Как настроить смартфоны и ПК. Информационный портал
  • Главная
  • Интересное
  • Параллельное соединение резистора, катушки индуктивности и конденсатора. Активное сопротивление в цепи переменного тока

Параллельное соединение резистора, катушки индуктивности и конденсатора. Активное сопротивление в цепи переменного тока

При последовательном соединении катушки и конденсатора на расчетной схеме каждый из этих элементов электрической цепи может быть представлен активным и реактивным сопротивлениями или активной и реактивной проводимостями.

Для расчета более простой является схема рис. 14.1, а, где элементы соединены последовательно, а в схеме рис. 14.1, б они соединены смешанно.

Предположим известными параметры катушки R1, L и конденсатора R2, C; ток в цепи i = I m sinωt .

Требуется определить напряжение на участках цепи и мощность.

Векторная диаграмма и полное сопротивление цели

Мгновенную величину общего напряжения можно представить суммой мгновенных напряжений на отдельных элементах схемы:

u = u 1R + u L + u C + u 2R ,

Имея в виду несовпадение по фазе активных и реактивных напряжений, общее напряжение получим векторным сложением:

U = U 2R + U L + U C +U 2R

Для построения векторной диаграммы находим:

U 1R = IR 1 ; U 2R = IR 2 ; U L = IX L ; U C = IX C .

В зависимости от соотношения величин реактивных сопротивлений индуктивности и емкости можно отметить три случая:

1. Х L >Х C . Для этого случая векторная диаграмма представлена на рис. 14.2. На диаграмме построены треугольники напряжений для катушки и конденсатора и найдены векторы напряжения U 1 и U 2 на этих элементах.

Векторная сумма напряжений U 1 + U 2 = U дает общее напряжение в цепи. Вместе с тем вектор U является гипотенузой прямоугольного треугольника напряжений, катеты которого - активное и реактивное напряжения цепи (U а и U р ). Так как векторы активных составляющих напряжения направлены в одну сторону, их численные значения складываются: U a = U 1R + U 2R.

Векторы реактивных составляющих напряжения направлены по одной прямой в противоположные стороны, поэтому им придают разные знаки: реактивное напряжение индуктивности считают положительным, а напряжение емкости - отрицательным: U р = U L — U C .

При одинаковом токе во всех элементах цепи U L >U C . Ток отстает от общего напряжения по фазе на угол φ . Из треугольника напряжений следует

где R = R 1 + R 2 и X = X L — X C общее и активное и реактивное сопротивление цепи. Полное сопротивление цепи — Z.

Эти сопротивления графически можно изобразить сторонами прямоугольного треугольника сопротивлений, который получают уже известным способом из треугольника напряжений.

Полное сопротивление цепи Z является коэффициентом пропорциональности между действующими величинами тока и общего напряжения цепи:

U = IZ; I = U/Z; Z = U/I.

Из треугольников напряжения и сопротивлений определяют следующие величины:

Угол сдвига по фазе между напряжением и током в цепи положительный (φ >0) (фазовые токи отсчитываются от вектора тока).

2. Х L < Х C Векторная диаграмма изображена на рис. 14.3, где U L φ <0.

Р е активное сопротивление цепи носит емкостный характер .

Расчетные формулы для первого случая остаются без изменения и для второго случая.

3. X L = Х C . В этом случае реактивные составляющие напряжения катушки и конденсатора равны по величине и взаимно компенсированы: U L = U C (рис. 14.4). Поэтому реактивная составляющая общего напряжения и общее реактивное сопротивление равны нулю, а полное сопротивление цепи Z = R.

Общее напряжение совпадает по фазе с током и равно по величине активной

составляющей напряжения.

Угол φ сдвига фаз между током и общим напряжением равен нулю.

Ток в цепи и общее напряжение связаны формулой

U = IR, или I = U/R.

В случае X L = Х C в цепи имеет место явление резонанса напряжений.

