Как настроить смартфоны и ПК. Информационный портал
  • Главная
  • Новости
  • Как сделать бесшумный системный блок. Как сделать свой тихий компьютер

Как сделать бесшумный системный блок. Как сделать свой тихий компьютер

Здравствуй любимый Радиокотик!!!

Поздравляю тебя с юбилеем по человечески!

Делюсь с тобой и со всеми читателями идеями по созданию совершенно бесшумного компьютера для дома.

Ведь коты не любят шума - за ним не слышно шороха мышей!

Ближе к делу:

Рассмотрим источники шума системного блока компьютера:

1. Импульсный блок питания выполнен в виде компактного блока. Из-за высокой мощности 250-500 Вт и конечного КПД (80-85 %) при работе выделяет много тепла, поэтому снабжён вентилятором. Только современные и дорогие модели имеют встроенный автоматический регулятор оборотов, не дающие вентилятору работать без необходимости.

2. Вентилятор, охлаждающий процессор. Даже на современных компьютерах вентилятор имеет постоянное питание, 12 Вольт, и не имеет автоматического регулятора оборотов.

3. Вентилятор охлаждения процессора некоторых моделей видеокарт.

4. Жёсткий диск при работе, так как имеет движущиеся элементы.

5. Вентилятор охлаждения корпуса в некоторых моделях.

Как же устранить все источники шума системного блока и при этом сохранить работоспособность его устройств?

С шумом от жесткого диска всё просто: при некотором удорожании конструкции, его можно заменить на твёрдотельный SSD (флэш-диск).

Основные же источники шума в системном блоке это вентиляторы, т. е. охлаждающие устройства. Возникает проблема – как можно заменить систему охлаждения компьютера?

Работая над этой проблемой, я познакомилась в Интернете с системами охлаждения, которые предлагают различные фирмы.

Совсем недавно фирма Zalman стала выпускать кулеры для процессоров больших размеров, большой производительности вентиляторов и регулятором числа оборотов. За счёт больших габаритов кулер является эффективным при низких оборотах вентилятора. Минусы: нет автоматического регулятора оборотов и мониторинга температуры процессора, возможна ошибка оператора при ручной регулировке числа оборотов (не предоставляется методика регулировки).

Корпус бесшумного компьютера Zalman - ящик 40 кг, алюминиевый, стенки которого покрыт рёбрами радиаторов.

Той же фирмой был предложен компьютер с двухконтурной системой водяного охлаждения. Она справляется с отводом тепла, но не решает проблему шума полностью. Проблематичным здесь является последующее бесшумное охлаждение нагревшейся воды, которое до конца не решено. Охладить воду можно вентилятором, что уже будет производить шум или использовать проточную воду и слушать шум движущейся по трубкам воды. Во втором случае отработанная вода сливается в канализацию, что делает неэкономичным использование воды.

Модернизация системы охлаждения моего компьютера

Модернизация блока питания ATX CODEGEN 300


Модернизацию системы охлаждения я начала с блока питания – рисунок 1. Я нашла в Интернете его схему с описанием работы и узнала следующее - блок питания состоит из двух частей – высоковольтной и низковольтной.

Высоковольтная часть состоит из

  • выпрямителя переменного напряжения;
  • сглаживающих электролитических конденсаторов;
  • схемы управления трансформатором дежурного режима на транзисторе МО339;
  • схемы управления силовым импульсным трансформатором на двух ключевых транзисторах Д13007.

Низковольтная часть состоит из

  • микросхемы контроллера ШИМ (широтно-импульсной модуляции) КА7500В;
  • из двух мощных сборок диодов Шоттки для выпрямления импульсов, идущих с силового трансформатора для получения напряжений +5 В, +12 В;
  • многообмоточного дросселя для сглаживания пульсаций электролитических конденсаторов – фильтров напряжений;
  • схемы стабилизатора напряжения +3,3 В;
  • схемы формирования управляющего сигнала Power God – все напряжения на выходе блока питания +12, +5, +3,3, -12,-5 В в норме;
  • схемы запуска PCON.

Элементы, которые требуют охлаждения и установки на радиаторы – это мощные три транзистора высоковольтной части, две диодные сборки и полевой транзистор низковольтной части. Поскольку на корпусе каждого из этих элементов имеется разное напряжение, в том числе и сетевое, они установлены на изолирующих теплопроводящих прокладках из слюды или других материалов.

