Как настроить смартфоны и ПК. Информационный портал

Обработка поверхностной модели. Коррекция и калибровка

3D-сканирование является одним из способов построения 3D-модели. Напомним, что 3D-модель можно построить и без использования 3D-сканера - в профессиональной программе по работе с трехмерной графикой. Но 3D-сканер значительно упрощает и ускоряет данный процесс.

3D-лазерные сканеры - это устройства, которые проводят анализ физического объекта, и, на основе полученных данных, создают 3д модель. Трехмерное изображение 3D-сканер сохраняет преимущественно в форматах STL, OBJ, PLY и WRL.

С помощью 3D-сканера можно быстро и качество воссоздать максимально точную модель объекта. Работа 3D-сканера должна проходить под контролем опытного инженера. Результат сканирования дорабатывается в профессиональном графическом редакторе для трехмерной графики. В дальнейшем, при необходимости, можно провести 3D-печать объекта, на основе построенной 3D-модели. Компания KOLORO предоставляет услуги 3D-сканирования. В нашем техническом арсенале есть 3D-сканеры для работы с физическими объектами различного типа и величины.

Методы трехмерного сканирования

  • Контактный 3 D-сканер . Для сканирования устройству необходимо находится в непосредственном контакте с объектом сканирования.
  • Бесконтактный 3D -сканер . Получение 3D-модели с его помощью считается наиболее перспективным методом 3D-сканирования. 3D-сканеру необязательно контактировать с объектом, что позволяет проводить 3D-сканирование труднодоступных объектов, памятников культуры и архитектуры, а также ювелирных изделий. Уже даже существует промышленный 3D-сканер, который сканирует дома, насыпи и другие крупные объекты.
  • Активные бесконтактные 3D -сканеры (для изучение объекта используют структурированный световой или лазерный луч, который попадая на объект, отражается и на основе этого отражения 3D-сканер строит 3D-модель).
  • Пассивные бесконтактные 3D -сканеры (данный вид устройства использует уже существующее отражение от объекта, в основном - солнечный свет).

Принцип работы 3D-сканера

В основе работы 3D-сканера лежит принцип стереозрения. Сканер, как и человеческий глаз, способен определить расстояние до объекта и его размеры. Как у человека два глаза, так и у 3D-сканера - две камеры. После получения необходимой информации 3D-сканер строит 3D-модель объекта. Для недопущения неточностей, 3D-сканер оборудован подсветками для каждой из камер

Преимущества 3D-сканера

Для начала выделим общие преимущества 3D-сканеров :

  1. Максимально высокая точность модели - 3D-сканер воссоздает даже самые незначительные, мельчайшие, детали физического объекта;
  2. Высокая скорость работы - объемное сканирование занимает всего несколько минут, а то и секунд, после чего необходима доработка построенной сканером 3D-модели в профессиональных программах для работы с 3D-графикой;
  3. Сканер можно разместить под разными углами , в зависимости от сложности объекта, при этом сам объект можно не трогать, что особенно важно при сканировании больших и огромных объектов (например, дома, памятники и ландшафты).

Контактные 3D-сканеры:

  • просты в использовании.
  • не зависят от уровня освещения.
  • создают модели высокой точности.
  • файл 3D-модели небольшой по объему.

Бесконтактные 3D-сканеры:

  • энергоэкономичны;
  • не требуют непосредственного контакта с объектом;
  • применяют технологию структурированного света;
  • не наносит вреда физическому объекту.

Применение 3D-сканера

  • Инженерный анализ - 3D-сканер может быстро и качественно создать трехмерную модель объекта и просчитать его физические пропорции в требуемых размерах. При наличии физической модели в единственном экземпляре объемное сканирование поможет создать разноразмерные копии и быстро наладить мелкосерийное производство.
  • Цифровой анализ - 3D-сканер помогает визуализировать все технические несоответствия изделий и деталей, а значит, внести в них все необходимые корректировки еще до этапа изготовления протипа изделия.
  • Цифровая архивация . Теперь можно отказаться от двухмерных рисунков, чертежей и даже от 3D-моделирования устаревших деталей. 3д-сканер считает с объекта всю необходимую информацию, построит 3D-модель и заархивирует ее в нужном для изготовления формате. Это существенно экономит время и не потребует выделение места под хранение физических чертежей.
  • Архитектура . С помощью 3D-сканера можно создать модель целого дома, а также отдельных элементов архитектуры: эмблем, колон и различного рода декораций.
  • Медицина . Именно 3D-принтер выступает отличным помощником при 3D-сканировании костей и даже отдельных органов - с высочайшим уровнем детализации! В дальнейшем, полученные 3D-модели и созданные прототипы могут быть использованы в качестве учебных материалов в специализированных ВУЗах или при создании полноценных биологических протезов.

