Как настроить смартфоны и ПК. Информационный портал

Хранение информации определение в информатике. Надежность хранения информации

Когда информации, окружающей человека, стало очень много, и он оказался не в силах ее запомнить, возникла письменность. Со временем она совершенствовалась и превратилась в неотъемлемую часть повседневной жизни человека. Однако большое количество бумажных носителей затрудняет быстрый поиск нужной информации, а с появлением цифровой информации и средств для ее преобразования и хранения появилась возможность по-другому посмотреть на данную проблему. Цифровая информация имеет ряд преимуществ, связанных с устойчивостью к помехам при передаче и более продолжительным

Хранение информации - это один из главных с которым неразрывно связано понятие устройства хранения информации, или запоминающего устройства. Разные устройства могут использовать различные способы хранения информации. Совокупность таких устройств называют памятью. Чаще понятие «хранение информации» связывают с компьютерной техникой.

Память компьютера бывает внутренней и внешней. К внутренней памяти относятся устройства, обеспечивающие работоспособность самой вычислительной системы (компьютера). Например, оперативная Большинство запоминающих устройств, известных рядовому пользователю, таких как винчестер, USB-флеш, компакт-диск, относятся к

До недавнего времени это было единственным, что могла предложить нам компьютерная индустрия. Теперь у любого есть возможность хранить свою личную информацию прямо в сети Интернет, причем, даже не тратя на это деньги.

С одной стороны, это очень удобно, так как с любого устройства, имеющего можно получить доступ и просмотреть необходимую информацию. Таким образом, исключаются случаи, когда флешка с информацией забыта дома, как раз в тот день, когда она была очень нужна на работе.

Хранение информации сопровождается одним неприятным моментом, связанным с ее порчей, потерей или Любой опытный пользователь знает несколько приемов, как обезопасить свою информацию от потерь. Например, не следует хранить ценную информацию на винчестере, так как велика вероятность «подхватить» вирус, который все уничтожит. Также можно дублировать важную информацию сразу на несколько носителей.

Такую информацию обычно хранят на съемных запоминающих устройствах, для которых создаются определенные условия хранения. Но существует еще один способ, обеспечивающий надежное хранение информации.

Это использование «облачных» Интернет-сервисов, в таком случае информация пользователя хранится на распределенных серверах сети Интернет, а доступ к ней осуществляется посредством логина и пароля. У такой технологии союзников и противников примерно поровну. Некоторые вообще не доверяют глобальной сети свои личные файлы, а другие, наоборот, видят в этом будущее.

В современном мире, особенно в крупных городах, где доступ к глобальной сети есть повсеместно, такое хранение информации выглядит предпочтительным. Не требуется покупать, обслуживать и дрожать над сохранностью фотографий или видеоархива.

Вот только что будет, если Интернет-соединение вдруг оборвется и пользователь не сможет в нужное время получить доступ к своей информации?

Хранение и накопление информации вызвано ее многократным использованием, применением постоянной информации, необходимостью комплектации первичных данных до их обработки; осуществляется на машинных носителях в виде информационных массивов, где данные располагаются по установленному в процессе проектирования группировочному признаку.

Хранение информации - это ее запись во вспомогательные запоминающие устройства на различных носителях для последующего использования.

Хранение является одной из основных операций, осуществляемых над информацией, и главным способом обеспечения ее доступности в течение определенного промежутка времени.

В результате реализации такого алгоритма документ, независимо от формы представления поступивший в информационную систему, подвергается обработке и после этого отправляется в хранилище (базу данных), где помещается на соответствующую "полку" в зависимости от принятой системы хранения. Результаты обработки передаются в каталог.

Этап хранения информации может быть представлен на следующих уровнях: внешнем, концептуальном (логическом), внутреннем, физическом.

Рис. 1.16.

Внешний уровень отражает содержательность информации и представляет способы (виды) представления данных пользователю в ходе их хранения.

Концептуальный уровень определяет порядок организации информационных массивов и способы хранения информации (файлы, массивы, распределенное хранение, сосредоточенное и др.).

Внутренний уровень представляет организацию хранения информационных массивов в системе ее обработки и определяется разработчиком.

Физический уровень хранения означает реализацию хранения информации на конкретных физических носителях.

Способы организации хранения информации связаны с ее поиском - операцией, предполагающей извлечение хранимой информации.

