Как настроить смартфоны и ПК. Информационный портал
  • Главная
  • Интересное
  • Коэффициент амплитудной модуляции формула. Сравнение амплитудной, частотной и фазовой модуляций

Коэффициент амплитудной модуляции формула. Сравнение амплитудной, частотной и фазовой модуляций

Непрерывные методы модуляции

Методы модуляции сигналов

Лекция № 7

В ряде случаев при телеизмерениях необходимо передавать сведения о непрерывном процессе при помощи непрерывных сообщений. И если при этом необходимо получение сведений о бесконечно большом числе градации, то и сигналы, при помощи которых передаются непрерывные сообщения, должны быть непрерывными.

Непрерывный сигнал образуется при помощи непрерывных методов модуляции.

Модуляция – это образование сигнала путем изменения параметров переносчика под воздействием сообщения.

При непрерывных методах модуляции в качестве переносчика используется ВЧ – синусоидальное колебание, или несинусоидальное. Так как синусоидальное колебание характеризуется такими основными параметрами, как амплитуда, частота и фазы, то существует три основных типа модуляции: амплитудная (АМ), частотная (ЧМ) и фазовая (ФМ). Имеют место также и разновидности этих модуляции, о чем будет сказано ниже, а также колебании основных типов модуляции, так называемые двукратные модуляции.

Можно непрерывное сообщение передавать и непосредственно без использования переносчика ВЧ, т.е. без модуляции. Однако модуляция расширяет возможности передачи сообщений по следующим причинам:

а) увеличивается число сообщений, которые могут передаваться по одной линии связи путем использования частотного разделения сигналов и поднесущих частот;

б) повышается достоверность передаваемых сигналов при использовании помехоустойчивых типов модуляции;

в) повышается эффективность излучения сигнала при передаче по радиоканалу. Это объясняется тем, что размер антенны должен составлять не менее 1/10 длины волны излучаемого согнала. Так, при передаче сообщения частотой 10 кГц, имеющего длину волны 30 км, потребовалось бы антенна длиной в 3 км. Если это сообщение передать на несущий 200 кГц, то это уменьшит длину антенны в 20 раз (150 м).

Амплитудной модуляцией (АМ) называется образование сигнала путем изменения амплитуды гармонического колебания пропорционально мгновенным значением напряжения или тока другого электрического сигнала (сообщения).

Будем рассматривать случай амплитудной модуляции при которой передаваемое сообщение является простейшим гармоническим колебанием U с = U Ω cos Ωt (рис. а ) где Ω – частота, а U Ω – амплитуда колебания, ВЧ – переносчик, или несущая, U n = U w 0 = cos ω 0 t (рис.б ), ω 0 – частота несущей, а U ω 0 – амплитуда.

Под воздействием сообщения на амплитуду несущей образуется новое колебание, в котором изменяется амплитуда, но остается постоянной частота ω 0 .

Амплитуда несущей будет изменятся по линейному закону.



U а м = U ω 0 + ku c = U ω 0 + k U Ω cos Ωt = U ω0 (1+m cos Ωt ).

где k – коэффициент пропорциональности, а

– (4-2)

– относительное изменение амплитуды несущей, называемое коэффициентом или глубиной модуляции. Иногда коэффициент модуляции выражают в процентах. Если амплитуда модулированного колебания возрастает до удвоенной величины по сравнению с амплитудой несущей, то глубина модуляции составляет 100%.

Амплитудное – модулирование колебание будет иметь вид, представленный на рис. в), а его мгновенное значение будет определятся равенство

Uам =Uω 0 (1 + m cos Ω t ) cos ω 0 t (4-3)

Раскрыв скобки и воспользовавшись тем, что

cos Ωt cosω 0 t= + cos[(? 0 + ? )t+ ? ]}

Um J 2 (M чм ) {sin[(? 0 2 ? )t+ j ]+ sin[(? 0 +2 ? )t+ ? ]}+

+ Um J 3 (M чм ) {cos[(? 0 — 3 ? )t+ j ]+ cos[(? 0 +3 ? )t+ ? ]}

Um J 4 (M чм ) {sin[(? 0 4 ? )t+ j ]+ sin[(? 0 +4 ? )t+ ? ]} (15)

где J k (Mчм) — коэффициенты пропорциональности.

