Как настроить смартфоны и ПК. Информационный портал
  • Главная
  • Windows 10
  • Полная функциональная зависимость бд. Функциональная зависимость базы данных

Полная функциональная зависимость бд. Функциональная зависимость базы данных

Лекции № 8-9.

Функциональная зависимость. Нормальные формы.

Цель занятия: познакомить студентов с определением функциональной зависимости атрибутов, с понятием нормализации исходного отношения, рассказать о причинах, приводящих к необходимости нормализации файлов записи, ввести способы обеспечения требуемого уровня нормальности таблицы, определить нормальные формы на конкретном примере.

Функциональные зависимости

Теория нормализации, как и теория баз данных в целом, опирается на математический аппарат, основу которого составляют теория множеств и элементы алгебры.

Одни и те же данные могут группироваться в таблицы (отношения) различными способами. Группировка атрибутов в отношениях должна быть рациональной (т. е. дублирование данных д.б. минимальным) и упрощающей процедуры их обработки и обновления. Устранение избыточности данных является одной из важнейших задач проектирования баз данных и обеспечивается нормализацией.

Нормализация таблиц (отношений) - это формальный аппарат ограничений на формирование таблиц (отношений), который позволяет устранить дублирование, обеспечивает непротиворечивость хранимых в базе данных, уменьшает трудозатраты на ведение (ввод, корректировку) базы данных. Процесс нормализации заключается в разложении (декомпозиции) исходных отношений БД на более простые отношения. Каждая ступень этого процесса приводит схему отношений в последовательные нормальные формы. Для каждой ступени нормализации имеются наборы ограничений, которым должны удовлетворять отношения БД. Нормализация позволяет удалить из таблиц базы избыточную неключевую информацию.

Вначале вспомним некоторые понятия:

Простой атрибут - это атрибут, значения которого неделимы. Иными словами, в таблице нет полей типа ФИО или Адрес - они разложены на поля Фамилия, Имя, Отчество в первом случае и на поля Индекс, Город и т. д. во втором.

Сложный (составной) атрибут получается путем соединения нескольких атомарных атрибутов, иначе его называют вектором или агрегатом данных.

Определение функциональной зависимости: Пусть X и Y атрибуты некоторого отношения. Если в любой момент времени произвольному значению X соответствует единственное значение Y, то Y функционально зависит от X (X Y)

Если ключ является составным, то любой атрибут должен зависеть от ключа в целом, но не может находиться в функциональной зависимости от какой-либо части составного ключа, т.е. функциональная зависимость имеет вид (X 1 , X 2 , ..., X) Y.

Функциональная зависимость может быть полной или неполной.

Неполной зависимостью называется зависимость неключевого атрибута от части составного ключа.


Полной функциональной зависимостью называется зависимость неключевого атрибута от всего составного ключа, а не от его частей.

Определение транзитивной функциональной зависимости: Пусть X, Y, Z - три атрибута некоторого отношения. При эtom X Y и Y Z, но обратное соответствие отсутствует, то есть Y не зависит от Z, а Х не зависит от Y. Тогда говорят, что Z транзитивно зависит от Х.

Определение многозначной зависимости: Пусть Х и Y атрибуты некоторого отношения. Атрибут Y многозначно зависит от атрибута X, если. каждому значению X соответствует множество значений Y, не связанных с другими атрибутами из отношения. Многозначные зависимости могут носить характер «один ко многим» (1:М), «многие к одному» (М:1) или «многие ко многим» (М:М), обозначаемые соответственно: X=>Y, Y<=X и X<=>Y. Например, преподаватель ведет несколько предметов, а каждый предмет может вестись несколькими преподавателями, тогда имеет место зависимость ФИО <=> Предмет.

Рассмотрим следующий пример: Предположим, что для учебной части факультета создается БД о преподавателях, которая включает следующие атрибуты:

ФИО - фамилия и инициалы преподавателя (совпадения фамилий и инициалов исключаются).

Должность - должность, занимаемая преподавателем.

Оклад- оклад преподавателя.

Стаж - преподавательский стаж. Д_Стаж - надбавка за стаж.

Кафедра - номер кафедры, на которой числится преподаватель.

Предмет - название предмета (дисциплины), читаемого преподавателем.

Группа - номер группы, в которой преподаватель проводит занятия.

Вид занятия - вид занятий, проводимых преподавателем в учебной группе.

Исходное отношение ПРЕПОДАВАТЕЛЬ

Информация всегда имела адекватный динамичный интерес. Развитие языков программирования, реляционных баз данных и информационных технологий кардинально изменило содержание и структуру интереса. Сложилась определенная строгая система представлений. Формализация, точная математика и бинарные отношения стали успешной и, стремительно развивающейся, областью знаний и опыта.

Естественный мир информации не поменял своей динамики и, развивая содержание и структуру, поднялся на новую высоту. Он имеет плавные формы, и в природе нет ничего «прямоугольного» . Информация, безусловно, поддается формализации, но у нее есть динамика, меняются не только данные и алгоритмы их обработки, меняются сами задачи и области их применения.

