Как настроить смартфоны и ПК. Информационный портал
  • Главная
  • Windows Phone
  • Импульсные источники питания принцип работы. Принцип работы импульсного блока питания

Импульсные источники питания принцип работы. Принцип работы импульсного блока питания

Практически в каждом электронном приборе есть блок питания – важный элемент монтажной схемы. Блоки применяются в устройствах, требующих пониженного питания. Базовой задачей блока питания считается уменьшение сетевого напряжения. Первые импульсные блоки питания сконструированы после изобретения катушки, которая работала с переменным током.

Применение трансформаторов дало толчок развития блоков питания. После выпрямителя тока осуществляется выравнивание напряжения. В блоках с преобразователем частоты этот процесс проходит по-другому.

В импульсном блоке основу составляет инверторная система. После выпрямления напряжения образуются прямоугольные импульсы с высокой частотой, подаются на фильтр выхода низкой частоты. Импульсные блоки питания преобразовывают напряжение, отдают мощность на нагрузку.

Рассеивание энергии от импульсного блока не происходит. От линейного источника идет рассеивание на полупроводниках (транзисторах). Его компактность и малый вес также дает превосходство над трансформаторными блоками при одинаковой мощности, поэтому часто заменяют импульсными.

Принцип действия

Работа ИБП простой конструкции следующая. Если входной ток является переменным, как в большинстве бытовых приборах, то сначала происходит преобразование напряжения в постоянное. Некоторые конструкции блоков имеют переключатели, удваивающие напряжение. Это делается для того, чтобы подключаться к сети с разным номиналом напряжения, например, 115 и 230 вольт.

Выпрямитель выравнивает переменное напряжение и на выходе отдает постоянный ток, который поступает в фильтр конденсаторов. Ток от выпрямителя выходит в виде малых импульсов высокой частоты. Сигналы обладают высокой энергией, за счет которой снижается коэффициент мощности трансформатора импульсов. Благодаря этому габариты импульсного блока небольшие.

Чтобы скорректировать уменьшение мощности в новых блоках питания применяют схему, в которой ток на входе получается в виде синуса. По такой схеме смонтированы блоки в компьютерах, видеокамерах и других устройствах. Импульсный блок работает от постоянного напряжения, проходящего через блок, не изменяясь. Такой блок называют обратноходовым. Если он служит для 115 В, для работы на постоянном напряжении необходимо уже 163 вольта, это рассчитывается как (115 × √2).

Для выпрямителя такая схема вредна, так как половина диодов не используется в работе, это вызывает перегрев рабочей части выпрямителя. Долговечность в этом случае снижается.

После выпрямления напряжения сети в действие вступает инвертор, который преобразовывает ток. Пройдя через коммутатор, имеющий большую энергию выхода, из постоянного получается переменный ток. С обмоткой трансформатора в несколько десятков витков и частотой сотни герц блок питания работает в качестве усилителя низкой частоты, она получается больше 20 кГц, она не доступна слуху человека. Коммутатор изготовлен на транзисторах с многоступенчатым сигналом. Такие транзисторы имеют низкое сопротивление, высокую возможность прохода токов.

Схема работы ИБП

В сетевых блоках вход и выход изолируют между собой, в импульсных блоках ток применяется для первичной обмотки высокой частоты. На вторичной обмотке трансформатор создает нужное напряжение.

Для напряжения выхода более 10 В применяют кремниевые диоды. На низких напряжениях ставят диоды Шоттки, которые имеют достоинства:

  • Быстрое восстановление, что дает возможность иметь малые потери.
  • Малое падение напряжения. Для снижения напряжения выхода применяют транзистор, в нем выпрямляется основная часть напряжения.

Схема импульсного блока минимального размера

В простой схеме ИБП вместо трансформатора применен дроссель. Это преобразователи для понижения или повышения напряжения, относятся к самому простому классу, применяется один переключатель и дроссель.

Виды ИБП

  • Простой ИБП на IR2153, распространен в России.
  • Импульсные блоки питания на TL494.
  • Импульсные блоки питания на UC3842.
  • Гибридного типа, из энергосберегающей лампы.
  • Для усилителя с повышенными данными.
  • Из электронного балласта.
  • Регулируемый ИБП, механическое устройство.
  • Для УМЗЧ, узкоспециализированный блок питания.
  • Мощный ИБП, имеет высокие характеристики.
  • На 200 В – на напряжение не более 220 вольт.
  • Сетевой ИБП на 150 ватт, только для сети.
  • Для 12 В – нормально работает при 12 вольтах.
  • Для 24 В – работает только на 24 вольта.
  • Мостовой – применена мостовая схема.
  • Для усилителя на лампах – характеристики для ламп.
  • Для светодиодов – высокая чувствительность.
  • Двухполярный ИБП, отличается качеством.
  • Обратноходовый, имеет повышенные напряжение и мощность.

Особенности

Простой ИБП может состоять из трансформаторов малых размеров, так как при повышении частоты эффективность трансформатора выше, требования к размерам сердечника меньше. Такой сердечник изготовлен из ферромагнитных сплавов, а для низкой частоты используется сталь.

Напряжение в блоке питания стабилизируется путем обратной связи отрицательной величины. Осуществляется поддержка напряжения выхода на одном уровне, не зависит от нагрузки и входных колебаний. Обратная связь создается разными методами. Если в блоке есть гальваническая развязка от сети, то применяется связь одной обмотки трансформатора на выходе или с помощью оптрона. Если развязка не нужна, то используют простой резистивный делитель. За счет этого напряжение выхода стабилизируется.

Особенности лабораторных блоков

Принцип действия осуществлен на активном преобразовании напряжения. Для удаления помех ставят фильтры в конце и начале цепи. Насыщение транзисторов положительно отражается на диодах, имеется регулировка напряжения. Встроенная защита блокирует короткие замыкания. Кабели питания применены немодульной серии, мощность достигает 500 ватт.

В корпусе установлен вентилятор охлаждения, скорость вентилятора регулируется. Наибольшая нагрузка блока составляет 23 ампера, сопротивление 3 Ом, наибольшая частота 5 герц.

Применение импульсных блоков

Сфера их использования постоянно растет как в быту, так и в промышленном производстве.

Импульсные блоки питания применяются в источниках бесперебойного питания, усилителях, приемниках, телевизорах, зарядных устройствах, для низковольтных линий освещения, компьютерной, медицинской технике и других различных приборах, и устройствах широкого назначения.

Достоинства и недостатки

ИБП имеет следующие преимущества и достоинства:

  • Небольшой вес.
  • Увеличенный КПД.
  • Небольшая стоимость.
  • Интервал напряжения питания шире.
  • Встроенные защитные блокировки.

Уменьшенная масса и размеры связано с применением элементов с радиаторами охлаждения линейного режима, импульсного регулирования вместо тяжелых трансформаторов. Емкость конденсаторов уменьшена за счет увеличения частоты. Схема выпрямления стала проще, самая простая схема – однополупериодная.

У трансформаторов низкой частоты теряется много энергии, рассеивается тепло во время преобразований. В ИБП максимальные потери возникают при переходных процессах коммутации. В другое время транзисторы устойчивы, они закрыты или открыты. Созданы условия для сохранения энергии, КПД достигает 98%.

Стоимость ИБП снижена из-за унификации элементов широкого ассортимента на роботизированных предприятиях. Силовые элементы из управляемых ключей состоят из полупроводников меньшей мощности.

Технологии импульсов дают возможность применять сеть питания с разной частотой, что расширяет применение блоков питания в различных сетях энергии. Модули на полупроводниках с небольшими габаритами с цифровой технологией имеют защиты от короткого замыкания и других аварий.

У простых блоков с трансформаторами защиты сделаны на релейной базе, на которой нет смысла цифровых технологий. Только в некоторых случаях используются цифровые технологии:

  • Для управляющих цепей с небольшой мощностью.
  • Устройства с небольшим током высокоточного управления, в измерительной технике, вольтметрах, счетчики энергии, в метрологии.

Недостатки

Импульсные блоки питания функционируют с помощью преобразования импульсов высокой частоты, создают помехи, уходящие в окружающую среду. Возникает необходимость подавления и борьбы с помехами разными методами. Иногда подавление помех не дает эффекта, и применение импульсных блоков становится невозможным для некоторых типов устройств.

Импульсные блоки питания не рекомендуется подключать как с низкой нагрузкой, так и с высокой. Если на выходе резко упадет ток ниже установленного предела, то запуск может оказаться невозможным, а питание будет с искажениями данных, которые не подходят к диапазону работ.

Как выбрать импульсные блоки питания

Сначала нужно определиться со списком оборудования, и разделить на группы:

  • Постоянные потребители без своего источника энергии.
  • Потребители со своим источником.
  • Устройства с периодическим подключением.

В каждой группе необходимо сложить ток потребления для всех элементов. Если получается более 2 А, то лучше подключить несколько источников.

Вторую и третью группы можно подключить к дешевым блокам питания. Далее определяемся с необходимым временем резервирования. Чтобы посчитать емкость аккумулятора для обеспечения автономной работы, ток оборудования 1-й и 2-й групп умножаем на часы.

От этой цифры выбираем импульсные блоки питания. При покупке нельзя пренебрегать значением блока питания в системе. От него зависит функционирование и устойчивость оборудования.


  • Введение
  • Заключение

Введение

Импульсные источники питания в настоящее время уверенно приходят на смену устаревшим линейным. Причина - свойственные данным источникам питания высокая производительность, компактность и улучшенные показатели стабилизации.

При тех стремительных изменениях, которые претерпели принципы питания электронной техники за последнее время, информация о расчете, построении и использовании импульсных источников питания становиться все более актуальной.

В последнее время в среде специалистов в области электроники и радиотехники, а также в промышленном производстве особую популярность завоевали импульсные источники питания. Наметилась тенденция отказа от типовых громоздких трансформаторных и переход на малогабаритные конструкции импульсных блоков питания, преобразователей напряжения, конвертеров, инверторов.

