, создающий рассматриваемое поле, и, по теореме Гаусса,

Откуда

Подставив найденные выражения в формулу (1), получим

Энергия, заключённая в окружающем шар пространстве,

Ответ : W=6,16∙10 -13 Дж.

Пример 12.7. Плоскому конденсатору с площадью обкладок S и расстоянием между ними ℓ сообщён заряд q , после чего конденсатор отключён от источника напряжения. Определите силу притяжения F между обкладками конденсатора, если диэлектрическая проницаемость среды между обкладками равна ε.

Дано : S; ℓ; q ; ε .

Найти: F.

Решение . Заряд обкладок конденсатора после отключения от источника напряжения не меняется, т.е. q=const. Предположим, что под действием силы притяжения F расстояние между обкладками конденсатора изменилось на d. Тогда сила F совершает работу

Согласно закону сохранения энергии, эта работа равна убыли энергии конденсатора, т.е.

. (3)

Подставив в формулу для энергии заряженного конденсатора
выражение для ёмкости плоского конденсатора
, получим

(4)

Ответ:

Пример 12.7. Плоский конденсатор площадью обкладок S и расстоянием между ними ℓ подключен к источнику постоянного напряжения U . Определите силу притяжения F между обкладками конденсатора, если диэлектрическая проницаемость среды между обкладками равна ε.

Дано : S; ℓ; U ; ε .

Найти: F.

Решение . Согласно условию задачи, на обкладках конденсатора поддерживается постоянное напряжение, т.е. U=const. Предположим, что под действием силы притяжения F расстояние между обкладками конденсатора изменилось на dℓ. Тогда сила F совершает работу

Согласно закону сохранения энергии, эта работа в данном случае идёт на увеличение энергии конденсатора (сравните с предыдущей задачей), т.е.

откуда, исходя из выражений (1) и (2), получим

(3)

Подставив в формулу для энергии конденсатора
выражение для ёмкости плоского конденсатора
, получим

(4)

Подставив в формулу (3) значение энергии (4) и выполнив дифференцирование, найдём искомую силу притяжения между обкладками конденсатора

.

где знак «-» указывает на то, что сила F является силой притяжения.

Ответ :

Пусть потенциал обкладки конденсатора, на которой находится заряд равен а потенциал обкладки, на которой находится заряд , равен Тогда каждый из элементарных зарядов на которые можно разделить заряд находится в точке с потенциалом а каждый из зарядов, на которые можно разделить заряд , в точке с потенциалом .

Согласно формуле (28.1) энергия такой системы зарядов равна

Воспользовавшись соотношением (27.2), можно написать три выражения для энергии заряженного конденсатора:

Формулы (29.2) отличаются от формул (28.3) только заменой на

С помощью выражения для потенциальной энергии можно найти силу, с которой пластины плоского конденсатора притягивают друг друга. Допустим, что расстояние между пластинами может меняться. Свяжем начало оси х с левой пластиной (рис. 29.1). Тогда координата х второй пластины будет определять зазор d между обкладками. Согласно формулам (27.3) и (29.2)

Продифференцируем это выражение по х, полагая заряд на обкладках неизменным (конденсатор отключен от источника напряжения). В результате получим проекцию на ось х силы, действующей на правую пластину:

Модуль этого выражения дает величину силы, с которой обкладки притягивают друг друга:

Теперь попытаемся вычислить силу притяжения между обкладками плоского конденсатора как произведение напряженности поля, создаваемого одной из обкладок, на заряд, сосредоточенный на другой. Согласно формуле (14.3) напряженность поля, создаваемого одной обкладкой, равна

Диэлектрик ослабляет поле в зазоре в раз, но это имеет место только внутри диэлектрика (см. формулу (20.2) и связанный с нею текст). Заряды на обкладках располагаются вне диэлектрика и поэтому находятся под действием поля напряженности (29.4).

Умножив заряд обкладки q на эту напряженность, получим для силы выражение

Формулы (29.3) и (29.5) не совпадают. С опытом согласуется значение силы (29.3), получающееся из выражения для энергии. Это объясняется тем, что, кроме «электрической» силы (29.5), на обкладки действуют со стороны диэлектрика механические силы, стремящиеся их раздвинуть (см. § 22; отметим, что мы имеем в виду жидкий или газообразный диэлектрик). У края обкладок имеется рассеянное поле, убывающее по величине при удалении от краев (рис. 29.2). Молекулы диэлектрика, обладая дипольным моментом, испытывают дйствие силы, втягивающей их в область более сильного поля (см. формулу (9.16)). В результате давление между обкладками повышается и появляется сила, ослабляющая действие силы (29.5) в раз.