Энергетический процесс в цепи с последовательном соединении конденсатора и катушки

Из треугольника напряжений легко получить треугольник мощностей из которого следуют уже известные формулы:

Реактивные мощности входят в расчеты также с разными знаками: индуктивная мощность положительна, а емкостная — отрицательна.

В соответствии с этим знак реактивной мощности всей цепи может быть тем или другим, что следует и из формул (14.2).
При φ>0 Q>0 ; при φ<0 Q<0.

Активная мощность положительна при любом угле, так как cosφ = cos(-φ ).

Полная мощность также всегда положительна. На основании формул (14.2) можно сделать вывод, что в рассматриваемой цепи совершается преобразование электрической энергии (Р ≠ 0) и обменный процесс между генератором и приемником (Q ≠ 0 при φ ≠ 0).

Энергетические процессы в данном случае сложнее, чем в ранее рассмотренных простых цепях. Усложнение объясняется тем, что наряду с обменом энергией между генератором и приемником совершается обмен энергией внутри приемника, между катушкой и конденсатором.

Особенности энергетического процесса в цепи с последовательным соединением катушки и конденсаторов отражены на рис. 14.5, где показаны графики мгновенной мощности отдельных элементов и цепи в целом при X L = Х С .

Катушка и конденсатор в течение полупериода накапливают равные количества энергии. Однако в первую четверть периода, когда ток увеличивается, а напряжение на конденсаторе уменьшается, энергия накапливается в магнитном поле катушки и уменьшается в электрическом поле конденсатора, причем скорость изменения энергии (мощность) в любой момент времени одинакова. Это дает основание считать, что обмен энергией происходит только в приемнике между катушками
и конденсатором.

Для преобразования электрической энергии в другой вид приемник получает ее от генератора со средней скоростью (мощностью) Р.

Задачи по теме и пример решения задачи для схемы с последовательным соединением конденсатора и катушки

По закону Ома, в замкнутой цепи постоянного тока

напряжение на зажимах источника меньше ЭДС

U = IR; U = E - Ir

    1. Резистор в цепи переменного тока

Рассмотрим схему, состоящую из источника переменного

тока, резистора и идеальных проводов.

Предположим, что напряжение на резисторе

изменяется по гармоническому закону

U = U 0 cos ω t .

Найдем силу тока, протекающего через резистор.

По закону Ома для участка цепи

I=U/R ==> I = I 0 cos ω t

Амплитуда силы тока I 0 = U 0 / R

Ток и напряжение изменяются по одинаковому гармоническому закону (косинуса), то есть совпадают по фазе. Это означает, что, например, в тот момент времени, когда в цепи максимальна сила тока, напряжение на резисторе также максимально.

    1. Конденсатор в цепи переменного тока

Включим конденсатор в цепь постоянного тока. Некоторый заряд перетечет от источника тока на обкладки конденсатора.В цепи возникает кратковременный импульс зарядного тока. Конденсатор заряжается до напряжения источника, после чего ток прекращается. Через конденсатор постоянный ток течь не может!

Рассмотрим процессы, происходящие при включении конденсатора в цепь переменного тока

зарядный ток

Через диэлектрик, разделяющий обкладки конденсатора, электрический ток протекать, как и прежде, не может. Но в результате периодически повторяющихся процессов зарядки и разрядки конденсатора в цепи появится переменный ток.

Если напряжение в цепи изменяется по гармоническому закону,

U = U 0 cos ωt

то заряд на обкладках конденсатора изменяется

также по гармоническому закону

q=Cu = CU 0 cos ω t

и силу тока в цепи можно найти как производную заряда

i = q /

i= -CU 0 ω sin ω t = CU 0 ω cos(ω t+π/2),

i= I 0 ω cos(ω t+π/2)

Амплитуда силы тока I 0 = CU 0 ω

Из полученной формулы видно, что в любой момент времени

фаза тока больше фазы напряжения на π /2.