В общем, тема импульсных источников питания достаточно актуальная и интересная, и является одной из важнейших областей силовой электроники. Данное направление электроники перспективное и стремительно развивающееся. И его основной целью является разработка мощных устройств питания, отвечающих современным требованиям надежности, качества, долговечности, минимизации массы, размеров, энерго- и материалоемкости. Необходимо отметить, что практически вся современная электроника, включая всевозможные ЭВМ, аудио-, видеотехнику и другие современные устройства питается от компактных импульсных блоков питания, что еще раз подтверждает актуальность дальнейшего развития указанной области источников питания.

1. Принцип функционирования импульсных источников питания

Импульсный источник питания является инверторной системой. В импульсных источниках питания переменное входное напряжение сначала выпрямляется. Полученное постоянное напряжение преобразуется в прямоугольные импульсы повышенной частоты и определенной скважности, либо подаваемые на трансформатор (в случае импульсных БП с гальванической развязкой от питающей сети) или напрямую на выходной ФНЧ (в импульсных БП без гальванической развязки). В импульсных БП могут применяться малогабаритные трансформаторы - это объясняется тем, что с ростом частоты повышается эффективность работы трансформатора и уменьшаются требования к габаритам (сечению) сердечника, требуемым для передачи эквивалентной мощности. В большинстве случаев такой сердечник может быть выполнен из ферромагнитных материалов, в отличие от сердечников низкочастотных трансформаторов, для которых используется электротехническая сталь.

Рисунок 1 - Структурная схема импульсного источника питания

Напряжение сети поступает на выпрямитель, после чего сглаживается емкостным фильтром. С конденсатора фильтра, напряжение которого возрастает, выпрямленное напряжение через обмотку трансформатора поступает на коллектор транзистора, выполняющего функцию ключа. Устройство управления обеспечивает периодическое включение и выключение транзистора. Для надежного запуска БП используется задающий генератор, выполненный на микросхеме. Импульсы подаются на базу ключевого транзистора и вызывают запуск цикла работы автогенератора. На устройство управления возлагается функция отслеживания уровня выходного напряжения, выработка сигнала ошибки и, часто, непосредственного управления ключом. Питание микросхемы задающего генератора осуществляется цепочкой резисторов непосредственно с входа накопительной емкости, стабилизируя напряжение опорной емкостью. За работу оптопары отвечает задающий генератор и ключевой транзистор вторичной цепи. Чем сильнее открыты транзисторы, отвечающие за работу оптрона, тем меньше амплитуда импульсов обратной связи, тем раньше выключится силовой транзистор и тем меньше энергии накопится в трансформаторе, что вызовет прекращение роста напряжения на выходе источника. Наступил рабочий режим источника питания, где не малую роль отводится оптопаре, как регулировщику и управленцу выходными напряжениями.

Спецификация промышленного источника питания более жесткая, чем у обычного бытового источника питания. Это выражается не только в том, что на входе источника питания действует высокое трехфазное напряжение, но еще и в том, что промышленные источники питания должны сохранять работоспособность при существенном отклонении входного напряжения от номинального значения, включая провалы и броски напряжения, а также пропадание одной или нескольких фаз.

Рисунок 2 - Принципиальная схема импульсного источника питания.

Схема работает следующим образом. Трехфазный вход может быть выполнен по трехпроводной, четырехпроводной схеме или даже однофазным. Трехфазный выпрямитель состоит из диодов D1 - D8.

Резисторы R1 - R4 осуществляют защиту от броска напряжения. Использование защитных резисторов с размыканием при перегрузке делает ненужным использование отдельных вставок плавких. Входное выпрямленное напряжение фильтруется П-образным фильтром, состоящим из С5, С6, С7, С8 и L1.

Резисторы R13 и R15 уравнивают напряжение на входных фильтрующих конденсаторах.

Когда открывается MOSFET микросхемы U1, потенциал истока Q1 понижается, ток затвора обеспечивается резисторами R6, R7 и R8, соответственно емкость переходов VR1… VR3 отпирает Q1. Диод Зенера VR4 ограничивает напряжение исток-затвор приложенное к Q1. Когда MOSFET U1 закрывается, напряжение стока ограничивается на уровне 450 вольт ограничительной цепочкой VR1, VR2, VR3. Любое дополнительное напряжение на конце обмотки будет рассеиваться на Q1. Такое подключение эффективно распределяет суммарное выпрямленное напряжение на Q1 и U1.

Цепочка поглощения VR5, D9, R10, поглощает избыточное напряжение на первичной обмотке, возникающее из-за индукции рассеяния трансформатора во время обратного хода.

Выходное выпрямление осуществляется диодом D1. C2 - выходной фильтр. L2 и C3 формируют вторую ступень фильтра для снижения нестабильности выходного напряжения.

VR6 начинает проводить, когда выходное напряжение превышает падение на VR6 и оптопаре. Изменение выходного напряжения вызывает изменение тока, текущего через диод оптопары U2, который в свою очередь вызывает изменение тока через транзистор оптопары U2. Когда этот ток превышает порог на выводе FB микросхемы U1, следующий рабочий цикл пропускается. Заданный уровень выходного напряжения поддерживается путем регулирования числа пропущенных и совершенных рабочих циклов. Когда рабочий цикл начался, он закончиться, когда ток через микросхему U1 достигнет установленного внутреннего предела. R11 ограничивает ток через оптопару и устанавливает коэффициент усиления обратной связи. Резистор R12 подает смещение на VR6.

Эта схема защищена от обрыва петли обратной связи, КЗ на выходе, перегрузки благодарю функциям, встроенным в U1 (LNK304). Так как микросхема запитывается прямо со своего вывода сток, не требуется отдельная обмотка питания.

В импульсных блоках питания стабилизация напряжения обеспечивается посредством отрицательной обратной связи. Обратная связь позволяет поддерживать выходное напряжение на относительно постоянном уровне вне зависимости от колебаний входного напряжения и величины нагрузки. Обратную связь можно организовать разными способами. В случае импульсных источников с гальванической развязкой от питающей сети наиболее распространенными способами являются использование связи посредством одной из выходных обмоток трансформатора или при помощи оптрона. В зависимости от величины сигнала обратной связи (зависящему от выходного напряжения), изменяется скважность импульсов на выходе ШИМ-контроллера. Если развязка не требуется, то, как правило, используется простой резистивный делитель напряжения. Таким образом, блок питания поддерживает стабильное выходное напряжение.

2. Основные параметры и характеристики импульсных источников питания

Классификация импульсных источников питания (ИИП) производится по нескольким основным критериям:

По виду входного и выходного напряжения;

По типологии;

По форме выходного напряжения;

По типу питающей цепи;

По напряжению на нагрузке;

По мощности нагрузки;

По роду тока нагрузки;

По числу выходов;

По стабильности напряжения на нагрузке.

По виду входного и выходного напряжения

1. AC/DC - это преобразователи переменного напряжения в постоянное. Такие преобразователи применяют в самых разных областях - это промышленная автоматика, телекоммуникационное оборудование, контрольно-измерительное оборудование, оборудование промышленного назначения для обработки данных, средства обеспечения безопасности, а также техника специального назначения.

2. DC/DC - это преобразователи постоянного напряжения. В таких DC/DC конверторах используют импульсные трансформаторы с двумя и более обмотками, причем между входной и выходной цепью связь отсутствует. Импульсные трансформаторы имеют большую разность потенциалов между входом и выходом конвертора. Примером их применения может быть блок питания (БП) для импульсных фотовспышек с напряжением на выходе порядка 400 В.

3. DC/AC - это преобразователи постоянного напряжения в переменное (инвентор). Основная область применения инверторов - работа в подвижном составе железнодорожных и других транспортных средств, имеющих бортовую электросеть постоянного напряжения. Также они могут быть применены в качестве основных преобразователей в составе источников резервного питания.

Высокая перегрузочная способность позволяет осуществлять питание широкого спектра устройств и оборудования, включая конденсаторные двигатели компрессоров холодильных установок и кондиционеров.

По типологии ИИП классифицируются следующим образом:

обратноходовые импульсные преобразователи (flybackconverter);

прямоходовые импульсные преобразователи (forwardconverter);

преобразователи с двухтактным выходом (push-pull);

преобразователи с полумостовым выходом (halfbridgeconverter);

преобразователи с мостовым выходом (fullfbridgeconverter).

По форме выходного напряжения ИИП классифицируются так:

1. C модифицированной синусоидой

2. C синусоидой правильной формы.

Рисунок 3 - Формы выходного сигнала

По типу питающей цепи:

ИИП, использующие электрическую энергию, получаемую от однофазной сети переменного тока;

ИИП, использующие электрическую энергию, получаемую от трехфазной сети переменного тока;

ИИП, использующие электрическую энергию автономного источника постоянного тока.

По напряжению на нагрузке:

По мощности нагрузки:

ИИП малой мощности (до 100 Вт);

ИИП средней мощности (от100 до 1000 Вт);

ИИП большой мощности (свыше 1000 Вт).

По роду тока нагрузки:

ИИП с выходом на переменном токе;

ИИП с выходом на постоянном токе;

ИИП с выходом на переменном и постоянном токе.

По числу выходов:

одноканальные ИИП, имеющие один выход постоянного или переменного тока;

многоканальные ИИП, имеющие два или более выходных напряжений.

По стабильности напряжения на нагрузке:

стабилизированные ИИП;

нестабилизированные ИИП.

3. Основные способы построения импульсных источников питания

На рисунке ниже будет представлен внешний вид импульсного источника питания.

Рисунок 4 - Импульсный источник питания

Итак, для начала в общих чертах обозначим, какие основные модули есть в любом импульсном блоке электропитания. В типовом варианте импульсный блок питания условно можно разделить на три функциональные части. Это:

1. ШИМ-контроллер (PWM), на базе которого собирается задающий генератор обычно с частотой около 30…60 кГц;

2. Каскад силовых ключей, роль которых могут выполнять мощные биполярные, полевые или IGBT (биполярные с изолированным затвором) транзисторы; этот силовой каскад может включать в себя дополнительную схему управления этими самыми ключами на интегральных драйверах или маломощных транзисторах; также важна схема включения силовых ключей: мостовая (фул-бридж), полумостовая (халф-бридж) или со средней точкой (пуш-пул);

3. Импульсный трансформатор с первичной (ыми) и вторичной (ыми) обмоткой (ами) и, соответственно, выпрямительными диодами, фильтрами, стабилизаторами и проч. на выходе; в качестве сердечника обычно выбирается феррит или альсифер; в общем, такие магнитные материалы, которые способны работать на высоких частотах (в некоторых случаях свыше 100 кГц).