3D-сканер – это устройство, с помощью которого можно создавать точные трехмерные модели реальных объектов.

Преимущества этой технологии:

  • высокая степень детализации;
  • информация о поверхности, форме и цвете объекта в цифровом виде.

Он преобразует объект в его цифровое изображение подобно тому, как простой 2D сканер преобразует изображение на листе бумаги в изображение на компьютере.

Применение 3D-сканеров

3D-сканеры используются во многих областях промышленности, науки, медицины и искусства. В частности, они успешно решают задачи реверс-инженеринга, контроля формы объектов, сохранения культурного наследия, используются в музейном деле, в медицине и дизайне. Таким образом, они необходимы во всех случаях, когда требуется зарегистрировать форму объекта с высокой точностью и за короткое время. Трехмерные сканеры позволяют упростить и улучшить ручной труд, а порой даже выполнить задачи, которые казались невозможными.

Эти устройства полезны в промышленности для бесконтактного контроля поверхностей сложной геометрической формы, а также для проектирования систем. Они используются:

  • для оценки износов оснастки и создания упаковки, точно повторяющей форму изделия;
  • в медицине с помощью 3D-сканеров ставят диагнозы, планируют операции и даже делают анатомическую обувь;
  • в ортодонтии, где необходимо точное, качественное сканирование объектов небольшого размера.;
  • дизайнеры используют 3D-сканеры для получения формы объекта, и её доработки;
  • в музейном деле и археологии они применяются для детального сканирования, точного восстановления и реконструкции скульптур и памятников архитектуры;
  • сканирование людей (получение цветной 3D-модели человека) уже сегодня используется для киноиндустрии и анимации.

Возможности 3D-сканеров

Как правило, 3D-сканер представляет собой небольшое электронное устройство, ручное (весом до 2 кг) или стационарное, которое использует в качестве подсветки лазер или лампу вспышку.

Точность получаемых моделей объектов варьируется от десятков до сотен микрометров. Возможно сканирование с передачей цвета или только формы поверхности. Эти устройства не только упрощают процесс создания трехмерных моделей – они печатают с максимальной точностью по отношению к исходному оригиналу.

Цена 3D сканеров зависит от технологии, применяемой для сканирования. Сегодня это доступный инструмент, которым пользуются даже небольшие компании.

Классификация 3D-сканеров

3D-сканеры делятся на два типа по методу сканирования:

  • Контактные. При таком сканировании происходит непосредственный контакт сканера с исследуемым объектом;
  • Бесконтактные.

Бесконтактные устройства в свою очередь подразделяются на две отдельные категории:

  • Пассивные сканеры;
  • Активные сканеры.

Пассивные сканеры сами ничего не излучают на объект, а видят отраженное фоновое излучение. Большинство сканеров такого типа реагируют на видимый свет - окружающее излучение.

Активные сканеры излучают на объект направленные волны и используют их отражение для анализа. Излучения бывают разными:

  • Естественного света;
  • Лазерных лучей;
  • Инфракрасного излучения;
  • Рентгеновских лучей;
  • Ультразвука.

Технологии сканирования

Для создания 3D-сканеров используются различные технологии. У каждой из них есть свои ограничения, преимущества и недостатки. Сегодня основными направлениями являются оптическая и лазерная технологии.

Сканирование по оптической технологии осуществляется путем проецирования на объект линий, образующих уникальный узор. Информация о форме поверхности объекта содержится в искажениях формы проецируемого изображения.

В сканировании по лазерной технологии используется лазер, безопасный для зрения. Чтобы привязать 3D-сканер с лазерной подсветкой к объекту сканирования, нередко применяются специальные светоотражающие маркеры, закрепленные рядом с объектом сканирования или прямо на нем, в определённых точках.

Ограничения в сканируемых объектах присутствуют в обоих этих технологиях.

Лазерные сканеры по большей части не применимы для сканирования подвижных объектов, так как этот процесс отнимает слишком много времени. К тому же необходимо нанести специальные светоотражающие метки. Преимущество данной технологии – в высокой точности 3D-модели, но она предназначена для статичных объектов.