В цепи переменного напряжение на конденсаторе тока отстает по фазе от тока на π /2, или на четверть периода.

Емкостное сопротивление

Величину

называют емкостным сопротивлением.

Связь между амплитудными значениями силы тока и напряжения формально совпадает с законом Ома для участка цепи

Такое же соотношение выполняется для действующих значений силы тока и напряжения .

Емкостное сопротивление конденсатора зависит от частоты переменного напряжения. С увеличением частоты колебаний напряжения емкостное сопротивление уменьшается, поэтому амплитуда силы тока увеличивается прямо пропорционально частоте I 0 = CU 0 ω.

При уменьшении частоты амплитуда силы тока уменьшается и при ω=0 обращается в 0. Отметим, что нулевая частота колебаний означает, что в цепи протекает постоянный ток .

    1. Катушка индуктивности в цепи переменного тока

Мы предполагаем, что катушка индуктивности обладает пренебрежимо малым активным сопротивлением R. Такой элемент включать в цепь постоянного тока нельзя, потому что произойдет короткое замыкание.

В цепи переменного тока мгновенному нарастанию силы тока препятствует ЭДС самоиндукции. При этом для сверхпроводника e i +u=0.

Используя закон Фарадея для самоиндукции e i = -Li / ,

можно показать, что, если сила тока в цепи изменяется по гармоническому закону

i= I 0 cos(ω t),

то колебания напряжения на катушке описываются

уравнением

U = - I 0 L ω sin ω t = I 0 L ω cos t + π /2),

то есть колебания напряжения опережают по фазе колебания силы тока на π /2 .Произведение U 0 = I 0 L ω является амплитудой напряжения:

U = U 0 cos(ω t+π/2)

Индуктивное сопротивлени е

Величину

Резонанс токов

Цель работы – изучение основных соотношений в разветвленной цепи переменного тока, а также исследование резонанса токов.

На рис 13 изображена разветвленная цепь переменного тока, состоящая из трёх параллельно включенных приемников: резистора (лампового или проволочного реостата) с сопротивлением , катушки индуктивности с индуктивным сопротивлением и активным сопротивлением , и конденсатора с емкостным сопротивлением .

При параллельном соединении приемники электрической энергии удобнее характеризовать проводимостями, тогда от цепи, изображенной на рис. 13, можно перейти к эквивалентной ей цепи, представленной на рис. 14.

Рис.13 Рис.14

Здесь – активная проводимость резистора; и – соответственно индуктивная и активная проводимости катушки; – емкостная проводимость конденсатора.

Воспользуемся известными формулами перехода от сопротивлений ( , , ) последовательной схемы к проводимостям ( , , ) эквивалентной параллельной схемы:

; ; .

Активная проводимость резистора

.

Активная проводимость катушки индуктивности

.

Индуктивная проводимость катушки

.

Емкостная проводимость конденсатора

.

В схеме рис. 14 можно рассмотреть три случая.

1-й случай . В цепи преобладает индуктивная проводимость (), тогда . Векторная диаграмма токов для этого случая построена на рис. 15. Активный ток резистора и активный ток катушки совпадают с вектором напряжения цепи .

Индуктивный ток катушки отстаёт от напряжения на угол . Полный ток катушки равен геометрической сумме активного и индуктивного токов катушки и отстает по фазе от напряжения на угол . Емкостной ток конденсатора , проведенный из конца вектора , опережает напряжение на зажимах цепи на угол . Замыкающий вектор равен току в неразветвлённой части цепи.

Из векторной диаграммы видно, что при параллельном соединении приемников активные токи складываются арифметически :

;

реактивные токи – алгебраически :

;

полные токи – геометрически :

.

Последняя формула выражает первый закон Кирхгофа для действующих значений переменного тока.

Для практических расчетов удобно пользоваться формулой

полученной из треугольника токов ОАB (рис. 15).

