Как настроить смартфоны и ПК. Информационный портал
  • Главная
  • Windows 8
  • Катушка индуктивности в цепи переменного тока – принцип действия и значение. Параллельное включение конденсатора и катушки индуктивности в цепь переменного тока

Катушка индуктивности в цепи переменного тока – принцип действия и значение. Параллельное включение конденсатора и катушки индуктивности в цепь переменного тока

Включим в цепь переменного тока две параллельные ветви, содержащие активные сопротивления и и амперметры и , измеряющие токи и в этих ветвях (рис. 301). Третий амперметр А измеряет ток в неразветвленной цепи. Положим сначала, что оба сопротивления и представляют собой лампочки накаливания или реостаты, индуктивным сопротивлением которых можно пренебречь по сравнению с их активным сопротивлением (рис. 301,а). Тогда, так же как и в случае постоянного тока, мы убедимся в том, что показание амперметра равно сумме показаний амперметров и , т. е. . Если сопротивления и представляют собой реостаты, то, изменяя их сопротивления, мы можем как угодно изменять каждый из токов и , но равенство всегда будет сохраняться. То же будет иметь место и в том случае, если мы заменим оба реостата конденсаторами, т. е. если оба сопротивления будут емкостными (рис. 301,б), или в том случае, если оба сопротивления являются индуктивными, т. е. реостаты заменены катушками с железным сердечником, индуктивное сопротивление которых настолько больше активного, что последним можно пренебречь (рис. 301,в).

Рис. 301. Сопротивления в параллельных ветвях цепи переменного тока одинаковы по своей природе

Таким образом, если сопротивления параллельных ветвей одинаковы по своей природе, то ток в неразветвленной цепи равен сумме токов в отдельных ветвях. Это справедливо, конечно, и в том случае, когда имеются не две ветви, а любое их число.

Заменим теперь в одной из ветвей (рис. 302,а и б) активное сопротивление емкостным (конденсатором) или индуктивным (катушкой с большой индуктивностью и малым активным сопротивлением). Опыт дает в этом случае результат, кажущийся на первый взгляд странным: ток в неразветвленной цепи оказывается меньшим, чем сумма токов в обеих ветвях: . Если, например, ток в одной ветви равен 3 А, а в другой – 4 А, то амперметр в неразветвленной цепи покажет не ток 7 А, как мы ожидали бы, а только ток 5 А, или 3 А, или 2 А и т. д. Ток будет меньше суммы токов и и тогда, когда сопротивление одной ветви емкостное, а другой – индуктивное (рис. 302,в).

Рис. 302. Сопротивления в параллельных ветвях переменного тока различны по своей природе

Таким образом, если сопротивления параллельных ветвей различны по своей природе, то ток в неразветвленной цепи меньше суммы токов в отдельных ветвях.

Чтобы разобраться в этих явлениях, заменим в схемах на рис. 301 и 302 амперметры осциллографами и запишем форму кривой тока в каждой из параллельных ветвей. Оказывается, что токи разной природы в каждой из ветвей не совпадают по фазе ни друг с другом, ни с током в неразветвленной цепи. В частности, ток в цепи с активным сопротивлением опережает по фазе на четверть периода ток в цепи с емкостным сопротивлением и отстает по фазе на четверть периода от тока в цепи с индуктивным сопротивлением.

В этом случае кривые, изображающие форму тока в неразветвленной цепи и в какой-нибудь из ветвей, расположены относительно друг друга так, как кривые 1 и 2 на рис. 294. В общем же случае, в зависимости от соотношения между активным и емкостным (или индуктивным) сопротивлениями каждой из ветвей, сдвиг фаз между током в этой ветви и неразветвленным током может иметь любое значение от нуля до . Следовательно, при смешанном сопротивлении разность фаз между токами в параллельных ветвях цепи может иметь любое значение между нулем и .

Это несовпадение фаз токов в параллельных ветвях с сопротивлениями, различными по своей природе, и является причиной тех явлений, о которых было сказано в начале этого параграфа. Действительно, для мгновенных значений токов, т. е. для тех значений, которые эти токи имеют в один и тот же момент времени, соблюдается известное правило:

Но для амплитуд (или действующих значений) этих токов это правило не соблюдается, потому что результат сложения двух синусоидальных токов или иных двух величин, изменяющихся по закону синуса, зависит от разности фаз между складываемыми величинами.

В самом деле, предположим для простоты, что амплитуды складываемых токов одинаковы, а разность фаз между ними равна нулю. Тогда мгновенное значение суммы двух токов будет равно просто удвоенному значению мгновенного значения одного из складываемых токов, т. е. форма результирующего тока будет представлять собой синусоиду с тем же периодом и фазой, но с удвоенной амплитудой. Если амплитуды складываемых токов различны (рис. 303,а), то сумма их представляет собой синусоиду с амплитудой, равной сумме амплитуд складываемых токов. Это имеет место, когда разность фаз между складываемыми токами равна нулю, например когда сопротивления в обеих параллельных ветвях одинаковы по своей природе.