Оптические 3D-сканеры не очень хороши при сканировании блестящих, зеркальных или прозрачных поверхностях. Зато у них большая скорость сканирования, что устраняет проблему искажения получаемой модели при движении объекта, и не нужно наносить отражающие метки. Поэтому оптические сканеры можно использовать даже для сканирования человеческих лиц.

Технология трехмерного сканирования появилась всего несколько десятилетий назад, в конце 20-го века. Первый работающий прототип появился в 60-х годах. Конечно, тогда он не мог похвастаться широким спектром возможностей, однако это был настоящий 3d сканер, неплохо справляющийся с основной функцией.

В средине 80-х годов сканирующие устройства усовершенствовали. Их начали дополнять лазерами, источниками белого света и затемнения. Благодаря этому удалось улучшить «захват» исследуемых объектов. В этот период появляются контактные датчики. С их помощью оцифровывалась поверхность твердых предметов, которые не отличались сложной формой. Чтобы усовершенствовать оборудование, разработчикам пришлось позаимствовать ряд оптических технологий из военной промышленности.

Применение 3d сканеров было интересно не только конструкторам дизайн-студий, автомобильных концернов, но и работникам киноиндустрии. В 80-х – 2000-х годах разные компании выпускали свои модели оборудования: Head Scanner, 3D-сканер REPLICA и другие. С тех времен агрегаты изменились, усовершенствовались, стали более мобильными и функциональными. Характеристики 3d сканера сегодня существенно отличаются.

Принцип работы 3d сканера

Устройство 3d сканера занимается детальным исследованием физических объектов, после чего воссоздаются их точные модели в цифровом формате. Современные агрегаты могут быть стационарными или мобильными. В качестве подсветки применяется лазер или особая лампа (их использование увеличивает точность измерений).

Принцип работы 3d сканера определяется технологией сканирования. При помощи подсветки и встроенных камер аппарат измеряет расстояние до объекта с разных ракурсов. Затем сопоставляются картинки, передаваемые камерами. После тщательного анализа всех полученных данных, на экране отображается готовая цифровая трехмерная модель. Если устройство 3d сканера основано на работе лазерного луча, то с его помощью измеряются расстояния в заданных точках. На основе этих сведений выводятся координаты.

Методы и технологии трехмерного сканирования

Выделяют два основных метода:

  1. Контактный. Устройство зондирует предмет посредством физического контакта, пока объект находится на прецизионной поверочной плите. Контактный 3d сканер отличается сверхточностью работы. Правда, при сканировании можно повредить или изменить форму объекта.
  2. Бесконтактный. Применяется излучение или особый свет (ультразвук, рентгеновские лучи). В данном случае предмет сканируется через отражение светового потока.

Технологии трехмерного сканирования:

  1. Лазерная. Функционирование устройств основывается на принципе работы лазерных дальномеров. Лазерные сканеры 3d характеризуются точностью получаемой трехмерной модели. Правда, их применение затруднительно в условиях подвижности объекта. Это больше 3d сканер для помещения. Сканирование человека 3d сканером лазерного типа практически невозможно.
  2. Оптическая. В данном случае применяется специальный лазер второго класса безопасности. Оптический 3d сканер отличается большой скоростью сканирования. Его использование исключает любое искажение, даже если объект будет двигаться. Также нет необходимости в нанесении отражающих меток. Правда, такие устройства не подходят для исследования зеркальных, прозрачных или блестящих изделий. Зато это отличный вариант 3d сканера человека.


Современные 3d сканеры

Устройства могут отличаться по многим параметрам: сфере использования, габаритам, форме, технологии. Современные агрегаты применяются и в промышленной, и в бытовой сфере. Промышленный 3d сканер полезен в:

  • инженерии;
  • медицине;
  • производстве;
  • дизайне;
  • киноиндустрии;
  • сфере создания компьютерных игр.

Особое внимание хотелось бы уделить ультразвуковому 3d сканеру. Он является настоящей находкой для современной медицины. Устройства снабжаются энергетическими, цветными, тканевыми, непрерывноволновыми и импульсными допплерами. Данный агрегат характеризуется высочайшей разрешающей способностью, поэтому популярен в маммологии, акушерстве, урологии, исследовании сосудов и мышечных тканей, эхокардиографии, неонаталогии, педиатрии.