Информация > формализация >> данные

Информация, превращается в информационная структура, база данных…) так, как это видит программист. Нет никакой гарантии, что это видение правильно, но если его программа решает поставленную задачу, значит данные были представлены возможно надлежащим образом.

Вопрос о том, насколько была правильно формализована информация - вопрос времени. До сих пор понятие динамики (самоадаптации к изменяющимся условиям использования) - только лишь мечта программирования.

Функциональная зависимость: «правильное решение = программа (программист)» и условие: «непрерывное соответствие задаче» действительны в большинстве случаев, но только совместно. Но это не та математическая основа, которая применяется при создании баз данных.

Прямое утверждение: естественная и непрерывная динамика информации и алгоритмов решения задач действительно всегда. А это бинарные отношения + строгая математика + точные формальные конструкции, + ...

и базы данных

Как хранятся данные уже давно неважно: будь то оперативная память или внешнее устройство. Аппаратная составляющая достигла уверенных темпов развития и обеспечивает хорошее качество в больших объемах.

Основные варианты хранения, отличающиеся вариантами использования данных:

  • файлы;
  • базы данных.

Первое отдано на откуп программисту (что записывать, в каком формате, как это делать, как читать…), второе сразу приносит необходимость познания простой функциональной зависимости.

Скорость выборки и записи информации при работе с файлами (разумного размера, а не астрономического) очень быстра, а скорость аналогичных операций с базой данных может порой быть заметно медленной.

Личный опыт и коллективный разум

В истории были попытки выйти за достигнутые пределы, но по сей день властвуют реляционные базы данных. Накоплен большой теоретический потенциал, практика применения обширная, а разработчики - высококвалифицированные.

Понятие функциональной зависимости разработчики баз данных навязывают программисту, даже если тот не намерен использовать богатый математическо-логический опыт построения сложных информационных структур, процессов работы с ними, выборки и записи информации.

Даже в самом простом случае программист зависит от логики базы данных, какую бы он ни выбрал для работы. Нет желания следовать канонам, можно использовать файлы, получится много файлов и много личного опыта. Будет потрачено много личного времени и задача будет решена за длительное время.

Какими бы сложными ни казались примеры функциональной зависимости, вовсе не обязательно погружаться в глубины смысла и логики. Часто следует признать, что коллективный разум сумел создать отличные базы данных, различного размера и функциональности:

  • солидный Oracle;
  • требовательный MS SQL Server;
  • популярный MySQL.

Прекрасные реляционные базы данных с хорошей репутацией, удобные в использовании, быстрые в умелых руках. Их применение экономит время и избавляет от необходимости писать очередные простыни вспомогательного кода.

Особенности программирования и данных

У программирования с давних пор болезнь что-то постоянно переписывать, повторять труд предшественников, чтобы как-то что-то адаптировать к изменившейся информации, задаче или условиями ее использования.

Особенность функциональной зависимости в том, что, как и в программировании, ошибка может стоить очень дорого. Задача редко бывает простой. Обычно, в ходе формализации информации, получается сложное представление данных. Обычно выделяются их элементы, потом они увязываются ключами в определенные отношения, потом налаживаются алгоритмы формирования таблиц, запросы, алгоритмы выборки информации.

Часто большое значение имеет привязка к кодировке. Не все базы данных предлагают мобильные решения, часто можно столкнуться с тем, как прекрасно настроенный MySQL, на котором лежит десяток баз данных, отлично и стабильно работающий, вынуждает разработчика делать одиннадцатую базу подобной тем, которые уже есть.

Бывают случаи, когда общий хостинг ограничивает функциональность PHP и это накладывает отпечаток на программирование доступа к базе данных.

В современном программировании ответственность за алгоритм программы эквивалентна ответственности за создание модели данных. Все должно работать, но не всегда следует погружаться в дебри теории.

БД: простая зависимость в данных

Прежде всего, понятие БД - это и база данных как система управления (например, MySQL), так и некая информационная структура, отражающая данные задачи и связи между ними. Одна база MySQL «держит» на себе сколько угодно информационных структур по различным сферам применения. Одна база Oracle, может обеспечивать информационные процессы крупной компании или банка, контролировать вопросы безопасности и сохранности данных на высочайшем уровне, располагаясь на множестве компьютеров, находящихся на различном удалении, в различных инструментальных средах.

Принято полагать, что отношение есть основное в реляционной модели. Элементарное отношение - это множество колонок с именами и строк со значениями. Классический «прямоугольник» (таблица) - простое и эффективное достижение прогресса. Сложности и функциональная зависимость базы данных начинаются, когда «прямоугольники» начинают вступать в отношения друг с другом.

Имя каждой колонки в каждой таблице должно быть уникальным в контексте задачи. Одно и то же данное не может быть в двух таблицах. Знать смысл понятий:

  • «определить сущности»;
  • «исключить избыточность»;
  • «зафиксировать взаимосвязи»;
  • «обеспечить достоверность».