Рис. 303. Сложение двух синусоидальных переменных токов. Складываемые токи: а) совпадают по фазе (); б) противоположны по фазе, т. е. сдвинуты во времени на половину периода (); в) сдвинуты во времени на четверть периода ()

Рассмотрим теперь другой крайний случай, когда складываемые токи, имея равные амплитуды, противоположны по фазе, т. е. разность фаз между ними равна . В этом случае мгновенные значения складываемых токов равны по модулю, но противоположны по направлению. Поэтому их алгебраическая сумма будет постоянно равна нулю. Таким образом, при сдвиге фаз на между токами в обеих ветвях, несмотря на наличие токов в каждой из параллельных ветвей, в неразветвленной цепи тока не будет. Если амплитуды обоих смещенных на токов различны, то мы получим результирующий ток с той же частотой, но с амплитудой, равной разности амплитуд складываемых токов; по фазе этот ток совпадает с током, имеющим большую амплитуду (рис. 303,б). Практически этот случай имеет место тогда, когда в одной из ветвей имеется емкостное, а в другой – индуктивное сопротивление.

В общем случае при сложении двух синусоидальных токов одной и той же частоты со сдвигом фаз мы получаем всегда синусоидальный ток той же частоты с амплитудой, которая в зависимости от разности фаз имеет промежуточное значение между разностью амплитуд складываемых токов и их суммой. Для примера на рис. 303,в показано графическое сложение двух токов с разностью фаз . С помощью циркуля легко убедиться в том, что каждая ордината результирующей кривой действительно представляет собой алгебраическую сумму ординат кривых и с одинаковой абсциссой, т. е. для того же момента времени.

Для включения ваттметра его генераторные зажимы (зажимы, обозначенные *I и *V), соединяются накоротко одним проводником. Для правильного показания ваттметра оба генераторных зажима должны быть присоединены к одному проводу со стороны генератора источника тока, а не нагрузки. Затем другим проводом включается последовательно в цепь неподвижная катушка; при этом в зависимости от предела тока этот провод подключается к зажиму 1А – при измеряемом токе не превышающем 1А, или 5А при токе, не превышающем 5А.

Затем включается параллельно цепи рамки; для этого предварительно к зажиму подключается одно из дополнительных сопротивлений (в зависимости от предела напряжения: 30V – до 30В, 150V – до 150В и 300V – 300В).

В передний паз крышки прибора устанавливается рабочая шкала так, чтобы лицевая сторона прибора была обращена к шкале с пределом измерения, равным произведению предела по току на предел по напряжению.

Опыты с ваттметром

Ниже описаны только отдельные опыты, характеризующие возможности демонстрационного ваттметра.

Опыт 1. Измерение мощности в цепи однофазного переменного тока с активной нагрузкой.

Для выполнения этого опыта собирают электрическую цепь по схеме, приведённой на рисунке 3.

При проведении опыта целесообразно иметь возможность плавного изменения напряжения, поэтому следует провода А, Б подключить к зажимам регулируемого напряжения школьного распределительного щита или воспользоваться школьным регулятором напряжения (или иным трансформатором), допускающим плавное или ступенчатое регулирование напряжения.

Рис. 6 Схема электрической цепи в опыте 1.

В качестве нагрузки следует включить ползунковый реостат сопротивлением до 20 Ом (с допустимым током 5А).

Ваттметр включают в цепь через добавочное сопротивление 150V и через зажим 5А (см. схему).

Остановив ползунок реостата так, что в цепь включается все сопротивления реостата, устанавливается напряжение на нагрузку 50В, и наблюдают показания ваттметра, вольтметра и амперметра. Затем повышают напряжение на нагрузку, устанавливая последовательно 60, 80, 100В наблюдая каждый раз показания всех приборов.

Результаты этого опыта подтверждают, что мощность равна произведению напряжения на силу тока.

Опыт 2. Измерение мощности в цепи трёхфазного тока с активной симметричной нагрузкой.

С помощью одного демонстрационного ваттметра можно произвести опыт по измерению активной мощности трёхфазного тока при равномерной нагрузке всех фаз (т.е. когда в каждую фазу включены одинаковые нагрузки).

Для проведения этого опыта собирают электрическую цепь, как показано на рисунке 7.

В каждую фазу в качестве нагрузки включают по одной электрической лампе одинакового сопротивления.

Измерительные приборы используются те же, что и в предыдущем опыте.

Пределы ваттметра (по току и напряжению) устанавливаются в зависимости от напряжения и мощности электрических ламп.

Р
ис. 7 Схема электрической цепи в опыте 2.

По показаниям приборов устанавливают, что мощность одной фазы равна произведению фазного напряжения на ток в фазе.

Учитывая полную симметрию цепи трёхфазного тока, приведённой на рисунке 4, высчитывают мощность всей цепи, умножив показания ваттметра на 3.

В которой генератор переменного тока создает синусоидальное напряжение. Разберем последовательно, что произойдет в цепи, когда мы замкнем ключ. Начальным будем считать тот момент, когда напряжение генератора равно нулю.

В первую четверть периода напряжение на зажимах генератора будет возрастать, начиная от нуля, и конденсатор начнет заряжаться. В цепи появится ток, однако в первый момент заряда конденсатора, несмотря на то, что напряжение на его пластинах только что появилось и еще очень мало, ток в цепи (ток заряда) будет наибольшим. По мере же увеличения заряда конденсатора ток в цепи убывает и доходит до нуля в момент, когда конденсатор полностью зарядится. При этом напряжение на пластинах конденсатора, строго следуя за напряжением генератора, становится к этому моменту максимальным, но обратного знака, т. е. направлено навстречу напряжению генератора.