По принципу работы устройства также отличаются. Рынок предлагает стационарный или переносной, то есть ручной 3d сканер. В качестве сенсора во втором случае используется координатно-чувствительный детектор или аппарат с зарядовой связью. Данный агрегат чрезвычайно удобен тем, что его можно свободно перемещать. Портативный 3d сканер идеально подходит для сканирования труднодоступных мест или крупногабаритных объектов. Измерение можно проводить под любыми углами, вокруг или под исследуемыми предметами.

Устройства используются совместно с разным оборудованием. Это может быть не только 3d сканер для 3d принтера, но и 3d сканер для ipad. Современные производители подобных агрегатов выпускают мобильные устройства, которые работают не только со стационарными компьютерами, но и с планшетами или даже смартфонами. Кроме этого существуют специальные программы, с помощью которых обычные телефоны превращаются в сканеры. К примеру, можно найти 3d сканер для андроид. Он поможет конструировать уникальные детали, проводить быстрое прототипирование и оцифровку объектов.

Программное обеспечение для 3D сканера

Специальные программы для 3d сканера и обработки данных:

  1. David-3D. Предназначается для трехмерного сканирования предметов и преобразования полученных результатов с целью последующего импорта моделей в 3D-редакторы.
  2. Artec Studio 10. Профессиональный инструмент для создания объемных моделей.
  3. Autodesk 123D Catch. Трехмерное сканирование для мобильных телефонов на Android.
  4. Photomodeler Scanner. Позволяет формировать высокоточные stl-модели на основе обычных снимков, сделанных камерой смартфона или планшета.
  5. 3DAround. Превращает фото в формате в 2D в реалистичные трехмерные модели.


Видео о 3D сканере

Чтобы лучше понять принцип работы устройств и их разновидности, стоит посмотреть видео про 3d сканеры, которые представлены ниже.

Чтобы напечатать объемный предмет на 3D принтере, предварительно необходимо сделать его трехмерную модель – визуальный графический образ объекта. Раньше моделирование осуществлялось вручную с помощью специального ПО. Просчеты в чертежах неминуемо сказывались на конечном результате. Чтобы нивелировать человеческий фактор, ускорить и упростить процесс моделирования изобрели 3D сканер.

Трехмерное сканирование дает возможность получить сложнопрофильную объемную модель исследуемого объекта – 3D сканер оцифровывает предмет, что позволяет быстро сделать его математическую модель для последующей печати на принтере.

Прибор создает облако точек, соединенных линиями, которые формируют геометрию объекта из множества пересекающихся плоскостей. Полученные координаты обрабатываются и сохраняются в виде параметрической модели, – с ней можно работать в любой CAD-системе для снятия чертежей отдельных элементов объекта, его доработки, корректировки размеров и прочих параметров, нужных для программирования принтера.

Где используется 3D сканер

Сфера применения сканирующего оборудования неограниченна. Применение аддитивных технологий позволяет сократить расходы на производство, снизить количество отходов, уменьшить вес деталей, сделанных традиционным путем. 3D сканирование используется в следующих направлениях:

  • авиастроение;
  • кораблестроение;
  • производство промышленного оборудования;
  • автоиндустрия;
  • военно-промышленный комплекс;
  • музееведение и культурология (оцифровка изделий с целью сохранения исторического наследия);
  • строительство и проектирование инженерных систем;
  • медицина и протезирование;
  • легкая промышленность.

Производители одежды и обуви уже объявили о том, что в примерочных кабинках вскоре появятся 3D сканеры. Такой подход позволит покупателям заказывать кастомизированные наряды и оригинальную обувь, а производителям – быстро и точно воспроизвести модели без использования лекал и очной ставки с клиентом. Ожидается, что люди смогут использовать свои отсканированные и оцифрованные силуэты для виртуальной примерки нарядов, без надобности в переодевании.

Методы 3D сканирования

Различают два метода объемного сканирования – контактный и бесконтактный.

Контактный 3D сканер работает «на ощупь». Прибором обводят предмет, при этом специальным щупом исследуют каждую грань. Раньше на исследуемый объект наносили точки-маркеры, формирующие систему координат. На участках с большим изгибом расстояние между точками делалось минимальным, на ровных плоскостях – максимальным. Сканер снимал координаты точек – из них формировал 3D модель. Современные приборы обходятся без нанесения физической сетки.

Контактное сканирование не зависит от условий освещения. Работе с устройством легко научиться. Но есть ряд недостатков: сканер не различает текстуры, а для обработки большого предмета придется изрядно попотеть с прибором в руках.