Элементарная необходимость для использования базы данных и построения модели данных для конкретной задачи.

Нарушение любого из этих понятий - низкая эффективность алгоритма, медленная выборка данных, потеря данных, и другие неприятности.

Функциональная зависимость: логика и смысл

Можно не читать про кортежи отношений, про то что функция - это соответствие множества аргументов множеству значений, а функция - это не только формула или график, но может быть задана множеством значений - таблицей.

Не обязательно, но вовсе не помешает представлять функциональную зависимость как:

F(x1, x2, …, xN) = (y1, y2, …, yN).

Но обязательно понимать, что на входе - таблица, на выходе тоже таблица или конкретное решение. Обычно функциональная зависимость устанавливает логику отношений между таблицами, запросами, привилегиями, триггерами, хранимыми процедурами и другими моментами (компонентами) базы данных.

Обычно, таблицы преобразуются друг в друга, потом в результат. Но использование функциональной зависимости не ограничивается только такой идеей. Программист сам строит свое представление картины данных, информационной структуры… неважно, как это именовать, но если оно работает на конкретной базе данных, оно должно строиться по ее логике, учитывать ее смысл и диалект используемого языка, как правило, SQL.

Можно утверждать, что свойства функциональных зависимостей базы данных доступны через диалект используемого языка SQL. Но гораздо важнее понимать: после всех перипетий развития, не так много баз данных выжило, но диалектов этого языка много и особенностей внутренних конструкций в базах тоже.

О старом добром Excel

Когда компьютер показал себя с положительной стороны, мир сразу разделился на программистов и пользователей. Как правило, первые используют:

  • PHP, Perl, JavaScript, C++, Delphi.
  • MySQL, Oracle, Visual FoxPro.
  • Word.
  • Excel.

Некоторые пользователи умудряют делать самостоятельно (без помощи программистов) в Word базы данных - реальный нонсенс.

Опыт работы пользователей в Excel по созданию баз данных - практичен и интересен. Важно то, что Excel, сам по себе, функционален, красочен и практичен.

Табличная идея, определила понятие функциональной зависимости наглядно и доступно, но нюансы есть у каждой базы данных. У каждой свое «лицо», но все от Excel до Oracle манипулируют простыми квадратами, то есть таблицами.

Если учесть, что Excel - это совсем не база данных, но многие юзеры (не программисты) его именно так используют, а Oracle - это сложнейшее и мощнейшее достижение большого коллектива разработчиков именно в области баз данных, то становится естественным признать - база данных это представление конкретного программиста (коллектива) о конкретной задаче и ее решении.

Что такое функциональная зависимость, с чем, куда, почему… очевидно только автору или коллективу таковых.

О том, куда реляционные отношения идут

Научно-технический прогресс - весьма мучительная процедура, а местами жестокая. Если вспомнить с чего начинались базы данных, что такое *.dbf, как клеймили кибернетику, потом полюбили информатику и стали устраивать препоны перемещению высоких технологий на уровне стран, становится ясно почему реляционные базы данных так живучи и хороши. Почему классический стиль программирования по сей день живет, а объектно-ориентированное программирование просто ценится, но еще не властвует.

Как бы ни была прекрасна функциональная зависимость в контексте математики:

Это не бинарные отношения, точнее, это повод переосмыслить идею устанавливать отношения между множеством атрибутов, исследовать связи «один к многим», «многие к одному», «многие ко многим» или «многие вообще, а одни в частности».

Вариантов отношений можно придумать великое множество. Это математика с логикой, и она строгая! Информация - это своя математика, особенная. В ней о формальности можно говорить только с очень большим минусом.

Можно формализовать работу отдела кадров, написать АСУ для добычи нефти или производства молока, хлеба, сделать выборку в огромной базе гугла, яндекса или рамблера, но результат будет всегда статичен и каждый момент времени одинаков!

Если функциональная зависимость = строгая логика и математика = основа для баз данных, то о какой динамике можно вести речь. Любое решение будет формальным, любая формальная модель данных + строгий алгоритм = точное и однозначное решение. Информация и область применения любой программы меняются всегда.

Выборка поисковой системы на одной и той же поисковой фразе не может быть одной и той же через час или через два и, однозначно, через день - если поисковая фраза относится к области информации, в которой количество сайтов, ресурсов, знаний, прочих элементов непрерывно меняется.

Даже если программа чисто математическая и ее база данных даже не мыслит о динамике, все всегда есть строки . А у строки есть длинна. И бесконечной она быть не может. Она не может быть даже переменной, только условно-переменной. Помимо всего прочего, любая база данных своим математическим и бинарным-бюрократическим аппаратом накладывает массу формальностей, а это скорость+качество выборки и обработки информации.

А если те или иные поля в базе данных числа, особенно вещественные то в ограничения добавятся: разрядность числа, наличие буквы "е", формата представления - короче везде и всегда имеем важные свойства функциональных зависимостей базы данных: строки условно-переменной длины с массой бинарных формальностей и строгих математических ограничений.