Плата блока питания помещена в отдельный металлический корпус с постоянно работающим вентилятором и отверстиями для охлаждения. Поскольку большую часть времени компьютер работает в режиме загрузки близкой к нулю (работа с текстовыми документами, поиск в Интернете и т. п.), т. е. 20 Вт энергопотребления системного блока, считаю работу вентилятора блока питания на максимальных оборотах нецелесообразной.

Предлагаю совершенно новый подход при проектировании компьютерных блоков питания. Изготовив действующий опытный образец, показать, что с точки зрения массового производства новая модель не несёт повышенных финансовых затрат. Плату блока питания предлагаю размещать на боковой стенке компьютера, монтаж элементов требующих охлаждения предлагаю выполнять с обратной стороны платы (двусторонний монтаж), одновременно прикрепляя их к боковой стенке, выполненной из алюминиевой пластины, служащей радиатором. Для удобства монтажа и пайки предлагаю предварительно эти элементы устанавливать на небольших плоских пластинах – радиаторах, впаивать группами, тестировать и при сборке крепить на стенку внутри корпуса. Таким образом, полностью освобождаемся от вентилятора в блоке питания.

Модернизация охлаждения процессора

Идея создания бесшумного компьютера возникла при тестировании работоспособности системной платы при подключении на столе. Компьютер спокойно работал без перегрева 15 минут с небольшим штатным процессорным радиатором и отключённым вентилятором. Далее процессор нагрелся, и компьютер пришлось выключить. Обратившись к литературе, я нашла методику расчёта поверхностной площади радиаторов для электронных компонентов:

Расчет площади радиатора
При расчете обычно исходят из температуры окружающей среды 20°С и допустимом перегреве на 30°С, т.е. нагреве тепловыделяющего элемента до 50°С.
Тепловое сопротивление радиатора
Q = 50/√S (°С/Вт) (1),
где S – площадь поверхности теплоотвода, выраженная в квадратных сантиметрах.
Отсюда площадь поверхности для искомого теплового сопротивления
S = (50/Q)2 (см 2) (2).
Если необходимо рассеять мощность 50 Вт, при перегреве 30°С, требуемое тепловое сопротивление Q = 30/50 = 0,6 °C/Вт. Тогда по формуле (2) определяем площадь: S = (50/0,6) 2 = 6944 см 2 .
Значит площади имеющегося радиатора в 5000 см 2 , специально приобретённого для этой разработки, практически должно хватить для охлаждения процессора, так как мощность 50 Вт – приблизительная и может быть завышена. В любом случае для аварийного охлаждения, если температура радиатора достигнет установленного предельного значения, под пластинами радиатора я установила большой, тихий (выбрала из нескольких) вентилятор, управляемый цифровым терморегулятором, датчик которого закреплён вблизи процессора. Частота вращения подбирается экспериментально и регулируется регулятором напряжения, который продавался вместе с кулером.

В верхней и нижней стенках корпуса пришлось просверлить много отверстий для отвода тепла радиатора процессора, северного моста, трансформаторов и дросселей блока питания, видеокарты TV-тюнера, жёсткого диска.

Для удобства пользования компьютером, дома, на презентациях и для борьбы с лишними проводами была сделана передняя панель системного блока, имеющая подсветки, индикаторы включения, цифровой индикатор температуры процессора, входного напряжения сети, выключатель и регулятор громкости звука, встроенного мощного стереоусилителя с двумя широкополосными динамическими головками. На задней панели уставлены четыре компактные управляемые розетки для подключения периферийных устройств. Компьютер оборудован беспроводной клавиатурой со встроенным трекболом для дистанционного управления по радиоканалу в комнате или аудитории.

Модернизация видеокарты

Первоначально процессор на видеокарте охлаждался небольшим радиатором с маленьким вентилятором на 12 В. После нескольких лет работы он начал издавать большой шум и скрип. Я заменяю старый радиатор новым, алюминиевым, без кулера, но с большей площадью рассеивания теплоты (в 10 раз большей по площади) – рисунок 10. Для хорошего теплоотвода он должен иметь гладкую ровную поверхность в месте соприкосновения с видеопроцессором и иметь габариты, позволяющие его разместить на видеокарте вплотную к видеопроцессору. В нашем случае пришлось два электролитических конденсатора в цепи питания выпаять и перенести на край платы с помощью удлинительных проводов без нарушения электрической схемы.