Если заряженный конденсатор с воздушным зазором частично погрузить в жидкий диэлектрик, наблюдается втягивание диэлектрика в пространство между пластинами (рис. 29.3). Это явление объясняется следующим образом. -Диэлектрическая проницаемость воздуха практически равна единице. Поэтому до погружения пластин в диэлектрик емкость конденсатора можно считать равной а энергию равной При частичном заполнении зазора диэлектриком конденсатор можно рассматривать как два параллельно включенных конденсатора, один из которых имеет площадь обкладки, равную - относительная часть зазора, заполненная жидкостью), и заполнен диэлектриком с второй с воздушным зазором имеет площадь обкладки, равную При параллельном включении конденсаторов емкости складываются:

Поскольку энергия будет меньше, чем (заряд q предполагается неизменным - перед погружением в жидкость конденсатор был отключен от источника напряжения). Следовательно, заполнение зазора диэлектриком оказывается энергетически выгодным. Поэтому диэлектрик втягивается в конденсатор и уровень его в зазоре поднимается. Это в свою очередь приводит к возрастанию потенциальной энергии диэлектрика в поле сил тяжести. В конечном итоге уровень диэлектрика в зазоре установится на некоторой высоте, соответствующей минимуму суммарной энергии (электрической и гравитационной). Рассмотренное явление сходно с капиллярным поднятием жидкости в узком зазоре между пластинками (см. § 119 1-го тома).

Втягивание диэлектрика в зазор между обкладками можно яснить также и с микроскопической точки зрения. У краев пластин конденсатора имеется неоднородное поле. Молекулы диэлектрика обладают собственным дипольным моментом либо приобретают его под действием поля; поэтому на них действуют силы, стремящиеся переместить их в область сильного поля, т. е. внутрь конденсатора. Под действием этих сил жидкость втягивается в зазор до тех пор, пока электрические силы, действующие на жидкость у края пластин, не будут уравновешены весом столба жидкости.

Во всех электронных устройствах используются конденсаторы. При их конструировании или изготовлении своими руками параметры устройств рассчитываются по специальным формулам.

Конденсаторы

Расчёт конденсаторов

Один из главных параметров таких устройств – ёмкость. Рассчитать её можно по следующей формуле:

  • C – ёмкость,
  • q – заряд одной из обкладок элемента,
  • U – разность потенциалов между обкладками.

В электротехнике вместо понятия «разность потенциалов между обкладками» используется «напряжение на конденсаторе».

Ёмкость элемента не зависит от конструкции и размеров устройства, а только от напряжения на нём и заряда обкладок. Но эти параметры могут изменяться в зависимости от расстояния между ними и материала диэлектрика. Это учитывается в формуле:

С=Co*ε, где:

  • С – реальная ёмкость,
  • Со – идеальная, при условии, что между пластинами вакуум или воздух,
  • ε – диэлектрическая проницаемость материала между ними.

Например, если в качестве диэлектрика используется слюда, «ε» которой 6, то ёмкость такого устройства в 6 раз больше, чем воздушного, а при изменении количества диэлектрика меняются параметры конструкции. На этом принципе основана работа ёмкостного датчика положения.

Устройство конденсатора

Единицей ёмкости в системе СИ является 1 фарад (F). Это большая величина, поэтому чаще применяются микрофарады (1000000mkF=1F) и пикофарады (1000000pF=1mkF).

Расчет плоской конструкции

  • ε – диэлектрическая проницаемость изолирующего материала,
  • d – расстояние между пластинами.

Расчет конструкции цилиндрической формы

Цилиндрический конденсатор – это две соосные трубки различного диаметра, вставленные друг в друга. Между ними находится диэлектрик. При радиусе цилиндров, близком друг к другу и намного большем, чем расстояние между ними, цилиндрической формой можно пренебречь и свести расчёт к формуле, аналогичной той, по которой рассчитывается плоский конденсатор.

Вычисляются параметры такого устройства по формуле:

C=(2π*l*R*ε)/d, где:

  • l – длина устройства,
  • R – радиус цилиндра,
  • ε – диэлектрическая проницаемость изолятора,
  • d – его толщина.

Расчёт сферической конструкции

Есть устройства, обкладки которых представляют собой два шара, вложенные друг в друга. Формула ёмкости такого прибора:

C=(4π*l*R1*R2*ε)/(R2-R1), где:

  • R1 – радиус внутренней сферы,
  • R2 – радиус внешней сферы,
  • ε – диэлектрическая проницаемость.

Формулы ёмкости конденсаторов различной формы

Ёмкость одиночного проводника

Кроме конденсаторов, способностью накапливать заряд обладают отдельные проводники. Одиночным проводником считается такой проводник, который бесконечно далёк от других проводников. Параметры заряженного элемента рассчитывается по формуле:

  • Q – заряд,
  • φ – потенциал проводника.

Объём заряда определяется размером и формой устройства, а также окружающей средой. Материал прибора значения не имеет.

Способы соединения элементов

Не всегда есть в наличии элементы с необходимыми параметрами. Приходится соединять их различными способами.