2-й случай . В цепи преобладает емкостная проводимость () тогда . Полный ток в цепи графически определяется аналогично первому случаю (рис. 16). Как видно из рис. 16, ток опережает напряжение на угол .

З-й случай . Равенство реактивных проводимостей (), тогда . Полный ток в этом случае (рис. 17) совпадает по фазе с напряжением (). Этот режим называется резонансом токов, так как токи и равны между собой и противоположны по фазе. Для рассматриваемой цепи (см. рис.14) условие резонанса токов может быть записано в такой форме:


;

.


Рис.16
Рис.17

Очевидно, что резонанс токов, может быть достигнут изменением одного из параметров цепи: индуктивности или емкости , а также изменением частоты питающей сети .

В лабораторной работе изменение режима цепи и получение резонанса токов проводится ступенчатым изменением емкости при и . Явление резонанса токов характеризуется следующими свойствами:

1) . Если катушка и конденсатор идеальные, то ток в цепи конденсатора будет равен току в цепи катушки. Практически же в момент резонанса ток в катушке всегда больше, чем ток конденсатора .

2) , поэтому . Полная мощность всей цепи равна активной (). Следовательно, в режиме резонанса токов цепь ведет себя как активная. Причем до резонанса цепь носит активно-индуктивный характер, а после резонанса – активно-емкостной;

3) при неизменном напряжении на зажимах цепи имеет место минимум тока в в неразветвленной части цепи (рис. 18). Действительно, ток , при имеем ;

4) при расчете резонансных контуров следует учитывать, что если и >> , то токи и могут во много раз превышать общий ток в неразветвленной части цепи.

Физическая сущность резонанса токов делается ясной при рассмотрении энергетической стороны процесса. При резонансе энергия, запасенная в магнитном поле катушки, равна энергии, запасенной в электрическом поле конденсатора. При этом колебания энергии катушки и конденсатора противоположны по фазе, т.е. между катушкой и конденсатором происходит обмен энергиями. Обмена энергий между генератором, с одной стороны, и катушкой и конденсатором, с другой, – нет, и генератор передает энергию лишь в активное сопротивление. Таким образом, физическая сущность резонанса токов аналогична резонансу напряжений. Взаимный обмен реактивной энергии между катушкой индуктивности и конденсатором используется на практике, в частности для повышения коэффициента мощности на входных зажимах приемников электрической энергии.

Коэффициент мощности () приемников электрической энергии

Обычно электрические приемники (двигатели, трансформаторы) носят активно-индуктивный характер и работают с углом сдвига фаз . Генератор, питающий такой приемник, линия передачи к нему и сам приемник рассчитываются на полную мощность . Средняя (или активная) мощность приемника, соответствующая преобразованию электрической энергии в тепло или механическую работу, соответствует равенству . Здесь – коэффициент мощности приемника; – т.е. коэффициент мощности – это отношение активной мощности к полной. Как правило, , т.е. расчетная (полная) мощность генератора и линии передачи используются не с полной эффективностью. Отсюда ясна важность для народного хозяйства повышения коэффициента мощности (в предельном случае до ).

Ток, потребляемый приемником от генератора, также зависит от коэффициента мощности, т.е.

.

Если приемник работает при постоянной мощности и на­пряжении , соответствующих

номинальным (паспортным) данным приемника, то ток будет тем больше, чем ниже . Увеличение тока приводит к увеличению потерь энергии в генераторах, линиях передачи и приемниках. Таким образом, для полного использования расчетной мощности генераторов и уменьшения потерь энергии необходимо повышать приемников. С целью повышения коэффициента мощности к приемнику подключают параллельно батарею конденсаторов.

В этом случае
, где – емкостная мощность конденсаторов; – индуктивная мощность приемника.