Существует три основных способа построения импульсных ИП (см. рис.3): повышающая (выходное напряжение выше входного), понижающая (выходное напряжение ниже входного) и инвертирующая (выходное напряжение имеет противоположную по отношению к входному полярность). Как видно из рисунка, отличаются они лишь способом подключения индуктивности, в остальном, принцип работы остается неизменным, а именно.

импульсный источник питание напряжение

Рисунок 5 - Типовые структурные схемы импульсных источников питания

Ключевой элемент (обычно применяют биполярные или МДП транзисторы), работающий с частотой порядка 20-100 кГц, периодически на короткое время (не более 50% времени) прикладывает к катушке индуктивности полное входное нестабилизированное напряжение. Импульсный ток, протекающий при этом через катушку, обеспечивает накопление запаса энергии в её магнитном поле 1/2LI^2 на каждом импульсе. Запасенная таким образом энергия из катушки передастся в нагрузку (либо напрямую, с использованием выпрямляющего диода, либо через вторичную обмотку с последующим выпрямлением), конденсатор выходного сглаживающего фильтра обеспечивает постоянство выходного напряжения и тока. Стабилизация выходного напряжения обеспечивается автоматической регулировкой ширины или частоты следования импульсов на ключевом элементе (для слежения за выходным напряжением предназначена цепь обратной связи).

Такая, хотя и достаточно сложная, схема позволяет существенно повысить КПД всего устройства. Дело в том, что, в данном случае, кроме самой нагрузки в схеме отсутствуют силовые элементы, рассеивающие значительную мощность. Ключевые транзисторы работают в режиме насыщенного ключа (т.е. падение напряжения на них мало) и рассеивают мощность только в достаточно короткие временные интервалы (время подачи импульса). Помимо этого, за счет повышения частоты преобразования можно существенно увеличить мощность и улучшить массогабаритные характеристики.

Важным технологическим преимуществом импульсных ИП является возможность построения на их основе малогабаритных сетевых ИП с гальванической развязкой от сети для питания самой разнообразной аппаратуры. Такие ИП строятся без применения громоздкого низкочастотного силового трансформатора по схеме высокочастотного преобразователя. Это, собственно, типовая схема импульсного ИП с понижением напряжения, где в качестве входного напряжения используется выпрямленное сетевое напряжение, а в качестве накопительного элемента - высокочастотный трансформатор (малогабаритный и с высоким КПД), со вторичной обмотки которого и снимается выходное стабилизированное напряжение (этот трансформатор обеспечивает также гальваническую развязку с сетью).

К недостаткам импульсных ИП можно отнести: наличие высокого уровня импульсных шумов на выходе, высокую, сложность и низкую надежность (особенно при кустарном изготовлении), необходимость применения дорогостоящих высоковольтных высокочастотных компонентов, которые в случае малейшей неисправности легко выходят из строя "всем скопом" (при этом. как правило, можно наблюдать впечатляющие пиротехнические эффекты). Любителям покопаться во внутренностях устройств с отверткой и паяльником при конструировании сетевых импульсных ИП придется быть крайне осторожными, так как многие элементы таких схем находятся под высоким напряжением.

4. Разновидности схемотехнических решений импульсных источников питания

Схема ИИП 90-х годов показана на рис.6. Источник питания содержит сетевой выпрямитель VD1-VD4, помехоподавляющий фильтр L1C1-СЗ, преобразователь на коммутирующем транзисторе VT1 и импульсном трансформаторе Т1, выходной выпрямитель VD8 с фильтром C9C10L2 и узел стабилизации, выполненный на стабилизаторе DA1 и оптроне U1.

Рисунок 6 - Импульсный источник питания 1990-х годов

Схема ИИП показана на рис.7. Предохранитель FU1 защищает элементы от аварийных ситуаций. Терморезистор RK1 ограничивает импульс зарядного тока конденсатора С2 до безопасного для диодного моста VD1 значения, а совместно с конденсатором С1 образует RC-фильтр, служащий для уменьшения импульсных помех, проникающих из ИИП в сеть. Диодный мост VD1 выпрямляет сетевое напряжение, конденсатор С2 - сглаживающий. Выбросы напряжения первичной обмотки трансформатора Т1 уменьшает демпфирующая цепь R1C5VD2. Конденсатор С4 является фильтром питания, от которого запитаны внутренние элементы микросхемы DA1.

Выходной выпрямитель собран на диоде Шотки VD3, пульсации выходного напряжения сглаживает LC-фильтр C6C7L1C8. Элементы R2, R3, VD4 и U1 обеспечивают совместно с микросхемой DA1 стабилизацию выходного напряжения при изменении тока нагрузки и сетевого напряжения. Цепь индикации включения выполнена на светодиоде HL1 и токоограничивающем резисторе R4.

Рисунок 7 - Импульсный источник питания 2000-х годов

На рис.8 двухтактный импульсный блок питания с полумостовым включением силового оконечного каскада, состоящего из двух мощных MOSFET IRFP460. В качестве ШИМ-контроллера выбрали микросхему К1156ЕУ2Р.

Дополнительно с помощью реле и ограничивающего резистора R1 на входе реализован плавный пуск, позволяющий избежать резких бросков тока. Реле можно применить на напряжение как 12, так и 24 вольта с подбором резистора R19. Варистор RU1 защищает входную цепь от импульсов чрезмерной амплитуды. Конденсаторы С1-С4 и двухобмоточный дроссель L1 образуют сетевой помехоподавляющий фильтр, предотвращающий проникновение высокочастотных пульсаций, создаваемых преобразователем, в питающую сеть.

Подстроечный резистор R16 и конденсатор С12 определяют частоту преобразования.

Для уменьшения ЭДС самоиндукции трансформатора Т2 параллельно каналам транзисторов включены демпферные диоды VD7 и VD8. Диоды Шоттки VD2 и VD3 защищают коммутирующие транзисторы и выходы микросхемы обратного напряжения DA2 от импульсов.

Рисунок 8 - Современный импульсный источник питания

Заключение

В ходе проделанной научно-исследовательской работы мною проведено исследование импульсных источников питания, позволившее проанализировать существующую схемотехнику данных устройств и сделать соответствующие выводы.

Импульсные источники питания обладают гораздо большими преимуществами по сравнению с другими - у них более высокий КПД, они имеют существенно меньшие массу и объём, кроме того они обладают гораздо меньшей себестоимостью, что в конечном итоге приводит к их сравнительно небольшой цене для потребителей и, соответственно, высокому спросу на рынке.

Многие современные электронные компоненты, используемые в современных электронных устройствах и системах, требуют высокого качества питания. Кроме того, выходное напряжение (ток) должно быть стабильным, иметь требуемую форму (например, для инверторов), а также минимальный уровень пульсаций (например, для выпрямителей).

Таким образом, импульсные источники питания являются неотъемлемой частью любых электронных устройств и систем, питающихся как от промышленной сети 220 В, так и других источников энергии. При этом надежность работы электронного устройства напрямую зависит от качества источника питания.

Таким образом, разработка новых усовершенствованных схем импульсных источников питания позволит улучшить технические и эксплуатационные характеристики электронных устройств и систем.

Список используемой литературы

1. Гуревич В.И. Надежность микропроцессорных устройств релейной защиты: мифы и реальность. - Проблемы энергетики, 2008, № 5-6, с.47-62.

2. Источник питания [Электронный ресурс] // Википедия. - Режим доступа: http://ru. wikipedia.org/wiki/Источник_питания

3. Вторичный источник питания [Электронный ресурс] // Википедия. - Режим доступа: http://ru. wikipedia.org/wiki/Вторичный_источник_ питания

4. Высоковольтные источники питания [Электронный ресурс] // ООО "Оптосистемы" - Режим доступа: http://www.optosystems.ru/power _supplies_about. php

5. Ефимов И.П. Источники питания - Ульяновский Государственный Технический Университет, 2001, с.3-13.

6. Области применения силовых источников питания [Электронный ресурс] - Режим доступа: http://www.power2000.ru/apply_obl.html

7. Компьютерные блоки питания [Электронный ресурс] - Режим доступа: http://offline.computerra.ru/2002/472/22266/

8. Эволюция импульсных источников питания [Электронный ресурс] - Режим доступа: http://www.power-e.ru/2008_4_26. php

9. Принцип работы импульсных источников питания [Электронный ресурс] - Режим доступа: http://radioginn. ucoz.ru/publ/1-1-0-1

Подобные документы

    Понятие, назначение и классификация вторичных источников питания. Структурная и принципиальная схемы вторичного источника питания, работающего от сети постоянного тока и выдающего переменное напряжение на выходе. Расчет параметров источника питания.

    курсовая работа , добавлен 28.01.2014

    Источники вторичного электропитания как неотъемлемая часть любого электронного устройства. Рассмотрение полупроводниковых преобразователей, связывающих системы переменного и постоянного тока. Анализ принципов построения схем импульсных источников.

    дипломная работа , добавлен 17.02.2013

    Источник питания как устройство, предназначенное для снабжения аппаратуры электрической энергией. Преобразование переменного напряжения промышленной частоты в пульсирующее постоянное напряжение с помощью выпрямителей. Стабилизаторы постоянного напряжения.

    реферат , добавлен 08.02.2013

    Стабилизация среднего значения выходного напряжения вторичного источника питания. Минимальный коэффициент стабилизации напряжения. Компенсационный стабилизатор напряжения. Максимальный ток коллектора транзистора. Коэффициент сглаживающего фильтра.

    контрольная работа , добавлен 19.12.2010

    Совмещение функций выпрямления с регулированием или со стабилизацией выходного напряжения. Разработка схемы электрической структурной источника питания. Понижающий трансформатор и выбор элементной базы блока питания. Расчет маломощного трансформатора.

    курсовая работа , добавлен 16.07.2012

    Расчёт трансформатора и параметров интегрального стабилизатора напряжения. Принципиальная электрическая схема блока питания. Расчет параметров неуправляемого выпрямителя и сглаживающего фильтра. Подбор выпрямительных диодов, выбор размеров магнитопровода.

