Как настроить смартфоны и ПК. Информационный портал
  • Главная
  • Железо
  • Кран с автоматическим включением воды. Проекционно-емкостной сенсорный экран

Кран с автоматическим включением воды. Проекционно-емкостной сенсорный экран

Каждый год современная сантехника становится все более функциональной. На прилавках уже запросто можно найти сенсорный смеситель для раковины. Подобные устройства сами определяют момент подачи и отключения воды. Такое улучшение существенно увеличивает комфортность использования смесителей этого типа, а также дает возможность существенно сэкономить воду. Далее речь пойдет о том, какими особенностями обладает сенсорный кран для воды, и о разумности его использования.

Бесконтактный смеситель для раковины можно устанавливать в любом помещении, в которое подведена вода. Как правило, такими помещениями являются кухня и ванная комната. Принцип работы крана с инфракрасным датчиком достаточно прост: вода открывается в тот самый момент, когда к нему поднесена рука. Как только вы уберете руку, то режим подачи воды прекратится.

ИК-датчик срабатывает на строго определенном расстоянии. Оно обычно составляет около 30 см. У некоторых устройств есть возможность корректировки расстояния чувствительности сенсора, поэтому инфракрасный датчик можно настроить, как будет наиболее удобно. Также есть возможность определять время задержки, через какой отрезок времени будет включаться и отключаться вода после того, как будет убрана рука из-под крана.

К сведению: функция точной настройки, как правило, присутствует в моделях дорогих смесителей для умывальника (например, Grohe Eurosmart Cosmopolitan E 36325000). Если ваш выбор остановился на каком-то бюджетном варианте, на подобные улучшения не стоит рассчитывать.

Сенсорный смеситель предназначен для автоматической подачи воды (при помощи работы электромагнитного клапана) при попадании в зону его действия рук и других предметов. С данным устройством уже можно перестать беспокоится по поводу отключенного крана во время вашего отсутствия дома. Кроме того, устройство перекрытия подачи воды отличается особой надежностью и предотвращает любые утечки.

Многие модели бесконтактных кранов Гроэ позволяют настраивать воду до оптимальной температуры. Один раз настроив смеситель для воды с датчиком движения, можно навсегда забыть об регулярных настройках.

Конструктивные особенности смесителя с ИК датчиком

Внешне сенсорный смеситель отличается от своих собратьев отсутствием лишних деталей. Вся конструкция представляет собой, только излив без всяких ручек, вентилей и рычагов для подачи и регулировки воды. Главным отличием этого устройства состоит в фотоэлементе, ИК-датчике, встроенном в корпус.

Бесконтактный смеситель бывает двух видов конструкции, в зависимости от типа датчика:

  1. Прибор с оптоэлектронным датчиком. Он оборудуется фотоэлементом реагирующем на наличие движения в рабочей зоне. Датчик обычно располагается снизу излива. По сигналу поступающему с фотоэлемента кран открывается или закрывается. Есть возможность настроить чувствительность и временную задержку. Стоят подобные устройства довольно дорого, поэтому в быту их можно встретить довольно редко. Также при их эксплуатации, были замечены частые ложные срабатывания.
  2. Автоматическое устройство с инфракрасным датчиком. Более распространенный вариант. Принцип работы заключается в отслеживании датчиком изменения ИК излучения. В момент попадания какого-либо предмета в поле действия датчика, он производит замер параметров. На управляющий инфракрасный блок отдается команда о включении или выключении крана.

Водопроводные краны с ик датчиком для открывания воды, состоят из следующих элементов конструкции:

  1. ИК-датчик. Располагается на рабочей панели конструкции, под смесителем.
  2. Блок управления, принимающий от датчика сигналы.
  3. Адаптер питания, обеспечивающий устройство постоянным питанием.
  4. Аккумулятор (батарейки), используется для управления устройством при отсутствии электричества. Довольно часто можно встретить что электропитание кранов с ИК-датчиком осуществляется только при помощи батареек или аккумуляторов.
  5. Водный фильтр. Регулировки температуры воды.
  6. Пульт управления. Обычно есть у дорогих моделей. Наличие его в комплектации не является обязательным.

Вода открывается в момент поднятия сердечника мембраной. Электрическое напряжения подается в зону электромагнитного поля, которое влияет на сердечник. Обратный клапан служит для предотвращения обратного перетока.