Если сменить тон и прислушаться к пульсу динамики, то все можно расписать на объекты. В первом приближении имя колонки в таблице - это объект, список имен - тоже объект, короче таблица - это объект шапки и в нем имена колонок в шапке. И шапки может вовсе не быть...

Но в таблице могут быть строки. И в строке могут быть значения. И почему их всегда должно быть одинаковое количество. Полная квадратная таблица - это частность, причем в большинстве случаев, частная.

Если представить все конструкции в базе данных объектами, то, быть может, не придется выстраивать строгие бинарные отношения. В этом есть естественный и реальный смысл хотя бы потому, что это по объективной (однозначно не математической) логике отражает динамику информации и среды, в которой существуют задачи.

Атрибут В функционально зависит от атрибута А, если каждому значению А соответствует в точности одно значение В.

Обозначение : A → B. Это значит, что во всех кортежах с одинаковым значением атрибута А атрибут В будет иметь также одно и то же значение.

Если существует функциональная зависимость вида A→B и В→А, то между А и В имеется взаимно однозначное соответствие , или функциональная зависимость . О

Обозначение : A↔B или В↔А.

Если отношение находится в 1НФ, то все неключевые атрибуты функционально зависят от ключа с различной степенью зависимости.

Частичная зависимость (частичная функциональная зависимость) – зависимость неключевого атрибута от части составного ключа.

Полная функциональная зависимость – зависимость неключевого атрибута от всего составного ключа.

Транзитивная зависимость

Атрибут С зависит от атрибута А транзитивно (существует транзитивная зависимость ), если для атрибута А, В, С выполняются условия A→B и В→С, по обратной зависимости отсутствуют.

Множественная зависимость

В отношении R атрибут В многозначно зависит от атрибута А, если каждому значению А соответствует множество значений В, не связанных с другими атрибутами R.

Обозначения : А=>B, A<=B, A<=>B.

Взаимно независимые атрибуты

Два и более атрибута называются взаимно независимыми , если ни один из этих атрибутов не является функционально зависимым от других атрибутов.

Обозначения : А →В, А=В.

Нормальные формы:

    Первая нормальная форма (1НФ). Отношение находится в 1НФ, если все его атрибуты являются простыми (имеют единственное значение).

    Вторая нормальная форма (2НФ). Отношение находится в 2НФ, если оно находится в 1НФ и каждый неключевой атрибут функционально зависит от первичного ключа (составного).

    Третья нормальная форма (3НФ). Отношение находится в 3НФ в том и только в том случае, если все атрибуты отношения взаимно независимы и полностью зависят от первичного ключа.

    Нормальная форма Бойса-Кодда (НФБК). Отношения находится в НФБК, если оно находится в 3НФ и в нем отсутствуют зависимости ключей (атрибутов составного ключа) от неключевых атрибутов.

    Четвертая нормальная форма (4НФ). Отношения находится в 4НФ в том и только в том случае, когда существует многозначная зависимость А=>B, а все остальные атрибуты отношения функционально зависят от А.

    Пятая нормальная форма (5НФ). Отношения находится в 5НФ, если оно находится в 4НФ и удовлетворяет зависимости по соединению относительно своих проекций.

    Шестая нормальная форма (6НФ). Отношение находится в 6НФ тогда и только тогда, когда она не может быть подвергнута дальнейшей декомпозиции без потерь.

    Обеспечение непротиворечивости и целостности данных в базе данных

Ответ :

Целостность – это свойство БД, означающее, что она содержит полную, непротиворечивую и адекватно отражающую предметную область информацию.

Различают:

    Физическую целостность – наличие физического доступа к данным и то, что данные не утрачены.

    Логическую целостность – отсутствие логических ошибок в БД, к которым относятся нарушение структуры БД или ее объектов, удаление или изменение установленных связей между объектами и т.д.

Поддержание целостности БД включает:

    Проверку (контроль) целостности

    Восстановление в случае обнаружения противоречий в базе.

Целостное состояние задается с помощью ограничений целостности (условий, которыми должны удовлетворять данные). Два типа ограничений целостности :

    Ограничение значений атрибутов отношений . Например : требование недопустимости NULL-значений, недопустимости повторяющихся значений в атрибутах, контроль принадлежности значений атрибутов заданного диапазона.

    Структурные ограничения на кортежи отношений . Определяет требования целостности сущностей и целостности ссылок .

Требование целостности сущностей состоит в том, что любой кортеж отношения должен быть отличным от любого другого кортежа этого отношения , иными словами, любое отношение должно обладать первичным ключом .

Требование целостности ссылок состоит в том, что для каждого значения внешнего ключа родительской таблицы должна найтись строка в дочерней таблице с таким же значением первичного ключа.