    курсовая работа , добавлен 14.12.2013

    Анализ системы вторичных источников электропитания зенитного ракетного комплекса "Стрела-10". Характеристика схематических импульсных стабилизаторов. Анализ работы модернизированного стабилизатора напряжения. Расчет его элементов и основных параметров.

    дипломная работа , добавлен 07.03.2012

    Принцип работы инверторного источника питания сварочной дуги, его достоинства и недостатки, схемы и конструкции. Эффективность эксплуатации инверторных источников питания с точки зрения энергосбережения. Элементная база выпрямителей с инвертором.

    курсовая работа , добавлен 28.11.2014

    Последовательность сбора инвертирующего усилителя, содержащего функциональный генератор и измеритель амплитудно-частотных характеристик. Осциллограмма входного и выходного сигналов на частоте 1 кГц. Схема измерения выходного напряжения, его отклонения.

    лабораторная работа , добавлен 11.07.2015

    Анализ электрической цепи: обозначение узлов, токов. Определение входного и выходного сигналов, передаточной характеристики четырехполюсника. Структурная схема системы управления. Реакции системы на единичное ступенчатое воздействие при нулевых условиях.

6) Силовой трансформатор я планирую реализовать на сердечнике компании Epcos типа ETD44/22/15 из материала N95. Возможно мой выбор изменится дальше, когда буду рассчитывать моточные данные и габаритную мощность.

7) Долго колебался между выбором типа выпрямителя на вторичной обмотке между сдвоенным диодом Шоттки и синхронным выпрямителем. Можно поставить сдвоенный диод Шоттки, но это P = 0,6В * 40А = 24 Вт в тепло, при мощности ИИП примерно в 650 Вт получается потеря в 4%! При использование в синхронном выпрямителе самых обычных IRF3205 с сопротивление канала тепла выделится P = 0,008 Ом * 40А * 40А = 12,8 Вт . Получается выигрываем в 2 раза или 2% кпд! Все было красиво, пока я не собрал на макете решение на IR11688S . К статическим потерям на канале добавились динамические потери на коммутацию, в итоге то на то и вышло. Емкость у полевиков на большие токи все таки большая. лечется это драйверами по типу HCPL3120, но это увеличение цены изделия и чрезмерное усложнение схемотехники. Собственно из этих соображений решено было поставить сдвоенный Шоттки и спать спокойно.

8) LC-контур на выходе, во-первых, уменьшит пульсации тока, во-вторых, позволит «срезать» все гармоники. Последняя проблема крайне актуальна при питании устройств работающих в радиочастотном диапазоне и имеющие в своем составе высокочастотные аналоговые цепи. У нас же речь идет от КВ трансивере, поэтому тут фильтр просто жизненно необходим, иначе помехи «пролезут» в эфир. В иделе тут еще можно поставить на выход линейный стабилизатор и получить минимальные пульсации в единицы мВ, но на деле скорость ОС позволит и без «кипятильника» получить пульсации напряжения в пределах 20-30 мВ, внутри трансивера критичные узлы запитываются через свои LDO, так что его избыточность очевидна.

Ну вот мы и пробежались по функционалу и это только начало)) Но ничего, дальше пойдет бодрее ибо начинается самая интересная часть - расчеты всего и вся!

Расчет силового трансформатора для полумостового преобразователя напряжения

Сейчас немного стоит подумать о конструктиве и топологии. Я планирую применять полевые транзисторы, а не IGBT, поэтому рабочую частоту можно выбрать побольше, пока задумываюсь о 100 или 125 кГц, такая же частота кстати будет и на ККМ. Повышение частоты позволит несколько уменьшить габариты трансформатора. С другой стороны задирать сильно частоту не хочу, т.к. применяю TL494 в качестве контроллера, после 150 кГц она себя уже не так хорошо показывает, да и динамические потери вырастут.

Исходя из таких вводных, посчитаем наш трансформатор. У меня есть в наличии несколько комплектов ETD44/22/15 и поэтому пока ориентируюсь на него, список исходных данных таков:

1) Материал N95;
2) Тип сердечника ETD44/22/15;
3) Рабочая частота - 100 кГц;
4) Выходное напряжение - 15В;
5) Выходной ток - 40А.

Для расчетов трансформаторов до 5 кВт использую программу «Старичка», она удобна и достаточно точно считает. После 5 кВт начинается магия, частоты растут для уменьшения габаритов, а плотности поля и тока достигают таких значений, что даже скин-эффект способен менять параметры чуть ли не в 2 раза, поэтому для больших мощностей применяю дедовский метод «с формулами и выводом карандашом на бумаге». Вписав в программку свои вводные данные был получен следующий результат:


Рисунок 2 - Результат расчета трансформатора для полумоста

На рисунке с левой стороны отмечены вводные данные, их я описал выше. По центру фиолетовым цветом выделены результаты, которые нас больше всего интересуют, пробегусь кратко по ним:

1) Входное напряжение составляет 380В DC, оно стабилизированное, т.к. полумост питается с ККМ. Такое питание упрощает конструкцию многих узлов, т.к. пульсации токов минимальны и трансформатору не придется вытягивать напряжение при входном сетевом напряжение 140В.

2) Потребляемая (прокачиваемая через сердечник) мощность получилась 600 Вт, что в 2 раза меньше габаритной (той, которую сердечник может прокачать не уйдя в насыщение) мощности, а значит все хорошо. В программке не нашел материал N95, но на сайте Epcos в даташите подсмотрел, что N87 и N95 дадут очень похожие результаты, проверив на листочке выяснил, что разница в 50 Вт габаритной мощности - не страшная погрешность.

3) Данные по первичной обмотке: 21 виток мотаем в 2 провода диаметром 0.8 мм, думаю тут все понятно? Плотность тока около 8А/мм2, а это значит, что обмотки не будут перегреваться - все хорошо.

4) Данные по вторичной обмотке: мотаем 2 обмотки по 2 витка в каждой проводом так же 0.8 мм, но уже в 14 - все таки ток 40А! Далее соединяем начало одной обмотки и конец другой, как это сделать я объясню дальше, почему-то часто люди при сборке на этом моменте в ступор впадают. Тут тоже вроде магии никакой нету.

5) Индуктивность выходного дросселя - 4.9 мкГн, ток соответственно 40А. Нужен он, чтобы на выходе нашего блока не было огромных пульсаций ток, в процессе отладки я покажу на осциллографе работу с ним и без него, все станет ясно.

Расчет занял 5 минут, если у кого-то вопросы, то в комментариях или ЛС спрашивайте - подскажу. Чтобы не искали саму программу, предлагаю скачать ее с облака по ссылке . И моя огромная благодарность Старичку за его труд!

Следующим логичным этапом будет расчет выходного дросселя для полумоста, это как раз тот, что на 4.9 мкГн.

Расчет моточных параметров для выходного дросселя

Вводные данные мы получили в предыдущем пункте при расчет трансформатора, это:

1) Индуктивность - 4.9 мкГн;
2) Номинальный ток - 40А;
3) Амплитуда перед дросселем - 18В;
4) Напряжение после дросселя - 15В.

Используем так же программу от Старичка (все они есть в ссылке выше) и получаем следующие данные:


Рисунок 3 - Расчетные данные для намотки выходного дросселя

Теперь пробежимся по результатам:


1) По вводным данным есть 2 нюанса: частота выбирается та же самая, на которой работает преобразователь, это думаю логично. Второй момент связан с плотностью тока, сразу отмечу - дроссель должен греться ! Вот только насколько сильно уже определяем мы, я выбрал плотность тока 8А/мм 2 , чтобы получить температуру в 35 градусов, это видно в выходных данных (отмечено зеленым). Ведь как мы помним по требованиям на выходе нужен «холодный ИИП». Так же хочется отметить для новичков возможно не совсем очевидный момент - дроссель будет греться меньше, если через него протекает большой ток, то есть при номинальной нагрузке 40А дроссель будет иметь минимальный нагрев. Когда ток меньше номинального, то для части энергии он начинает работать как активная нагрузка (резистор) и превращает все избытки энергии в тепло;

2) Максимальная индукция, это значение которое нельзя превышать, иначе магнитное поле насытит сердечник и будет все очень плохо. Данный параметр зависит от материала и его габаритных размеров. Для современных сердечников из распыленного железа типовым значение является 0,5-0,55 Тл;

3) Намоточные данные: 9 витков мотаются косой из 10 жил провода диаметром 0.8 мм. Программка даже примерно указывает сколько слоев для этого понадобится. Я буду мотать в 9 жил, т.к. потом удобно будет разделить большую косу на 3 «косички» по 3 жилы и без проблем их распаять на плате;

4) Собственно само кольцо на котором буду мотать имеет размеры - 40/24/14.5 мм, его хватает с запасом. Материал №52, думаю многие видели в АТХ блоках кольца желто-голубого цвета, часто они используются в дросселях групповой стабилизации (ДГС).

Расчет трансформатора дежурного источника питания

На функциональной схеме видно, что я хочу использовать в качестве дежурного блока питания «классический» flayback на TOP227, от него будут запитываться все ШИМ контроллеры, индикацию и вентиляторы системы охлаждения. То, что вентиляторы будут запитываться от дежурки я понял только спустя какое-то время, поэтому данный момент на схеме не отображен, но ничего это же реалтайм разработка))

Скорректируем немного наши вводные данные, что же нам нужно:


1) Выходные обмотки для ШИМ: 15В 1А + 15В 1А;
2) Выходная обмотка самопитания: 15В 0.1А;
3) Выходная обмотка для охлаждения: 15В 1А.

Получаем необходимость в блоке питания с суммарной мощностью - 2*15Вт + 1.5Вт + 15Вт = 46.5 Вт . Это нормальная мощность для TOP227, я ее использую в мелких ИИП до 75 Вт для всяких зарядок АКБ, шуруповертов и прочего хлама, за много лет что странно еще ни один пока не сгорел.

Идем в другую программку Старичка и считаем трансформатор для flayback:


Рисунок 4 - Расчетные данные для трансформатора дежурного питания

1) Выбор сердечника обоснован просто - он у меня есть в количестве ящика и те самый 75 Вт он вытягивает)) Данные на сердечника . Он из материала N87 и имеет зазор 0.2 мм на каждой половинке или 0.4 мм так называемый полный зазор. Данный сердечник прямо предназначен для дросселей, а у обратноходовых преобразователей эта индуктивность именно дроссель, но не буду пока в дебри влезать. Если в трансформаторе полумоста зазора не было, то для обратноходового преобразователя он обязателен иначе как и любой дроссель он просто уйдет в насыщение без зазора.