Соединение конденсаторов

Параллельное соединение

Это такое соединение деталей, при котором к одной клемме или контакту присоединяются первые обкладки каждого конденсатора. При этом вторые обкладки присоединяются к другой клемме.

При таком соединении напряжение на контактах всех элементов будет одинаковым. Заряд каждого из них происходит независимо от остальных, поэтому общая ёмкость равна сумме всех величин. Её находят по формуле:

где C1-Cn – параметры деталей, участвующих в параллельном соединении.

Важно! Конденсаторы имеют предельное допустимое напряжение, превышение которого приведёт к выходу элемента из строя. При параллельном соединении устройств с различным допустимым напряжением этот параметр получившейся сборки равен элементу с наименьшим значением.

Последовательное соединение

Это такое соединение, при котором к клемме присоединяется только одна пластина первого элемента. Вторая пластина присоединяется к первой пластине второго элемента, вторая пластина второго – к первой пластине третьего и так далее. Ко второй клемме присоединяется только вторая обкладка последнего элемента.

При таком соединении заряд на обкладках конденсатора в каждом приборе будет равен остальным, однако напряжение на них будет разным: для зарядки устройств большей ёмкости тем же зарядом требуется меньшая разность потенциалов. Поэтому вся цепочка представляет собой одну конструкцию, разность потенциалов которой равна сумме напряжений на всех элементах, а заряд конденсатора равен сумме зарядов.

Последовательное соединение увеличивает допустимое напряжение и уменьшает общую ёмкость, которая меньше самого меньшего элемента.

Рассчитываются эти параметры следующим образом:

  • Допустимое напряжение:

Uобщ=U1+U2+U3+…Un, где U1-Un – напряжение на конденсаторе;

  • Общая ёмкость:

1/Собщ=1/С1+1/С2+1/С3+…1/Сn, где С1-Сn – параметры каждого устройства.

Интересно. Если в цепи только два элемента, то можно воспользоваться упрощённой формулой: Собщ=(С1*С2)/(С1+С2).

Смешанное соединение

Это такое соединение, в котором есть детали, соединённые последовательно, и есть соединённые параллельно. Параметры всей цепи рассчитывается в следующей последовательности:

  1. определяются группы элементов, соединённые параллельно;
  2. для каждой группы в отдельности рассчитывается эквивалентные значения;
  3. рядом с каждой группой параллельно соединённых деталей пишутся получившиеся величины;
  4. получившаяся схема эквивалентна последовательной схеме и рассчитывается по соответствующим формулам.

Знание формул, по которым можно найти емкость при изготовлении конденсаторов или их соединении необходимо при конструировании электронных схем.

Видео

Elquanta.ru

Неисправности конденсаторов - Меандр - занимательная электроника

Как показывает практика ремонта за последние годы, наибольшее число отказов аппаратуры происходит по вине электролитических конденсаторов. При этом наблюдается снижение числа отка­зов по вине других компонентов.

Здесь будут перечислены основные виды неисправностей конденсаторов, и способы их выявления. Считается, что основными видами неисправностей конденсаторов являются пробой и обрыв, на самом деле их больше.

  1. Обрыв электролитического конденса­тора. Снижение емкости.

Обрыв характеризуется отсутствием емкости. Если номинальная емкость конденсатора (та, которая должна быть) ниже 20 мкФ, то единственным способом проверки будет измерение емкости. На этот случай желательно иметь мульти­метр с функцией измерения емкости. Обычно такие мультиметры способны измерять емкость до 20 мкФ. Пример мультиметра с измерением емкости из разряда «бюджетной цены» - DT9206A, но есть и масса других. Здесь все ясно, - измеряем емкость, прибором и делаем выводы:

Если емкости нет - конденсатор неисправен, - только выбросить.

Если емкость понижена - конденсатор неисправен, и использовать его можно, но не желательно, потому что емкость может и еще снизиться.

Проверить наличие емкости электроли­тического конденсатора с номинальной емкостью более 20 мкФ в принципе можно с помощью любого мультиметра, на режиме измерения сопротивления.

Выбираем предел измерения «200 кОм», сначала замыкаем выводы конденсатора чтобы снять возможно имеющийся в нем заряд, затем размыкаем выводы и подключаем к ним щупы мультиметра.

На дисплее появится некоторая величи­на сопротивления, которая будет расти тем быстрее, чем меньше емкость конденсатора, и через некоторое время достигнет «бесконечности». Это происхо­дит потому что, в процессе зарядки емкости конденсатора ток через конденса­тор снижается, а сопротивление, которое мультиметр определяет по функции обратной току, соответственно, растет. У полностью заряженного конденсатора сопротивление будет стремиться к бесконечности.

Если все именно так и происходит, - значит, емкость у конденсатора имеется.

Если же сразу «бесконечность» - увы, у конденсатора обрыв, и его можно только выкинуть.

Измерить емкость электролитического конденсатора при помощи омметра в принципе то же можно. Но весьма необычным способом.