Заключение

В результате проделанной работы произведена модернизация системы охлаждения обычного системного блока. Были удалены все вращающиеся охлаждающие вентиляторы, за исключением аварийного. Процессор стал работать с пассивным охлаждением и с автоматической системой контроля температуры, которая включает аварийный низкооборотный вентилятор при высокой загрузке процессора 80 -100 %. Блок питания также работает без вентилятора, с пассивным охлаждением на боковой стенке. Таких блоков питания нет в продаже. С пассивным охлаждением работает и видеокарта. Системный блок компьютера стал работать без шума и служит безотказно уже 10 месяцев.

Почему шумит компьютер ? Таким вопросом я задался после того, как мой системный блок стал всё больше и больше гудеть, и даже выть. Днём это было терпимо, но вот если я оставлял его включенным ночью на закачку, шум уже сильно мешал.

Конечно, можно купить бесшумный компьютер, такие выпускают пачками и они стоят очень дешево, но компьютер у меня уже есть, и менять смысла нет.

И тогда я задумался: как бы сделать свой компьютер бесшумным , ну или почти бесшумным? Итак, что можно сделать, когда компьютер сильно шумит?

Почему шумит компьютер?

Вентиляторы в корпусе можно вообще отключить, так как они не играют очень большую роль в охлаждении и без них ничего не сгорит. У вас получится бесшумный корпус для компьютера.

Но даже такие меры не сделают компьютер полностью бесшумным. К тому же хорошие вентиляторы дороги и не всегда есть в продаже. Поэтому я хочу вам предложить более простой, но более эффективный метод.

Как сделать компьютер бесшумным?

Дело в том, что на каждый вентилятор подаётся напряжение в 12 вольт. Это рабочее напряжение вентилятора, и с ним он работает НА ПОЛНУЮ МОЩЬ! Отсюда и столько шума? Но нужно ли блоку питания, процессору и видеокарте такой максимальный обдув?

Как правило нет. Если уменьшить напряжение на каждый вентилятор на несколько вольт, то он будет работать ПРАКТИЧЕСКИ БЕСШУМНО! Но как это сделать?

В продаже часто есть специальные устройства, которые позволяют регулировать напряжение на выходе. Подключив через такой небольшой устройство шумящий вентилятор, вы можете отрегулировать скорость его вращения и добиться минимального шума при нормальной производительности.

Купить такой регулятор можно опять же в Китае всего за 2$ у ЭТОГО ПРОДАВЦА .

Можно сделать ещё проще, вставив в разрыв питания сопротивление, но оно несомненно будет очень греться, поэтому его нужно будет поместить в зону обдува.

Но есть более простой способ. Дело в том, что любой блок питания на компьютере на компьютере выдаёт не только 12 вольт, но и 5 вольт. Если мы переключим все вентиляторы на 5 вольт вместо 12, то наш компьютер станет практически бесшумным.

Так мы получим почти бесшумный блок питания для компьютера просто и бесплатно. Как это сделать на практике?

Из блока питания выходит разъём с четырьмя выходами. Два посередине - это оба минуса, по краям один 12, другой пять вольт. Нужно тестером или методом тыка найти 5 вольт.

Метод тыка - это подключение вентилятора то в один разъём, то во второй. Где пропеллер будет крутиться медленнее, там и 5 вольт. Или просто посмотрите на картинку:

Теперь просто откусываем красный проводок от вентилятора (лучше посередине), наращиваем проводок и подключаем к 5 вольтам. Так делаем со всеми шумящими вентиляторами. Теперь у нас бесшумный компьютер!

Лично я сам не раз делал так на своих компьютерах и у меня всё работало нормально, ничего не перегревалось и не сгорало. Если что-то пойдёт не так, то всегда можно всё вернуть в исходное положение за пару минут. Теперь вы знаете, как можно сделать компьютер почти бесшумным бесплатно за 5 минут!

Рано или поздно любой пользователь сталкивается с этой проблемой и пытается всеми доступными ему способами сделать компьютер тише. При этом всегда у него встает вопрос, почему он гудит?

Основные источники шума:

  • Кулеры — создают гул при усиленных оборотах.
  • Жесткие диски при работе.
  • DVD привод во время считывании информации с носителя.

Причины:

  • Пыль.
  • Перегрев.
  • Стенки корпуса (если они слишком тонкие).
  • Плохо зафиксированные компоненты ПК и их износ.
  • Расположение процессора, ноутбука.
  • Чрезмерное количество вентиляторов.