2) Данные о ключе 700В «сток-исток» и 2.7 Ом сопротивления канала, взяты из даташита на TOP227, у данного контроллера силовой ключ встроен в саму микросхему.

3) Входного напряжение минимальное взял чуть с запасом - 160В, это сделано для того, чтобы в случае выключения самого блока питания в работе осталась дежурка и индикация, они сообщат о аварийно низком напряжении питания.

4) Первичная обмотка у нас представляет из себя 45 витков проводом 0.335 мм в одну жилу. Вторичные обмотки силовые по 4 витка и 4 жилы проводом 0.335 мм (диаметр), обмотка самопитания обладает такими же параметрами, поэтому все тоже самое, только 1 жила, ибо ток на порядок ниже.

Расчет силового дросселя активного корректора мощности

Думаю самый интересный участок данного проекта именно корректор коэффициента мощности, т.к. по ним достаточно мало информации в интернете, а рабочих и описанных схем еще меньше.

Выбираем программку для расчета - PFC_ring (PFC это по-басурмански ККМ), вводные используем следующие:

1) Входное напряжение питания - 140 - 265В;
2) Номинальная мощность - 600 Вт;
3) Выходное напряжение - 380В DC;
4) Рабочая частота - 100 кГц, обусловлена выбором ШИМ контроллера.


Рисунок 5 - Расчет силового дросселя активного ККМ

1) Слева как обычно вводим исходные данные, установив 140В минимальным порогом мы получаем блок, который сможет работать при напряжение сети 140В, так мы получаем «встроенный стабилизатор напряжения»;

Схемотехника силовой части и управления достаточно стандартные, если вдруг у вас остались вопросы, то смело спрашивайте в комментариях или в личных сообщениях. По возможности постараюсь всем ответить и объяснить.

Дизайн печатной платы импульсного блока питания

Вот я и добрался до этапа, который остается для многих чем-то сакральным - дизайн/разработка/трассировка печатной платы. Почему предпочитаю именно термин «дизайн»? Он ближе к сущности данной операции, для меня «разводка» платы всегда процесс творческий как у художника написание картины, да и людям из других стран будет проще понять чем вы занимаетесь.

Сам процесс проектирования платы не содержит в себе каких либо подводных камней, они содержатся в том устройстве для которого она предназначена. На деле силовая электроника не выдвигает какое-то дикое количество правил и требований на фоне того же СВЧ аналога или скоростных цифровых шин данных.

Я перечислю основные требования и правила касающиеся именно силовой схемотехники, это позволит реализовать 99% любительских конструкций. О нюансах и «хитростях» рассказывать не буду - каждый должен сам набить себе шишек, получить опыт и уже оперировать им. И так поехали:

Немного о плотности тока в печатных проводниках

Часто люди не задумываются о данном параметре и мне приходилось встречать, где силовая часть выполнена проводниками 0.6 мм при 80% площади платы просто пустующей. Зачем так делать для меня лично загадка.

Так какую же плотность тока можно брать в расчеты? Для обычного провода стандартной цифрой является 10А/мм 2 , это ограничение привязано к охлаждению провода. Можно пропускать и больший ток, но перед этим опустите его в жидкий азот. У плоских проводников, как на печатной плате к примеру, площадь поверхности большая, охлаждать их проще, а значит можно позволить себе большие плотности тока. Для нормальных условий с пассивных или воздушным охлаждением принято брать в расчет 35-50 А/мм 2 , где 35 - для пассивного охлаждения, 50 - при наличии искусственной циркуляции воздуха (мой случай). Есть еще одна цифра - 125 А/мм 2 , это по настоящему большая цифра, не все сверхпроводники могут ее себе позволить, но она достижима лишь при погружном жидкостном охлаждение.

С последним я столкнулся при работе с одной компанией, занимавшейся инженерными коммуникациями и проектированием серверов, на мою доля выпал как раз дизайн материнской платы, а именно часть с многофазным питанием и коммутацией. Сильно удивился, когда увидел плотность тока в 125 А/мм 2 , но мне объяснили и показали на стенде такую возможность - тут я понял зачем же целые стеллажи с серверами погружают в огромные бассейны с маслом)))

В моей железке все по проще, 50 А/мм 2 цифра вполне себе адекватная, при толщине меди в 35 мкм полигоны без проблем обеспечат нужное сечение. Остальное же было для общего развития и понимания вопроса.


2) Длина проводников - в данном пункте нету необходимости равнять линии с точностью до 0,1 мм как это делают, например, при «разводке» шины данных DDR3. Хотя все равно крайне желательно делать длину сигнальных линий примерно равно длины. Достаточно будет и +-30% длины, главное не делать HIN в 10 раз длиннее, чем LIN. Это необходимо, чтобы фронты сигналов не смещались относительно друг друга, ведь даже на частоте всего в сотню килогерц разница в 5-10 раз может вызвать сквозной ток в ключах. Особенно это актуально при малом значение «мертвого времени», даже при 3% у TL494 это актуально;

3) Зазор между проводниками - он необходим для уменьшения токов утечки, особенно это касается проводников, где протекает ВЧ сигнал (ШИМ), ведь поле в проводниках возникает сильно и ВЧ сигнал за счет скин-эффекта стремится вырваться как на поверхность проводника, так и за его пределы. Обычно достаточно зазора в 2-3 мм;

4) Зазор гальванической развязки - это зазор между гальванически развязанными участками платы, обычно требование на пробой около 5 кВ. Чтобы пробить 1 мм воздуха надо около 1-1,2 кВ, но у нас пробой возможен не только по воздуху, но и по текстолиту и маске. В заводских условиях используются материалы проходящие электротестирование и можно спать спокойно. Поэтому основная проблема воздух и из вышеописанных условий можно сделать вывод, что достаточно будет около 5-6 мм зазора. В основном разделение полигонов под трансформатором, т.к. он является основным средством гальванической развязки.

Теперь перейдем непосредственно к дизайну платы, я не буду в данной статье рассказывать ну супер подробно, да и вообще писать целую книгу текста желания не много. Если наберется большая группа желающих (в конце опрос сделаю), то просто сниму видеоролики по «разводке» данного устройства, это будет и быстрее и информативнее.

Этапы создания печатной платы:

1) Первым делом необходимо определиться с примерными габаритами устройства. Если у вас есть уже готовый корпус, то вы должны измерить посадочное место в нем и отталкиваться в размерах платы именно от него. Я же планирую корпус сделать на заказ из алюминия или латуни, поэтому буду стараться сделать максимально компактное устройство без потери качества и ТТХ.


Рисунок 9 - Создаем заготовку будущей платы

Запомните - габариты платы должны быть кратны 1 мм! Или хотя бы 0.5 мм, иначе вы еще вспомните мое завещание Ленина, когда будете собирать все в панели и делать заготовку на производство, а конструкторы, которые будут создавать по вашей плате корпус засыпят вас проклятиями. Не надо создавать плату с размерами аля «208,625 мм» без крайней необходимости!
P.S. спасибо тов. Лунькову за то, что он все таки донес мне эту светлую мысль))

Тут я сделал 4 операции:

А) Сделал саму плату с габаритными размерами 250х150 мм. Пока это примерный размер, дальше думаю ужмется ощутимо;
б) Закруглил углы, т.к. в процессе доставки и сборку острые убьются и сомнутся + плата приятнее выглядит;
в) Разместил крепежные отверстия, не металлизированные, с диаметром отверстия 3 мм под стандартный крепеж и стойки;
г) Создал класс «NPTH», в который определил все не металлизированные отверстия и создал для него правило, создающие зазор 0.4 мм между всеми другими компонентами и компонентами класса. Это технологическое требование «Резонита» для стандартного класса точности (4-й).


Рисунок 10 - Создание правила для не металлизированных отверстий

2) Следующим этапом необходимо сделать расстановку компонентов с учетом всех требований, она должна быть уже сильно приближена к конечному варианту, т.к. побольше части сейчас определятся финальные габариты платы и ее форм-фактор.


Рисунок 11 - Выполнена первичная расстановка компонентов

Установил основные компоненты, они уже с большой вероятностью не будут перемещаться, а следовательно габаритные размеры платы окончательно определены - 220 х 150 мм. Свободное место на плате оставлено не просто так, там будут размещены модули управления и прочие мелкие SMD компоненты. Для удешевления платы и удобства монтажа все компоненты будут только на верхнем слое, соответственно и слой шелкографии только один.


Рисунок 13 - 3D вид платы после расстановки компонентов

3) Теперь, определив расположение и общую структуру расставляем оставшиеся компоненты и «разводим» плату. Дизайн платы можно выполнить двумя способами: в ручную и с помощью автотрассировщика, предварительно описав его действия парой десятков правил. Оба способа хороши, но данную плату сделаю все таки руками, т.к. компонентов мало и особых требований по выравниваю линий и целостности сигналов тут нет и не должно быть. Так будет определенно быстрее, автотрассировка хороша, когда много компонентов (от 500 и далее) и основная часть схемы цифровая. Хотя если кому-то будет интересно, то могу показать как «разводить» платы автоматически за 2 минуты. Правда перед этим надо будет весь день писать правила, хех.