Рис. 1. Изменение тока и напряжения в цепи с емкостью

Таким образом, ток с наибольшей силой устремляется в свободный от заряда конденсатор, но тут же начинает убывать по мере заполнения зарядами пластин конденсатора и падает до нуля, полностью зарядив его.

Сравним это явление с тем, что происходит с потоком воды в трубе, соединяющей два сообщающихся сосуда (рис. 2),один из которых наполнен, а другой пустой. Стоит только выдвинуть заслонку, преграждающую путь воде, как вода сразу же из левого сосуда под большим напором устремится по трубе в пустой правый сосуд. Однако тотчас же напор воды в трубе начнет постепенно ослабевать, вследствие выравнивания уровней в сосудах, и упадет до нуля. Течение воды прекратится.

Рис. 2. Изменение напора воды в трубе, соединяющей сообщающиеся сосуды, сходно с изменением тока в цепи во время заряда конденсатора

Подобно этому и ток сначала устремляется в незаряженный конденсатор, а затем постепенно ослабевает по мере его заряда.

С началом второй четверти периода, когда напряжение генератора начнет сначала медленно, а затем все быстрее и быстрее убывать, заряженный конденсатор будет разряжаться на генератор, что вызовет в цепи ток разряда. По мере убывания напряжения генератора конденсатор все больше и больше разряжается и ток разряда в цепи возрастает. Направление тока разряда в этой четверти периода противоположно направлению тока заряда в первой четверти периода. Соответственно этому кривая тока, пройдя нулевое значение, располагается уже теперь ниже оси времени.

К концу первого полупериода напряжение на генераторе, а также и на конденсаторе быстро приближается к нулю, а ток в цепи медленно достигает своего максимального значения. Вспомнив, что величина тока в цепи тем больше, чем больше величина переносимого по цепи заряда, станет ясным, почему ток достигает максимума тогда, когда напряжение на пластинах конденсатора, а следовательно, и заряд конденсатора быстро убывают.

С началом третьей четверти периода конденсатор вновь начинает заряжаться, но полярность его пластин, так же как и полярность генератора, изменяется «а обратную, а ток, продолжая течь в том же направлении, начинает по мере заряда конденсатора убывать, В конце третьей четверти периода, когда напряжения на генераторе и конденсаторе достигают своего максимума, ток становится равным нулю.

В последнюю четверть периода напряжение, уменьшаясь, падает до нуля, а ток, изменив свое направление в цепи, достигает максимальной величины. На этом и заканчивается период, за которым начинается следующий, в точности повторяющий предыдущий, и т. д.

Итак, под действием переменного напряжения генератора дважды за период происходят заряд конденсатора (первая и третья четверти периода) и дважды его разряд (вторая и четвертая четверти периода). Но так как чередующиеся один за другим сопровождаются каждый раз прохождением по цепи зарядного и разрядного токов, то мы можем заключить, что по цепи с емкостью проходит .

Убедиться в этом можно на следующем простом опыте. Подключите к сети переменного тока через лампочку электрического освещения мощностью 25 Вт конденсатор емкостью 4-6 мкф. Лампочка загорится и не погаснет до тех пор, пока не будет разорвана цепь. Это говорит о том, что по цепи с емкостью проходил переменный ток. Однако проходил он, конечно, не сквозь диэлектрик конденсатора, а в каждый момент времени представлял собой или ток заряда или ток разряда конденсатора.

Диэлектрик же, как нам известно, поляризуется под действием электрического поля, возникающего в нем при заряде конденсатора, и поляризация его исчезает, когда конденсатор разряжается.

При этом диэлектрик с возникающим в нем током смещения служит для переменного тока своего рода продолжением цепи, а для постоянного разрывает цепь. Но ток смещения образуется только в пределах диэлектрика конденсатора, и поэтому сквозного переноса зарядов по цепи не происходит.

Сопротивление, оказываемое конденсатором переменному току, зависит от величины емкости конденсатора и от частоты тока.

Чем больше емкость конденсатора, тем больший заряд переносится по цепи за время заряда и разряда конденсатора, а следовательно, и тем больший будет ток в цепи. Увеличение же тока в цепи свидетельствует о том, что уменьшилось ее сопротивление.

Следовательно, с увеличением емкости уменьшается сопротивление цепи переменному току.

Увеличение увеличивает величину переносимого по цепи заряда, так как заряд (а равно и разряд) конденсатора должен произойти быстрее, чем при низкой частоте. В то же время увеличение величины переносимого в единицу времени заряда равносильно увеличению тока в цепи, а следовательно, уменьшению ее сопротивления.

Если же мы каким-либо способом будем постепенно уменьшать частоту переменного тока и сведем ток к постоянному, то сопротивление конденсатора, включенного в цепь, будет постепенно возрастать и станет бесконечно большим (разрыв цепи) к моменту появления в .

Следовательно, с увеличением частоты уменьшается сопротивление конденсатора переменному току.

Подобно тому как сопротивление катушки переменному току называют индуктивным, сопротивление конденсатора принято называть емкостным.

Таким образом, емкостное сопротивление тем больше, чем меньше емкость цепи и частота питающего ее тока.

Емкостное сопротивление обозначается через Хс и измеряется в омах.

Зависимость емкостного сопротивления от частоты тока и емкости цепи определяется формулой Хс = 1/ ωС, где ω - круговая частота, равная произведению 2 πf , С-емкость цепи в фарадах.