Хранение информации в ЭВМ связано с процессом ее арифметической обработки и с принципами организации информационных массивов, поиска, обновления, представления информации и др.

Важным этапом автоматизированного этапа хранения является организация информационных массивов.

Информационный массив система хранения информации, включающая представление данных и связей между ними, т. е. принципы их организации.

С учетом этого рассматриваются следующие структуры организации информационных массивов: линейная, многомерная.

В свою очередь, линейная структура данных делится на строки, одномерные массивы, стеки, очереди, деки и др.

Строка это представление данных в виде элементов, располагающихся по признаку непосредственного следования, т. е. по мере поступления данных в ЭВМ.

Одномерный массив - это представление данных, отдельные элементы которых имеют индексы, т. е. поставленные им в соответствие целые числа, рассматриваемые как номер элемента массива.

Индекс обеспечивает поиск и идентификацию элементов, а следовательно, и доступ к заданному элементу, что облегчает его поиск по сравнению с поиском в строке.

Идентификация процесс отождествления объекта с одним из известных объектов.

Стек структура данных, учитывающая динамику процесса ввода-вывода информации, использующая линейный принцип организации хранения, реализующий процедуру обслуживания "последним пришел - первым ушел" (первым удаляется последний поступивший элемент).

Очередь структура организации данных, при которой для обработки информации выбирается элемент, поступивший ранее всех других.

Дека структура организации данных, одновременно сочетающая рассмотренные виды.

Нелинейные структуры хранения данных используют многомерные структуры (массивы) следующих видов: деревья, графы, сети.

Элемент многомерного массива определяется индексом, состоящим из набора чисел. Формой представления прямоугольного массива является матрица, каждое значение которой определяется индексом требуемого элемента массива. Так, в двухмерном массиве элементы обозначаются двумя индексами, а в трехмерном тремя.

Списковая структура с механизмом адресных ссылок может быть представлена в виде графа древовидной структуры. В нем каждый элемент списка включает в себя маркерное поле, поле данных и адресное поле. Маркерное поле предупреждает, имеется ли ссылка на другой список или она отсутствует. В зависимости от этого в маркерном поле ставится знак минус или плюс.

Списки так же могут быть показаны ориентированными графами с полями, в которых возможна ссылка вперед и назад. Возникает так называемый симметричный список, и появляется возможность движения в структуре данных в разных направлениях.

Рассмотренные списковые структуры информационных массивов имеют следующие особенности:

  • - высокую логическую простоту;
  • - относительно большое количество времени доступа, обусловленное адресным обращением к данным, при котором к каждому элементу списка необходимо иметь ссылку;
  • - значительное возрастание объема памяти запоминающего устройства по сравнению с последовательной структурой организации информационных массивов, обусловленное адресным обращением к данным.

С учетом рассмотренных структур формирования информационных массивов можно представить ряд способов организации массивов (рис. 1.17) в запоминающих устройствах ЭВТ.

Рис. 1.17. Способы организации массивов информации в запоминающем устройстве ЭВТ

На физическом уровне любые записи информационного поля представляют в виде двоичных символов. Обращение к памяти большого объема требует большой длины адреса. Если память имеет емкость 2n слов, то для поиска таких слов потребуются n-разрядные адреса. В микропроцессорах восьмиразрядные слова дают возможность обращаться к 256 ячейкам памяти, что оказывается недостаточно для хранения информации в автоматизированных системах. Если непосредственно обращение к любой ячейке невозможно, переходят к страничной организации памяти.

В этом случае выбирают область памяти емкостью 2n слов и называют страницей, обращение к которой осуществляется командой, содержащей n-разрядное адресное поле. В микропроцессорах обычно используют страницы размером 256 слов.

Принципы адресации, объемы памяти, количественные характеристики зависят от функционального назначения запоминающих устройств, разделяющимся по уровням функциональной иерархии на сверхоперативные, оперативные, постоянные, полупостоянные, внешние, буферные.

С хранением информации связаны следующие понятия: носитель информации (память), внутренняя память, внешняя память, хранилище информации.

Носитель информации - это физическая среда, непосредственно хранящая информацию. Основным носителем информации для человека является его собственная биологическая память (мозг), которую можно назвать оперативной (быстрой) памятью или внутренней памятью, поскольку ее носитель находится внутри нас.

Другие носители информации можно назвать внешними (по отношению к человеку), например бумага, которая, непригодна в обычных (не специальных) условиях для длительного хранения информации: на нее оказывают вредное воздействие температурные условия.