    Метод «сущность - связь»

Ответ :

Метод «сущность-связь» (метод «ER-диаграмм») – это метод, основанный на использование диаграмм, называемых соответственно диаграммами ER-экземпляров и диаграммами ER-типа.

Основные понятия

Сущность – это объект, информация о котором хранится в БД.

Атрибут – это свойство сущности.

Ключ сущности – это атрибут (набор атрибутов), используемый для идентификации экземпляра сущности.

Связь между сущностями – это зависимость между атрибутами этих сущностей.

Графические средства , используемые для получения наглядности и удобства проектирования:

    Диаграмма ER- экземпляров ;

    Диаграмма ER -типа или ER -диаграмма .

На основе анализа ER-диаграмм формируется отношения проектируемой БД. При этом учитывается степень связи сущностей и класс их принадлежности.

Степень связи – это характеристика связи между сущностями (1:1, 1:М; М:1; М:М).

Класс принадлежности сущности может быть: обязательным и необязательным .

Обязательный – если все экземпляры сущности обязательно участвуют в рассматриваемой связи.

Необязательный – не все экземпляры участвуют в рассматриваемой связи.

    Этапы проектирования баз данных

Ответ :

I . Концептуальное проектирование – сбор, анализ и редактирование требований к данным.

Цель : создание концептуальной модели данных, исходя из представлений пользователя о предметной области.

Процедуры :

    Определение сущностей и их документирование;

    Определение связей между сущностями и их документирование;

    Создание модели предметной области;

    Определение значений атрибутов;

    Определение первичных ключей для сущностей.

II . Логическое проектирование – на основе концептуальной модели создается структура данных.

Цель : преобразование концептуальной модели на основе выбранной модели данных в логическую модель, независимую от особенностей используемой в дальнейшем СУБД для физической реализации БД.

Процедуры :

    Выбор модели данных;

    Определение набора таблиц и их документирование;

    Нормализация таблиц;

    Определение требований к поддержке целостности данных и их документирование.

III . Физическое проектирование – определение особенностей данных и методов доступа.

Цель: описание конкретной реализации БД, размещение во внешней памяти компьютера.

Процедуры:

    Проектирование таблиц БД;

    Проектирование физической организации БД;

    Разработка стратегии защиты БД.

    Жизненный цикл базы данных

Ответ :

Жизненный цикл БД – это процесс проектирования, реализации и поддержания систем БД.

Стадии жизненного цикла БД:

    Анализ – анализ предметной области и выявление требований к ней, оценка актуальности системы.

    Проектирование – создание логической структуры БД, функциональное описание программных моделей и информационных запросов.

    Реализация – разработка ПО для БД, проводится тестирование.

    Эксплуатация и сопровождение .

Этапы жизненного цикла БД:

    Предварительное планирование – планирование БД, выполнения стратегического плана разработки БД (какие приложения используются, какие функции они выполняют, какие файлы связаны с каждым из этих приложений и какие новые файлы и приложения находятся в процессе разработки).

    Проверка осуществимости – проверка технологической, операционной и экономической осуществимостей.

    Определение требований – выбор цели БД, выявление информационных требований к БД, требования к оборудованию и к ПО, определение пользовательских требований.

    Концептуальное проектирование – создание концептуальной схемы.

    Реализация – приведение концептуальной модели ф функциональную БД.

    Выбор и приобретение необходимой СУБД.

    Преобразование концептуальной модели в логическую и физическую модели.

    На основе инфологической модели строится схема данных для конкретной СУБД.

    Определяются какие прикладные процессы необходимо реализовать как хранимые процедуры.

    Реализовать ограничения, предназначенные для обеспечения целостности данных.

    Спроектировать триггеры.

    Разработать стратегию индексирования и кластеризации, выполнить оценку размеров таблицы, кластеров и индексов.

    Определить уровни доступа пользователей, разработать и внедрить правила безопасности.

    Разработать сетевую топология БД.

    Создание словаря данных.

    Заполнение БД.

    Создание прикладного ПО, контроль управления.

    Обучение пользователя.

    Оценка и усовершенствование схемы БД .

    Правила формирования отношений

Ответ :

Правила формирования отношений основываются на учете следующего:

    Степень связи между сущностями (1:1, 1:М, М:1, М:М);

    Класса принадлежности экземпляров сущностей (обязательный и необязательный).

a. При рассмотрении количественной стороны различных процессов мы почти всегда наблюдаем, что переменные величины зависят друг от друга; например, путь проходимый свободно падающим в пустоте телом зависит только от времени, давление в паровом котле зависит только от температуры пара.

Глубина океана в одном пункте постоянна, но в различных пунктах различна, она зависит только от двух переменных - от географической долготы и географической широты места.

Высота растущего дерева зависим от многих переменных - от солнечного освещения, от влажности, от количества питательных веществ в почве и т. д.

Мы видим, что некоторые переменные изменяются независимо, они и называются независимыми переменными или аргументами, другие же от них зависят их называют функциями.