Преимущества и недостатки бесконтактного смесителя

Преимущества, имеющиеся у смесителя с ИК-датчиком:

  1. Гигиеничность. Для того чтобы вымыть руки, не требуется прикасаться руками к вентилю. Нужно просто поднести к крану руки. Это очень удобно в местах с большим скоплением людей. Естественно, большое количество людей, прикасаясь к крану, оставляют на нем уйму бактерий.
  2. Краны, чей принцип работы заключается в использовании вентилей или рычагов, быстрее выходят из строя, ввиду быстрого износа подвижных частей механизма. В особенности если они расположены в общественных санузлах. Сенсорный смеситель не обладает подобными недостатками и способен прослужить намного дольше.
  3. По статистике, сенсорный кран тратит на 30% меньше воды.
  4. Безопасность эксплуатации. Сенсорный кран невозможно забыть выключить. Он сделает это самостоятельно. Исходя из этого, можно заключить, что опасность потопа в вашем жилище предотвращена.
  5. Есть возможность регулировки температуры воды. Причем настройка, которую вы установили при помощи регулятора, не собьется. В момент следующего включения кран даст воду установленной вами температуры.
  6. Сенсорный кран отлично гармонирует с дизайном любой кухни или ванной. Он не только впишется в интерьер, но и позволит его украсить своим внешним видом.
  7. Простота ухода. Данный прибор не требует частой чистки ввиду его минимального контакта с пользователями.


Несмотря на огромное количество преимуществ, сенсорные краны имеют и свои минусы:

  1. Цена такого устройства довольно высокая. Сенсорные смесители на порядок дороже обычных рычажных.
  2. Смеситель с ИК-датчиком неудобен для эксплуатации в ванной комнате в виду необходимости постоянно держать руку в рабочей зоне датчика. В случае необходимости наполнить ванну или помыться в душе, с данным устройством это будет затруднительно.
  3. Неудобство также заключается в наличии одной и той же температуры воды. На кухне, зачастую, требуется, чтобы под рукой была вода разной температуры, которая предназначена для определенных задач. А постоянно менять регулировку довольно долго и трудоемко.

Совет: Если все-таки вы решили смонтировать такой кран в ванной, пусть его местом установки будет только умывальник. Для ванны оптимальным вариантом будет использование обычного механического смесителя, который даст возможность нормально воспользоваться душем или наполнить ванну без лишних проблем.


Как выбрать кран с сенсором для раковины?

При выборе крана с датчиком для рук нужно придерживаться следующих рекомендаций, которые проверены на практике:

  1. Лучше всего приобретать кран, у которого можно настраивать время задержки до и после реакции ИК-датчика.
  2. Хорошо если есть возможность настроить ИК-датчик смесителя вручную. Это даст возможность комфортно установить зону срабатывания датчика. По умолчанию, зона срабатывания датчика 30 см.
  3. Возможность настройки температуры воды является обязательным условием. Приобретать рекомендуется только те модели, которые оборудованы соответствующим вентилем (Grohe Eurosmart CE с термостатом 36333000).
  4. Подбирайте модель и цвет устройства таким образом, чтобы он гармонировал с окружающим его интерьером. Например, если в ванной установлен еще один смеситель, то он должен сочетаться с новым устройством.
  5. Сенсорный смеситель бывает для одной или двух труб. То есть, первый вариант можно подключить только к горячей или только холодной воде. Во втором случае к смесителю можно подключить сразу 2 трубопровода. Если у вас есть два подвода, холодной и горячей, воды, целесообразно выбрать второй вариант.
  6. Предпочтение отдавать рекомендуется известным производителям, даже в том случае если оборудование стоит дороже (Hansgrohe, Grohe, Lemark, Oras, Bravat). Это уменьшит риск покупки некачественного товара.
  7. Обратите внимание на стоимость. Чаще всего ее размер зависит от функциональности, внешнего вида, габаритов, технических возможностей.

Уже практически весь мир высоких технологий захватила мода на сенсорные дисплеи. Сейчас практически на каждом плеере или сотовом телефоне имеется тачскрин, а общая сфера применения такой технологии производства дисплеев является намного более значительной. Сейчас на рынке представлены разные виды сенсорных экранов, работа которых зависит от того, какая технология ими используется.

Является прибором, ориентированным на ввод и вывод информации посредством дисплея, чувствительного к нажатиям. На экранах современных устройств не только демонстрируются изображения, но и появляются возможности вступать во взаимодействие с ним. Изначально подобная связь обеспечивалась посредством привычных для всех кнопок, потом появился иной вид манипулятора, названный мышью, сильно облегчивший процесс. Для работы этого прибора требуется горизонтальная поверхность, что совсем неудобно при использовании мобильного телефона. Тут и пригодилось дополнение к обычному экрану в виде тачскрина. Сенсорный элемент по своей сути не является экраном, он представляет собой дополнительное устройство, которое размещается снаружи поверх дисплея, при этом оно защищает и предназначается для ввода координат посредством прикосновения к нему устройства ввода или пальца. Существуют различные типы сенсорных экранов. Стоит рассмотреть их немного подробнее.