При резонансе токов , , . Обычно коэффициент мощности приемников повышают до значения 0,92-0,95, так как дальнейший его рост требует значительного увеличения емкости батареи конденсаторов, а следовательно, увеличения ее стоимости. Емкость конденсатора, который необходимо подключить параллельно приемнику для повышения коэффициента мощности с величины до величин! , может быть определена по формуле

,

где – активная мощность приемника; – частота сети, 50 Гц; – напряжение сети.

Программа работы

1. Исследовать работу схемы, включая поочередно резистор, катушку и конденсатор.

2. Исследовать работу параллельно включенных резистора, катушки и конденсатора при переменной емкости до резонанса токов, при резонансе и после резонанса.

3. Рассчитать величину емкости, необходимую для повышения коэффициента мощности приемника, состоящего из параллельно включённых резистора и катушки индуктивности, до наибольшего значения 1 и сравнить с данными опыта (строка 6 в табл. 3) * .

Порядок выполнения работы

1. Собирается схема (рис. 19). Автотрансформатором AT устанавливается напряжение в пределах 90 ... 120 В, которое поддерживается постоянным при всех измерениях.

2. Для выполнения первой части работы поочередно включаются резистор, катушка и конденсатор. В каждом случае показания приборов записываются в таблицу наблюдений.

3. Вторая часть работы выполняется при одновременном включении всех трех приемников. Исследование ведется следующим образом. Изменяя емкость батареи конденсаторов, цепь настраивают по фазометру () в резонансное состояние. Некоторая доводка до резонансного состояния возможна изменением положения сердечника в катушке. После этого сердечник заклинивают, чтобы . Далее, изменяя емкость от 0 до максимально возможного значения, снимают показания приборов двух опытов до резонанса токов и двух – после резонанса. Результаты опытов заносят в табл. 3.