Бесконтактный метод трехмерного сканирования делится на два подвида: активный и пассивный. Приборы для активного 3D сканирования используют ультразвук, направленный источник света, лазер или рентгеновские лучи для облучения исследуемого объекта – прибор высчитывает время возврата «сигнала», формируя систему координат из точек соприкосновения с предметом и расстоянием до сканера. Оператор под разными углами сканирует объект, а ПО склеивает части воедино.

Преимущество 3D сканер активного типа:

  • прост в использовании;
  • процесс осуществляется без физического контакта с объектом;
  • работает внутри и снаружи помещения;
  • не зависит от освещения;
  • доступная цена;
  • ненужно наносить сетку и маркеры.

В то же время есть весомые упущения:

  • сканер неспособен работать с зеркальными поверхностями и прозрачными предметами;
  • для работы с маленькими изделиями нужна мощная оптика.

Пассивный 3D сканер – это всё та же цифровая видеокамера, которая снимает исследуемый предмет под разными углами, улавливая его силуэт. Работает только на высококонтрастном фоне и при хорошем освещении. Отснятый материал обрабатывается ПО и сводится в 3D модель для печати на принтере или обработке в CAD-системах.

На что обратить внимание при выборе сканера

Устройство, которое одинаково хорошо справляется со сканированием в инженерных и развлекательных целях, при этом делает высокоточные модели, может стоить десятки тысяч долларов. При покупке 3D сканера следует обратить внимание на следующие параметры:

  • зона сканирования;
  • продолжительность сканирования рабочей зоны;
  • точность;
  • разрешение.

Интервью с Георгием Казакевичем, экспертом направления технической поддержки 3D-оборудования компании iQB Technologies

– В первой части интервью мы говорили об обратном проектировании (reverse engineering ). Теперь давайте разберемся, что такое контроль геометрии?

Контроль геометрии – это, по сути дела, контроль качества . Вот смотрите: предприятие получает заготовки, которые оно должно доработать. Если производить входной контроль этих заготовок, можно очень сильно уменьшить себе головную боль на этапе изготовления.

Взгляните на схему (рис. 1): для первой детали первые три пункта выполняются вручную (сканирование, подготовка к анализу и непосредственно анализ), а отчет составляет за вас программное обеспечение. Для следующих 999 деталей вручную делается только сканирование, остальные три этапа выполняет ПО. Таким образом, вы тратите время только на оцифровку. А при контроле геометрии сканирование – это обычно от 5 до 15% затраченного времени, не больше. Следовательно, при потоковом контроле или контроле серийного производства мы начинаем экономить массу времени.

Раньше предприятие могло себе позволить контролировать одну деталь из тысячи, потому что на это уходил день. Внедряя 3D-сканирование, можно контролировать сто деталей из тысячи всего за два дня. В первый день мы делаем всё вручную, и лишь еще один день потратим на 99 деталей – их надо только отсканировать. После чего помещаем CAD-модель в определенную папку и говорим программному обеспечению: «Работай».

Рис. 2. Карта отклонений геометрии футеровки

– Расскажите, пожалуйста, как это работает, на примерах из практики iQB Technologies .

– Была задача измерить толщину футеровки, успешно выполненная главным техническим экспертом нашей компании . Существует узел смешения жидкостей, он металлический, потому что жидкости подаются под давлением. Проблема в том, что должным образом обработать металл внутри – это, во-первых, тяжело, во-вторых, дорого. Ко всему прочему, металл – это материал, который вступает во взаимодействие со многими жидкостями, он может ржаветь, подвергаться коррозии и т.д. Этот узел изнутри покрывается специальным пластиковым составом. Для того чтобы достигалось правильное смешение жидкостей, покрытие должно быть равномерным. Если в нем есть рытвины, если оно неравномерно по толщине, внутри будут появляться завихрения. Они создают дополнительное давление на узел, следовательно, уменьшают срок его эксплуатации.

Раньше предприятие контролировало одну деталь из тысячи, потому что на это уходил день. Внедряя 3D-сканирование, можно контролировать сто деталей из тысячи всего за два дня.

Итак, сначала было выполнено 3D-сканирование узла без покрытия, затем с покрытием, и результаты подвергнуты сравнению. Красная зона на скане (рис. 2) – это покрытие. На правой картинке видно, что оно неровное. Исходя из полученных результатов, заказчик может предъявить претензии субподрядчику, который занимается нанесением этого покрытия.