Типы сенсорных экранов и их использование в электронных устройствах

Первоначально технология тачскрина была использована для карманных компьютеров, однако на данный момент она получила заметно более широкое применение, от плееров до фотоаппаратов. Так как подобный механизм управления является очень удобным, он применяется для современных банкоматов, планшетных терминалов, различных электронных справочников и прочих устройств. Технология сенсорного экрана весьма удобна в тех случаях, когда необходим мгновенный доступ к управляемому устройству без какой-то подготовки и с максимальной интерактивностью: происходит смена элементов управления в зависимости от того, какая функция активируется.

Типы сенсорных экранов: емкостные, резистивные, проекционно-емкостные и прочие (менее популярные). Помимо этих видов существуют еще и инфракрасные и матричные дисплеи, однако их точность настолько невысока, что их сфера применения совсем ограничена.

Резистивные сенсорные экраны

Наиболее простыми устройствами являются именно эти дисплеи. Подобная панель включает в себя проводящую подложку и пластиковую мембрану, которые обладают определенным сопротивлением. Когда осуществляется нажатие на мембрану, производится замыкание с подложкой, что вынуждает проводящую электронику реагировать на сопротивление, которое возникло между краями этих элементов, вычисляя после этого координаты точки, на которую было произведено нажатие. Такие экраны весьма просто устроены, они дешевы, а также обладают отличной устойчивостью к загрязнениям. Основное достоинство такого типа сенсора состоит в том, что он чувствителен ко всяким прикосновениям. Недостаток заключается в высокой чувствительности к механическим повреждениям, что требует использования специальной Такие панели отлично работают при низких температурах.

Совсем по-иному работает технология емкостного сенсора. Тут за основу взят принцип того, что предмет большой емкости может проводить электрический ток. На стекло наносится электропроводный слой, а на все четыре угла подается переменное напряжение. При касании экрана заземленным предметом большей мощности происходит утечка тока. Управляющая электроника регистрирует эти утечки, определяя координаты.

В данной статье были кратко и понятно описаны основные типы сенсорных экранов, получивших наибольшую популярность.

iPhone 2G был первым мобильным телефоном, управление которым полностью строилось на взаимодействии с сенсорным экраном. С момента его презентации прошло больше десяти лет, но многие из нас все еще не знают, как устроен Touchscreen. А ведь мы сталкиваемся с этим интуитивным средством ввода не только в смартфонах, но и в банкоматах, платежных терминалах, компьютерах, автомобилях и самолетах - буквально повсюду.
До тачскринов самым распространенным интерфейсом для ввода команд в электронные устройства были различные клавиатуры. Хотя, кажется, что у них с тачскринами нет ничего общего, на самом деле то, насколько сенсорный экран по принципам работы схож с клавиатурой, может удивить. Давайте рассмотрим их устройство в деталях.

Клавиатура представляет собой печатную плату, на которой устанавливается несколько рядов переключателей-кнопок. Вне зависимости от их конструкции, мембранной или механической, при нажатии каждой из клавиш происходит одно и то же. На компьютерной плате под кнопкой замыкается электрическая цепь, компьютер регистрирует прохождение тока в этом месте схемы, «понимает», какая клавиша нажата и выполняет соответствующую ей команду. В случае с сенсорным экраном происходит почти тоже самое.

Существует порядка десятка различных видов сенсорных экранов, однако большинство из этих моделей или давно устарело и не используется, или относится к экспериментальным и вряд ли когда-нибудь появится в серийных устройствах. Прежде всего, я расскажу об устройстве актуальных технологий, тех из них, с которыми постоянно взаимодействуете или хотя бы можете столкнуться в повседневной жизни.

Резистивный сенсорный экран

Резистивные сенсорные экраны изобретены еще в 1970 году и с тех пор изменились мало.
В дисплеях с такими сенсорами над матрицей располагается пара дополнительных слоев. Впрочем, оговорюсь, матрица здесь вовсе не обязательна. Первые резистивные сенсорные устройства не были экранами вовсе.

Нижний сенсорный слой состоит из стеклянной основы и называется резистивным слоем. На него наносится прозрачное металлическое покрытие, хорошо передающее ток, например, из такого полупроводника, как оксид индия-олова. Верхний слой тачскрина, с которым взаимодействует пользователь нажимая на экран, сделан из гибкой и упругой мембраны. Он называется проводящим слоем. В пространстве между слоями оставляют воздушную прослойку, либо равномерно усеивают его микроскопическими изолирующими частицами. По краям к сенсорному слою подводится четыре, пять или восемь электродов, связывающих его с датчиками и микроконтроллером. Чем больше электродов, тем выше чувствительность резистивного такчскрина, поскольку изменение напряжения на них постоянно отслеживается.