J k (Mчм) определяются по функциям Бесселя и зависят от индекса частотной модуляции. На рисунке 8 представлен график содержащий восемь функций Бесселя. Для определения амплитуд составляющих спектра ЧМ сигнала необходимо определить значение функций Бесселя для заданного индекса. Причем как

Рисунок 8 - Функции Бесселя

видно из рисунка различные функции имеют начало в различных значениях Мчм, а следовательно, количество составляющих в спектре будет определятся Мчм (с увеличивается индекса увеличивается и количество составляющих спектра). Например необходимо определить коэффициенты J k (Мчм) при Мчм=2. По графику видно, что при заданном индексе можно определить коэффициенты для пяти функций (J 0 , J 1 , J 2 , J 3 , J 4) Их значение при заданном индексе будет равно: J 0 =0,21; J 1 =0,58; J 2 =0,36; J 3 =0,12; J 4 =0,02. Все остальные функции начинаются после значения Мчм=2 и равны, соответственно, нулю. Для приведенного примера количество составляющих в спектре ЧМ сигнала будет равно 9: одна составляющая несущего сигнала (Um J 0) и по четыре составляющих в каждой боковой полосе (Um J 1 ; Um J 2 ; Um J 3 ; Um J 4).

Еще одной важной особенностью спектра ЧМ сигнала является то, что можно добиться отсутствия составляющей несущего сигнала или сделать ее амплитуду значительно меньше амплитуд информационных составляющих без дополнительных технических усложнений модулятора. Для этого необходимо подобрать такой индекс модуляции Мчм, при котором J 0 (Мчм) будет равно нулю (в месте пересечения функции J 0 с осью Мчм), например Мчм=2,4.

Поскольку увеличение составляющих приводит к увеличению ширины спектра ЧМ сигнала, то значит, ширина спектра зависит от Мчм (рисунок 9). Как видно из рисунка, при Мчм?0,5 ширина спектра ЧМ сигнала соответствует ширине спектра АМ сигнала и в этом случае частотная модуляция является узкополосной , при увеличении Мчм ширина спектра увеличивается, и модуляция в этом случае является широкополосной . Для ЧМ сигнала ширина спектра определяется

D ? чм =2(1+Мчм) ? (16)

Достоинством частотной модуляции являются:

  • высокая помехоустойчивость;
  • более эффективное использование мощности передатчика;
  • сравнительная простота получения модулированных сигналов.

Основным недостатком данной модуляции является большая ширина спектра модулированного сигнала.

Частотная модуляция используется:

  • в системах телевизионного вещания (для передачи сигналов звукового сопровождения);
  • системах спутникового теле- и радиовещания;
  • системах высококачественного стереофонического вещания (FM диапазон);
  • радиорелейных линиях (РРЛ);
  • сотовой телефонной связи.

Рисунок 9 - Спектры ЧМ сигнала при гармоническом модулирующем сигнале и при различных индексах Мчм: а) при Мчм=0,5, б) при Мчм=1, в) при Мчм=5

Фазовая модуляция

Фазовая модуляция — процесс изменения фазы несущего сигнала в соответствии с мгновенными значениями модулирующего сигнала.

Рассмотрим математическую модель фазо-модулированного (ФМ) сигнала при гармоническом модулирующем сигнале. При воздействии модулирующего сигнала

u (t ) = Um u sin ? t

на несущее колебание

S (t ) = Um sin (? 0 t + ? )

происходит изменение мгновенной фазы несущего сигнала по закону:

? фм(t) = ? 0 t+ ? + а фм Um u sin ? t (17)

где а фм — коэффициент пропорциональности частотной модуляции.

Подставляя ? фм(t) в S(t) получаем математическую модель ФМ сигнала при гармоническом модулирующем сигнале:

Sфм(t) = Um sin(? 0 t+ а фм Um u sin ? t+ ? ) (18)

Произведение а фм Um u =Dj m называется индексом фазовой модуляции или девиацией фазы .

Поскольку изменение фазы вызывает изменение частоты, то используя (11) определяем закон изменения частоты ФМ сигнала:

? фм (t )= d ? фм(t )/ dt = w 0 +а фм Um u ? cos ? t (19)

Произведение а фм Um u ? =?? m является девиацией частоты фазовой модуляции. Сравнивая девиацию частоты при частотной и фазовой модуляциях можно сделать вывод, что и при ЧМ и при ФМ девиация частоты зависит от коэффициента пропорциональности и амплитуды модулирующего сигнала, но при ФМ девиация частоты также зависит и от частоты модулирующего сигнала.

Временные диаграммы поясняющие процесс формирования ФМ сигнала приведены на рисунке 10.