Рис. 3. Контроль сварной конструкции

Следующий пример – выполненный мной контроль сварной конструкции. Я ездил в Нижний Новгород на завод компании Liebherr, который производит для сборки промышленной техники. Сами металлические листы приходят из Германии, в России свариваются и потом отправляются обратно. Из-за того, что конструкция довольно большая (2 м длиной), предусмотрены посадочные отверстия для крепления к другим конструкциям. Если во время сварки произойдет какой-нибудь перекос, деталь в одном месте присоединится, а в другом нет. Чтобы избежать этого, на заводе решили перед отправкой в Германию все детали предварительно сканировать и оценивать на отклонения, которые получились при сварке. В таблице справа (рис. 3) мы видим фактические размеры, которые показало 3D-сканирование. Отклонения отображаются в виде цветовой карты. Зеленый цветхороший результат, желтый – в пределах допуска, красный – неприемлемое отклонение. Конкретно та деталь, которую мы сканировали, естественно, не проходит и считается браком.


– В каких еще отраслях Вы применяли 3D-сканер и ПО для контроля геометрии?

Рис. 4. Контроль геометрии крыла автомобиля

– К примеру, у нас были проекты, связанные с . Запчасти для автомобилей, как вы знаете, достаточно дорогие. Их всегда можно заказать из Китая, но гораздо удобнее наладить производство в России. Наш заказчик, который изготавливает запчасти для машин высокого сегмента, стал получать жалобы: детали «играют», когда их пытаются посадить на место. Мы отсканировали крыло для BMW, сделанное в России, и крыло оригинального BMW. Сравнили их друг с другом и увидели, что российская деталь по размеру чуть больше, чем требуется. На основании этого в производственный цикл были внесены изменения.

Рис. 5. Корпус автобуса

На рисунке 6 вы видите корпус автобуса и результаты 3D-сканирования – это проект, которым занимался Алексей Чехович. В Москве есть предприятие, которое производит автобусы из смолы. Современные смолы по прочности могут соперничать с металлами, при этом они намного легче, а значит, экономичнее с точки зрения расходов топлива. Такой автобус собирается из нескольких частей. На предприятии заметили, что при сборке возникают некоторые перекосы, напряжения. Вначале нас пригласили отснять сделанные заготовки. Мы их отсняли и увидели, что заготовка сама по себе кривая. А в дальнейшем мы выяснили, что проблема даже не в заготовке, а в самой форме, в которой ее делали. То есть заготовка с формой идеально сошлась, а вот сама форма была бракованной, и ее пришлось заменить. После этого было решено, что мы примерно раз в полгода будем проверять форму.

– Контроль качества включает в себя и эксплуатационный контроль. Приходилось ли Вам решать подобные задачи с помощью 3D-сканирования?

Да, и это, как правило, связано со сложными, дорогими устройствами, типа самолета. В процессе эксплуатации на него действуют колоссальные нагрузки, и существуют ограничения на структурные изменения конструкции, которые самолет приобретает в процессе эксплуатации. Компания S7 заказала у нас полное 3D-сканирование Airbus. Анализ мы не выполняли, так как эти данные составляют коммерческую тайну.

Рис. 6. Эксплуатационный контроль Airbus авиакомпании S7

Обратите внимание на скан, где видно наклейку на хвостовой части (рис. 6). Дело в том, что даже такая вещь, как наклейка влияет на расход топлива. Измерительные системы, которые есть в нашем распоряжении, настолько чувствительны, что могут рассчитать оптимальное размещение наклейки. И по просьбе S7 было произведено 3D-сканирование хвоста самолета с наклейкой и без нее, чтобы понять, насколько правильно она расположена.

Рис. 7. Контроль оснастки на авиационном заводе

Упомяну еще один проект из области . Заказчиком iQB Technologies был самолетостроительный завод, изначально поручивший нам анализ листовых изделий довольно большого размера (2 метра и больше). На основании измерений мы выяснили, что деталь гнутая и не укладывается в требуемые допуски. И это при том, что на самом заводе она прошла контроль.

После того как деталь изготовили, ее кладут на деревянный шаблон (рис. 9). Если она лежит ровно, делают вывод, что она годная. Поскольку показывал отклонения, мы предложили проверить шаблон. И вот на скане можно увидеть множество зон с отклонениями. Такие шаблоны больших размеров, по которым изготавливаются узлы или детали, имеют сложный профиль, и поэтому их тяжело контролировать. Негодность самой шаблонной конструкции – это, на самом деле, большая проблема для многих предприятий.

– И здесь на помощь приходит 3D-сканер…


Лучшие статьи по теме