Вот экран с резистивным тачскрином включен. Пока ничего не происходит. Электрический ток свободно течет по проводящему слою, но когда пользователь дотрагивается до экрана, мембрана сверху прогибается, изолирующие частицы расступаются, и она касается нижнего слоя тачскрина, вступает в контакт. За этим следует изменение напряжения разом на всех электродах экрана.

Контроллер тачскрина обнаруживает изменения напряжения и считывает показания с электродов. Четыре, пять, восемь значений и все разные. По разнице в показаниях между правым и левым электродами микроконтроллер вычислит X-координату нажатия, а по различиям в напряжении на верхнем и нижнем электродах, определит Y-координату и, таким образом, сообщит компьютеру точку, в которой слои сенсорного слоя экрана соприкоснулись.

Резистивные сенсорные экраны могут похвастать длинным перечнем недостатков. Так, они в принципе не способны распознать двух одновременных нажатий, не говоря уже о большем числе. Они плохо ведут себя на холоде. Из-за необходимости в прослойке между слоями сенсора, матрицы таких экранов заметно теряют в яркости и контрастности, склонны бликовать на солнце, и в целом выглядят заметно хуже. Тем не менее, там, где качество изображения играет второстепенную роль, их продолжают применять в силу устойчивости к загрязнениям, возможности использования в перчатках и, что самое главное, низкой стоимости.

Такие средства ввода повсеместно монтируются в недорогих массовых устройствах, вроде информационных терминалов в общественных местах и все еще встречаются в устаревающих гаджетах, типа дешевых MP3-плееров.

Инфракрасный сенсорный экран

Следующим, куда менее распространенным, но, тем не менее, актуальным вариантом сенсорного экрана является инфракрасный тачскрин. Он не имеет ничего общего с резистивным сенсором, хотя и выполняет схожие функции.

Инфракрасный тачскрин сконструирован из массивов светодиодов и светочувствительных фотоэлементов, расположенных на противоположных сторонах экрана. Светодиоды подсвечивают поверхность экрана невидимым инфракрасным светом, образуя на ней нечто вроде паутины или координатной сетки. Это напоминает охранную сигнализацию, какой ее показывают в шпионских боевиках или компьютерных играх.

Когда к экрану что-то прикасается, не важно палец это, рука в перчатке, стилус, или карандаш, два или более луча прерываются. Фотоэлементы фиксируют это событие, контроллер тачскрина выясняет, какие из них недополучают инфракрасный свет и по их положению вычисляет зону экрана, в которой возникло препятствие. Остальное - сопоставить прикосновение с тем, какой элемент интерфейса находится на экране в этом месте - задача программного обеспечения.

Сегодня с инфракрасными сенсорными экранами можно столкнуться в тех гаджетах, чьи экраны обладают нестандартной конструкцией, там, где добавлять дополнительные сенсорные слои технически сложно или нецелесообразно - в электронных книгах на базе дисплеев E-link, например, Amazon Kindle Touch и Sony Ebook. Кроме того, устройства с подобными сенсорами из-за простоты и ремонтопригодности приглянулись военным.

Емкостный сенсорный экран

Если в резестивных сенсорных экранах компьютер регистрирует изменение проводимости, последовавшее за нажатием на экран, непосредственно между слоями сенсора, то емкостные сенсоры фиксируют прикосновение непосредственно.

Человеческое тело, кожа - хорошие проводники электричества и обладают электрическим зарядом. Обычно это замечаешь пройдясь по шерстяному ковру или сняв любимый свитер, а затем прикоснувшись к чему-либо металлическому. Все мы знакомы со статическим электричеством, испытывали его действие на себе и видели крошечные искры, срывающиеся с наших пальцев в темноте. Более слабый, незаметный обмен электронами между человеческим телом и различными проводящими поверхностями происходит постоянно и именно его фиксируют емкостные экраны.

Первые такие тачскрины назывались поверхностно-емкостными и были логичным развитием резистивных сенсоров. В них всего один проводящий слой, похожий на тот, что использовался ранее, устанавливался прямо поверх экрана. К нему также присоединялись чувствительные электроды, на этот раз по углам сенсорной панели. Следящие за напряжением на электродах датчики и их программное обеспечение были сделаны заметно чувствительнее и теперь могли улавливать малейшие изменения в течении электрического тока по экрану. Когда палец (другой проводящий ток предмет, например, стилус) касается поверхности с поверхностно-емкостным тачскрином, проводящий слой немедленно начинает обмениваться с ним электронами, а микроконтроллер это замечает.

Появление поверхностно-емкостных тачскринов стало прорывом, однако из-за того, что нанесенный прямо поверх стекла токопроводящий слой было легко повредить, они не были пригодны для устройств нового поколения.