После 3-4х часов «колдунства» (половину времени отрисовывал модели недостающие) с температурой и чашечкой чая я наконец-то развел плату. Я даже не задумывался от экономии места, многие скажу, что габариты можно было ужать на 20-30% и будут правы. У меня штучный экземпляр и тратить свое время, которое явно дороже 1 дм 2 за двухслойную плату, было просто жалко. Кстати о цене платы - при заказе в «Резонит»-е, 1 дм 2 двухслойной платы стандартного класса, обходится примерно в 180-200 рублей, так что много тут не сэкономить если у вас конечно не партия в 500+ штук. Исходя из этого, могу посоветовать - не извращайтесь с уменьшением площади, если 4 класс и не требований к габаритам. И вот что получилось на выходе:


Рисунок 14 - Дизайн платы для импульсного блока питания

В дальнейшем я буду проектировать корпус для данного устройства и мне необходимо знать его полные габариты, а так же иметь возможность «примерить» его внутрь корпуса, чтобы на финальной стадии не выяснилось, например, что основная плата мешает разъемам на корпусе или индикации. Для этого я всегда страюсь отрисовывать все компоненты в 3D виде, на выходе вот такой результат и файлик в формате.step для моего Autodesk Inventor :


Рисунок 15 - Трехмерный вид на получившиеся устройство


Рисунок 16 - Трехмерный вид на устройство (вид сверху)

Теперь документация готова. Сейчас необходимо сформировать необходимый пакет файлов для заказа компонентов, у меня все настройки уже прописаны в Altium-е, поэтому выгружается все одной кнопкой. Нам необходимы Gerber-файлы и файл NC Drill, в первом хранится информация о слоях, во втором координаты сверловки. Посмотреть файлик для выгрузки документации можно будет в конце статьи в проекте, выглядит это все примерно так:


Рисунок 17 - Формирования пакета документации для заказа печатных плат

После того, как файлы готовы можно заказывать платы. Конкретных производителей рекомендовать не буду, наверняка есть лучше и дешевле именно для прототипов. Все платы стандартного класса 2,4,6 слоев я заказываю в Резоните, там же 2 и 4-х слойный платы 5-го класса. Платы 5 класса, где 6-24 слоя в Китае (например, pcbway), а вот платы HDI и 5-го класса с 24 и более слоями уже только на Тайване, все таки качество к Китае еще хромает, а где не хромает ценник уже не такой приятный. Это все касается прототипов!

Следуя своим убеждениям я иду в Резонит, ох сколько они нервов потрепали и крови выпили… но в последнее время вроде исправились и начали более адекватно работать, хоть и с пинками. Заказы я формирую через личный кабинет, вводите данные о плате, подгружаете файлы и отправляете. Личный кабинет у них мне нравится, цену кстати тут же считает и можно меняя параметры добиться лучше цены без потери качества.

Например, сейчас я хотел плату на текстолите 2 мм с медью 35 мкм, но оказалось, что такой вариант в 2,5 раза дороже чем вариант с 1,5 мм текстолитом и 35 мкм - поэтому выбрал последний. Для увеличения жесткости платы я добавил дополнительные отверстия под стойки - проблема решена, цена оптимизирована. Кстати, если бы плата шла в серию, то где-то на 100 штуках эта разница в 2,5 раза пропала и цены сравнялись, ибо тогда нестандартный лист закупали под нас и потратили без остатков.


Рисунок 18 - Финальный вид расчета стоимости плат

Финальная стоимость определена: 3618 рублей . Из них 2100 - это подготовка, она платится только один раз на проект, все последующие повторения заказа идут уже без нее и выплатите лишь за площадь. В данном случае 759 рублей за плату площадью 3.3 дм 2 , чем больше серия, тем меньше будет стоимость, хотя и сейчас она 230 руб/дм 2 , что вполне приемлемо. Можно было конечно сделать срочное изготовление, но я заказываю часто, работаю с одним менеджером и девушка всегда старается пропихнуть заказ быстрее если производство не загружено - в итоге и с вариантом «мелкая серия» по сроком выходит 5-6 дней, достаточно просто вежливо общаться и не хамить людям. Да и спешить мне сильно некуда, поэтому решено сэкономить около 40%, что как минимум приятно.

Эпилог

Ну вот я и подошел к логическому завершению статьи - получение схемотехники, дизайна платы и заказ плат на производстве. Всего же будет 2 части, первая перед вами, а во второй буду рассказывать как я проводил монтаж, сборку и отладку устройства.

Как и обещал делюсь исходниками проекта и прочими продуктами деятельности:

1) Исходник проекта в Altium Designer 16 - ;
2) Файлы для заказа печатных плат - . Вдруг вы захотите повторить и заказать, например, в Китае, этого архива более чем достаточно;
3) Схема устройства в pdf - . Для тех, кто с телефона или для ознакомления не хочет тратить время на установку Altium (качество высокое);
4) Опять же для тех, кто не хочет ставить тяжеловесный софт, но интересно покрутить железку выкладываю 3D модель в pdf - . Для просмотра надо обязательно скачать файл, когда откроете в правом верхнем углу жмем «доверять документу только один раз», дальше тыкаем в центр файла и белый экран превращается в модельку.

Так же хочется поинтересоваться мнение читателей… Сейчас платы заказаны, компоненты тоже - по факту есть 2 недели, о чем написать статью? По мимо таких «мутантов» как эта иногда хочется наваять что-то миниатюрное, но полезное, несколько вариантов я представил в опросах, либо предлагайте свой вариант наверное в личку, чтобы не засорять комментарии.

Только зарегистрированные пользователи могут участвовать в опросе. Войдите , пожалуйста.

В отличие от традиционных линейных ИП, предполагающих гашение излишнего нестабилизированного напряжения на проходном линейном элементе, импульсные ИП используют иные методы и физические явления для генерации стабилизированного напряжения, а именно: эффект накопления энергии в катушках индуктивности, а также возможность высокочастотной трансформации и преобразования накопленной энергии в постоянное напряжение. Существует три типовых схемы построения импульсных ИП (см. рис. 3.4-1): повышающая (выходное напряжение выше входного), понижающая (выходное напряжение ниже входного) и инвертирующая (выходное напряжение имеет противоположную по отношению к входному полярность). Как видно из рисунка, отличаются они лишь способом подключения индуктивности, в остальном, принцип работы остается неизменным, а именно.

Ключевой элемент (обычно применяют биполярные или МДП транзисторы), работающий с частотой порядка 20-100 кГц, периодически на короткое время (не более 50% времени) прикла


дывает к катушке индуктивности полное входное нестабилизированное напряжение. Импульсный ток. протекающий при этом через катушку, обеспечивает накопление запаса энергии в её магнитном поле 1/2LI^2 на каждом импульсе. Запасенная таким образом энергия из катушки передастся в нагрузку (либо напрямую, с использованием выпрямляющего диода, либо через вторичную обмотку с последующим выпрямлением), конденсатор выходного сглаживающего фильтра обеспечивает постоянство выходного напряжения и тока. Стабилизация выходного напряжения обеспечивается автоматической регулировкой ширины или частоты следования импульсов на ключевом элементе (для слежения за выходным напряжением предназначена цепь обратной связи).

Такая, хотя и достаточно сложная, схема позволяет существенно повысить КПД всего устройства. Дело в том, что, в данном случае, кроме самой нагрузки в схеме отсутствуют силовые элементы, рассеивающие значительную мощность. Ключевые транзисторы работают в режиме насыщенного ключа (т.е. падение напряжения на них мало) и рассеивают мощность только в достаточно короткие временные интервалы (время подачи импульса). Помимо этого, за счет повышения частоты преобразования можно существенно увеличить мощность и улучшить массогабаритные характеристики.

Важным технологическим преимуществом импульсных ИП является возможность построения на их основе малогабаритных сетевых ИП с гальванической развязкой от сети для питания самой разнообразной аппаратуры. Такие ИП строятся без применения громоздкого низкочастотного силового трансформатора по схеме высокочастотного преобразователя. Это, собственно, типовая схема импульсного ИП с понижением напряжения, где в качестве входного напряжения используется выпрямленное сетевое напряжение, а в качестве накопительного элемента - высокочастотный трансформатор (малогабаритный и с высоким КПД), со вторичной обмотки которого и снимается выходное стабилизированное напряжение (этот трансформатор обеспечивает также гальваническую развязку с сетью).

К недостаткам импульсных ИП можно отнести: наличие высокого уровня импульсных шумов на выходе, высокую, сложность и низкую надежность (особенно при кустарном изготовлении), необходимость применения дорогостоящих высоковольтных высокочастотных компонентов, которые в случае малейшей неисправности легко выходят из строя "всем скопом" (при этом. как правило, можно наблюдать впечатляющие пиротехнические эффекты). Любителям покопаться во внутренностях устройств с отверткой и паяльником при конструировании сетевых импульсных ИП придется быть крайне осторожными, так как многие элементы таких схем находятся под высоким напряжением.

3.4.1 Эффективный импульсный стабилизатор низкого уровня сложности

На элементной базе, аналогичной применявшейся в описанном выше (рис. 3.3-3) линейном стабилизаторе, можно построить импульсный стабилизатор напряжения. При таких же характеристиках он будет обладать значительно меньшими габаритами и лучшим тепловым режимом. Принципиальная схема такого стабилизатора приведена на рис. 3.4-2. Стабилизатор собран по типовой схеме с понижением напряжения (рис. 3.4-1а).

При первом включении, когда конденсатор С4 разряжен и к выходу подключена достаточно мощная нагрузка, ток протекает через ИС линейного стабилизатора DA1. Вызванное этим током падение напряжения на R1 отпирает ключевой транзистор VT1, который тут-же входит в режим насыщения, так как индуктивное сопротивление L1 велико и через транзистор протекает достаточно большой ток. Падение напряжения на R5 открывает основной ключевой элемент - транзистор VT2. Ток. нарастающий в L1, заряжает С4, при этом через обратную связь на R8 происходит запи-


рание стабилизатора и ключевого транзистора. Энергия, запасенная в катушке, питает нагрузку. Когда напряжение на С4 падает ниже напряжения стабилизации, открывается DA1 и ключевой транзистор. Цикл повторяется с частотой 20-30 кГц.

Цепь R3. R4, С2 задаст уровень выходного напряжения. Его можно плавно регулировать в небольших пределах, от Ucт DA1 до Uвх. Однако если Uвых поднять близко к Uвх, появляется некото рая нестабильность при максимальной нагрузке и повышенный уровень пульсации. Для подавления высокочастотных пульсации на выходе стабилизатора включен фильтр L2, С5.

Схема достаточно проста и максимально эффективна для данного уровня сложности. Все силовые элементы VT1, VT2, VD1, DA1 снабжаются небольшими радиаторами. Входное напряжение нс должно превышать 30 В. что является максимальным для стабилизаторов КР142ЕН8. Выпрямительные диоды применять на ток не менее 3 А.