Емкостное сопротивление, как и индуктивное, является реактивным по своему характеру, так как конденсатор не потребляет энергии источника тока.

Формула для цепи с емкостью имеет вид I = U/Xc , где I и U - действующие значения тока и напряжения; Хс - емкостное сопротивление цепи.

Свойство конденсаторов оказывать большое сопротивление токам низкой частоты и легко пропускать токи высокой частоты широко используется в схемах аппаратуры связи.

С помощью конденсаторов, например, достигается необходимое для работы схем разделение постоянных токов и токов низкой частоты от токов высокой частоты.

Если нужно преградить путь току низкой частоты в высокочастотную часть схемы, последовательно включается конденсатор небольшой емкости. Он оказывает большое сопротивление низкочастотному току и в то же время легко пропускает ток высокой частоты.

Если же надо не допустить ток высокой частоты, например, в цепь питания радиостанции, то используется конденсатор большой емкости, включаемый параллельно источнику тока. Ток высокой частоты в этом случае проходит через конденсатор, минуя цепь питания радиостанции.

Активное сопротивление и конденсатор в цепи переменного тока

На практике часто встречаются случаи, когда в цепи последовательно с емкостью Общее сопротивление цепи в этом случае определяется по формуле

Следовательно, полное сопротивление цепи, состоящей из активного и емкостного сопротивлений, переменному току равно корню квадратному из суммы квадратов активного и емкостного сопротивлений этой цепи.

Закон Ома остается справедливым и для этой цепи I = U/Z .

На рис. 3 приведены кривые, характеризующие фазовые соотношения между током и напряжением в цепи, содержащей емкостное и активное сопротивления.

Рис. 3. Ток, напряжение и мощность в цепи с конденсатором и активным сопротивлением

Как видно из рисунка, ток в этом случае опережает напряжение уже не на четверть периода, а меньше, так как активное сопротивление нарушило чисто емкостный (реактивный) характер цепи, о чем свидетельствует уменьшенный сдвиг фаз. Теперь уже напряжение на зажимах цепи определится как сумма двух слагающих: реактивной слагающей напряжения u с, идущей на преодоление емкостного сопротивления цепи, и активной слагающей напряжения преодолевающей активное ее сопротивление.

Чем больше будет активное сопротивление цепи, тем меньший сдвиг фаз получится между током и напряжением.

Кривая изменения мощности в цепи (см. рис. 3) дважды за период приобрела отрицательный знак, что является, как нам уже известно, следствием реактивного характера цепи. Чем менее реактивная цепь, тем меньше сдвиг фаз между током и напряжением и тем большую мощность источника тока эта цепь потребляет.

Il = U / XL и IC = U / XC

Резонанс токов



Следовательно:

fрез = 1 / 2π√LC

Lрез = 1 / ω 2 С

Срез = 1 / ω 2 L



Резонанс напряжений

Когда источник ЭДС, емкость, индуктивность и сопротивление включены между собой последовательно, то резонанс в такой цепи называется последовательным резонансом или резонансом напряжений. Характерная черта резонанса напряжений - значительные напряжения на емкости и на индуктивности, по сравнению с ЭДС источника.

Причина появления такой картины очевидна. На активном сопротивлении по закону Ома будет напряжение Ur, на емкости Uc, на индуктивности Ul, и составив отношение Uc к Ur можно найти величину добротности Q. Напряжение на емкости будет в Q раз больше ЭДС источника, такое же напряжение окажется приложенным к индуктивности.

То есть резонанс напряжений приводит к возрастанию напряжения на реактивных элементах в Q раз, а резонансный ток будет ограничен ЭДС источника, его внутренним сопротивлением и активным сопротивлением цепи R. Таким образом, сопротивление последовательного контура на резонансной частоте минимально.

Резонанс токов

Когда источник ЭДС, емкость, индуктивность и сопротивление включены между собой параллельно, то резонанс в такой цепи называется параллельным резонансом или резонансом токов. Характерная черта резонанса токов - значительные токи через емкость и индуктивность, по сравнению с током источника.

Причина появления такой картины очевидна. Ток через активное сопротивление по закону Ома будет равен U/R, через емкость U/XC, через индуктивность U/XL, и составив отношение IL к I можно найти величину добротности Q. Ток через индуктивность будет в Q раз больше тока источника, такой же ток будет течь каждые пол периода в конденсатор и из него.

То есть резонанс токов приводит к возрастанию тока через реактивные элементы в Q раз, а резонансная ЭДС будет ограничена ЭДС источника, его внутренним сопротивлением и активным сопротивлением цепи R. Таким образом, на резонансной частоте сопротивление параллельного колебательного контура максимально.

Применение резонанса токов

Аналогично резонансу напряжений, резонанс токов применяется в различных фильтрах. Но включенный в цепь, параллельный контур действует наоборот, чем в случае с последовательным: установленный параллельно нагрузке, параллельный колебательный контур позволит току резонансной частоты контура пройти в нагрузку, поскольку сопротивление самого контура на собственной резонансной частоте максимально.

Установленный последовательно с нагрузкой, параллельный колебательный контур не пропустит сигнал резонансной частоты, поскольку все напряжение упадет на контуре, а на нагрузку придется мизерная доля сигнала резонансной частоты.

Так, основное применение резонанса токов в радиотехнике - создание большого сопротивления для тока определенной частоты в ламповых генераторах и усилителях высокой частоты.