При разложении математической модели ФМ сигнала на гармонические составляющие получится такой же ряд, как и при частотной модуляции (15), с той лишь разницей, что коэффициенты J k будут зависеть от индекса фазовой модуляции? ? m (J k (? ? m)). Определятся эти коэффициенты будут аналогично, как и при ЧМ, т. е. по функциям Бесселя, с той лишь разницей, что по оси абсцисс необходимо заменить Мчм на? ? m . Поскольку спектр ФМ сигнала строится аналогично спектру ЧМ сигнала, то для него характерны те же выводы что и для ЧМ сигнала (пункт 1.4).

Рисунок 10 - Формирование ФМ сигнала

Ширина спектра ФМ сигнала определяется выражением:

? ? фм =2(1+ ? j m ) ? (20).

Достоинствами фазовой модуляции являются:

  • высокая помехоустойчивость;
  • более эффективное использование мощности передатчика.
  • недостатками фазовой модуляции являются:
  • большая ширина спектра;
  • сравнительная трудность получения модулированных сигналов и их детектирование

Дискретная двоичная модуляция (манипуляция гармонической несущей)

Дискретная двоичная модуляция (манипуляция) — частный случай аналоговой модуляции, при которой в качестве несущего сигнала используется гармоническая несущая, а в качестве модулирующего сигнала используется дискретный, двоичный сигнал.

Различают четыре вида манипуляции:

  • амплитудную манипуляцию (АМн или АМТ);
  • частотную манипуляцию (ЧМн или ЧМТ);
  • фазовую манипуляцию (ФМн или ФМТ);
  • относительно-фазовую манипуляцию (ОФМн или ОФМ).

Временные и спектральные диаграммы модулированных сигналов при различных видах манипуляции представлены на рисунке 11.

При амплитудной манипуляции , также как и при любом другом модулирующем сигнале огибающая S АМн (t) повторяет форму модулирующего сигнала (рисунок 11, в).

При частотной манипуляции используются две частоты? 1 и? 2 . При наличии импульса в модулирующем сигнале (посылке) используется более высокая частота? 2 , при отсутствии импульса (активной паузе) используется более низкая частота w 1 соответствующая немодулированной несущей (рисунок 11, г)). Спектр частотно-манипулированного сигнала S ЧМн (t) имеет две полосы возле частот? 1 и? 2 .

При фазовой манипуляции фаза несущего сигнала изменяется на 180° в момент изменения амплитуды модулирующего сигнала. Если следует серия из нескольких импульсов, то фаза несущего сигнала на этом интервале не изменяется (рисунок 11, д).

Рисунок 11 - Временные и спектральные диаграммы модулированных сигналов различных видов дискретной двоичной модуляции

При относительно-фазовой манипуляции фаза несущего сигнала изменяется на 180° лишь в момент подачи импульса, т. е. при переходе от активной паузы к посылке (0?1) или от посылке к посылке (1?1). При уменьшении амплитуды модулирующего сигнала фаза несущего сигнала не изменяется (рисунок 11, е). Спектры сигналов при ФМн и ОФМн имеют одинаковый вид (рисунок 9, е).

Сравнивая спектры всех модулированных сигналов можно отметить, что наибольшую ширину имеет спектр ЧМн сигнала, наименьшую — АМн, ФМн, ОФМн, но в спектрах ФМн и ОФМн сигналов отсутствует составляющая несущего сигнала.

В виду большей помехоустойчивости наибольшее распространение получили частотная, фазовая и относительно-фазовая манипуляции. Различные их виды используются в телеграфии, при передаче данных, в системах подвижной радиосвязи (телефонной, транкинговой, пейджинговой).

Импульсная модуляция

Импульсная модуляция — это модуляция, при которой в качестве несущего сигнала используется периодическая последовательность импульсов, а в качестве модулирующего может использоваться аналоговый или дискретный сигнал.

Поскольку периодическая последовательность характеризуется четырьмя информационными параметрами (амплитудой, частотой, фазой и длительностью импульса), то различают четыре основных вида импульсной модуляции:

  • амплитудно-импульсная модуляция (АИМ); происходит изменение амплитуды импульсов несущего сигнала;
  • частотно-импульсная модуляция (ЧИМ), происходит изменение частоты следования импульсов несущего сигнала;
  • фазо-импульсная модуляция (ФИМ), происходит изменение фазы импульсов несущего сигнала;
  • широтно-импульсная модуляция (ШИМ), происходит изменение длительности импульсов несущего сигнала.

Временные диаграммы импульсно-модулированных сигналов представлены на рисунке 12.

При АИМ происходит изменение амплитуды несущего сигнала S(t) в соответствии с мгновенными значениями модулирующего сигнала u(t), т. е. огибающая импульсов повторяет форму модулирующего сигнала (рисунок 12, в).