3.4.2 Устройство бесперебойного питания на основе импульсного стабилизатора

На рис. 3.4-3 предлагается к рассмотрению устройство для бесперебойного питания систем охраны и видеонаблюдения на основе импульсного стабилизатора, совмещенного с зарядным устройством. В стабилизатор введены системы защиты от перегрузки, перегрева, бросков напряжения на выходе, короткого замыкания.

Стабилизатор имеет следующие параметры:

Входное напряжение, Uвx - 20-30 В:

Выходное стабилизированное напряжение, Uвыx-12B:

Номинальный ток нагрузки, Iнагр ном -5А;

Ток срабатывания системы защиты от перегрузки, Iзащ - 7А;.

Напряжение срабатывания системы защиты от перенапряжения, Uвых защ - 13 В;

Максимальный ток зарядки АКБ, Iзар акб макс - 0,7 А;

Уровень пульсации. Uпульс - 100 мВ,

Температура срабатывания системы защиты от перегрева, Тзащ - 120 С;

Скорость переключения на питание от АКБ, tперекл - 10мс (реле РЭС-б РФО.452.112).

Принцип работы импульсного стабилизатора в описываемом устройстве такой же, как и у стабилизатора, представленного выше.

Устройство дополнено зарядным устройством, выполненным на элементах DA2,R7, R8, R9, R10, VD2, С7. ИС стабилизатора напряжения DA2 с делителем тока на R7. R8 ограничивает максимальный начальный ток заряда, делитель R9, R10 задает выходное напряжение заряда, диод VD2 защищает АКБ от саморазряда при отсутствии напряжения питания.

Защита от перегрева использует в качестве датчика температуры терморезистор R16. При срабатывании защиты включается звуковой сигнализатор, собранный на ИС DD 1 и, одновременно, нагрузка отключается от стабилизатора, переходя на питание от АКБ. Терморезистор монтируют на радиаторе транзистора VT1. Точная подстройка уровня срабатывания температурной защиты осуществляется сопротивлением R18.

Датчик напряжения собран на делителе R13,R15. сопротивлением R15 устанавливают точный уровень срабатывания защиты от перенапряжения (13 В). При превышении напряжения на выходе стабилизатора (в случае выхода последнего из строя) реле S1 отключает нагрузку от стабилизатора и подключает ее к АКБ. В случае отключения питающего напряжения, реле S1 переходит в состояние "по умолчанию"- т.е. подключает нагрузку на АКБ.

Приведенная здесь схема не имеет электронной защиты от короткого замыкания для АКБ. эту роль выполняет плавкий предохранитель в цепи питания нагрузки, рассчитанный на максимальный потребляемый ток.


3.4.3 Источники питания на основе высокочастотного импульсного преобразователя

Достаточно часто при конструировании устройств возникают жесткие требования к размерам источника питания. В этом случае единственным выходом является применение ИП на основе высоковольтных высокочастотных импульсных преобразователей. которые подключаются к сети ~220 В без применения габаритного низкочастотного понижающего трансформатора и могут обеспечить большую мощность при малых размерах и теплоотдаче.

Структурная схема типового импульсного преобразователя с питанием от промышленной сети представлена на рис 34-4.

Входной фильтр предназначен для предотвращения проникновения импульсных помех в сеть. Силовые ключи обеспечивают подачу импульсов высокого напряжения на первичную обмотку высокочастотного трансформатора (могут применяться одно- и


двухтактные схемы). Частота и длительность импульсов задаются управляемым генератором (обычно применяется управление шириной импульсов, реже - частотой). В отличие от трансформаторов синусоидального сигнала низкой частоты, в импульсных ИП применяются широкополосные устройства, обеспечивающие эффективную передачу мощности на сигналах с быстрыми фронтами. Это накладывает существенные требования на тип применяемого магнитопровода и конструкцию трансформатора. С другой стороны, с увеличением частоты требуемые размеры трансформатора (с сохранением передаваемой мощности) уменьшаются (современные материалы позволяют строить мощные трансформаторы с приемлемым КПД на частоты до 100-400 кГц). Особенностью выходного выпрямителя является применение в нем не обычных силовых диодов, а быстродействующих диодов Шоттки, что обусловлено высокой частотой выпрямляемого напряжения. Выходной фильтр сглаживает пульсации выходного напряжения. Напряжение обратной связи сравнивается с опорным напряжением и затем управляет генератором. Обратите внимание на наличие гальванической развязки в цепи обратной связи, что необходимо, если мы хотим обеспечить развязку выходного напряжения с сетью.

При изготовлении таких ИП возникают серьезные требования к применяемым компонентам (что повышает их стоимость по сравнению с традиционными). Во-первых, это касается рабочего напряжения диодов выпрямителя, конденсаторов фильтра и ключевых транзисторов, которое не должно быть менее 350 В во избежание пробоев. Во-вторых, должны применяться высокочастотные ключевые транзисторы (рабочая частота 20-100 кГц) и специальные керамические конденсаторы (обычные оксидные электролиты на высоких частотах будут перегреваться ввиду их высокой индук-


тивности). И. в-третьих, частота насыщения высокочастотного трансформатора, определяемая типом применяемого магнитопро вода (как правило, используются тороидальные сердечники) должна быть значительно выше рабочей частоты преобразователя.

На рис. 3.4-5 приведена принципиальная схема классического ИП на основе высокочастотного преобразователя. Фильтр, состоящий из емкостей С1, С2, СЗ и дросселей L1, L2, служит для зашиты питающей сети от высокочастотных помех со стороны преобразователя. Генератор построен по автоколебательной схеме и совмещен с ключевым каскадом. Ключевые транзисторы VT1 и VT2 работают в противофазе, открываясь и закрываясь по очереди. Запуск генератора и надежную работу обеспечивает транзистор VT3, работающий в режиме лавинного пробоя. При нарастании напряжения на С6 через R3 транзистор открывается и конденсатор разряжается на базу VT2, запуская работу генератора. Напряжение обратной связи снимается с дополнительной (III) обмотки силового трансформатора Tpl.

Транзисторы VT1. VT2 устанавливают на пластинчатые радиаторы не менее 100 см^2. Диоды VD2-VD5 с барьером Шоттки ставятся на небольшой радиатор 5 см^2. Данные дросселей и трансформаторов:L1-1. L2 наматывают на кольцах из феррита 2000НМ К12х8х3 в два провода проводом ПЭЛШО 0,25: 20 витков. ТР1 - на двух кольцах, сложенных вместе, феррит 2000НН КЗ 1х18.5х7;

обмотка 1 - 82 витка проводом ПЭВ-2 0,5: обмотка II - 25+25 витков проводом ПЭВ-2 1,0: обмотка III - 2 витка проводом ПЭВ-2 0.3. ТР2 наматывают на кольце из феррита 2000НН К10х6х5. все обмотки выполнены проводом ПЭВ-2 0.3: обмотка 1 - 10 витков:

обмотки II и III - по 6 витков, обе обмотки (II и III) намотаны так, что занимают на кольце по 50% площади не касаясь и не перекрывая друг друга, обмотка I намотана равномерно по всему кольцу и изолирована слоем лакоткани. Катушки фильтра выпрямителя L3, L4 наматывают на феррите 2000НМ К 12х8х3 проводом ПЭВ-2 1,0 , количество витков - 30. В качестве ключевых транзисторов VT1, VT2 могут применяться КТ809А. КТ812, КТ841.

Номиналы элементов и намоточные данные трансформаторов приведены для выходного напряжения 35 В. В случае, когда требуются иные рабочие значения параметров, следует соответству ющим образом изменить количество витков в обмотке 2 Тр1.

Описанная схема имеет существенные недостатки, обусловленные стремлением предельно уменьшить количество применяемых компонентов Это и низкий "уровень стабилизации выходного напряжения, и нестабильная ненадежная работа, и низкий выходной ток. Однако она вполне пригодна для питания простейших конструкций разной мощности (при применении соответствующих компонентов), таких как: калькуляторы. АОНы. осветительные приборы и т.п.


Еще одна схема ИП на основе высокочастотного импульсного преобразователя приведена на рис. 3.4-6. Основным отличием этой схемы от стандартной структуры, представленной на рис. 3 .4-4 является отсутствие цепи обратной связи. В связи с этим, стабильность напряжения на выходных обмотках ВЧ трансформатора Тр2 достаточно низкая и требуется применение вторичных стабилизаторов (в схеме используются универсальные интегральные стабилизаторы на ИС серии КР142).

3.4.4 Импульсным стабилизатор с ключевым МДП-транзистором со считыванием тока.

Миниатюризации и повышению КПД при разработке и конструировании импульсных источников питания способствует применение нового класса полупроводниковых инверторов - МДП-транзисторов, а также: мощных диодов с быстрым обратным восстановлением, диодов Шоттки, сверхбыстродействующих диодов, полевых транзисторов с изолированным затвором, интегральных схем управления ключевыми элементами. Все эти элементы доступны на отечественном рынке и могут использоваться в конструировании высокоэффективных источников питания, преобразователей, систем зажигания двигателей внутреннего сгорания (ДВС), систем запуска ламп дневного света (ЛДС). Большой интерес у разработчиков также может вызвать класс силовых приборов под названием HEXSense - МДП-транзисторы со считыванием тока. Они являются идеальными переключающими элементами для импульсных источников питания с готовым управлением. Возможность считывать ток ключевого транзистора может быть использована в импульсных ИП для обратной связи по току, требуемой для контроллера широтно-импульсной модуляции. Этим достигается упрощение конструкции источника питания - исключение из него токовых резисторов и трансформаторов.

На рис. 3.4-7 приведена схема импульсного источника питания мощностью 230 Вт. Его основные рабочие характеристики следующие:

Входное напряжение:-110 В 60Гц:

Выходное напряжение: 48 В постоянное:

Ток нагрузки: 4.8 А:

Частота переключения: 110 кГц:

КПДпри полной нагрузке: 78%;

КПД при нагрузке 1/3: 83%.


Схема построена на базе широтно-импульсного модулятора (ШИМ) с высокочастотным преобразователем на выходе. Принцип работы состоит в следующем.