В электротехнике резонанс токов используется с целью достижения высокого коэффициента мощности нагрузок, обладающих значительными индуктивными и емкостными составляющими.

Например, установки компенсации реактивной мощности (КРМ) представляют собой конденсаторы, подключаемые параллельно обмоткам асинхронных двигателей и трансформаторов, работающих под нагрузкой ниже номинальной.

К таким решениям прибегают как раз с целью достижения резонанса токов (параллельного резонанса), когда индуктивное сопротивление оборудования делается равным емкостному сопротивлению подключаемых конденсаторов на частоте сети, чтобы реактивная энергия циркулировала между конденсаторами и оборудованием, а не между оборудованием и сетью; чтобы сеть отдавала энергию только тогда, когда оборудование нагружено и потребляет активную мощность.

Когда же оборудование работает в холостую, сеть оказывается подключена параллельно резонансному контуру (внешние конденсаторы и индуктивность оборудования), который представляет для сети очень большое комплексное сопротивление и позволяет снизитьсякоэффициенту мощности.

ЛитератураПравить

§ Власов В. Ф. Курс радиотехники. М.: Госэнергоиздат, 1962. С. 928.

§ Изюмов Н. М., Линде Д. П. Основы радиотехники. М.: Госэнергоиздат, 1959. С. 512.

Параллельное включение конденсатора и катушки индуктивности в цепь переменного тока

Рассмотрим явления в цепи переменного тока, содержащей генератор, конденсатор и катушку индуктивности, соединенные параллельно. Предположим при этом, что активным сопротивлением цепь не обладает.

Очевидно, в такой цепи напряжение как на катушке, так и на конденсаторе в любой момент времени равно напряжению, развиваемому генератором.

Общий же ток в цепи слагается из токов в ее разветвлениях. Ток в индуктивной ветви отстает по фазе от напряжения на четверть периода, а ток в емкостной ветви опережает его на те же четверть периода. Поэтому токи в ветвях в любой момент времени оказываются сдвинутыми по фазе один относительно другого на полупериода, т. е. находятся в противофазе. Таким образом токи в ветвях в любой момент времени направлены навстречу один другому, а общий ток в неразветвленной части цепи равен разности их.

Это дает нам право написать равенство I = IL -IC

где I - действующее значение общего тока в цепи, IL и IC - действующие значения токов в.ветвях.

Пользуясь законом Ома для определения действующих значений тока в ветвях, получим:

Il = U / XL и IC = U / XC

Если в цепи преобладает индуктивное сопротивление, т. е. XL больше XC, ток в катушке меньше тока в конденсаторе; следовательно, ток в неразветвленном участке цепи носит емкостный характер, и цепь в целом для генератора будет емкостной. И, наоборот, при ХC большем XL, ток в конденсаторе меньше тока в катушке; следовательно, ток в неразветвленном участке цепи имеет индуктивный характер, и цепь в целом для генератора будет индуктивной.

При этом не следует забывать, что в том и другом случае нагрузка реактивная, т. е. цепь не потребляет энергии генератора.

Резонанс токов

Рассмотрим теперь случай, когда у параллельно соединенных конденсатора и катушки оказались равными их реактивные сопротивления, т. е. XlL = XC.

Если мы, как и прежде, будем считать, что катушка и конденсатор не обладают активным сопротивлением, то при равенстве их реактивных сопротивлений (YL = YC) общий ток в неразветвленной части цепи окажется равным нулю, тогда как в ветвях будут протекать равные токи наибольшей величины. В цепи в этом случае наступает явление резонанса токов.

При резонансе токов действующие значения токов в каждом разветвлении, определяемые отношениями IL = U / XL и IC= U / XC будут равны между собой, так XL = ХC.

Вывод, к которому мы пришли, может показаться на первый взгляд довольно странным. Действительно, генератор нагружен двумя сопротивлениями, а тока в неразветвленной части цепи нет, тогда как в самих сопротивлениях протекают равные и притом наибольшие по величине токи.

Объясняется это поведением магнитного поля катушки и электрического поля конденсатора. При резонансе токов, как и при резонансе напряжений, происходит колебание энергии между полем катушки и полем конденсатора. Генератор, сообщив однажды энергию цепи, сказывается как бы изолированным. Его можно было бы совсем отключить, и ток в разветвленной части цепи поддерживался бы без генератора энергией, которую в самом начале запасла цепь. Равно и напряжение на зажимах цепи оставалось бы точно таким, какое развивал генератор.

Таким образом, и при параллельном соединении катушки индуктивности и конденсатора мы получили колебательный контур, отличающийся от описанного выше только тем, что генератор, создающий колебания, не включен непосредственно в контур и контур получается замкнутым.

Графики токов, напряжения и мощности в цепи при резонансе токов: а - активное сопротивление равно нулю, цепь мощности не потребляет; б - цепь обладает активным сопротивлением, в неразветвленной части цепи появился ток, цепь потребляет мощность

Значения L, С и f, при которых наступает резонанс токов, определяются, как и при резонансе напряжений (если пренебречь активным сопротивлением контура), из равенства:

Следовательно:

fрез = 1 / 2π√LC

Lрез = 1 / ω 2 С

Срез = 1 / ω 2 L

Изменяя любую из этих трех величин, можно добиться равенства Xl = Xc, т. е. превратить цепь в колебательный контур.