Кроме мультиметра для этого потре­буется секундомер, лист бумаги, каран­даш и большая кучка заведомо исправных конденсаторов разных емкостей.

Нужно расположить эти конденсаторы в порядке возрастания емкости и измеряя их сопротивление омметром, как написано выше, замерять секундомером сколько времени у каждого из них уходит от начала измерения до «бесконечности» сопротивления. Затем, эти данные запи­сать в виде таблицы. При этом, не забыв указать на каком пределе измерения сопротивления данные были получены.

Теперь, чтобы определить емкость электролитического конденсатора, нужно измеряя его сопротивление мультимет­ром, определить секундомером сколько уйдет времени на достижение «бесконечности». А затем по этой таблице определить примерно емкость.

Не забывайте перед каждым измерением разряжать конденсатор, временно замы­кая его выводы.

Данный способ годится только для электролитических конденсаторов номи­нальной емкостью более 20 мкФ. У кон­денсаторов меньшей емкости процесс нарастания сопротивления до «бесконеч­ности» будет происходить слишком быстро, - вы его просто не заметите.

  1. Пробой электролитического конден­сатора.

Практически, пробой это замыкание внутри конденсатора. Классический про­бой легко определяется омметром, потому что прибор либо показывает ноль сопротивления, либо некоторое неболь­шое сопротивление, которое не увеличи­вается или немного увеличивается, но не достигает «бесконечности».

Пробой можно определить и без при­боров по внешнему виду конденсатора. Дело в том, что при пробое электро­литического конденсатора внутри него электролит вскипает и выделяется газ. На верхушке корпуса современных электро­литических конденсаторов есть кресто­образные насечки, которые при избытке давления внутри конденсатора раскрыва­ются, выбухают. Внешне это очень заметно, особенно на фоне рядом находящихся исправных конденсаторов.


Оба конденсаторы неисправны. Один потек (см. следы на плате), второй вздулся.

Впрочем, бывает, что пробой происходит как-то мягко, и «голову» конденсатору не разрывает.

В любом случае - разрыв или выбухание насечек говорит о непригодности конден­сатора, и его необходимо заменить.

  1. Снижение максимального допустимого напряжения.

Есть интересная неисправность конден­сатора, при которой с ним происходит обратимый пробой, наступающий при превышении определенного напряжения на его обкладках. Обычно, максимально допустимое напряжение на обкладках конденсатора указано в его маркировке.

Но есть такая неисправность, при кото­рой величина максимально допустимого напряжения снижается. При этом, конден­сатор может казаться вполне исправным, - измеритель емкости покажет правильный результат, а сопротивление в заряжен­ном состоянии будет «бесконечным». Но в схеме конденсатор ведет себя так, как будто он пробит.

Здесь дело именно в том, что понизилось максимально допустимое напряжение на обкладках конденсатора. И теперь кон­денсатор пробивает при значительно более низком напряжении. Но пробой этот обратимый, и при проверке омметром на напряжении ниже напряжения, вызываю­щего пробой, конденсатор кажется исправным.

Для проверки конденсатора на макси­мальное напряжение нужен лабораторный источник постоянного тока. Установите на его клеммах минимальное напряжение, подключите к ним испытуемый конден­сатор (соблюдая полярность), и плавно увеличивайте напряжение до величины, немного ниже указанной на корпусе конденсатора.

Например, есть конденсатор, у которого на корпусе написано «40V», это значит, что пробоя при напряжении от нуля до 40V быть не должно.

И вот выясняется, что уже при напряже­нии 25V у этого конденсатора начался пробой со всеми признаками, - увеличение тока, нагрев, вскипание... даже возможен переход лабораторного блока питания в режим защиты от короткого замыкания.

Все это говорит о том, что конденсатор не пригоден, потому что даже если вы планируете его использовать в цепи, где напряжение не более 25V, нет никакой гарантии, что его напряжение пробоя не опустится в любой момент еще ниже. Такой конденсатор будет вести себя нестабильно, - лучше его не паять в схему.

  1. Увеличение внутреннего сопротивле­ния конденсатора.

Физически это выгля­дит так, как будто последовательно конденсатору подключили резистор. При увеличении данного параметра снижается пиковый ток через конденсатор при его заряде или разряде, вносится задержка в цепи, где этот конденсатор работает.

Данный параметр называется ЭПС (эквивалентное последовательное сопро­тивление) или в английской аббревиатуре - ESR.


Для определения эквивалентного после­довательного сопротивления нужен спе­циальный прибор - измеритель ESR.