При ШИМ происходит изменение длительности импульсов S(t) в соответствии с мгновенными значениями u(t) (рисунок 12, г).

Рисунок 12 - Временные диаграммы сигналов при импульсной модуляции

При ЧИМ происходит изменение периода, а соответственно и частоты, несущего сигнала S(t) в соответствии с мгновенными значениями u(t) (рисунок 12, д).

При ФИМ происходит смещение импульсов несущего сигнала относительно их тактового (временного) положения в немодулированной несущей (тактовые моменты обозначены на диаграммах точками Т, 2Т, 3Т и т. д.). ФИМ сигнал представлен на рисунке 12, е.

Поскольку при импульсной модуляции переносчиком сообщения является периодическая последовательность импульсов, то спектр импульсно-модулированных сигналов является дискретным и содержит множество спектральных составляющих. Этот спектр представляет собой спектр периодической последовательности импульсов в котором возле каждой гармонической составляющей несущего сигнала находятся составляющие модулирующего сигнала (рисунок 13). Структура боковых полос возле каждой составляющей несущего сигнала зависит от вида модуляции.

Рисунок 13 - Спектр импульсно-модулированного сигнала

Также важной особенностью спектра импульсно-модулированных сигналов является то, что ширина спектра модулированного сигнала, кроме ШИМ, не зависит от модулирующего сигнала. Она полностью определяется длительностью импульса несущего сигнала. Поскольку при ШИМ длительность импульса изменяется и зависит от модулирующего сигнала, то при этом виде модуляции и ширина спектра также зависти от модулирующего сигнала.

Частоту следования импульсов несущего сигнала может быть определена по теореме В. А. Котельникова как f 0 =2Fmax. При этом Fmax это верхняя частота спектра модулирующего сигнала.

Передача импульсно модулированных сигналов по высокочастотным линиям связи невозможна, т. к. спектр этих сигналов содержит низкочастотные составляющий. Поэтому для передачи осуществляют повторную модуляцию . Это модуляция, при которой в качестве модулирующего сигнала используют импульсно-модулированный сигнал, а в качестве несущего гармоническое колебание. При повторной модуляции спектр импульсно-модулированного сигнала переносится в область несущей частоты. Для повторной модуляции может использоваться любой из видов аналоговой модуляции: АМ, ЧС, ФМ. Полученная модуляция обозначается двумя аббревиатурами: первая указывает на вид импульсной модуляции а вторая — на вид аналоговой модуляции, например АИМ-АМ (рисунок 14, а) или ШИМ-ФМ (рисунок 14, б) и т. д.

Рисунок 14 - Временные диаграммы сигналов при импульсной повторной модуляции

Как известно, АМ - вид модуляции, при которой амплитуда несущего сигнала изменяется по закону модулирующего (информационного) сигнала. Существует немало источников с теоретическим и практическим описанием АМ. Описание даётся, прежде всего, для того, чтобы показать частотный состав АМ сигнала. В качестве модулирующего сигнала обычно рассматривают однотональный сигнал. Данный сигнал задаётся простой функцией синуса. У меня всегда спрашивали, да и я задавался вопросом, как описать АМ на случай, если в качестве модулирующего сигнала будет произвольный сигнал. Именно произвольный сигнал, частотный спектр которого состоит из множества компонент, представляет интерес, так как АМ применяется в радиовещании для передачи звука.

Попробуем описать АМ для вышесказанного случая, принимая во внимание, что модулирующий сигнал можно представить, как непрерывную сумму простых однотональных сигналов разных частот с различными амплитудами и фазами. Не вдаваясь в тонкости математического анализа, данный сигнал можно записать как непрерывную сумму (интеграл) Фурье:

Где – верхний предел частоты сигнала (полоса модулирующего сигнала), - переменная интегрирования, отвечающая за частоту, причём . Функции и - амплитуда и фаза компоненты сигнала на частоте .

Подынтегральное выражение данной формулы представляет собой т.н. тригонометрическую свёртку в амплитудно-фазовый вид слагаемого ряда Фурье, в который можно разложить сигнал. Интеграл в (1) можно назвать интегралом Фурье, так как, фактически, это непрерывная сумма, т.е. непрерывный ряд Фурье, в который раскладывается исходный сигнал. Разложение сигнала в подобный ряд даёт представление о частотном составе этого сигнала. Таким образом, исходный модулирующий сигнал представлен в виде непрерывной суммы синусоид (в данном случае для удобства - ) различных частот от до , каждая из них имеет свою амплитуду фазовый сдвиг . Функция представляет собой частотный спектр исходного сигнала .