Итак, мы получили замкнутый колебательный контур, в котором можно вызвать электрические колебания, т. е. переменный ток. И если бы не активное сопротивление, которым обладает всякий колебательный контур, в нем непрерывно мог бы существовать переменный ток. Наличие же активного сопротивления приводит к тому, что колебания в контуре постепенно затухают и, чтобы поддержать их, необходим источник энергии - генератор переменного тока.

В цепях несинусоидального тока резонансные режимы возможны для различных гармоничных состовляющих.

Резонанс токов широко используется в практике. Явление резонанса токов используется в полосовых фильтрах как электрическая «пробка», задерживающая определенную частоту. Так как току с частотой f оказывается значительное сопротивление, то и падение напряжения на контуре при частоте f будет максимальным. Это свойство контура получило название избирательность, оно используется в радиоприемниках для выделения сигнала конкретной радиостанции. Колебательный контур, работающий в режиме резонанса токов, является одним из основных узловэлектронных генераторов.

Если в цепь переменного тока включены последовательно катушка индуктивности иконденсатор, то они по-своему воздействуют на генератор, питающий цепь, и на фазовые соотношения между током и напряжением.

Катушка индуктивности вносит сдвиг фаз, при котором ток отстает от напряжения на четверть периода, конденсатор же, наоборот, заставляет напряжение в цепи отставать по фазе от тока на четверть периода. Таким образом, действие индуктивного сопротивления на сдвиг фаз между током и напряжением в цепи противоположно действию емкостного сопротивления.

Это приводит к тому, что общий сдвиг фаз между током и напряжением в цепи зависит от соотношения величин индуктивного и емкостного сопротивлений.

Если величина емкостного сопротивления цепи больше индуктивного, то цепь носит емкостный характер, т. е. напряжение отстает по фазе от тока. Если же, наоборот, индуктивное сопротивление цепи больше емкостного, то напряжение опережает ток, и, следовательно, цепь носит индуктивный характер.

Общее реактивное сопротивление Хобщ рассматриваемой нами цепи определяется путем сложения индуктивного сопротивления катушки X L и емкостного сопротивления конденсатора Х С.

Но так как действие этих сопротивлений в цепи противоположно, то одному из них, а именно Хс приписывается знак минус, и общее реактивное сопротивление определяется по формуле:

Применив к этой цепи закон Ома, получим:

Формулу эту можно преобразовать следующим образом:

В полученном равенстве IX L -действующее значение слагающей общего напряжения цепи, идущей на преодоление индуктивного сопротивления цепи, а IХ С -действующее значение слагающей общего напряжения цепи, идущей на преодоление емкостного сопротивления.

Таким образом, общее напряжение цепи, состоящей из последовательного соединения катушки и конденсатора, можно рассматривать как состоящее из двух слагаемых, величины которых зависят от величин индуктивного и емкостного сопротивлений цепи.

Мы считали, что такая цепь не обладает активным сопротивлением. Однако в тех случаях, когда активное сопротивление цепи не настолько уже мало, чтобы им можно было пренебречь, общее сопротивление цепи определяется следующей формулой:

где R - общее активное сопротивление цепи, X L -Х С - ее общее реактивное сопротивление. Переходя к формуле закона Ома, мы вправе написать:

Основы > Задачи и ответы

Однофазные цепи переменного тока (страница 2)


12. Конденсатор емкостью С = 8,36 мкФ включен на синусоидальное напряжение U=380 В частотой f =50 Гц.
Определить ток в цепи конденсатора.

Решение:
Емкостное сопротивление

Ток в цепи конденсатора при синусоидальном напряжении 380 В

Для получения ббльших токов требуются при данной частоте большие значения емкости.

13. При включении конденсатора на синусоидальное напряжение U=220 В частотой f =50 Гц в цепи установился ток I =0,5 А.
Какую емкость имеет конденсатор?

Решение:

Из формулы емкостного сопротивления емкость

Метод определения емкости конденсатора, рассмотренный в данной задаче, является наименее точным, но он прост и не требует больших затрат для применения на практике.

14. При включении разомкнутого на конце кабеля на напряжение U=6600 В частотой f =50 Гц в цепи установился ток I=2 А.
Пренебрегая электрическим сопротивлением кабеля, определить приближенно емкость кабеля на 1 км его длины, если длина кабеля 10 км.

Решение:
Изолированные друг от друга жилы кабеля представляют собой конденсатор. Если пренебречь сопротивлением жил кабеля, то ток холостой работы кабеля, т. е. ток в кабеле, разомкнутом на конце, можно считать чисто емкостным. В этом случае действительно соотношение

где - емкостная проводимость.
Отсюда

При частоте f =50 Гц угловая частота , следовательно,

Емкость кабеля на 1 км его длины

Описанный способ определения емкости кабеля на 1 км его длины является очень приближенным (в нем пренебрегают активным сопротивлением жил кабеля и активной проводимостью утечки от жилы к жиле вследствие несовершенства изоляции; допускается равномерное распределение емкости по длине кабеля).

15. Какая емкость батареи конденсаторов требуется для получения реактивной (емкостной) мощности 152 ВАР при напряжении U=127 В и частоте f= 50 Гц.