Для ЭВТ по материалу изготовления различают бумажные, металлические, пластмассовые, комбинированные и другие носители; по принципу воздействия и возможности изменения структуры выделяют магнитные, полупроводниковые, диэлектрические, перфорационные, оптические и др.; по методу считывания различают контактные, магнитные, электрические, оптические. Хранение информации осуществляется на специальных носителях. информационный поток переработка

Хранилище информации - это определенным образом организованная информация на внешних носителях, предназначенная для длительного хранения и постоянного использования, например архивы документов, библиотеки, справочники, картотеки. Основной информационной единицей хранилища является определенный физический документ: анкета, книга, дело, досье, отчет и пр. Под организацией хранилища понимается наличие определенной структуры, т. е. упорядоченность, классификация хранимых документов. Она необходима для удобства ведения хранилища: пополнения новыми документами, удаления ненужных, поиска информации и т. д.

Основные свойства хранилища информации: объем хранимой информации, надежность хранения, время доступа (т. е. время поиска нужных сведений), наличие защиты информации.

Информацию, хранимую на устройствах компьютерной памяти, принято называть данными. Для описания хранения данных используют те же понятия: носитель, хранилище данных, организация данных, время доступа, защита данных. Организованные хранилища данных на устройствах внешней памяти компьютера принято называть базами данных и банками данных.

Таким образом, хранение информации представляет собой процесс передачи информации во времени, связанный с обеспечением неизменности состояния материального носителя.

Заключение

Информатика как система получения, передачи и использования информационного ресурса в общественной практике подводит теоретический фундамент под использование ЭВМ и автоматизированных систем, которые и предназначены для усиления информационных процессов в обществе, использования информационного ресурса. Речь идет прежде всего о специальных ИР, основанных на компьютерной технике и реализующих информационный ресурс, т.е. инженерную обработку знаний). Таким образом, предметом информатики является информационный ресурс как симбиоз знания и информации. Он выступает в качестве предмета новой науки и с содержательной, и с формально-математической, и с технической стороны. Необходимо разграничивать предмет информатики как фундаментальной науки, ее объект и инструментарий: основанные на ЭВМ вычислительные системы, программы, сети связи и т. д. Без ЭВМ нет информатики, но нельзя объявлять информатику наукой об ЭВМ. Конечно, практическая необходимость в информатике возникла в связи с использованием ЭВМ. Но, «оттолкнувшись от ЭВМ», информатика во главу угла ставит новые понятия -- информационный ресурс и его социальную полезность, отдачу. Поэтому по аналогии с термодинамикой информатику можно назвать информдинамикой -- наукой о развитии социальных систем под воздействием информационного ресурса (семантической информации).

В последнее время компьютеры «проникли» в жилища людей и постепенно становятся предметами первой необходимости. Есть два основных направления использования компьютеров дома.

Обеспечение нормальной жизнедеятельности жилища:

охранная автоматика, противопожарная автоматика, газоанализаторная автоматика;

управление освещенностью, расходом электроэнергии, отопительной системой, управление микроклиматом;

электроплиты, холодильники, стиральные машины со встроенными микропроцессорами.

Обеспечение информационных потребностей людей, находящихся в жилище:

заказы на товары и услуги;

процессы обучения;

общение с базами данных и знаний;

сбор данных о состоянии здоровья;

обеспечение досуга и развлечений;

обеспечение справочной информацией;

электронная почта, телеконференции;

Понятие, о котором пойдет речь, имеет широкое распространение в повседневной нашей жизни. Информация - слово емкое, относится к общенаучным категориями и занимает важное значение в разных науках.

Само слово пришло к нам из латинского языка и в переводе оно звучит как осведомление. На самом деле это понятие абстрактное и имеет несколько значений, которые зависят конкретно от чего-либо, что определяет виды информации. Но все-таки, значение слова в том, что это, прежде всего, набор конкретных сведений, сохраненных и распространенных. А они, в свою очередь, определяют знания, которые всегда выражаются в разных формах. Они окружают человека всегда и везде, так как без этого существование самой жизни невозможно.

Различные виды информации содержатся повсюду. Все мы знаем, что от семечка яблони вырастет только яблоня и ничего более. Это на генетическом уровне заложено в дереве, и изменить ничего нельзя. Воздух - это источник информации для всех деревьев (и не только): по его состоянию деревья могут определить время, когда надо пробуждаться к жизни. А возьмите Стая летит только определенным маршрутом, который задан в их генах, и свернуть с него для них не представляется возможным.