Сама зависимость называется функциональной. Между прочим, функциональная зависимость представляет собой одно из самых важных понятий математики.

b. Следует всегда различать, от какого числа независимых переменных зависит функция. Проще всего поддаются изучению функции одной переменной, ими мы будем заниматься в первую очередь. Изучение функций многих переменных сложнее, но так или иначе сводится к изучению функций одной переменной.

c. Если мы желаем записать математически, что переменная у зависит от , то будем употреблять такое обозначение:

Эта запись читается так:

Не; следует думать, что буква умножается на , она является лишь сокращением слова «функция», а вся запись является сокращенной фразой (2).

Точно так же, если функция U зависит от двух аргументов то эта зависимость обозначается следующим образом:

Здесь буквы f, х и у также не являются сомножителями.

Совершенно ясно, как обозначается функция трех четырех и большего числа аргументов.

Вместо буквы употребляют и другие буквы чаще всего .

d. Записи типа (1) и (3) являются самыми общими обовначениями функций, так как под ними можно понимать какие угодно функции, а потому, имея в руках только эти обозначения, мы ничего не сможем узнать о свойствах этих функций.

Для того чтобы иметь возможность изучать функцию нужно ее задать.

e. Имеется много способов задать функцию, но все они сводятся к трем основным типам:

1) функцию можно задать таблицей ее числовых значений, соответствующих числовым значениям ее аргумента;

2) функцию можно задать графически;

3) функцию можно задать математической формулой.

f. Приведем примеры. Известно, что при вращении махового колеса возникают напряжения, которые стремятся разорвать его обод. Если обод колеса сделан из однородного материала, то напряжения зависят только от скорости вращения. Обозначая скорость через v, а напряжение в ободе через , мы можем записать что

Теория сопротивления материалов дает такую таблицу для значений функции (4), если обод сделан из литой стали:

Здесь v измеряется в метрах в секунду - в ньютонах на квадратный сантиметр.

Большим достоинством табличного способа Зсдания функции является то, что числа таблицы непосредственно могут быть использованы для различных вычислений.

Недостатком является то, что всякая таблица дается не для всех значений аргумента, а через некоторые интервалы, так что, если каких-либо значений функции в таблице нет, то нужно брать более подробную таблицу; если же последней нет, то приходится подбирать нужное число более или менее приблизительног сообразуясь с характером изменения чисел таблицы,

g. Большим недостатком является также и то, что если таблица содержит много чисел, то характер изменения функции уловить трудно. Наконец, третьим недостатком является то, что изучать свойства функции, заданной таблицей, трудно; кроме того, полученные свойства будут неточными.

h. От первых двух недостатков свободен графический способ задания функции.

Чтобы пояснить графический способ рассмотрим такой пример.

Если какой-либо материал подвергнуть растяжению, то сила, необходимая для растягивания, будет зависеть от того, какое растяжение необходимо сделать, т. е. сила есть функция от удлинения. Если удлинение в процентах обозначить через X, а растягивающую силу, которая обычно измеряется в ньютонах на квадратный сантиметр, обозначить через , то

Для различных материалов эта зависимость будет различной. Возьмем координатные оси и будем считать к за абсциссу, а за ординату, тогда для каждой пары их значений получим точку на плоскости.

Все эти точки расположатся на некоторой кривой, которая имеет различный вид для различных материалов. Существуют приборы, которые такие кривые чертят автоматически.

Для мягкой стали мы получим следующую кривую (рис. 31):

k. Как мы видим, действительно графический снособ нагляден и дает значения функции для всех значений аргумента. Но третий недостаток и здесь имеет место. Изучать свойства функции заданной графически, все-таки затруднительно.

l. Теперь покажем способ задания функции формулой Возьмем такой пример. Площадь круга очевидно зависит от радиуса. Если радиус обозначить через я, а площадь через у, то, как известно из геометрии, где - отношение длины окружности к длине диаметра. Мы видим, что зависимость здесь задается математической формулой, поэтому третий способ называется математическим способом. Еще пример: длина гипотенузы прямоугольного треугольника зависит от длин обоих катетов. Если длину гипотенузы обозначить через , а длины катетов через то по теореме Пифагора будем иметь

Так как оба катета мы можем изменять независимо друг от друга, то мы имеем здесь пример функции двух аргументов, заданной математически.

Можно привести еще много примеров функций, заданyых математически, из области различных наук.

m. Математический способ обладает огромным преимуществом перед другими способами задания функций, а именно: к изучению функций, заданных математически, можно привлечь математический анализ.

Помимо того, если необходимо, всегда можно математический способ превратить в табличный. Действительно, мы вправе задать аргументам желательные нам числовые значения и по формуле вычислить сколько угодно значений функции. Таким образом, одна формула заменяет всю таблицу.

n. Математический способ имеет только один недостаток, а именно, формула не дает наглядного представления об изменении функции. Однако этот недостаток мы всегда можем восполнить, так как всегда математический способ задания можно превратить в графический. Это делается так.

o. Если мы имеем функцию одной переменной, то составляем таблицу и каждую пару значений аргумента и функции принимаем за координаты, после этого строим возможно большее число точек. Все полученные точки расположатся на некоторой кривой линии, которая и будет графиком функции. Если мы имеем функцию двух или более аргументов, то и ее можно изобразить графически. Но это уже значительно сложнее, а потому этим вопросом мы займемся несколько позднее.

p. Все сказанное свидетельствует о том, что математический способ задания функций является наиболее выгодным.