Стоит отметить, что сигнал рассматривается на ограниченном промежутке времени . Вообще говоря, если речь идёт о звуковом сигнале, то, как правило, частотный спектр имеет практический смысл рассматривать для очень коротких фрагментов сигнала. Очевидно, чем больше по времени продолжительность сигнала, тем больше низкочастотных (приближающихся к нулю) компонент будут фигурировать в спектральном составе, что нельзя сопоставить со звуковыми частотами в слышимом диапазоне.

Кроме модулирующего сигнала имеется тональный сигнал, представляющий собой несущее колебание с частотой , амплитудой и нулевой начальной фазой:

Причём . Действительно, в радиовещании частота несущей во много раз больше полосы передаваемого сигнала.

Теперь перейдём непосредственно к процессу амплитудной модуляции.

Известно, что АМ сигнал есть результат перемножения сигнала несущей и модулирующего сигнала, предварительно смещённого и «проиндексированного» индексом модуляции , т.е.

Во избежание так называемой перемодуляции .

Подставим исходные данные (1) и (2) в выражение (3), раскроем скобки, внесём под интеграл независящие от переменной интегрирования некоторые множители:

Применим известную школьную тригонометрическую формулу преобразования произведения для подынтегральных функций:

Данная формула носит ключевой характер при АМ и подчёркивает эти самые «две боковые» в спектральном составе АМ сигнала.

Продолжив равенство, разобьём интеграл получившейся суммы на сумму двух интегралов, раскроем скобки и вынесем за скобку нужные множители в аргументах функций:

Три получившихся слагаемых соответственно представляют собой, как видно из равенства, сигнал несущей, сигналы «нижней» и «верхней» боковой. Прежде чем дать конкретное пояснение, продолжим равенство, применив метод замены переменной в следующей конфигурации:

Воспользуемся этой самой заменой:

Поменяв в первом интеграле пределы интегрирования местами (в результате чего изменится знак перед интегралом на противоположный), можно два интеграла объединить в один. Более того, туда же можно внести и первое слагаемое, описывающее сигнал несущей. При этом, естественно, подынтегральные функции амплитуды и фазы необходимо обобщить. Это всё делается условно и для более детальной наглядности, не вдаваясь в тонкости математического анализа. Таким образом, получится:

Таким образом, были введены новые кусочнозаданные функции (4) и (5), описывающие изменение амплитуды и фазы в зависимости от частоты. Глядя на компоненты функции (4), можно заметить, что третья компонента получена путём параллельного переноса функции на , а первая - ещё и с предварительным зеркальным разворотом. Множители-константы перед функциями, уменьшающие амплитуду, я не беру во внимание. То есть, в спектре АМ сигнала имеются три компоненты: несущая, верхняя боковая и нижняя боковая, что и было отражено в (4).

В заключение стоит отметить, что АМ можно описать, применяя более сложный подход, основанный на комплексных сигналах и комплексных числах. Обычный сигнал, о котором шла речь в этой статье, не имеет мнимой компоненты. Принимая во внимание представление с помощью векторных диаграмм на комплексной плоскости, сигнал без мнимой компоненты складывается из двух комплексных сигналов с обоими компонентами. Это очевидно, если представлять однотональный сигнал в виде суммы двух векторов, которые вращаются в противоположные стороны симметрично относительно оси x (Re). Скорость вращения данных векторов эквивалентна частоте сигнала, а направление - знаку частоты (положительная или отрицательная). Из этого следует, что частотный спектр сигнала без мнимой компоненты имеет не только положительную, но и отрицательную составляющую. И, конечно же, он симметричен относительно нуля. Именно при таком представлении можно утвердить, что в процессе амплитудной модуляции спектр модулирующего сигнала переносится по шкале частот вправо от нуля на частоту несущей (и влево тоже). При этом «нижняя боковая» не возникает, она в исходном модулирующем сигнале уже существует, правда располагается в отрицательной области частот. Звучит на первый взгляд странно, так как в природе, казалось бы, не существует отрицательных частот. Но математика преподносит немало сюрпризов.

Теги: Добавить метки

Амплитудная модуляция - это процесс формирования амплитудно-моду-лированного сигнала, т.е. сигнала, амплитуда которого изменяется по закону модулирующего сигнала (передаваемого сообщения). Этот процесс реализуется амплитудным модулятором.

Амплитудный модулятор должен формировать высокочастотное колебание, аналитическое выражение для которого в общем случае имеет вид

где - огибающая модулированного колебания, описываемая функцией, которая характеризует закон изменения амплитуды;

Модулирующий сигнал;

И - частота и начальная фаза высокочастотного колебания.