В современном мире данное определение по представлению, способу хранения и кодирования делится на следующие виды информации:

Графическая (иногда выражается изобразительными средствами);

Звуковая;

Текстовая;

Числовая;

Видеоинформация.

Первый указанный вид сведений существует в рисунках, картинах, фотографиях, схемах, чертежах. Известен уже со времени появления первых представителей будущего общества. Звуковая информация выражается в звуках. Это тоже достаточно древнее определение. Текстовая - это способ обозначения речи символами, то есть буквами. Аналогична ей числовая: кодирование сведений при помощи цифр. Последним изобретением в современном мире стала видеоинформация - способ хранения и передачи «живых» картинок мира. Кроме всех описанных видов сведений, существует еще (ощущения, запахи, вкусы и др.)

Любые виды информации требуют способов ее хранения и передачи, особенно на дальние расстояния. Вначале для этого использовались световые сигналы, затем - радиоволны. Со времени появления компьютеров хранить и передавать любые сведения стало значительно проще. Хранить информацию можно на различных видах электронных носителях: магнитные диски, лазерные диски, специальные устройства для хранения, типа флеш-карты. Каждый день появляются новые способы и устройства. Любое понятие обрабатывается без проблем при помощи компьютера. В обработку входит воспроизведение, передача, преобразование, запись данных. Для этого надо только уметь пользоваться компьютером и специально разработанными для таких действий программами.

И, конечно, основная информация современности представлена в мировой Интернет. Способы хранения и передачи здесь несколько отличаются от привычных и знакомых человеку. Так как ее объемы в Интернете очень большие, то и способы работы с ней особые. Программное обеспечение усовершенствуется каждый день, что дает возможность работать с такой информацией коллективно и постоянно.

Свойства

Информация, как мы уже говорили, это конкретный объект, и как все они, она обладает определенными свойствами, перечислять которые можно долго. Остановимся только на самых важных критериях. Итак, ценная и полезная информация в первую очередь должна быть:

Достоверной;

Объективной;

Актуальной;

Хранение информации - процесс такой же древний, как и жизнь человеческой цивилизации. Он имеет огромное значение для обеспечения поступательного развития человеческого общества (да и любой системы), многократного использования информации, передачи накапливаемого знания последующим поколениям.

Уже в древности человек столкнулся с необходимостью хранения информации. Примерами тому служат зарубки на деревьях, чтобы не заблудиться во время охоты; счет предметов с помощью камешков, узелков; изображение животных и эпизодов охоты на стенах пещер. Человеческое общество способно бережно хранить информацию и передавать ее от поколения к поколению. На протяжении всей истории знания и жизненный опыт отдельных людей накапливаются. По современным представлениям, чем больше информации накоплено и используется в обществе, тем выше уровень его развития. Накопление информации является основой развития общества. Когда объем накапливаемой ин- формации возрастает настолько, что ее становится просто невозможно хранить в памяти, человек начинает прибегать к помощи различного рода вспомогательных средств С рождением письменности возникло специальное средство фиксирования и распространения мысли в пространстве и во времени. Родилась документированная информация - рукописи и рукописные книги, появились своеобразные информационно-накопительные центры - древние библиотеки и архивы. Постепенно письменный документ стал и орудием управления (указы, приказы, законы).

Следующим информационным скачком явилось книгопечатание. С его возникновением наибольший объем информации стал храниться в различных печатных изданиях, и для ее получения человек обращается в места их хранения (библиотеки, архивы и пр.).

В настоящее время мы являемся свидетелями быстрого развития новых - автоматизированных - методов хранения информации с помощью электронных средств. Компьютер и средства телекоммуникации предназначены для компактного хранения информации с возможностью быстрого доступа к

Информация, предназначенная для хранения и передачи, как правило, представлена в форме документа. Под документом понимается объект на любом материальном носителе, где имеется информация, предназначенная для распространения в пространстве и времени (от лат. dokumentum - свидетельство. Первоначально это слово обозначало письменное подтверждение правовых отношений и событий). Основное назначение документа заключается в использовании его в качестве источника информации при решении различных проблем обучения, управления, науки, техники, производства, социальных отношений.

Одной из процедур хранения информации является ее накопление. Оно может быть пассивным и

активным.