Возможно, Вам это будет интересно:

meandr.org

Как найти напряжение конденсатора в цепи

Постоянный ток не может существовать в цепи, содержащей конденсатор. Цепь при этом оказывается разомкнутой, так как обкладки конденсатора разделены слоем диэлектрика.Переменный ток способен течь в цепи, содержащей конденсатор. В этом можно убедиться с помощью простого опыта.Возьмем источники постоянного и переменного напряжения, причем постоянное напряжение на зажимах источника пусть будет равно действующему значению переменного на-пряжения. Цепь состоит из конденсатора и лампы накаливания (рис. 2.14), соединенных последовательно. При включении с помощью переключателя постоянного напряжения лампа не светится. Но при включении переменного напряжения лампа начинает светиться, если емкость конденсатора достаточно велика.Как же переменный ток может течь по разомкнутой цепи? Здесь происходит периодическая перезарядка конденсатора под действием переменного напряжения. Ток, текущий при перезарядке, нагревает нить лампы.Найдем, как меняется со временем сила тока в цепи, содержащей только конденсатор, если сопротивлением проводников и обкладок конденсатора можно пренебречь (рис. 2.15). + о¦о

СС Напряжение на конденсаторе % -U.равно напряжению на зажимах цепи. Следовательно,sin cof. Заряд конденсатора меняется по гармоническому закону:q = CUm sin cof. (2.7.1)Сила тока представляет собой производную заряда по времени. Если заряд q в формуле (2.7.1) - это заряд той пласти-ны конденсатора, которая встречается первой при выбранном направлении обхода контура, то (см. с. 64, § 2.3)і = Рис. 2.16Следовательно, колебания силы тока опережают по фазе колебания напряжения на л/2 (рис. 2.16). Это означает, что в момент, когда конденсатор начинает заряжаться, сила тока максимальна, а напряжение равно нулю. После того как напряжение достигает максимума, сила тока становится равной нулю и т. д.Амплитуда силы тока равна: (2.7.3)I = U (аС.т т Если ввести обозначение (2.7.4)со С ЛС и вместо амплитуд силы тока и напряжения использовать их действующие значения, то получим:U/ =(2.7.5)Величину Хс, обратную произведению циклической частоты на емкость конденсатора, называют емкостным сопротивлением. Роль этой величины подобна роли активного сопротивления R в законе Ома (2.6.3). Действующее значение силы тока связано с действующим значением напряжения на конденсаторе точно так же, как связаны согласно закону Ома сила тока и напряжение на участке цепи постоянного тока. Это и позволяет рассматривать величину Хс как сопротивление конденсатора переменному току - емкостное со-противление.Чем больше емкость конденсатора, тем больше согласно формуле (2.7.3) сила тока перезарядки. Это легко обнаружить по увеличению накала лампы при увеличении емкости конденсатора. В то время как сопротивление конденсатора постоянному току бесконечно велико, его сопротивление переменному току имеет конечное значение Хс. Оно уменьшается сувеличением емкости и увеличением частоты.Это можно увидеть, если для питания цепи, изображенной на рисунке 2.14, использовать генератор переменного тока регулируемой частоты. Плавно увеличивая частоту переменного тока, можно наблюдать увеличение накала лампы. Оно вызвано увеличением силы тока за счет уменьшения емкостного сопротивления конденсатора.Если на один вход двухлучевого осциллографа подать напряжение с конденсатора, а на другой вход - напряжение, мгновенное значение которого пропорционально силе тока в цепи (это напряжение снимается с активного сопротивления), то на экране будут одновременно наблюдаться осциллограммы (временные развертки) обоих колебаний: напряжения и силы тока. Такие наблюдения подтверждают полученный выше вывод о том, что колебания силы тока в цепи конденсатора сдвинуты по фазе относительно колебаний напряжения на л/2, как это показано на рисунке 2.16.

Положим теперь, что участок цепи содержит конденсатор емкости C , причем сопротивлением и индуктивностью участка можно пренебречь, и посмотрим, по какому закону будет изменяться напряжение на концах участка в этом случае. Обозначим напряжение между точками а и b через u и будем считать заряд конденсатора q и силу тока i положительными, если они соответствуют рис.4. Тогда

Вам понадобится

  • - знание емкости или геометрических и физических параметров конденсатора;
  • - знание энергии или заряда на конденсаторе.

Инструкция

Найдите напряжение между пластинами конденсатора, если известна текущая величина накопленной им энергии, а также его емкость. Энергия, запасенная конденсатором, может быть вычислена по формуле W=(C∙U²)/2, где C - емкость, а U - напряжение между пластинами. Таким образом, значение напряжения может быть получено как корень из удвоенного значения энергии, деленного на емкость. То есть, оно будет равно: U=√(2∙W/C).

Энергия, запасенная конденсатором, также может быть вычислена на основании значения содержащегося в нем заряда (количества ) и напряжения между обкладками. Формула, задающая соответствие между этими параметрами, имеет вид: W=q∙U/2 (где q - заряд). Следовательно, зная энергию и , можно вычислить напряжение между его пластинами по формуле: U=2∙W/q.

Поскольку заряд на конденсаторе пропорционален как приложенному к его пластинам напряжению, так и емкости устройства (он определяется формулой q=C∙U), то, зная заряд и емкость, можно найти и напряжение. Соответственно, для проведения расчета используйте формулу: U=q/C.