Поэтому всегда стремятся, если функция задана таблицей или графиком, выразить ее формулой. Эта задача обычно очень трудная, но чрезвычайно важная для естествознания и технических наук. Без преувеличения можно сказать, что все проблемы механики, естествознания - прикладных наук сводятся к установлению и изучению функциональных зависимостей между теми переменными величинами, с которыми эти дисциплины имеют дело. Бела удается эти функциональные зависимости выразить формулами, то наука приобретает надежный рычаг для приложения всей огромной мощи математического анализа и далеко продвигается в своем развитии.

С другой стороны, математический анализ, получая эту прекрасную пищу, сам растет и совершенствуется.

q. Ввиду того, что перевод на язык формул функциональных зависимостей не является непосредственной задачей математики, мы будем предполагать, что функции уже выражены формулами. Таким образом, в дальнейшем мы будем заниматься только функциями, заданными матетатически.

Аннотация: В данной лекции вводится понятие функциональной зависимости. Это понятие является основой математической теории реляционных баз данных.

Информация, данные, информационные системы

Понятие функциональной зависимости в данных

Оставим пока в стороне ответ на вопрос, почему проекты реляционных баз данных бывают плохими, т.е. зачем нужно проектировать реляционную базу данных. Попытаемся сначала ответить на вопросы "В чем заключается проектирование реляционных баз данных ? и "Что лежит в основе процедур ?"

Как известно, основной единицей представления данных в реляционной модели является отношение, которое математически задается списком имен атрибутов, иначе - схемой отношения . На стадии логического проектирования реляционной базы данных проектировщик определяет и выстраивает схемы отношений в рамках некоторой предметной области, а именно - представляет сущности, группирует их атрибуты, выявляет основные связи между сущностями. Так, в самом общем смысле проектирование реляционной базы данных заключается в обоснованном выборе конкретных схем отношений из множества различных альтернативных вариантов схем.

На практике построение логической модели базы данных, независимо от используемой модели данных, выполняется с учетом двух основных требований: исключить избыточность и максимально повысить надежность данных. Эти требования вытекают из требования коллективного использования данных группой пользователей. Формальных средств описания данных, необходимых для проверки правильности заполнения конструкций моделей, явно недостаточно. Выбор сущностей, атрибутов и фиксация взаимосвязей между сущностями зависит от семантики предметной области и выполняется системным аналитиком субъективно в соответствии с его личным пониманием специфики прикладной задачи. Разные люди определяют и представляют данные по-разному.

Поэтому любое априорное знание об ограничениях предметной области, накладываемых на взаимосвязи между данными и значения данных, и знания об их свойствах и взаимоотношениях между ними может сыграть определенную роль в соблюдении указанных выше требований. Формализация таких априорных знаний о свойствах данных предметной области базы данных нашла свое отражение в концепции функциональной зависимости данных, т.е. ограничений на возможные взаимосвязи между данными, которые могут быть текущими значениями схемы отношений .

Кортежи отношений могут представлять экземпляры сущности предметной области или фиксировать их взаимосвязь. Но даже если эти кортежи определены правильно, т.е. отвечают схеме отношения и выбраны из допустимых доменов, не всякий из них может быть текущим значением некоторого отношения. Например, возраст человека редко бывает более 120 лет, или один и тот же пилот не может одновременно выполнять два различных рейса. Такие ограничения семантики домена практически не влияют на выбор той или иной схемы отношений . Они представляют собой ограничения на типы данных.

Априорные ограничения предметной области на взаимосвязь значений отдельных атрибутов оказывают наибольшее влияние на процесс проектирования схем реляционных баз данных . Соответствие по значению определенных атрибутов различных отношений базы данных, т.е. зависимость их значений друг от друга, определяет показатели надежности и корректности сохраняемых данных при их коллективном и согласованном использовании.

Вспомним определение функции как соответствия множества аргументов определенным значениям из множества определения функции и способы задания функций: формула, график и перечисление (таблица). Нетрудно понять, что функциональную зависимость (ФЗ) можно определить на довольно широком классе объектов. Определение функции не накладывает никаких ограничений на множество аргументов и множество значений функции, кроме их существования и наличия соответствия между их элементами. Поскольку ФЗ можно задать таблично, а таблица есть форма представления отношения, то становится очевидной связь между ФЗ и отношением. Отношение может задавать ФЗ. Это утверждение является первой (1) конструктивной идеей, которая положена в основу теории проектирования реляционных баз данных .