При пассивном накоплении поступающая информация просто "складируется", при этом принимаются меры для обеспечения ее сохранности и повторного обращения к ней (считывания). Например, запись звуковой информации на магнитофонную ленту; стенографирование выступления; размещение

документов в архиве.

При активном накоплении происходит определенная обработка поступающей информации, имеющая много градаций, но в целом направленная на обогащение знания получателя информации. Например, систематизация и обобщение документов, поступивших на хранение, перевод содержания документов в другую форму, перенесение документов на другие носители совместно с процедурами сжатия данных, обеспечения защитными кодами и т.п.

Важно помнить, что хранение очень больших объемов информации оправдано только при условии, если поиск нужной информации можно осуществить достаточно быстро, а сведения получить в доступной форме. Иными словами, информация хранится только для того, чтобы впоследствии ее можно было легко отыскать, а возможность поиска закладывается при определении способа хранения информации и доступа к ней. Таким образом, первый вопрос, на который необходимо ответить при организации любого хранилища информации - как ее потом там искать.

Хранение информации

Наименование параметра Значение
Тема статьи: Хранение информации
Рубрика (тематическая категория) Технологии

Хранение и накопление являются одними из базовых действий, осуществляемых над информацией и главным средством обеспечения ее доступности в течение некоторого промежутка времени. Сегодня определяющим направлением реализации этой операции является концепция базы данных и склада (хранилища) данных.

База данных должна быть определœена как совокупность взаимосвязанных данных, используемых несколькими пользователями и хранящихся с регулируемой избыточностью. Хранимые данные не зависят от программ пользователœей, для модификации и внесения изменений применяется общий управляющий метод.

Банк данных - система, представляющая определœенные услуги по хранению и поиску данных определœенной группе пользователœей по определœенной тематике.

Система баз данных - совокупность управляющей системы, прикладного программного обеспечения, базы данных, операционной системы и технических средств, обеспечивающих информационное обслуживание пользователœей.

Хранилище данных (ХД, используют также термины Data Warehouse, ʼʼсклад данныхʼʼ, ʼʼинформационное хранилищеʼʼ) - это база, хранящая данные, агрегированные по многим измерениям. Основные отличия ХД от БД: агрегирование данных; данные из ХД никогда не удаляются; пополнение ХД происходит на периодической основе; формирование новых агрегатов данных, зависящих от старых - автоматическое; доступ к ХД осуществляется на базе многомерного куба или гиперкуба.

Альтернативой хранилищу данных является концепция витрин данных (Data Mart). Витрины данных - множество тематических БД, содержащих информацию, относящуюся к отдельным информационным аспектам предметной области.

Еще одним важным направлением развития баз данных являются репозитарии. Репозитарий, в упрощенном виде, можно рассматривать просто как базу данных, предназначенную для хранения не пользовательских, а системных данных. Технология репозитариев проистекает из словарей данных, которые по мере обогащения новыми функциями и возможностями приобретали черты инструмента для управления метаданными.

Каждый из участников действия (пользователь, группа пользователœей, ʼʼфизическая памятьʼʼ) имеет свое представление об информации

По отношению к пользователям применяют трехуровневое представление для описания предметной области: концептуальное, логическое и внутреннее (физическое).

Концептуальный уровень связан с частным представлением данных группы пользователœей в виде внешней схемы, объединяемых общностью используемой информации. Каждый конкретный пользователь работает с частью БД и представляет ее в виде внешней модели. Этот уровень характеризуется разнообразием используемых моделœей: модель ʼʼсущность-связьʼʼ (ER-модель, модель Чена), бинарные и инфологические модели, семантические сети.

Логический уровень является обобщенным представлением данных всœех пользователœей в абстрактной форме. Используются три вида моделœей: иерархические, сетевые и реляционные.

Сетевая модель является моделью объектов-связей, допускающей только бинарные связи ʼʼмногие к одномуʼʼ и использует для описания модель ориентированных графов.

Иерархическая модель является разновидностью сетевой, являющейся совокупностью деревьев (лесом).

Реляционная модель использует представление данных в виде таблиц (реляций), в ее базе лежит математическое понятие теоретико-множественного отношения, она базируется на реляционной алгебре и теории отношений.

Физический (внутренний) уровень связан со способом фактического хранения данных в физической памяти ЭВМ. Во многом определяется конкретным методом управления. Основными компонентами физического уровня являются хранимые записи, объединяемые в блоки; указатели, необходимые для поиска данных; данные переполнения; промежутки между блоками; служебная информация.