Для получения значения напряжения на конденсаторе с известными геометрическими и параметрами, сначала рассчитайте его емкость. Для простого плоского конденсатора, состоящего из двух проводящих пластин, разделенных , расстояние между которыми пренебрежимо мало по сравнению с их размерами, емкость может быть вычислена по формуле: C=(ε∙ε0∙S)/d. Здесь d - расстояние между пластинами, а S - их площадь. Значение ε0 - электрическая постоянная (константа, равная 8,8542 10^-12 Ф/м), ε - относительная диэлектрическая проницаемость пространства между пластинами (ее можно узнать из физических справочников). Вычислив емкость, рассчитайте напряжение одним из методов, приведенных в шагах 1-3.

Обратите внимание

Для получения корректных результатов при вычислении напряжений между обкладками конденсаторов, перед проведением расчетов приводите значения всех параметров в систему СИ.

Для того чтобы знать, можно ли использовать в том или ином месте схемы конденсатор, следует определить его . Способ нахождения этого параметра зависит от того, каким образом он обозначен на конденсаторе и обозначен ли вообще.

Вам понадобится

  • Измеритель емкости

Инструкция

На крупных конденсаторах емкость обычно обозначена открытым текстом: 0,25 мкФ или 15 uF. В этом случае, способ ее определения тривиален.

На менее крупных конденсаторах (в том , SMD) емкость двумя или тремя цифрами. В первом случае, она обозначена в пикофарадах. Во втором случае, первые две цифры емкость , а третья - в каких единицах она выражена:1 - десятки пикофарад;
2 - сотни пикофарад;
3 - нанофарады;
4 - десятки нанофарад;
5 - доли микрофарады.

Существует также система обозначения емкости, использующая сочетания латинских букв и цифр. Буквы обозначают следующие цифры:A - 10;
B - 11;
C - 12;
D - 13;
E - 15;
F - 16;
G - 18;
H - 20;
J - 22;
K - 24;
L - 27;
M - 30;
N - 33;
P - 36;
Q - 39;
R - 43;
S - 47;
T - 51;
U - 56;
V - 62;
W - 68;
X - 75;
Y - 82;
Z - 91.Полученное число следует умножить на число 10, предварительно возведенное в степень, равную цифре, следующей после . Результат будет выражен в пикофарадах.

Встречаются конденсаторы, емкость на которых не обозначена вообще. Вы наверняка встречали их, в , в стартерах ламп дневного . В этом случае, измерить емкость можно только специальным прибором. Они цифровыми и мостовыми.В любом случае, если конденсатор впаян в то или иное устройство, его следует обесточить, разрядить в нем конденсаторы фильтра и сам конденсатор, емкость которого следует измерить, и лишь после этого выпаять его. Затем его необходимо подключить к прибору.На цифровом измерителе сначала выбирают самый грубый предел, затем переключают его до тех пор, пока он не покажет перегрузку. После этого переключатель переводят на один предел назад и читают показания, а по положению переключателя определяют, в каких единицах они выражены.На мостовом измерителе, последовательно переключая , на каждом из них прокручивают регулятор из одного конца шкалы в другой, пока звук из динамика не исчезнет. Добившись исчезновения , по шкале регулятора считывают результат, а единицы, в которых он выражен, также определяют по положению переключателя.Затем конденсатор устанавливают обратно в устройство.

Обратите внимание

Никогда не подключайте к измерителю заряженные конденсаторы.

Источники:

  • Справочник по системам обозначения емкости

Найти значение электрического заряда можно двумя способами. Первый – измерить силу взаимодействия неизвестного заряда с известным и с помощью закона Кулона рассчитать его значение. Второй – внести заряд в известное электрическое поле и измерить силу, с которой оно действует на него. Для измерения заряда протекающего через поперечное сечение проводника за определенное время измерьте силу тока и умножьте ее на значение времени.

Вам понадобится

  • чувствительный динамометр, секундомер, амперметр, измеритель электростатического поля, воздушный конденсатор.

Инструкция

Измерение заряда при его с известным зарядомЕсли известен одного тела, поднесите к нему неизвестный заряд и измерьте между ними в метрах. Заряды начнут взаимодействовать. С помощью динамометра измерьте силу их взаимодействия. Рассчитайте значение неизвестного заряда - для этого квадрат измеренного расстояния умножьте на значение силы и поделите на известный заряд. Полученный результат поделите на 9 10^9. Результатом будет значение заряда в Кулонах (q=F r²/(q0 9 10^9)). Если заряды отталкиваются, то они одноименные, если же притягиваются – разноименные.