Решение:
При частоте f= 50 Гц угловая частота . Так как ток батареи считается чисто
реактивным (опережающим по фазе напряжение на 1
/ 4 периода), то реактивная мощность равна произведению напряжения и тока:

Емкостный ток равен произведению напряжения на емкостную проводимость, поэтому

Емкость батареи конденсаторов

Реактивную (емкостную) мощность можно представить в виде , выразив ток через напряжение и емкостную проводимость; отсюда следует, что при данном напряжении и частоте реактивная (емкостная) мощность пропорциональна емкости. Если изоляция пластин батареи конденсаторов допускает повышение напряжения (например, в раз), то реактивная (емкостная) мощность увеличится пропорционально квадрату напряжения (т. е. в 3 раза). Таким образом, в рассматриваемом случае важное значение имеет отнонение напряжения от номинального.

16. В катушке (см. задачу 10), включенной на переменное напряжение U=12 В частотой f=50 Гц установился ток 1,2 А.
Определить индуктивность катушки.

Решение:
Отношение переменного напряжения, приложенного к катушке, к току, устанавливающемуся в ней, называется
полным сопротивлением z катушки;

В задаче 10 было определено, что активное сопротивление катушки r =2,8 Ом. Сопротивление катушки при перееденном токе больше сопротивления г при постоянном токе вследствие наличия э. д. с. самоиндукции, препятствующей изменению переменного тока. Это равносильно появлению в катушке сопротивления, называемого индуктивным:

где L - индуктивность, Гн
f - частота, Гц.
Связь между полным сопротивлением z , индуктивным сопротивлением и активным сопротивлением r такая же, как между гипотенузой и катетами в прямоугольном треугольнике:


откуда индуктивное сопротивление



Индуктивность катушки

В рассматриваемой катушке ток отстает по фазе от напряжения, причем тангенс угла сдвига фаз .

17. В схеме (рис. 23) вольтметр показывает 123 В, амперметр 3 А и ваттметр 81 Вт, частота сети 50 Гц.
Oпределить параметры катушки.

Решение:
Отношение напряжения к току равно полному сопротивлению катушки:

Ваттметр измеряет активную мощность цепи, которая в данной задаче является потерей мощноста в сопротивлении r , поэтому сопротивление катушки

Полное сопротивление z , активное сопротивление r и индуктивное сопротивление катушки связаны между собой таким же соотношением, как гипотенуза и катеты в прямоугольном треугольнике.

Следовательно,

При частоте f =50 Гц угловая частота

Индуктивное сопротивление равно произведению угловой частоты w и индуктивности L; следовательно,

Коэффициент мощности катушки . .
18. Катушка без стального сердечника включена на постоянное напряжение 2,1 В, ток которой равен 0,3 А. При включении этой же катушки на синусоидальное напряжение частотой 50 Гц с действующим значением 50 В ток имеет действующее значение 2 А.
Определить параметры катушки, активную и полную мощности.

Решение:
Отношение постоянного напряжения к постоянному току в катушке практически равно (если пренебречь увеличением сопротивления из-за вытеснения переменного тока на поверхность провода) активному сопротивлению:

Это один из параметров катушки. Отношение этих же величин при переменном токе в катушке равно полному сопротивлению:

Индуктивное сопротивление:

Индуктивность катушки - второй ее параметр:

Коэффициент мощности катушки:

Из таблиц тригонометрических величин .
Активная мощность

Полная мощность

Коэффициент мощности

В задачах 17 и 18 рассмотрены два различных способа определения параметров катушки.

19. Батарея конденсаторов емкостью С=50 мкФ соединена последовательно с реостатом сопротивлением r= 29,1 Ом.
Определить напряжения на батарее конденсаторов и реостате, а также ток в цепи и мощность, если приложенное напряжение U=210 В и частота сети
f =50 Гц.

Решение:
Частоте 50 Гц и емкости 50 мкФ соответствует емкостное сопротивление, в 50 раз меньшее, чем емкости в 1 мкФ. Следовательно,

Здесь 3185 Ом - сопротивление конденсатора емкостью 1 мкФ.
По условию, сопротивление реостата r =29,1 Ом. Полное сопротивление цепи связано с активным и емкостным сопротивлениями таким же соотношением, как гипотенуза и катет прямоугольного треугольника:

Напряжение на реостате

Напряжение на батарее конденсаторов

В силу последовательного соединения большее напряжение оказалось на элементе цепи, имеющем большее сопротивление.
Коэффициент мощности

Из таблиц тригонометрических величин угол сдвига фаз .
Активная мощность цепи

Полная мощность цепи равна произведению действующих значений напряжения и тока:

Полная мощность намного больше активной мощности, так как коэффициент мощности мал, т. е. полное сопротивление цепи во много раз превышает активное сопротивление.

20. Электрическую лампу мощностью Р=60 Вт при напряжении необходимо подсоединить к сети с переменным напряжением U=220 В и частотой 50 Гц. Для компенсации части этого напряжения последовательно с лампой включается конденсатор.
Какой емкости необходимо взять конденсатор?

Решение:
Напряжение на лампе будет активной составляющей приложенного напряжения сети, а напряжение на конденсаторе - его реактивной (емкостной) составляющей. Эти напряжения связаны соотношением

Напряжение на конденсаторе

Ток в конденсаторе тот же, что и в лампе, т. е.