Определение 1. Пусть r (A 1 , A 2 , ..., A n) - схема отношения R , a X и Y - подмножества r . Говорят, что Х функционально определяет Y , если каждому значению атрибутов кортежа отношения из Х соответствует не более одного значения атрибутов того же кортежа отношения из Y . Такая ФЗ обозначается как .

Как видно из определения, функциональная зависимость инвариантна к изменению состояний базы данных во времени.

Пример. Понятие функциональной зависимости Продемонстрируем понятие функциональной зависимости на примере графика полетов аэропорта. ГРАФИК_ПОЛЕТОВ (Пилот, Рейс, Дата_вылета, Время_вылета)

Иванов 100 8.07 10:20
Иванов 102 9.07 13:30
Исаев 90 7.07 6:00
Исаев 100 11.07 10:20
Исаев 103 10.07 19:30
Петров 100 12.07 10:20
Петров 102 11.07 13:30
Фролов 90 8.07 6:00
Фролов 90 12.07 6:00
Фролов 104 14.07 13:30

Известно, что:

  • каждому рейсу соответствует определенное время вылета;
  • для каждого пилота, даты и времени вылета возможен только один рейс;
  • на определенный день и рейс назначается определенный пилот.

Следовательно:

  • "Время_вылета" функционально зависим от "Рейс" : "Рейс" -> "Время_{} вылета" ;
  • "Рейс" функционально зависим от {"Пилот", "Дата_вылета", "Время_вылета"} : {"Пилот", "Дата_вылета", "Время_вылета"} -> "Рейс" ;
  • "Пилот" функционально зависим от {"Рейс", "Дата_вылета"} : {"Рейс", "Дата_вылета"} -> "Пилот" .

Важной задачей при выявлении функциональных зависимостей на атрибутах отношения, которое по определению является множеством, является выяснение, какой из атрибутов выступает как аргумент, а какой - как значение ФЗ. Наиболее подходящими кандидатами в аргументы ФЗ являются возможные ключи , так как кортежи представляют экземпляры сущности , которые идентифицируются значениями атрибутов своего ключа. Нестрого говоря, функциональная зависимость имеет место на отношении, когда значения кортежа на одном множестве атрибутов однозначным образом определяют значения кортежа на другом множестве атрибутов. Это рабочее определение ФЗ не содержит в себе тех формальных элементов, которые позволяют ответить на вопрос "А как проверить наличие ФЗ между атрибутами отношения?" Необходимый для этого формализм дает нам использование реляционных операций . Для получения формального (строгого) определения наличия ФЗ в отношении обратимся к реляционным операциям .

Определение 2. Пусть имеется отношение R со схемой r , X и Y - два подмножества R . ФЗ имеет место на R , если множество имеет не более одного кортежа для каждого значения х . Такая ФЗ называется также F -зависимостью.

Как видно из определения, формальная проверка наличия ФЗ в отношении R состоит в выборе ( селекции ) отношения по значениям возможного ключа и установлении наличия однозначности между его значением и значениями других атрибутов.

Алгоритм, который проверяет, удовлетворяет ли отношение R ФЗ , состоит в сортировке отношения по значениям возможного ключа и установления факта однозначности между его значением и значениями других атрибутов. Этот алгоритм полезен, но он носит вспомогательный характер.

Ясно, что если семантика предметной области базы данных сложна, то проверить кортежи на принадлежность к ФЗ достаточно сложно. Сложно вообще установить наличие самой функциональной зависимости , отвечающей природе рассматриваемых данных. С помощью такого формального метода можно выявить ФЗ, которые не являются реальными и носят случайный характер. Проектировщику реляционных баз данных следует знать о таком методе проверки наличия ФЗ, но при проектировании новой базы данных его применение малоэффективно. Он может быть полезен при реинжиниринге существующей базы данных.

Функциональные зависимости фактически представляют собой утверждения обо всех отношениях предметной области. Эти отношения могут являться значениями схемы r и, в сущности, не могут быть получены формальными методами. Единственный способ установления функциональных зависимостей для схемы отношения r - это исследование семантики атрибутов сущностей предметной области . Являясь высказываниями о сущностях предметной области , они не могут быть доказаны. Это обстоятельство по существу порождает неединственность представления предметной области отношениями реляционной БД.

Здесь уместно высказать гипотезу о том, почему бывают хорошие и плохие проекты баз данных. Во-первых, в силу субъективности подходов к анализу предметной области аналитики могут упустить важные ФЗ. Это может привести к тому, что, работая на множестве заведомо неэквивалентных схем, проектировщик создаст неудовлетворительный проект базы данных. Во-вторых, неединственность представления предметной области отношениями приводит к проблеме выбора из множества альтернатив. При этом схема базы данных, выбранная из набора эквивалентных схем, является правильной, но может организовывать данные для пользователя непривычным образом. В-третьих, можно определить ("накроить") схемы баз данных таким образом, что в результате операций с ФЗ будут потеряны и ФЗ, и сами данные.

Лучшие статьи по теме