Измерение значения заряда , внесенного в электрическое полеИзмерьте значение постоянного электрического поля специальным прибором (измеритель электрического поля). Если такого прибора нет, возьмите воздушный конденсатор, зарядите его, измерьте напряжение на его обкладках и поделите не расстояние между пластинами – это и будет значение электрического поля внутри конденсатора в вольтах на метр. Внесите в поле неизвестный заряд. С помощью чувствительного динамометра измерьте силу, которая на него действует. Измерение проводите в . Поделите значение силы на напряженность электрического поля. Результатом будет значение заряда в Кулонах (q=F/Е).

Измерение заряда , протекающего через поперечное проводникаСоберите электрическую цепь с проводниками и последовательно подключите к ней амперметр. Замкните ее на источник тока и измерьте силу тока с помощью амперметра в амперах. Одновременно секундомером засеките , в которого в цепи был электрический ток. Умножив значение силы тока на полученное время, узнайте заряд, через поперечное сечение каждого за это время (q=I t). При измерениях следите, чтобы проводники не перегревались и не произошло короткое замыкание.

Конденсатором называется устройство, способное накапливать электрические заряды. Количество накапливаемой электрической энергии в конденсаторе характеризуется его емкостью . Она измеряется в фарадах. Считается, что емкость в один фарад соответствует конденсатору, заряженному электрическим зарядом в один кулон при разности потенциалов на его обкладках в один вольт.

Инструкция

Определите емкость плоского конденсатора по формуле С = S e e0/d, где S - площадь поверхности одной пластины, d - между пластинами, e - относительная диэлектрическая проницаемость , заполняющей пространство между пластинами (в вакууме она равна ), e0 - электрическая постоянная, равная 8,854187817 10(-12) Ф/м.Исходя из приведенной формулы, величина емкости будет зависеть от площади проводников, между ними и от материала диэлектрика. В качестве диэлектрика может применяться или слюда.

Вычислите емкость сферического конденсатора по формуле С = (4П e0 R²)/d, где П - число «пи», R - радиус сферы, d - величина зазора между его сферами.Величина емкости сферического конденсатора прямо пропорциональна концентрической сферы и обратно пропорциональна расстоянию между сферами.

Рассчитайте емкость цилиндрического конденсатора по формуле С = (2П e e0 L R1)/(R2-R1), где L - длина конденсатора , П - число «пи», R1 и R2 - радиусы его цилиндрических обкладок.

Если конденсаторы в цепи соединены параллельно, рассчитайте их общую емкость по формуле С = С1+С2+…+Сn, где С1, С2,…Сn – емкости параллельно соединенных конденсаторов.

Вычислите общую емкость последовательно соединенных конденсаторов по формуле 1/С = 1/С1+1/С2+…+1/Сn, где С1, С2,…Сn - емкости последовательно соединенных конденсаторов.

Обратите внимание

На любом конденсаторе обязательно должна быть нанесена маркировка, которая может быть буквенно-цифровая или цветовая. Маркировка отражает его параметры.

Источники:

  • Цветовая маркировка резисторов, конденсаторов и индуктивностей

Емкость – величина, в системе СИ выражаемая в фарадах. Хотя используются, фактически, лишь производные от нее – микрофарады, пикофарады и так далее. Что касается электроемкости плоского конденсатора, она зависит от зазора меж обкладок и их площади, от вида диэлектрика, в данном зазоре расположенного.

Инструкция

В том случае, если обкладки конденсатора имеют одинаковую площадь и имеют расположение строго одна над другой, рассчитайте площадь одной из обкладок – любой. Если же одна из них относительно другой смещена либо они разные , нужно рассчитывать площадь области, в которой обкладки друг дружку перекрывают.

В условиях данной вам задачи может указываться как абсолютная диэлектрическая проницаемость данного материала, который расположен меж обкладок конденсатора, так и относительная. Абсолютная проницаемость выражается в Ф/м (фарады на метр), относительная же является величиной безразмерной.

В случае с относительной диэлектрической проницаемостью среды (диэлектрика в данном случае) используется коэффициент, который указывает на абсолютной диэлектрической проницаемости материала и этой же характеристики, но в вакууме, а точнее на то, во сколько раз первая больше второй. Переведите относительную диэлектрическую проницаемость в абсолютную, а затем умножьте полученный результат на электрическую постоянную. Она составляет 8,854187817*10^(-12) Ф/м и является, по сути, диэлектрической проницаемостью вакуума.

Содержание:

Одним из важных элементов электрической цепи является конденсатор, формулы для которого позволяют рассчитать и подобрать наиболее подходящий вариант. Основная функция данного устройства заключается в накоплении определенного количества электроэнергии. Простейшая система включает в себя два электрода или обкладки, разделенные между собой диэлектриком.

В чем измеряется емкость конденсатора

Одной из важнейших характеристик конденсатора является его емкость. Данный параметр определяется количеством электроэнергии, накапливаемой этим прибором. Накопление происходит в виде электронов. Их количество, помещающееся в конденсаторе, определяет величину емкости конкретного устройства.