Для создания первого iPhone потребовались проекционно-емкостные сенсоры. Этот тип тачскринов быстро стал наиболее распространенным в современной потребительской электронике: смартфонах, планшетах, ноутбуках, моноблоках и прочих бытовых устройствах.

Верхний слой экрана с тачскрином этого типа выполняет защитную функцию и может быть сделан из закаленного стекла, например, знаменитого Gorilla Glass. Ниже располагаются тончайшие электроды, образующие сетку. Поначалу их накладывали друг на друга в два слоя, затем для уменьшения толщины экрана стали располагать на одном уровне.

Выполненные из полупроводниковых материалов, в том числе уже упоминавшегося оксида индия-олова, эти токопроводящие волоски создают электростатическое поле в местах своего пересечения.


Когда палец касается стекла, за счет электропроводных свойств кожи он искажает локальное электрическое поле в местах ближайших пересечений электродов. Это искажение может быть измерено, как изменение емкости в отдельно взятой точке сетки.

Поскольку массив электродов делается достаточно мелким и плотным, такая система способна отслеживать касание очень точно и без проблем улавливает сразу несколько прикосновений. Кроме того, отсутствие дополнительных слоев и прослоек в бутерброде из матрицы, сенсора и защитного стекла положительно сказывается на качестве изображения. Правда, по той же причине, разбитые экраны, как правило, заменяются полностью. Однажды собранный воедино, экран с проекционно-емкостным сенсором чрезвычайно сложно поддается ремонту.

Сейчас преимущества проекционно-емкостных тачскринов не звучат, как что-то удивительное, но на момент презентации iPhone они обеспечили технологии колоссальный успех, несмотря на объективные минусы - чувствительность к загрязнениям и влажности.

Чувствительные к давлению сенсорные экраны - 3D Touch

Идейным предшественником сенсорных экранов, чувствительных к давлению, стала фирменная технология Apple, под названием Force Touch, применявшаяся в умных часах компании, MacBook, MackBook Pro и Magic Trackpad 2.

Опробовав на этих устройствах интерфейсные решения и различные сценарии использования распознавания силы нажатия, Apple начала внедрение похожего решения в свои смартфоны. В iPhone 6s и 6s Plus распознавание и измерение давления стало одной из функций тачскрина и получило коммерческое наименование 3D Touch.


Хотя в Apple и не скрывали, что новая технология лишь модифицирует привычные нам емкостные сенсоры и даже показали схему, в общих чертах объяснявшую принцип ее действия, подробности об устройстве сенсорных экранов с 3D Touch появились только после того, как первые iPhone нового поколения были разобраны энтузиастами.

Для того, чтобы научить емкостной сенсорный экран распознавать нажатия и различать несколько степеней давления, инженерам из Купертино потребовалось пересобрать бутерброд сенсорного экрана. Они внесли изменения в отдельные его части и добавили к емкостному еще один, новый слой. И, что интересно, делая это, они явно вдохновлялись устаревшими резистивными экранами.


Сетка емкостных сенсоров осталась без изменений, однако она была перенесена назад, ближе к матрице. Между набором электрических контактов, следящих за местом прикосновения к дисплею, и защитным стеклом был интегрирован дополнительный массив из 96 отдельных датчиков.


Его задача заключалась не в том, чтобы определить местоположение пальца на экране iPhone. С этим по-прежнему отлично справлялся емкостный тачскрин. Эти пластины необходимы для обнаружения и измерения степени изгиба защитного стекла. Компания Apple специально для iPhone заказала у Gorilla Glass разработку и производство такого защитного покрытия, которое бы сохраняло прежнюю прочность и, в то же время, было достаточно гибким, чтобы экран мог реагировать на давление.

На этой разработке можно было закончить материал, повествующий о сенсорных экранах, если бы не еще одна технология, которой несколько лет назад прочили большое будущее.

Волновые сенсорные экраны

Неожиданно, но они не используют электричество и даже не имеют ничего общего со светом. Технология Surface Acoustic Wave system для определения точки прикосновения применяет поверхностные акустические волны, распространяющиеся вдоль поверхности экрана. Ультразвук, создаваемый пьезоэлектрическими элементами по углам, слишком высок для того, чтобы его мог уловить человеческий слух. Он распространяется взад и вперед, многократно отражаясь от краев экрана. Звук анализируется на предмет аномалий, создаваемых прикасающимися к экрану предметами.

Недостатков у волновых сенсорных экранов не много. Они начинают ошибаться после сильного загрязнения стекла и в условиях сильного шума, но, при этом, в экранах с таким сенсором нет дополнительных слоев, увеличивающих толщину и влияющих на качество изображения. Все компоненты сенсора прячутся под рамкой дисплея. Кроме того, волновые сенсоры позволяют точно подсчитывать площадь соприкосновения экрана с пальцем или другим предметом и по этой площади косвенно рассчитать силу нажатия на экран.