Огромное практическое значение имеют незатухающие вынужденные колебания. Свободные электромагнитные колебания в контуре быстро затухают и поэтому практически не используются. Переменный ток, используемый потребителями, представляет собой не что иное, как вынужденные электромагнитные колебания. Частота переменного тока показывает число колебаний за 1 секунду. Стандартная частота промышленного тока равна 50 Герц. Значит, на протяжении 1 с ток 50 раз течет в одну сторону и 50 раз в другую. Частота 50 Герц принята для промышленного тока во многих странах мира. Сила тока и напряжение меняются со временем по гармоническому закону. Это вытекает из следующих рассуждений. Если напряжение на концах цепи меняется по гармоническому закону, то напряженность электрического поля внутри проводников будет также меняться гармонически. Эти гармонические изменения напряженности поля вызовут гармонические колебания скорости упорядоченного движения заряженных частиц и, следовательно, гармонические колебания силы тока. При изменении напряжения на концах цепи электрическое поле не меняется мгновенно во всей цепи. Если время распространения изменений поля в цепи гораздо меньше периода колебаний напряжения, то можно считать, что электрическое поле во всей цепи меняется почти мгновенно при изменении напряжения на концах цепи. Переменное напряжение, использующее потребителями в осветительной сети, создается генераторами на электростанциях. Проволочную рамку, вращающуюся в постоянном однородном магнитном поле, можно рассматривать как простейшую модель генераторов переменного тока. Поток магнитной индукции, который пронизывает проволочную рамку, пропорционален косинусу угла альфа между нормалью к рамке и вектором магнитной индукции. При равномерном вращении рамки угол альфа увеличивается прямо пропорционально времени. Поэтому поток магнитной индукции меняется гармонически. Согласно закону электромагнитной индукции, ЭДС индукции в рамке равна взятой со знаком минус скорости изменения потока магнитной индукции по времени. Иначе ЭДС электромагнитной индукции равна производной потока магнитной индукции по времени. При изменении напряжения по гармоническому закону напряженность электрического поля в проводнике изменяется по такому же закону. Под действием переменного электрического поля в проводнике возникает переменный электрический ток, частота и фаза колебаний которого совпадает с частотой и фазой колебаний напряжения. Цепи с резистором. Цепь состоит из соединительных проводов и нагрузки с малой индуктивностью и большим сопротивлением, называемым активным сопротивлением. При наличии нагрузки, обладающей активным сопротивлением, цепь поглощает энергию, поступающую от генератора. Эта энергия превращается во внутреннюю энергию проводников - они нагреваются. В проводнике с активным сопротивлением колебания силы тока по фазе совпадают с колебаниями напряжения. В цепи переменного тока промышленной частоты, равной 50 Герц, сила тока и напряжение изменяются сравнительно быстро. Мощность в цепи постоянного тока на участке с сопротивлением равна по определению произведению квадрата силы тока на сопротивление. На протяжении очень малого интервала времени переменный ток можно считать неизменным. Поэтому мгновенная мощность в цепи переменного тока на участке, имеющем активное сопротивление, определяется произведением квадрата мгновенного значения силы тока на сопротивление. Под средней за период мощностью переменного тока понимают отношение суммарной энергии, поступающей в цепь за период, к периоду. Человеку необходимо знать среднюю мощность тока на участке цепи за большой промежуток времени, включающий много периодов.
Здесь изображен график зависимости мгновенной мощности от времени. На протяжении одной четверти периода мощность больше половины амплитудного значения. Но на протяжении следующей четверти периода мощность меньше этой величины. На протяжении одной четверти периода эта функция пробегает ряд положительных значений. Половина квадрата амплитуды силы тока в колебательном электромагнитном контуре есть среднее за период значение квадрата силы тока. Величина, равная квадратному корню из среднего значения квадрата силы тока, называется действующим значением силы переменного тока. Всегда можно подобрать такое значение силы постоянного тока, чтобы энергия, выделяемая за некоторое время этим током, равнялась энергии, выделяемой за то же время переменным током. Действующее значение силы переменного тока равно силе постоянного тока, выделяющего в проводнике то же количество теплоты, что и переменный ток за то же время. Нам важны общие характеристики колебаний, такие как амплитуда, период, частота, действующие значения силы тока и напряжения и средняя мощность. Именно действующие значения силы тока и напряжения регистрируют амперметры и вольтметры переменного тока. Колебания силы тока в цепи с резистором совпадают по фазе с колебаниями напряжения. Мощность в цепи переменного тока определяется действующими значениями силы тока и напряжения. Мощность равна произведению силы тока и напряжения. Фактически цепь, содержащая конденсатор, оказывается разомкнутой, так как обкладки конденсатора разделены диэлектриком. Поэтому постоянный ток не может существовать в цепи, содержащей конденсатор. Переменный ток способен течь в цепи, содержащей