Для измерения емкости применяется единица - фарада. Емкость конденсатора в 1 фараду соответствует электрическому заряду в 1 кулон, а на обкладках разность потенциалов равна 1 вольту. Эта классическая формулировка не подходит для практических расчетов, поскольку в конденсаторе собираются не заряды, а электроны. Емкость любого конденсатора находится в прямой зависимости от объема электронов, способных накапливаться при нормальном рабочем режиме. Для обозначения емкости все равно используется фарада, а количественные параметры определяются по формуле: С = Q / U, где С означает емкость, Q - заряд в кулонах, а U является напряжением. Таким образом, просматривается взаимная связь заряда и напряжения, оказывающих влияние на способность конденсатора к накоплению и удержанию определенного количества электричества.

Для расчетов используется формула:
в которой ε 0 = 8,854187817 х 10 -12 ф/м представляет собой постоянную величину. Прочие величины: ε - является диэлектрической проницаемостью диэлектрика, находящегося между обкладками, S - означает площадь обкладки, а d - зазор между обкладками.

Формула энергии конденсатора

С емкостью самым тесным образом связана другая величина, известная как . После зарядки любого конденсатора, в нем образуется определенное количество энергии, которое в дальнейшем выделяется в процессе разрядки. С этой потенциальной энергией вступают во взаимодействие обкладки конденсатора. В них образуются разноименные заряды, притягивающиеся друг к другу.

В процессе зарядки происходит расходование энергии внешнего источника для разделения зарядов с положительным и отрицательным значением, которые, затем располагаются на обкладках конденсатора. Поэтому в соответствии с законом сохранения энергии, она не исчезает бесследно, а остается внутри конденсатора в виде электрического поля, сосредоточенного между пластинами. Разноименные заряды образуют взаимодействие и последующее притяжение обкладок между собой.

Каждая пластина конденсатора под действием заряда создает напряженность электрического поля, равную Е/2. Общее поле будет складываться из обоих полей, возникающих в каждой обкладке с одинаковыми зарядами, имеющими противоположные значения.

Таким образом, энергия конденсатора выражается формулой: W=q(E/2)d. В свою очередь, напряжение выражается с помощью понятий напряженности и расстояния и представляется в виде формулы U=Ed. Это значение, подставленное в первую формулу, отображает энергию конденсатора в таком виде:W=qU/2. Для получения окончательного результата необходимо использовать определение емкости: C=q/U, и в конце концов энергия заряженного конденсатора будет выглядеть следующим образом: W эл = CU 2 /2.

Формула заряда конденсатора

Для выполнения зарядки, конденсатор должен быть подключен к цепи постоянного тока. С этой целью может использоваться генератор. У каждого генератора имеется внутреннее сопротивление. При замыкании цепи происходит зарядка конденсатора. Между его обкладками появляется напряжение, равное электродвижущей силе генератора: U c = E.

Обкладка, подключенная к положительному полюсу генератора, заряжается положительно (+q), а другая обкладка получает равнозначный заряд с отрицательной величиной (- q). Величина заряда q находится в прямой пропорциональной зависимости с емкостью конденсатора С и напряжением на обкладках Uc. Эта зависимость выражается формулой: q = C x Uc.

В процессе зарядки одна из обкладок конденсатора приобретает, а другая теряет определенное количество электронов. Они переносятся по внешней цепи под влиянием электродвижущей силы генератора. Такое перемещение является электрическим током, известным еще как зарядный емкостной ток (Iзар).

Течение зарядного тока в цепи происходит практически за тысячные доли секунды, до того момента, пока напряжение конденсатора не станет равным электродвижущей силе генератора. Напряжение увеличивается плавно, а потом постепенно замедляется. Далее значение напряжения конденсатора будет постоянным. Во время зарядки по цепи течет зарядный ток. В самом начале он достигает максимальной величины, так как напряжение конденсатора имеет нулевое значение. Согласно закона Ома I зар = Е/R i , поскольку к сопротивлению Ri приложена вся ЭДС генератора.

Формула тока утечки конденсатора

Ток утечки конденсатора вполне можно сравнить с воздействием подключенного к нему резистора с каким-либо сопротивлением R. Ток утечки тесно связан с типом конденсатора и качеством используемого диэлектрика. Кроме того, важным фактором становится конструкция корпуса и степень его загрязненности.

Некоторые конденсаторы имеют негерметичный корпус, что приводит к проникновению влаги из воздуха и возрастанию тока утечки. В первую очередь это касается устройств, где в качестве диэлектрика использована промасленная бумага. Значительные токи утечки возникают из-за снижения электрического сопротивления изоляции. В результате нарушается основная функция конденсатора - способность получать и сохранять заряд электрического тока.

Основная формула для расчета выглядит следующим образом: I ут = U/R d , где I ут, - это ток утечки, U - напряжение, прилагаемое к конденсатору, а R d - сопротивление изоляции.

Лучшие статьи по теме