Мы уже вряд ли столкнемся с этой технологией в смартфонах из-за нынешней моды на безрамочные дисплеи, но несколько лет назад компания Samsung экспериментировала с Surface Acoustic Wave system в моноблоках, а в качестве комплектующих для игровых автоматов и рекламных терминалов панели с акустическими тачскринами продаются и сейчас

Вместо заключения

За очень краткий срок тачскрины завоевали мир электроники. Несмотря на отсутствие тактильного отклика и другие свои недостатки, сенсорные экраны стали очень интуитивным, понятным и удобным методом ввода информации в компьютеры. Не в последнюю очередь, своим успехом они обязаны разнообразием технических реализаций. Каждая со своими преимуществами и недостатками, подходящая для своего класса устройств. Резистивные экраны для самых дешевых и массовых гаджетов, емкостные экраны для смартфонов и планшетов и настольных компьютеров с которыми мы взаимодействуем каждый день и инфракрасные тачскрины для тех случаев, когда конструкцию экрана следует оставить в неприкосновенности. В заключение, остается лишь констатировать, что сенсорные экраны с нами надолго, замены им в ближайшем будущем не предвидится. В наше время ни у кого не возникает сомнений в том, что сенсорный экран на вашем телефоне - штука удобная. Такие дисплеи используются для создания множества устройств - планшетов, мобильных телефонов, ридеров, справочных устройств и кучи другой периферии. Сенсорный экран позволяет заменить многочисленные механические кнопки, и это очень удобно, поскольку в этом случае они объединяют и дисплей, и высококачественное устройство ввода. Уровень надежности устройств значительно повышается, ведь механические части отсутствуют. В настоящее время сенсорные экраны принято подразделять на несколько видов: резистивные (бывают четырех-, пяти-, восьмипроводными), проекционно-емкостные, матрично-емкостные, оптические и тензометрические. Кроме того, дисплеи могут создаваться на основе поверхностно-акустических волн либо инфракрасных лучей. Насчитывается уже несколько десятков запатентованных технологий. В наше время чаще всего используются емкостные и резистивные экраны. Их и рассмотрим подробнее.

Резистивный экран.

Самый простой вид – это четырехпроводной, который состоит из специальной стеклянной панели, а также пластиковой мембраны. Пространство между стеклом и пластиковой мембраной обязательно должно заполняться микроизоляторами, которые могут надежно изолировать токопроводящие поверхности друг от друга. По всей поверхности слоев установлены электроды, являющиеся тонкими пластинками, сделанными из металла. В заднем слое электроды находятся в вертикальном положении, а в переднем слое – в горизонтальном для того, чтобы могло производиться вычисление координат. Если на дисплей нажать, то панель и мембрана автоматически замкнутся, а специальный датчик будет воспринимать нажатие, преобразовывая его в сигнал. Наиболее усовершенствованным видом считаются восьмипроводные дисплеи, которые отличаются высоким уровнем точности. Однако данные экраны отличаются низким уровнем надежности и недолговечностью. Если же важно, чтобы дисплей был надежным, необходимо остановить выбор на пятипроводном его виде.

1 - стеклянная панель, 2 - резистивное покрытие, 3 - микроизоляторы, 4 - пленка с проводящим покрытием

Матричные экраны.

Конструкция похожа на резистивный дисплей, хотя она и была упрощена. На мембрану специально нанесли вертикальные проводники, а на стекло – горизонтальные. Если нажать на дисплей, то проводники обязательно соприкоснутся, замкнутся крест-накрест. Процессор может отследить, какие проводники замкнулись, и это помогает обнаружить координаты нажатия. Матричные экраны нельзя назвать высокоточными, поэтому их уже продолжительное время не используют.


Емкостные экраны.

Конструкция емкостных экранов является достаточно сложной, и основана она на том, что тело человека и дисплей вместе образуют конденсатор, проводящий переменный ток. Подобные экраны выполняются в виде стеклянной панели, которую покрывают резистивным материалом для того, чтобы электрический контакт не затруднялся. Электроды располагаются по четырем углам дисплея, и на них подано переменное напряжение. Если же коснуться поверхности дисплея, то будет происходить утечка переменного тока через вышеупомянутый \"конденсатор\". Это регистрируется датчиками, после чего информацию обрабатывает микропроцессор устройства. Емкостные дисплеи могут выдержать до 200 миллионов нажатий, они отличаются средним уровнем точности, но, увы, они боятся любого влияния жидкостей.

Проекционно-емкостные экраны.