По наиболее характерным признакам БД можно классифицировать следующим образом:

по способу хранения информации:

‣‣‣ интегрированные;

‣‣‣ распределœенные;

по типу пользователя

‣‣‣ монопользовательские;

‣‣‣ многопользовательские;

по характеру использования данных:

‣‣‣ прикладные;

‣‣‣ предметные.

Сегодня при проектировании БД используют два подхода. Первый из них основан на стабильности данных, что обеспечивает наибольшую гибкость и адаптируемость к используемым приложениям. Применение такого подхода целœесообразно в тех случаях, когда не предъявляются жесткие требования к эффективности функционирования (объему памяти и продолжительности поиска), существует большое число разнообразных задач с изменяемыми и непредсказуемыми запросами.

Второй подход базируется на стабильности процедур запросов к БД и является предпочтительным при жестких требованиях к эффективности функционирования, особенно это касается быстродействия.

Другим важным аспектом проектирования БД является проблема интеграции и распределœения данных. Господствовавшая до недавнего времени концепция интеграции данных при резком увеличении их объёма, оказалась несостоятельной. Этот факт, а также увеличение объёмов памяти внешних запоминающих устройств при их удешевлении, широкое внедрение сетей передачи данных способствовало внедрению распределœенных БД. Распределœение данных по месту их использования может осуществляться различными способами:

1.Копируемые данные. Одинаковые копии данных хранятся в различных местах использования, так как это дешевле передачи данных. Модификация данных контролируется централизованно.

2.Подмножество данных. Группы данных, совместимые с исходной базой данных, хранятся отдельно для местной обработки.

3.Реорганизованные данные. Данные в системе интегрируются при передаче на более высокий уровень.

4.Секционированные данные. На различных объектах используются одинаковые структуры, но хранятся разные данные.

5.Данные с отдельной подсхемой. На различных объектах используются различные структуры данных, объединяемые в интегрированную систему.

6.Несовместимые данные. Независимые базы данных, спроектированные без координации, требующие объединœения.

Важное влияние на процесс создания БД оказывает внутреннее содержание информации. Существует два направления:

‣‣‣ прикладные БД, ориентированные на конкретные приложения, к примеру, должна быть создана БД для учета и контроля поступления материалов;

‣‣‣ предметные БД, ориентированные на конкретный класс данных, к примеру, предметная БД ʼʼМатериалыʼʼ, которая должна быть использована для различных приложений.

Конкретная реализация системы баз данных с одной стороны определяется спецификой данных предметной области, отраженной в концептуальной модели, а с другой стороны типом конкретной СУБД (МБД), устанавливающей логическую и физическую организацию.

Для работы с БД используется специальный обобщенный инструментарий в виде СУБД (МБД), предназначенный для управления БД и обеспечения интерфейса пользователя.

Основные стандарты СУБД:

‣‣‣ независимость данных на концептуальном, логическом, физическом уровнях;

‣‣‣ универсальность (по отношению к концептуальному и логическому уровням, типу ЭВМ);

‣‣‣ совместимость, неизбыточность;

‣‣‣ безопасность и целостность данных;

‣‣‣ актуальность и управляемость.

Существуют два базовых направления реализации СУБД: программное и аппаратное.

Программная реализация (в дальнейшем СУБД) представляет собой набор программных модулей, работает под управлением конкретной ОС и выполняет следующие функции:

· описание данных на концептуальном и логическом уровнях;

· загрузку данных;

· хранение данных;

· поиск и ответ на запрос (транзакцию);

· внесение изменений;

· обеспечение безопасности и целостности.

· обеспечивает пользователя следующими языковыми средствами:

o языком описания данных (ЯОД);

o языком манипулирования данными (ЯМД);

o прикладным (встроенным) языком данных (ПЯД, ВЯД).

Аппаратная реализация предусматривает использование так называемых машин баз данных (МБД). Их появление вызвано возросшими объёмами информации и требованиями к скорости доступа. Слово ʼʼмашинаʼʼ в терминœе МБД означает вспомогательный периферийный процессор.
Размещено на реф.рф
Термин ʼʼкомпьютер БДʼʼ - автономный процессор баз данных или процессор, поддерживающий СУБД.