Для получения такого сигнала необходимо осуществить перемножение высокочастотного (несущего) колебания и низкочастотного модулирующего сигнала таким образом, чтобы сформировалась огибающая вида . Наличие постоянной составляющей в структуре огибающей обеспечивает однополярность ее изменения, коэффициент исключает перемодуляцию, т.е. обеспечивает глубину модуляции . Понятно, что такая операция перемножения будет сопровождаться трансформацией спектра, что позволяет рассматривать амплитудную модуляцию как существенно нелинейный или параметрический процесс.

Структура амплитудного модулятора в случае использования нелинейного элемента представлена на рис. 8.4.

Рис. 8.4. Структурная схема амплитудного модулятора

Нелинейный элемент осуществляет преобразование несущего колебания и модулирующего сигнала, в результате чего формируется ток (или напряжение), в спектре которого содержатся составляющие в полосе частот от до , причем - наивысшая частота в спектре модулирующего сигнала. Полосовой фильтр выделяет эти составляющие спектра, формируя амплитудно-модулированный сигнал на выходе.

Перемножение двух сигналов можно осуществить с помощью нелинейного элемента, характеристика которого аппроксимируется полиномом, содержащим квадратичный член. Благодаря этому формируется квадрат суммы двух сигналов, содержащий их произведение.

Суть сказанного и общую идею формирования амплитудно-модулированного колебания иллюстрируют достаточно простые математические преобразования в предположении, что осуществляется тональная (одной частотой) модуляция.

1. В качестве нелинейного элемента используем транзистор , ВАХ которого аппроксимируется полиномом второй степени .

2. На вход нелинейного элемента подается напряжение, равное сумме двух колебаний: несущего и модулирующего, т.е.

3. Спектральный состав тока определяется следующим образом:


В полученном выражении спектральные составляющие расположены в порядке возрастания их частот. Среди них имеются составляющие с частотами , и , которые образуют амплитудно-модулированное колебание, т.е.

В передающих устройствах обычно совмещают процессы модуляции и усиления, что обеспечивает минимальные искажения модулированных сигналов. С этой целью амплитудные модуляторы строят по схеме резонансных усилителей мощности, в которых изменение амплитуды высокочастотных колебаний достигается изменением положения рабочей точки по закону модулирующего сигнала.

Схема и режимы работы амплитудного модулятора

Схема амплитудного модулятора на основе резонансного усилителя представлена на рис. 8.5.

Рис. 8.5. Схема амплитудного модулятора на основе резонансного усилителя

На вход резонансного усилителя, работающего в нелинейном режиме, подаются:

несущее колебание от автогенератора с помощью высокочастотной трансформаторной связи контура входной цепи с базой транзистора;

модулирующий сигнал с помощью низкочастотного трансформатора .

Конденсаторы и - блокировочные, обеспечивают развязку входных цепей по частотам несущего колебания и модулирующего сигнала, т.е. развязку по высокой и низкой частотам. Колебательный контур в цепи коллектора настроен на частоту несущего колебания, добротность контура обеспечивает полосу пропускания , где - наивысшая частота в спектре модулирующего сигнала.

Выбором рабочей точки определяется режим работы модулятора. Возможны два режима: режим малых и режим больших сигналов.

а. Режим малых входных сигналов

Этот режим устанавливается выбором рабочей точки в середине квадратичного участка ВАХ транзистора. Выбором амплитуды несущего колебания обеспечивается работа модулятора в пределах этого участка (рис. 8.6).

Рис. 8.6. Режим малых входных сигналов амплитудного модулятора

Амплитуда напряжения на колебательном контуре, резонансная частота которого равна несущей частоте, определяется амплитудой первой гармоники тока, т.е. , где - резонансное сопротивление контура. Учитывая, что средняя крутизна ВАХ в пределах рабочего участка равна отношению амплитуды первой гармоники к амплитуде несущего колебания, т.е. , можно записать

.

Под воздействием модулирующего напряжения, подаваемого на базу транзистора, будет изменяться положение рабочей точки, а значит, будет изменяться и средняя крутизна ВАХ. Так как амплитуда напряжения на колебательном контуре пропорциональна средней крутизне, то для обеспечения амплитудной модуляции несущего колебания необходимо обеспечить линейную зависимость крутизны от модулирующего сигнала. Покажем, что это возможно при использовании рабочего участка ВАХ, аппроксимируемого полиномом второй степени.

Итак, в пределах квадратичного участка ВАХ, описываемого полиномом , существует входное напряжение, равное сумме двух колебаний: несущего и модулирующего, т.е.