Проекционно-емкостные экраны могут, в отличие от предыдущих рассмотренных типов, способны определить сразу несколько нажатий. На внутренней стороне всегда есть специальная сетка элетродов, и во время соприкосновения с ними обязательно будет образован конденсатор. В данном месте будет изменена электрическая емкость. Контроллер сможет определить точку, в которой пересеклись электроды. Затем происходят вычисления. Если сразу нажать экран в нескольких местах, то будет образован не один конденсатор, а несколько.


Экран с сеткой инфракрасных лучей.

Принцип работы подобных дисплеев является простым, и он в какой-то степени похож на матричный. В этом случае проводники заменяют специальными инфракрасными лучами. Вокруг данного экрана проходит рамка, в которой есть встроенные излучатели, а также приемники. Если нажать на экран, то некоторые лучи будут перекрываться, и они не могут достигнуть собственного пункта назначения, а именно приемника. В итоге контроллер вычисляет место контакта. Подобные экраны могут пропускать свет, они долговечны, поскольку чувствительного покрытия нет и механического касания не происходит вообще. Однако такие дисплеи в настоящий момент не отвечают высокой точности и боятся любых загрязнения. Зато время диагональ рамки такого дисплея может достигать 150 дюймов.


Сенсорные экраны на поверхностно-акустических волнах.

Данный дисплей всегда выполняется в виде стеклянной панели, в которую встроены пьезоэлектрические преобразователи, расположенные по разным углам. По периметру также находятся отражающие, приемные датчики. Контроллер отвечает за формирование сигналов, частота которых является высокой. После этого сигналы всегда посылаются на пьезоэлектрические преобразователя, которые могут преобразовывать поступившие сигналы в акустические колебания, отражающиеся впоследствии от отражающих датчиков. Затем волны могут улавливаться приемниками, повторно посылаться на пьезоэлектрические преобразователи, после чего превращаются в электрический сигнал. Если нажать на дисплей, то энергия акустических волн будет частично поглощена. Приемники отличаются восприимчивостью к подобным изменениям, а процессор может вычислить точки касания. Основным преимуществом является то, что сенсорные экраны на поверхностно-акустических волнах отслеживают координаты точки нажатия, силу нажатия. Дисплеи данного вида отличаются долговечностью, ведь они могут выдержать 50 миллионов касаний. Чаще всего их используют для игровых автоматов, справочных системах. Следует учитывать то, что работа такого дисплея может быть неточной в условии окружающих шумов, вибрации, акустического загрязнения.

Оборудование ванной комнаты или кухни последними новинками из мира сантехники – не столько дань моде, сколько разумный подход к потреблению природных ресурсов. Поэтому для экономии можно использовать в доме сенсорный кран для воды, который не только поможет сберечь финансы, но и станет удобным помощником в ежедневных делах.

Особенности

Внешний вид сенсорного крана вызывает навязчивый вопрос – а как же регулировать поток воды, включать и выключать устройство? Столкнувшись с этим, будущие владельцы этого чуда техники должны знать хотя бы минимум информации о принципе действия сенсорного крана для воды.

Устройство представляет собой монолитный кран без каких-либо вентилей и других способов регуляции струи воды. Действие осуществляется благодаря фотоэлементам и датчикам ультразвуковых и инфракрасных сигналов. Именно они улавливают присутствие возле крана посторонних предметов. Все принимающие сигналы компонента установлены в самом кране. Прием сигнала осуществляется в так называемой зоне чувствительности, которая у каждого устройства различна. Средняя чувствительность – приблизительно 25 см. Это означает, что датчик сработает при приближении к нему предмета на расстояние 25 см и ближе. Чтобы отрегулировать температуру воды, сенсорный кран имеет специальные вентили.

Питание устройства осуществляется от съемных элементов питания, которых хватает приблизительно на 2 года. После этого можно сделать несложную замену батарейки и кран будет работать снова. Одной батарейки хватает приблизительно на четыре тысячи включений.

Сенсорный кран – хороший водоэконом, который не даст забыть про включенную воду. Он сам выключит ее, когда хозяин отдаляется от умывальника.

Принцип работы устройства

Сенсорный кран приводится в работу индукционным датчиком и блоком управления . Датчиком создается магнитное поле , которое улавливает попадание в свои границы любого предмета . При движении предмета в зоне чувствительности блок управления получает сигнал о необходимости подачи воды . Когда магнитное поле перестает улавливать движение , блок питания прекращает водяной ток .

Подача воды осуществляется соленоидным клапаном . При обнаружении движения магнитное поле подает электрическое напряжение , влияющее на сердечник соленоидного клапана . В ходе поднятия сердечника клапана и его мембраны и происходит подача воды . Если элементы питания разряжаются и сигналы ослабевают , то подача воды прекратится .

Выпускается два вида в зависимости от типа питания. Одни можно подключать прямо в розетку, а вторые требуют установки батареек. С целью безопасности лучше пользоваться кранами с батарейками, чем напрямую подключенными в электросеть.