Основные направления МБД:

‣‣‣ параллельная обработка;

‣‣‣ распределœенная логика;

‣‣‣ ассоциативные ЗУ;

‣‣‣ конвейерные ЗУ;

‣‣‣ фильтры данных и др.

Совокупность процедур проектирования БД можно объединить в четыре этапа. На этапе формулирования и анализа требований устанавливаются цели организации, определяются требования к БД. Эти требования документируются в форме, доступной конечному пользователю и проектировщику БД. Обычно при этом используется методика интервьюирования персонала различных уровней управления.

Этап концептуального проектирования состоит в описании и синтезе информационных требований пользователœей в первоначальный проект БД. Результатом этого этапа является высокоуровневое представление информационных требований пользователœей на базе различных подходов.

В процессе логического проектирования высокоуровневое представление данных преобразуется в структуре используемой СУБД. Полученная логическая структура БД должна быть оценена количественно с помощью различных характеристик (число обращений к логическим записям, объём данных в каждом приложении, общий объём данных и т.д.). На базе этих оценок логическая структура должна быть усовершенствована с целью достижения большей эффективности.

На этапе физического проектирования решаются вопросы, связанные с производительностью системы, определяются структуры хранения данных и методы доступа.

Весь процесс проектирования БД является итеративным, при этом каждый этап воспринимается как совокупность итеративных процедур, в результате выполнения которых получают соответствующую модель.

Взаимодействие между этапами проектирования и словарной системой крайне важно рассматривать отдельно. Процедуры проектирования могут использоваться независимо в случае отсутствия словарной системы. Сама словарная система может рассматриваться как элемент автоматизации проектирования.

Этап расчленения БД связан с разбиением ее на разделы и синтезом различных приложений на базе модели. Основными факторами, определяющими методику расчленения, являются: размер каждого раздела (допустимые размеры); модели и частоты использования приложений; структурная совместимость; факторы производительности БД. Связь между разделом БД и приложениями характеризуется идентификатором типа приложения, идентификатором узла сети, частотой использования приложения и его моделью.

Модели приложений бывают классифицированы следующим образом:

1. Приложения, использующие единственный файл.

2. Приложения, использующие несколько файлов, в том числе:

‣‣‣ допускающие независимую параллельную обработку;

‣‣‣ допускающие синхронизированную обработку.

Сложность реализации этапа размещения БД определяется многовариантностью. По этой причине на практике рекомендуется в первую очередь рассмотреть возможность использования определœенных допущений, упрощающих функции СУБД, к примеру, допустимость временного рассогласования БД, осуществление процедуры обновления БД из одного узла и др.
Размещено на реф.рф
Такие допущения оказывают большое влияние на выбор СУБД и рассматриваемую фазу проектирования.

Средства проектирования и оценочные критерии используются на всœех стадиях разработки. Любой метод проектирования (аналитический, эвристический, процедурный), реализованный в виде программы, становится инструментальным средством проектирования, практически не подверженным влиянию стиля проектирования.

Сегодня неопределœенность при выборе критериев является наиболее слабым местом в проектировании БД. Это связано с трудностью описания и идентификации бесконечного числа альтернативных решений. При этом следует иметь в виду, что существует много признаков оптимальности, являющихся неизмеримыми, им трудно дать количественную оценку или представить их в виде целœевой функции. По этой причине оценочные критерии принято делить на количественные и качественные. Наиболее часто используемые критерии оценки БД, сгруппированные в такие категории, представлены ниже.

Количественные критерии: время, крайне важно е для ответа на вопрос, стоимость модификации, стоимость памяти, время на создание, стоимость на реорганизацию.

Качественные критерии: гибкость, адаптивность, доступность для новых пользователœей, совместимость с другими системами, возможность конвертирования в другую вычислительную среду, возможность восстановления, возможность распределœения и расширения.

Трудность в оценке проектных решений связана также с различной чувствительностью и временем действия критериев. К примеру, критерий эффективности обычно является краткосрочным и чрезвычайно чувствительным к проводимым изменениям, а такие понятия, как адаптируемость и конвертируемость, проявляются на длительных временных интервалах и менее чувствительны к воздействию внешней среды.

Предназначение склада данных - информационная поддержка принятия решений, а не оперативная обработка данных. Потому база данных и склад данных не являются одинаковыми понятиями.

Хранение информации - понятие и виды. Классификация и особенности категории "Хранение информации" 2017, 2018.

Лучшие статьи по теме