Спектральный состав тока коллектора определяется следующим образом:

Выделяем первую гармонику тока:

Таким образом, амплитуда первой гармоники равна:

Как видно из полученного выражения, амплитуда первой гармоники тока линейно зависит от модулирующего напряжения. Следовательно, средняя крутизна также будет линейно зависеть от модулирующего напряжения.

Тогда напряжение на колебательном контуре будет равно:

Следовательно, на выходе рассматриваемого модулятора формируется амплитудно-модулированный сигнал вида:

Здесь - коэффициент глубины модуляции;

- амплитуда высокочастотного колебания на выходе модулятора в отсутствие модуляции, т.е. при .

При проектировании передающих систем важным требованием является формирование амплитудно-модулированных колебаний большой мощности при достаточном КПД . Очевидно, что рассмотренный режим работы модулятора не может обеспечить эти требования, особенно первое из них. Поэтому наиболее часто используют так называемый режим больших сигналов.

б. Режим больших входных сигналов

Этот режим устанавливается выбором рабочей точки на ВАХ транзистора, при котором усилитель работает с отсечкой тока. В свою очередь, выбором амплитуды несущего колебания обеспечивается изменение амплитуды импульсов тока коллектора по закону модулирующего сигнала (рис. 8.7). Это приводит к аналогичному изменению амплитуды первой гармоники коллекторного тока и, следовательно, изменению амплитуды напряжения на колебательном контуре модулятора, так как

и .

Рис. 8.7. Режим больших входных сигналов амплитудного модулятора

Изменение амплитуды входного высокочастотного напряжения во времени сопровождается изменением угла отсечки, а значит, и коэффициента . Следовательно, форма огибающей напряжения на контуре может отличаться от формы модулирующего сигнала, что является недостатком рассмотренного метода модуляции. Для обеспечения минимальных искажений необходимо устанавливать определенные пределы изменения угла отсечки и работать при не слишком большом коэффициенте модуляции .

В схеме амплитудного модулятора, приведенной на рис. 8.8, модулирующий сигнал подается на базу транзистора генератора стабильного тока. Значение этого тока пропорционально входному напряжению. При малых значениях входных напряжений амплитуда выходного напряжения будет зависеть от модулирующего сигнала следующим образом

где - коэффициенты пропорциональности.

Характеристики амплитудного модулятора

Для выбора режима работы модулятора и оценки качества его работы используют различные характеристики, основными из которых являются: статическая модуляционная характеристика, динамическая модуляционная характеристика и частотная характеристика.

Рис. 8.8. Схема амплитудного модулятора с генератором тока

а. Статическая модуляционная характеристика

Статическая модуляционная характеристика (СМХ) - это зависимость амплитуды выходного напряжения модулятора от напряжения смещения при постоянной амплитуде напряжения несущей частоты на входе, т.е. .

При экспериментальном определении статической модуляционной характеристики на вход модулятора подается только напряжение несущей частоты (модулирующий сигнал не подается), изменяется величина (как бы имитируется изменение модулирующего сигнала в статике) и фиксируется изменение амплитуды несущего колебания на выходе. Вид характеристики (рис. 8.9,а) определяется динамикой изменения средней крутизны ВАХ при изменении напряжения смещения. Линейный возрастающий участок СМХ соответствует квадратичному участку ВАХ, так как на этом участке с ростом напряжения смещения средняя крутизна растет. Горизонтальный участок СМХ соответствует линейному участку ВАХ, т.е. участку с постоянной средней крутизной. При переходе транзистора в режим насыщения появляется горизонтальный участок ВАХ с нулевой крутизной, что и отражается спадом СМХ

Статическая модуляционная характеристика позволяет определить величину напряжения смещения и приемлемый диапазон изменения модулирующего сигнала с целью обеспечения его линейной зависимости от выходного напряжения. Работа модулятора должна происходить в пределах линейного участка СМХ. Величина напряжения смещения должна соответствовать середине линейного участка, а максимальное значение модулирующего сигнала не должна выходить за пределы линейного участка СМХ. Можно также определить максимальный коэффициент модуляции , при котором еще нет искажений. Его величина равна .

Рис. 8.9. Характеристики амплитудного модулятора

б. Динамическая модуляционная характеристика

Динамическая модуляционная характеристика (ДМХ) - это зависимость коэффициента модуляции от амплитуды модулирующего сигнала, т.е. . Получить эту характеристику можно экспериментальным путем, либо по статической модуляционной характеристике. Вид ДМХ представлен на рис. 8.9,б. Линейный участок характеристики соответствует работе модулятора в пределах линейного участка СМХ.