Принцип работы

Этапы установки

Преимущества и недостатки

Как и любая вещь, сенсорные конструкции имеют преимущества, но и не лишены недостатков. Для лучшей визуализации характеристику можно представить в виде таблицы.

Преимущества Недостатки
Комфорт и удобство – неоспоримые положительные качества устройств. Нет необходимости прикасаться грязными руками к поверхности гусака и пачкать его. Определённые неудобства при смене температуры воды, поскольку это требует либо перепрограммирования, либо поворота вентиля.
Сенсорные источники воды – самые гигиенические, поскольку нет необходимости прикасаться к ручкам, за которые брались много людей. Именно из этих соображений такие элементы ставятся в лечебных учреждениях, косметологических кабинетах, массажных салонах. Неудобство при наполнении емкостей – от крана нельзя отойти, иначе подача воды прекратится. Неудобно будет пользоваться таким смесителем и в ванной, если необходимо наполнить раковину водой. В этом случае комфортнее пользоваться сенсорными насадками для экономии воды, которые имеют функцию отключения сенсора.
Оправдывает себя как водоэконом, поскольку уже за первый месяц пользования счет за воду будет существенно меньше прежних цифр в платежке. Существенным недостатком для некоторых семей может быть высокая стоимость такого устройства. В таком случае спасти ситуацию поможет сенсорная насадка на кран для экономии воды. Ее стоимость на порядок дешевле сенсорного крана.
Нет необходимости постоянно думать о том, выключена ли вода. Зависимость от элементов питания или электрической сети.
Сенсорный кран, правильно вписавшись в интерьер, создает изюминку любой ванной комнате или кухне. Устройства для автоматизированной подачи воды с наличием фотоэлементов могут срабатывать при попадании света.
Воспользовавшись программными настройками температуры воды, можно не переживать о том, что кто-то из членов семьи обожжет руки – это позволяет доверить пользование краном даже детям.

Как видим, преимуществ у сенсорных насадок для экономии воды значительно больше, чем недостатков. Если же говорить о частоте поломок, что не было внесено в таблицу, стоит отметить, что сенсорные краны ломаются ничуть не чаще обычных смесителей и при поломке крана понадобится его ремонт.

Виды сенсорных кранов для воды

По своему типу водоэконом выпускается в массе вариантов. По назначению конструкции бывают:

  • кухонными с изливом поворотного типа, например для раковины;
  • для писсуаров – встроенными или наружными;
  • для унитазов, которые подают воду после и в течение определенного времени.

С изливом поворотный

Для писуаров

По внешнему виду различают следующие виды кранов:

  • с встроенным датчиком и множеством функций и настроек;
  • простые бесконтактные модели с подсветкой.

Также смесители разделяются в зависимости от длины гусака, с учетом типа датчика и так далее.

С датчиком

Выбирая устройство подачи воды, стоит обратить внимание на следующие особенности понравившейся модели:

  • возможность внесения настроек по собственному желанию (например, можно регулировать зону чувствительности);
  • регулировка времени подачи (вода подается через несколько секунд после поднесения рук, что позволяет устранить случаи случайно подачи);
  • возможность регулировки температуры;
  • прочность материла, из которого изготовлен смеситель;
  • внешний вид и гармония с общим интерьером.

После приобретения смесителя его установка не вызывает проблем. Большинство узлов крепятся в водопроводный разъем стандартным способом, поэтому трудностей не возникает. Настройка смесителя и правила пользования подробно описываются в руководстве к конкретной модели.

Альтернативный вариант

Недостатки сенсорных кранов, описанные выше, вполне терпимы, но нежелательны. Чтобы хозяйке не приходилось испытывать неудобства с набором воды и ее температурой, американские мастера предлагают альтернативы сенсорным кранам – сенсорные насадки. Эти насадки действуют по аналогии с кранами, но крепятся они на сам гусак, вкручиваясь в резьбу. Преимущества такой насадки очевидны:

  • легко демонтируя насадку, можно получить привычный в обиходе кран;
  • цена насадок значительно ниже, чем кранов;
  • работа насадки происходит от обычных элементов питания;
  • многие модели имеют те же самые функциональные настройки, что и кран;
  • насадка позволяет полностью отключить функцию сенсора.

Сенсорная насадка

Единственное, что может остановить при приобретении насадки – внешний вид крана после ее установки. Зачастую насадки смотрятся несколько грубо, так как не вписываются в общую стилистику помещения. Однако, при большинстве положительных характеристик этого устройства многие хозяйки пренебрегают эстетикою, выбирая, прежде всего, экономию семейного бюджета. А это немаловажное преимущество устройств для подачи воды – реальная выгода и экономия.

Видео

Фото

Лучшие статьи по теме