конденсатор. Проведем опыт. Составим последовательную цепь из конденсатора и лампы накаливания. Постоянное напряжение на зажимах источника равно действующему значению переменного напряжения. При включении постоянного напряжения лампа не светится. Но при включении переменного напряжения лампа загорается. При этом емкость конденсатора достаточно велика. Происходит периодическая зарядка и разрядка конденсатора под действием переменного напряжения. Ток, текущий в цепи при перезарядке конденсатора, нагревает нить лампы. Рассмотрим цепь, содержащую только конденсатор, где сопротивлением проводов и обкладок конденсатора можно пренебречь. Напряжение на конденсаторе совпадает по значению с напряжением на концах цепи. Следовательно, заряд конденсатора меняется по гармоническому закону. Сила тока представляет собой производную заряда по времени. Приведем графики зависимости силы тока и напряжения от времени. Видно, что колебания силы тока опережают колебания напряжения на конденсаторе на пи вторых. Амплитуда силы тока равна произведению максимального напряжения емкости конденсатора и циклической частоты колебаний. Величину икс-цэ, равную обратному произведению циклической частоты на электрическую емкость конденсатора, называют емкостным сопротивлением. Роль этой величины аналогична роли активного сопротивления в законе Ома. Это и позволяет рассматривать емкостное сопротивление как сопротивление конденсатора переменному току. Чем больше емкость конденсатора, тем больше ток перезарядки. Это легко обнаружить по увеличению накала лампы при увеличении емкости конденсатора. С увеличением емкости конденсатора емкостное сопротивление уменьшается. Уменьшается оно и с увеличением частоты.
Индуктивность в цепи влияет на силу переменного тока. Это можно доказать с помощью простого опыта. Составим цепь из катушки большой индуктивности и электрической лампы накаливания. С помощью переключателя можно подключить эту цепь или к источнику постоянного напряжения, или к источнику переменного напряжения с равными значениями. Лампа светится ярче при постоянном напряжении. Следовательно, действующее значение силы переменного тока в рассматриваемой цепи меньше силы постоянного тока. Здесь проявляется самоиндукция. При подключении катушки к источнику постоянного напряжения сила тока в цепи нарастает постепенно. Возникающее при нарастании силы тока вихревое электрическое поле тормозит движение электронов. Лишь со временем сила тока достигает наибольшего установившегося значения, соответствующего данному постоянному напряжению. Если напряжение быстро меняется, то сила тока не будет достигать тех значений, которые оно бы приобрело с течением времени при постоянном напряжении. Следовательно, максимальное значение силы переменного тока (его амплитуда) ограничивается индуктивностью цепи и будет тем меньше, чем больше индуктивность и чем больше частота приложенного напряжения. При изменении силы тока по гармоническому закону ЭДС самоиндукции будет равна противоположному значению производной индуктивности. Так как удельная работа кулоновского поля равна напряжению на концах катушки, то напряжение на концах катушки оказывается гармонически связанным с амплитудным значением напряжения контура. Следовательно, колебания напряжения на катушке опережают колебания силы тока на пи-пополам. В момент, когда напряжение на катушке достигает максимума, сила тока равна нулю. В момент, когда напряжение становится равным нулю, сила тока будет максимальной. Величину икс-эл, равную произведению циклической частоты на индуктивность, называют индуктивным сопротивлением. Амплитуда силы тока в катушке можно найти отношением амплитуды напряжения на индуктивное сопротивление. Так выглядит закон Ома для цепи постоянного тока с катушкой. Индуктивное сопротивление увеличивается с ростом частоты, значит, катушка хорошо проводит низкочастотные колебания и плохо - высокочастотные, а для постоянного тока оно равно нулю. Рассмотрим использование частотных свойств конденсатора и катушки индуктивности. Реальные электрические цепи содержат все виды сопротивлений: активное, индуктивное, емкостное, поэтому ток в реальной цепи зависит от ее полного эквивалентного сопротивления.
Конденсатор хорошо проводит высокочастотные колебания и плохо - низкочастотные колебания. Катушка наоборот: хорошо проводит низкочастотные колебания и плохо - высокочастотные колебания. Эти свойства позволяют создать различные частотные фильтры - схемы, позволяющие выделить из всего сигнала низкочастотные и высокочастотные составляющие.
Колебательный контур обладает замечательным свойством - пропускать колебания только определенной частоты, зависящей от емкости конденсатора и индуктивности катушки, под действием резонанса. Эти свойства контура широко применяются в радио- и телеприёмной и передающей аппаратуре для селекции сигналов.
Задача
Конденсатор включен в цепь переменного тока с частотой 200 Герц. Напряжение в цепи 40 Вольт, сила тока 0,64 Ампера. Какова емкость конденсатора?
Вспомнив закон Ома для цепи с колебательным контуром, выразим емкость конденсатора как отношение силы тока к напряжению и циклической частоте. Чтобы определить циклическую частоту, необходимо частоту переменного тока разделить на два-пи. Получаем результат 0,5 микрофарад есть емкость конденсатора.

Лучшие статьи по теме