в. Частотная характеристика

Частотная характеристика - это зависимость коэффициента модуляции от частоты модулирующего сигнала, т.е. . Влияние входного трансформатора приводит к завалу характеристики на низких частотах (рис. 8.9,в). С ростом частоты модулирующего сигнала боковые составляющие амплитудно-модулированного колебания удаляются от несущей частоты. Это приводит к их меньшему усилению в силу избирательных свойств колебательного контура, что обусловливает завал характеристики на более высоких частотах . Если полоса частот, занимаемая модулирующим сигналом, находится в пределах горизонтального участка частотной характеристики, то искажения при модуляции будут минимальны.

Балансный амплитудный модулятор

Для эффективного использования мощности передатчика применяют балансную амплитудную модуляцию. При этом формируется амплитудно-модулированный сигнал, в спектре которого отсутствует составляющая на несущей частоте.

Схема балансного модулятора (рис. 8.10) представляет собой сочетание двух типовых схем амплитудных модуляторов с определенными соединениями их входов и выходов. Входы по частоте несущего колебания соединены параллельно, а выходы подключены с инверсией относительно друг друга, образуя разность выходных напряжений. Модулирующий сигнал подается на модуляторы в противофазе. В результате на выходах модуляторов имеем

И , а на выходе балансного модулятора

Рис. 8.10. Схема балансного амплитудного модулятора

Таким образом, в спектре выходного сигнала имеются составляющие с частотами и . Составляющей с частотой несущего колебания нет.

где – амплитуда несущей; – коэффициент пропорциональности, выбираемый так, чтобы амплитуда всегда была положительной. Частота и фаза несущего гармонического колебания при AM остаются неизменными.

Для математического описания AM сигнала в (2.2) вместо коэффициента , зависящего от конкретной схемы модулятора, вводится индекс модуляции:

,

т.е. отношение разности между максимальным и минимальным значениями амплитуд AM сигнала к сумме этих значений. Для симметричного модулирующего сигнала AM сигнал также симметричный, т.е. . Тогда индекс модуляции равен отношению максимального приращения амплитуды, к амплитуде несущей.

Амплитудная модуляция гармоническим колебанием. В простейшем случае модулирующий сигнал является гармоническим колебанием с частотой . При этом выражение

соответствует однотональному AM сигналу, представленному на рис. 2.26.

Однотональный AM сигнал можно представить в виде суммы трех гармонических составляющих с частотами: – несущей; – верхней боковой и – нижней боковой:

.

Спектральная диаграмма однотонального AM сигнала, построенная по (2.7), симметрична относительно несущей частоты (рис. 2.2,в). Амплитуды боковых колебаний с частотами и одинаковы и даже при не превышают половины амплитуды несущего колебания .

Гармонические модулирующие сигналы и соответственно однотональный AM сигнал на практике встречаются редко. В большинстве случаев модулирующие первичные сигналы являются сложными функциями времени (рис.2.3,а). Любой сложный сигнал можно представить в виде конечной или бесконечной суммы гармонических составляющих, воспользовавшись рядом или интегралом Фурье. Каждая гармоническая составляющая сигнала с частотой приведет к появлению в AM сигнале двух боковых составляющих с частотами .

Множеству гармонических составляющих в модулирующем сигнале с частотами будет соответствовать множество боковых составляющих с частотами . Для наглядности такое преобразование спектра при AM показано на рис. 2.3,б. Спектр сложномодулированного AM сигнала, помимо несущего колебания с частотой , содержит группы верхних и нижних боковых колебаний, образующих соответственно верхнюю боковую полосу и нижнюю боковую полосу AM сигнала.

При этом верхняя боковая полоса частот является масштабной копией спектра информационного сигнала, сдвинутого в область высоких частот на величину . Нижняя боковая полоса частот также повторяет спектральную диаграмму сигнала , но частоты в ней располагаются в зеркальном порядке относительно несущей частоты .

Ширина спектра AM сигнала равна удвоенному значению наиболее высокой частоты спектра модулирующего низкочастотного сигнала, т. е. .

Наличие двух боковых полос обусловливает расширение занимаемой полосы частот примерно в два раза, по сравнению со спектром информационного сигнала. Мощность, приходящаяся на колебание несущей частоты, постоянна. Мощность, заключенная в боковых полосах, зависит от индекса модуляции и увеличивается с увеличением глубины модуляции. Однако даже в крайнем случае, когда , только всей мощности колебания приходится на две боковые полосы.

Лучшие статьи по теме