Сигнал управления ключевым транзистором поступает с выхода 6 ШИМ контроллера DA1, коэффициент заполнения ограничивается 50% резистором R4, R4 и СЗ являются времязадающи ми элементами генератора. Питание DA1 обеспечивается цепочкой VD5, С5, С6, R6. Резистор R6 предназначен для подачи питающего напряжения во время запуска генератора, в последующем задей ствуется обратная связь по напряжению через LI, VD5. Эта обратная связь получается от дополнительной обмотки выходного дросселя, которая работает в режиме обратного хода. Помимо питания генератора, напряжение обратной связи через цепочку VD4, Cl, Rl, R2 подается на вход обратной связи по напряжению DA1 (выв.2). Через R3 и С2 обеспечивается компенсация, которая гарантирует стабильность петли обратной связи.

На базе данной схемы возможно построение импульсных стабилизаторов и с другими выходными параметрами.

Сфера применения импульсных блоков питания в быту постоянно расширяется. Такие источники применяются для питания всей современной бытовой и компьютерной аппаратуры, для реализации источников бесперебойного электропитания, зарядных устройств для аккумуляторов различного назначения, реализации низковольтных систем освещения и для других нужд.

В некоторых случаях покупка готового источника питания мало приемлема с экономической или технической точки зрения и сборка импульсного источника собственными руками является оптимальным выходом из такой ситуации. Упрощает такой вариант и широкая доступность современной элементной базы по низким ценам.

Наиболее востребованными в быту являются импульсные источники с питанием от стандартной сети переменного тока и мощным низковольтным выходом. Структурная схема такого источника показана на рисунке.

Сетевой выпрямитель СВ преобразует переменное напряжение питающей сети в постоянное и осуществляет сглаживание пульсаций выпрямленного напряжения на выходе. Высокочастотный преобразователь ВЧП осуществляет преобразование выпрямленного напряжения в переменное или однополярное , имеющее форму прямоугольных импульсов необходимой амплитуды.

В дальнейшем такое напряжение либо непосредственно, либо после выпрямления (ВН) поступает на сглаживающий фильтр, к выходу которого подключается нагрузка. Управление ВЧП осуществляется системой управления, получающей сигнал обратной связи от выпрямителя нагрузки.

Такая структура устройства может быть подвергнута критике из-за наличия нескольких звеньев преобразования, что снижает КПД источника. Однако, при верном выборе полупроводниковых элементов и качественном расчете и изготовлении моточных узлов, уровень потерь мощности в схеме мал, что позволяет получать реальные значения КПД выше 90%.

Принципиальные схемы импульсных блоков питания

Решения структурных блоков включают не только обоснование выбора вариантов схемной реализации, но и практические рекомендации по выбору основных элементов.

Для выпрямления сетевого однофазного напряжения используют одну из трех классических схем изображенных на рисунке:

  • однополупериодную;
  • нулевую (двухполупериодную со средней точкой);
  • двхполупериодную мостовую.

Каждой из них присущи достоинства и недостатки, которые определяют область применения.

Однополупериодная схема отличается простотой реализации и минимальным количеством полупроводниковых компонентов. Основными недостатками такого выпрямителя являются значительная величина пульсации выходного напряжения (в выпрямленном присутствует лишь одна полуволна сетевого напряжения) и малый коэффициент выпрямления.

Коэффициент выпрямления Кв определяется соотношением среднего значения напряжения на выходе выпрямителя Udк действующему значению фазного сетевого напряжения .

Для однополупериодной схемы Кв=0.45.

Для сглаживания пульсации на выходе такого выпрямителя требуются мощные фильтры.

Нулевая, или двухполупериодная схема со средней точкой , хоть и требует удвоенного числа выпрямительных диодов, однако, этот недостаток в значительной мере компенсируется более низким уровнем пульсаций выпрямленного напряжения и ростом величины коэффициента выпрямления до 0.9.

Основным недостатком такой схемы для использования в бытовых условиях является необходимость организации средней точки сетевого напряжения, что подразумевает наличие сетевого трансформатора. Его габариты и масса оказываются несовместимыми с идеей малогабаритного самодельного импульсного источника.

Двухполупериодная мостовая схема выпрямления имеет те же показатели по уровню пульсации и коэффициенту выпрямления, что и нулевая схема,но не требует наличия сетевого . Это компенсирует и главный недостаток – удвоенное количество выпрямительных диодов как с точки зрения КПД, так и по стоимости.

Для сглаживания пульсаций выпрямленного напряжения наилучшим решением является использование емкостного фильтра. Его применение позволяет поднять величину выпрямленного напряжения до амплитудного значения сетевого (при Uф=220В Uфм=314В). Недостатками такого фильтра принято считать большие величины импульсных токов выпрямительных элементов, но критичным этот недостаток не является.

Выбор диодов выпрямителя осуществляется по величине среднего прямого тока Ia и максимального обратного напряжения U BM .

Приняв величину коэффициента пульсации выходного напряжения Кп=10%, получим среднее значение выпрямленного напряжения Ud=300В. С учетом мощности нагрузки и КПД ВЧ преобразователя (для расчета принимается 80%, но на практике получится выше, это позволит получить некоторый запас).

Ia – средний ток диода выпрямителя, Рн- мощность нагрузки, η – КПД ВЧ преобразователя.

Максимальное обратное напряжение выпрямительного элемента не превышает амплитудного значения напряжения сети (314В), что позволяет использовать компоненты с величиной U BM =400В со значительным запасом. Использовать можно как дискретные диоды, так и готовые выпрямительные мосты от различных производителей.

Для обеспечения заданной (10%) пульсации на выходе выпрямителя емкость конденсаторов фильтра принимается из расчета 1мкФ на 1Вт выходной мощности. Используются электролитические конденсаторы с максимальным напряжением не менее 350В. Емкости фильтров для различных мощностей приведены в таблице.

Высокочастотный преобразователь: его функции и схемы

Высокочастотный преобразователь представляет собой однотактный или двухтактный ключевой преобразователь (инвертор) с импульсным трансформатором. Варианты схем ВЧ преобразователей приведены на рисунке.

Однотактная схема . При минимальном количестве силовых элементов и простоте реализации имеет несколько недостатков.

  1. Трансформатор в схеме работает по частной петле гистерезиса, что требует увеличения его размеров и габаритной мощности;
  2. Для обеспечения мощности на выходе необходимо получить значительную амплитуду импульсного тока, протекающего через полупроводниковый ключ.

Схема нашла наибольшее применение в маломощных устройствах, где влияние указанных недостатков не столь значительно.

Чтобы самостоятельно поменять или установить новый счетчик, не требуется особых навыков. Выбор правильной обеспечит корректный учет потребляемого тока и повысит безопасность домашней электросети.

В современных условиях обеспечения освещения как внутри помещений, так и на улице все чаще используют датчики движения. Это придает не только комфорт и удобства в наши жилища, но и позволяет существенно экономить. Узнать практические советы по выбору места установки, схем подключения можно .

Двухтактная схема со средней точкой трансформатора (пушпульная) . Получила свое второе название от английского варианта (push-pull) описания работы. Схема свободна от недостатков однотактного варианта, но имеет собственные – усложненная конструкция трансформатора (требуется изготовление идентичных секций первичной обмотки) и повышенные требования к максимальному напряжению ключей. В остальном решение заслуживает внимания и широко применяется в импульсных источниках питания, изготавливаемых своими руками и не только.

Двухтактная полумостовая схема . По параметрам схема аналогична схеме со средней точкой, но не требует сложной конфигурации обмоток трансформатора. Собственным недостатком схемы является необходимость организации средней точки фильтра выпрямителя, что влечет четырехкратное увеличение количества конденсаторов.

Благодаря простоте реализации схема наиболее широко используется в импульсных источниках питания мощностью до 3 кВт. При больших мощностях стоимость конденсаторов фильтра становится неприемлемо высокой по сравнению с полупроводниковыми ключами инвертора и наиболее выгодной оказывается мостовая схема.

Двухтактная мостовая схема . По параметрам аналогична другим двухтактным схемам, но лишена необходимости создания искусственных «средних точек». Платой за это становится удвоенное количество силовых ключей, что выгодно с экономической и технической точек зрения для построения мощных импульсных источников.

Выбор ключей инвертора осуществляется по амплитуде тока коллектора (стока) I КМАХ и максимальному напряжению коллектор-эмиттер U КЭМАХ. Для расчета используются мощность нагрузки и коэффициент трансформации импульсного трансформатора.

Однако, прежде необходимо рассчитать сам трансформатор. Импульсный трансформатор выполняется на сердечнике из феррита, пермаллоя или витого в кольцо трансформаторного железа. Для мощностей до единиц кВт вполне подойдут ферритовые сердечники кольцевого или Ш-образного типа. Расчет трансформатора ведется исходя из требуемой мощности и частоты преобразования. Для исключения появления акустического шума частоту преобразования желательно вынести за пределы звукового диапазона (сделать выше 20 кГц).

При этом необходимо помнить, что при частотах близких к 100 кГц значительно возрастают потери в ферритовых магнитопроводах. Сам расчет трансформатора не составляет труда и легко может быть найден в литературе. Некоторые результаты для различных мощностей источников и магнитопроводов приведены в таблице ниже.

Расчет произведен для частоты преобразования 50 кГц. Стоит обратить внимание, что при работе на высокой частоте имеет место эффект вытеснения тока к поверхности проводника, что приводит к снижению эффективной площади обмотки. Для предотвращения подобного рода неприятностей и снижения потерь в проводниках необходимо выполнять обмотку из нескольких жил меньшего сечения. При частоте 50 кГц допустимый диаметр провода обмотки не превышает 0.85 мм.

Зная мощность нагрузки и коэффициент трансформации можно рассчитать ток в первичной обмотке трансформатора и максимальный ток коллектора силового ключа. Напряжение на транзисторе в закрытом состоянии выбирается выше, чем выпрямленное напряжение, поступающее на вход ВЧ-преобразователя с некоторым запасом (U КЭМАХ >=400В). По этим данным производится выбор ключей. В настоящее время наилучшим вариантом является использование силовых транзисторов IGBT или MOSFET.

Для диодов выпрямителя на вторичной стороне необходимо соблюдать одно правило – их максимальная рабочая частота должна превышать частоту преобразования. В противном случае КПД выходного выпрямителя и преобразователя в целом значительно снизятся.

Видео о изготовлении простейшего импульсного питающего устройства

Лучшие статьи по теме