Многое из вышеописанного самым прямым образом связано между собой, как например, неправильное расположение ПК, вследствие которого перегрев. И в итоге, — гул.

Сделать тише возможно с помощью программ и действий с «железом».

Чистка компьютера от пыли

Это, пожалуй, самое первое, что необходимо сделать, чтобы стал тихий ПК. Особенно часто загрязняется кулер, из-за чего повышается температура внутри системного блока и оные начинают усердно вертеться.

Прочистить можно баллончиками со жатым воздухом, пылесосом или резиновой грушей, (наподобие детской клизмы) не касаясь компонентов ПК.

Изменить скорость вентилятора

SpeedFan — поможет уменьшить обороты кулера, тем самым снизив его шум. После запуска приложения, во время работы какой нибудь ресурсоемкой утилиты, а лучше игры, смотрим и запоминаем значения градусов. Постоянно изменяйте быстроту вращения. Начните с 85 %. Так же необходимо вести контроль температуры компонентов, чтобы она не увеличивалась. И выберите для себя те показатели, при которых ПК издает гудение меньше, а температура не поднимается.

Также можно заменить вентилятор на радиатор, обеспечив тем самым пассивное охлаждение. Но нужно обязательно знать,что такое действие не приемлемо для мощных, игровых машин. Для них лучше установить водяное охлаждение.

Замена термопасты

Она наносится между процессором и кулером. Со временем она перегорает, что приводит к гудению кулеров из-за перегрева.

Замена корпуса

Как я уже писал в начале статьи , гул может быть вызван тонкими стенками системника. Даже при тихом вентиляторе вы все равно его будете слышать. И более того, он будет вибрировать от работы жесткого диска.

Работа с жестким диском

Некоторые харды вибрируют и издают потрескивание и жужжание. Советую установить резиновую прокладку между ним и корпусом, они обычно одеваются на винты, что крепится HDD.

Если проблема не решена, то скорее всего что-то не так с самим дивайсом. Стоит проверить его специальными утилитами , и если опасения подтвердятся, заменить, предварительно сохранив нужную информацию. Или использовать SDD накопитель. Они совершенно без шумные.

Местоположение

ПК должен находиться вдалеке от тепла на ровной поверхности. Желательно на резиновых прокладках, чтобы не было вибрации.

Как большинство из моих знакомых, не стоит прятать системные блоки в шкафы и тумбы. Тем самым нарушается циркуляция воздуха, вызывая нагрев.

Замена DVD привода

Если во время чтения «болванок» начинается гул и треск, обязательно надо его заменить. Но для начала следует попробовать очистить его от пыли, а головку лазера специальным диском.

  • Перевод

Почти три десятилетия я пытаюсь делать мои компьютеры тише. Жидкостное охлаждение собственного изготовления, гидродинамические подшипники с магнитной стабилизацией, акустические демпферы, силиконовые амортизаторы – я использовал всё, что можно представить. И на прошлой неделе я, наконец, сумел построить совершенно бесшумный компьютер. Без лишних слов, знакомьтесь: Streacom DB4 . Корпус размером 26 x 26 x 27 см без единого вентилятора. У него вообще нет никаких движущихся частей. Полная тишина, 0 дБ.

Если снять с него верхнюю и четыре боковых стенки (штампованный алюминий, толщина стенки 13 мм), вы увидите минимальную раму и центральную монтажную пластину для материнской платы формата mini-ITX (порты ввода/вывода смотрят вниз, сквозь дно корпуса).


Когда я выбирал компоненты, то вариантов материнской платы такого формата было всего четыре:

  • ASUS ROG Strix B350-I Gaming
  • Gigabyte AB350N-Gaming-WiFi ITX
  • MSI B350I Pro AC
  • ASRock Fatal1ty AB350 Gaming-ITX/ac
Внимательный читатель заметит, что все материнки заточены под AMD (Socket AM4). Вся эта привела к тому, что мои предыдущие системы на базе Intel стали небезопасными, и для меня это стало последней каплей – всё, больше никаких Intel CPU.

В итоге я остановился на плате ASRock AB350 Gaming-ITX/ac .

Хотя теоретически в DB4 можно установить любую материнку mini-ITX, корпус разработан для пассивного охлаждения с тепловыми трубками , передающими тепло, создаваемое CPU и GPU на боковые панели, излучающие его и удаляющие при помощи конвекции. Тщательный анализ путей прокладки трубок и необходимых зазоров показал, что определённые материнки не подойдут для этого корпуса – будут мешаться компоненты.