На основании закона Ома емкостное сопротивление

Так как при частоте f=50 Гц емкости С=1 мкФ соответствует емкостное сопротивление , то емкость рассматриваемого конденсатора приблизительно равна 8,7 мкФ.
Избыточное напряжение можно было бы скомпенсировать и путем последовательного включения реостата с лампой. Так как реостат, как и электрическая лампа, представляет чисто активное сопротивление, то напряжения на этих элементах цепи совпадают по фазе с общим током, а следовательно, и между собой. В этом случае будет действительно соотношение

где - напряжение на реостате, равное

При токе лампы 0,5 А сопротивление реостата должно составлять

В реостате будет расходоваться энергия, переходящая в тепло, причем потери мощности в реостате

В случае включения емкости «погашение» напряжения происходит без потерь энергии.

21. В случае электрической сварки дугой тонких листов при переменном токе в ней развивается мощность при токе I =20 A . Напряжение источника U =120 В, частота сети f =50 Гц (рис. 24). Чтобы иметь необходимое напряжение на дуге, последовательно с ней включили индуктивную катушку, сопротивление которой r =1 Ом.
Определить индуктивность катушки; сопротивление реостата, который можно было бы включить вместо катушки; к.п.д. схемы при наличии в ней катушки и реостата.

Решение:
Полное сопротивление схемы

Полная мощность на входе схемы

Потери мощности в обмотке катушки

Активная мощность схемы

Коэффициент мощности схемы

Из таблиц тригонометрических величин .
Активное сопротивление схемы

сопротивление дуги

Индуктивное сопротивление цепи представлено индуктивным сопротивлением катушки:

Эту же величину можно определить из треугольника сопротивлении (рис. 25, масштаб )

Искомая индуктивность катушки

Если бы вместо катушки был включен реостат, то сопротивление схемы имело бы ту же величину 6 Ом, но было бы чисто активным:

Потери мощности в катушке

Потери мощности в реостате

Отсюда ясно, что к. п. д. схемы выше при «погашении» избытка напряжения индуктивной катушкой. Действительно, к. п. д. при наличии катушки

к. п. д. при наличии реостата

Не следует забывать, что «погашение» избытка напряжения катушкой (или конденсатором) ухудшает коэффициент мощности (в данном примере при наличии катушки и при наличии реостата).

22. Последовательно с катушкой, параметры которой и L=15,92 мГн, включен реостат сопротивлением, . Цепь включена на напряжение U=130 В при частоте f=50 Гц.
Определить ток в цепи; напряжение на катушке и реостате; коэффициент мощности цепи и катушки.

Решение:
Индуктивное сопротивление катушки

Полное сопротивление катушки

Активное сопротивление цепи, состоящей из последовательно соединенных катушки и реостата,

Полное сопротивление цепи

На основании закона Ома ток в цепи

Напряжение на катушке

Напряжение на реостате

Арифметическая сумма много больше приложенного напряжения U=130 В. Коэффициент мощности цепи

Коэффициент мощности катушки

Следовательно, реостат увеличивает коэффициент мощности и сопротивление цепи, но уменьшает ток, увеличивает потребление энергии схемой.
Действительно, активная мощность катушки

активная мощность реостата

Так как цепь неразветвленная и ток один, то с него целесообразно начать построение векторной диаграммы (рис. 26).
Напряжение на реостате, представляющем собой чисто активное сопротивление, совпадает по фазе с током; на диаграмме вектор этого напряжения совпадает по направлению с вектором тока. Из конца вектора в сторону опережения вектора тока I , под углом в сторону, противоположную вращению стрелки часов, откладываем вектор напряжения на катушке . Векторы построены так с целью сложения по правилу многоугольника.

Решение:
Индуктивное сопротивление первой катушки

т. е. оно численно равно активному сопротивлению , что обусловливает отставание тока по фазе от напряжения на 1 / 8 периода (на 45°).
Действительно, тангенс угла сдвига фаз

Индуктивное сопротивление второй катушки

Так как ее активное сопротивление то тангенс угла сдвига фаз

Построим в масштабе треугольник сопротивлений для рассматриваемой цепи. Для этого зададимся масштабом сопротивлений . Тогда на диаграмме сопротивление 1,57 Ом будет изображено отрезком 15,7 мм, сопротивление 2,7 Ом - отрезком 27 мм и т. д. На рис. 27 отрезок, изображающий активное сопротивление , отложен в горизонтальном направлении, а отрезок, изображающий индуктивное сопротивление , - в вертикальном направлении под прямым углом к .

Полное сопротивление первой катушки является гипотенузой прямоугольного треугольника. Из вершины с этого треугольника в горизонтальном направлении отложен отрезок, изображающий сопротивление , и под прямым углом к нему вверх - отрезок, изображающий сопротивление . Гипотенуза се прямоугольного треугольника означает полное сопротивление второй катушки.
Из рис. 27 видно, что отрезок
ае , изображающий полное сопротивление z неразветвленной цепи из двух катушек, не равен сумме отрезков ас и се , т. е. . Чтобы определить полное сопротивление z рассматриваемой цепи, следует сложить отдельно активные (, отрезок аf ) и индуктивные (, отрезок ef ) сопротивления катушек.
Гипотенуза ае , означающая полное сопротивление z цепи, определяется по теореме Пифагора:

Ток в цепи определяется по закону Ома:

Напряжение на первой катушке

Напряжение на второй катушке

Строим векторную диаграмму (рис. 28), приняв масштабы:
а) для тока ; тогда вектор тока изобразится отрезком длиной 25 мм;
б) для напряжения
; при этом вектор напряжения

Лучшие статьи по теме