  • У Gigabyte коннектор питания ATX зачем-то расположен наверху платы, и это препятствие было никак не обойти.
  • У Asus есть группа стабилизаторов напряжения, в которые эти трубки упирались бы. Любой человек, разбирающийся в конденсаторах и тепле, поймёт, что это был бы путь к катастрофе.
  • У MSI имеется огромный радиатор для стабилизаторов напряжения, который мешался бы по меньшей мере одной (возможно, двум) трубкам.
ASRock оказалась единственной материнкой, которая уместится в DB4, и не будет мешаться дополнительному набору трубок LH6 Cooling Kit. Пожалуй, нагляднее будет продемонстрировать, как это выглядит после установки трубок:

Чтобы лучше понять, насколько малы оказались зазоры, вот фото с другого угла:


Да, кое-где зазор буквально составляет доли миллиметра

В комплекте с DB4 идёт оборудование, с помощью которого тепло от CPU передаётся на одну из боковых панелей – это четыре тепловые трубки и один распределитель тепла. Такая конфигурация поддерживает CPU мощностью 65 Вт. Если добавить LH6 Cooling Kit, то CPU можно подсоединить к двум боковым панелям шестью трубками и тремя распределителями, что позволит использовать CPU до 105 Вт.

В такой системе с пассивным охлаждением ограничением мощности CPU служат возможности по рассеиванию тепла. Для справки:

  • Ryzen 5 2400G 4C8T 3.6GHz - 46-65 Вт
  • Ryzen 5 1600 6C12T 3.2GHz - 65 Вт
  • Ryzen 5 1600X 6C12T 3.6GHz - 95 Вт
  • Ryzen 7 1700 8C16T 3.0GHz - 65 Вт
  • Ryzen 7 1700X 8C16T 3.4GHz - 95 Вт
  • Ryzen 7 1800X 8C16T 3.6GHz - 95 Вт
Так что стоковый DB4 поддерживает вплоть до 2400G/1600/1700 – без всякого разгона – а комплект DB4+LH6 поддержит даже 1600X/1700X/1800X - и позволит немного разогнаться.

В отличие от Intel, время поддержки сокетов у которой сравнимо со временем, необходимым для распаковки очередного процессора, у AMD время поддержки сокетов гораздо больше. AM4 будет поддерживаться до 2020. Отсюда и вырос мой хитрый план – начать в 2018 году с CPU, который без проблем смогут охлаждать DB4+LH6, который можно разгонять и подвергать стресс-тестам пару лет, а потом, если преимущества апгрейда будут очевидными, добавить более эффективный CPU, когда последние процессоры для AM4 сойдут с конвейера, на базе чего можно будет существовать ещё лет пять.

Всё это привело к тому, что я поставил Ryzen 5 1600 на 65 Вт. Поскольку материнка у меня B350, я имею возможность разгонять проц до 1600X/95 Вт без особых проблем.

Если вам хватает 65 Вт и не нужен разгон, вы можете отказаться от LH6 Cooling Kit. Тепловые трубки у DB4 короче, чем у LH6, и не заходят за край материнки – поэтому никаких ограничений, упомянутых в связи с платами Gigabyte, Asus и MSI, у вас не будет.

С Corsair Vengeance LPX RAM у меня никогда не было проблем. Она была указана в списке совместимых модулей для моей материнской платы, а ещё её смогли разогнать до 3200 МГц на точно такой же матери, что и у меня, поэтому я был уверен, что смогу достичь хорошего разгона с минимальными усилиями – естественно, с учётом «кремниевой лотереи». Я собирал компьютер не для игр и не использовал APU, поэтому для меня больше значения имел объём памяти, чем какие-то запредельные скорости.

SSD – единственный вариант абсолютно тихого накопителя, я избавился от последнего жёсткого диска более семи лет назад, поэтому система изначально была нацелена на использование SSD. Вопрос был только – какого именно.

Поскольку сзади на материнке есть слот M.2, я решил выбрать 1 Тб Samsung 960 Evo NVMe в качестве основного и 1 Тб Samsung 860 Evo SATA для страховочного.

Я бы предпочёл два диска NVMe (чтобы было меньше кабелей), но у материнки ASRock есть только один слот M.2. У Asus есть два таких слота, но она несовместима с LH6 Cooling Kit. Ну что ж – иногда приходится идти на компромиссы.

Для моих целей необходимы большие скорости передачи данных и ожидаемая продолжительность жизни не менее семи лет. Пространства на диске мне нужно порядка 600 Гб, поэтому взяв запас в несколько сотен гигов, я могу позволить накопителям определённый износ и достичь своей цели.

Хотя система не предназначалась для игр, никогда не повредит установить лучший из возможных GPU, который не расплавит температурные трубки. GPU Cooling Kit позволяет размещать GPU до 75 Вт, тепло с которого по трубкам будет идти к одной из стенок. Это ограничивает выбор платой не выше GTX 1050 Ti, если вы, как я, предпочитаете карты от Nvidia.

Мне хотелось MSI GeForce GTX 1050 Ti Aero ITX OC 4GB, но они закончились у моего продавца. Из-за безумств с криптовалютами не было известно, как скоро они появятся на складе, поэтому я удовлетворился второй по списку картой, ASUS Phoenix GeForce GTX 1050 Ti 4GB :

Обе эти карточки вмещаются в корпус, однако MSI на несколько сантиметров короче, чем Asus. Конечно, ни один из двойных вентиляторов у GPU никогда бы туда не влез.

Удалив вентиляторы, радиатор и корпус, я почистил GPU, добавил свежей пасты, а потом приладил GPU Cooling Kit:

Последний шаг – добавить радиаторы на каждый из четырёх чипов VRAM:

Тестирование потребления карточек 1050 Ti показывает, что под нагрузкой они и правда отъедают 75 Вт целиком, поэтому я достигаю пределов GPU Cooling Kit, и никакого разгона не предполагается.

Для питания всего этого я поставил Streacom ZF240 Fanless 240W ZeroFlex PSU :

Я изучил потребление всех компонентов и обнаружил, что у всех шин, за исключением шины в 12 В, запас довольно большой. Шина 12 В, теоретически, может дойти до 85% загрузки в 168 Вт, если CPU и GPU одновременно будут работать на 100%. Обычно я предпочитаю оставлять запас побольше, но поскольку система не предназначена для игр, а других вариантов, в которых я бы занял оба процессора одновременно, я не вижу, меня это не сильно волнует. Если это станет проблемой, я легко смогу установить БП SFX и добавить запаса.

С годами я стал осознавать важность кривых эффективности блоков питания и понял, что стоящая без дела система с крупным БП - это огромные траты энергии. Чтобы извлечь максимальную выгоду из вашего БП, его типичное использование должно находиться в рамках 25-75%%. Рейтинг эффективности ZF240 находится на уровне 93%, и я думаю, что мой выбор компонентов позволит ему регулярно достигать этого уровня – учитывая то, как, я думаю, будет использоваться компьютер.

Низкое энергопотребление особенно важно, если вы планируете работать в местах, где нет постоянного энергоснабжения.

Итоговые замечания

Погоня за тишиной может влететь в копеечку, и данный проект стал именно таким – в итоге он обошёлся почти в 3000 австралийских долларов. Если бы майнеры не взвинтили цены на оборудование, можно было бы уложиться в 2400 – всё равно много, но не так больно. Тем не менее, это меньше, чем три предыдущих собранных мною системы, а новый компьютер способен на то, что им не удавалось – обеспечить полную тишину.

Компьютер не шумит при старте. Он не шумит при выключении. Он не шумит при простое. Не шумит при большой загрузке. Не шумит при чтении и записи. Его не услышишь в обычной комнате днём. Его не услышишь в абсолютно тихом доме ночью. Его не услышишь с одного метра. Его не услышишь с одного сантиметра. Его просто не слышно. Чтобы достичь такого эффекта, потребовалось 30 лет, и, наконец, я его достиг. Путешествие закончено, и это здорово.

Если вы пытаетесь собрать беззвучный – не просто тихий, а бесшумный компьютер, я крайне рекомендую корпус с пассивным охлаждением, тепловые трубки и твердотельные накопители. Устраните все движущиеся части (вентиляторы и жёсткие диски), и вы устраните шум – это не так сложно. И это не обязательно будет очень дорого (мои системные требования не были средними, поэтому не думайте, что все системы на базе DB4 такие дорогие). Тишину (и очень приличный компьютер) можно получить и за половину указанной цены.

Обращаю ваше внимание на то, что это перевод. Ссылка на оригинал – вверху, под заголовком [прим. перев.]

Лучшие статьи по теме