Как настроить смартфоны и ПК. Информационный портал

Фрактальная графика применение. Фрактальная графика

Фрактальная графика

Фрактальная графика основана на математических вычислениях. Базовым элементом фрактальной графики является сама математическая формула, то есть никаких объектов в памяти компьютера не хранится и изображение строится исключительно по уравнениям. Таким способом строят как простейшие регулярные структуры, так и сложные иллюстрации, имитирующие природные ландшафты и трехмерные объекты.

Программы фрактальной графики

Программа Art Dabbler

Знакомство с основами фрактальной графики лучше всего начать с пакета Art Dabbler. Этот редактор (созданный фирмой Fractal Design, а теперь принадлежащий Corel) фактически представляет собой усеченный вариант программы Painter. Это отличная программа для обучения не только компьютерной графике, но прежде всего азам рисования. Малый объем требуемой памяти (для его установки необходимо всего 10 Мбайт), а также простой интерфейс, доступный даже ребенку, позволяют использовать его в школьной программе. Как и растровый редактор MS Paint, фрактальный редактор Art Dabbler особенно эффективен на начальном этапе освоения компьютерной графики.

Главное внимание разработчиками пакета Art Dabbler было уделено двум факторам:

Созданию упрощенного интерфейса, основным элементом которого являются коробки инструментальных наборов (называемых здесь выдвижными ящиками);

Возможности использования пакета в качестве обучающей программы. Для реализации этой цели в комплект поставки пакета наряду с самой программой включен самоучитель "Учись рисовать" и обучающий фильм на компакт-диске. Предлагаемые в них уроки рисования позволяют шаг за шагом наблюдать за процессом создания опытными художниками цветных изображений средствами пакета Art Dabbler.

Строка меню включает в себя шесть пунктов: стандартные для большинства программ - File, Edit и Help, а также Effects, Options и Tutors, которые присутствуют в большинстве графических программ и не нуждаются в дополнительных комментариях.

Art Dabbler предоставляет комплект эффектов (меню Effects), которые могут быть использованы для изменения или искажения изображений. Например, эффект Texturize создает текстуры бумаги, холста и т.п., расширяя творческие возможности художника.

Следует отметить, что в Art Dabbler выдвижными ящиками называются все инструментальные средства точно так же, как, например, в Photoshop аналогичные средства называются палитрами, а в CorelDRAW - докерами. В них хранятся кисти, карандаши, резинка и другие инструменты, для активизации которых достаточно нажать соответствующую им пиктограмму. На передних стенках ящиков отображается небольшое количество кнопок и ручка, нажав которую пользователь получает доступ ко всему набору осуществляемых через него операций благодаря открывающимся дополнительным кнопкам.

Программа Ultra Fractal

Ultra Fractal - лучшее решение для создания уникальных фрактальных изображений профессионального качества. Пакет отличается дружественным интерфейсом, многие элементы которого напоминают интерфейс Photoshop (что упрощает изучение), и сопровождается невероятно подробной и прекрасно иллюстрированной документацией с серией туториалов, в которых поэтапно рассматриваются все аспекты работы с программой. Ultra Fractal представлен двумя редакциями: Standard Edition и расширенной Animation Edition, возможности которой позволяют не только генерировать фрактальные изображения, но и создавать анимацию на их основе. Созданные изображения можно визуализировать в высоком разрешении, пригодном для полиграфии, и сохранить в собственном формате программы или в одном из популярных фрактальных форматов. Визуализированные изображения также могут быть экспортированы в один из растровых графических форматов (jpg, bmp, png и psd), а готовые фрактальные анимации - в AVI-формат.

Принцип создания фрактальных изображений достаточно традиционен, самое простое - воспользоваться одной из прилагаемых в поставке формул (сориентироваться относительно возможного вида генерируемого по выбранной формуле изображения поможет встроенный браузер), а затем подредактировать параметры формулы желаемым образом. А если эксперимент оказался неудачен, то последние действия легко отменить. Готовых фрактальных формул очень много, и число их может быть расширено путем скачивания новых формул с сайта программы. Подготовленные пользователи могут попытать счастья и в создании собственной формулы, для чего в пакете имеется встроенный текстовый редактор с поддержкой базовых шаблонов, основанных на стандартных конструкциях языка программирования фрактальных формул.

Однако не стоит думать, что таинство фрактального изображения кроется лишь в удачной формуле. Не менее важны и иные аспекты. Например, цветовая настройка, предполагающая выбор варианта окраски и точную настройку ее параметров. Настройка цвета реализована на уровне солидных графических пакетов, например градиенты можно создавать и настраивать самостоятельно, корректируя множество параметров, включая полупрозрачность, и сохранять их в библиотеке для дальнейшего использования. Применение слоев с возможностью изменения режимов их смешивания и корректировкой полупрозрачности позволяет генерировать многослойные фракталы и за счет наложения фрактальных изображений друг на друга добиваться уникальных эффектов. Использование масок непрозрачности обеспечивает маскирование определенных областей изображения. Фильтры трансформации позволяют выполнять в отношении выделенных фрагментов изображения разнообразные преобразования: масштабировать, зеркально отражать, обрезать по шаблону, искажать посредством завихрения или ряби, размножать по принципу калейдоскопа и т.д.

Программа Fractal Explorer

Fractal Explorer - программа для создания изображений фракталов и трехмерных аттракторов с достаточно впечатляющими возможностями. Имеет интуитивно понятный классический интерфейс, который может быть настроен в соответствии с пользовательскими предпочтениями, и поддерживает стандартные форматы фрактальных изображений (*.frp; *.frs; *.fri; *.fro; *.fr3, *.fr4 и др.). Готовые фрактальные изображения сохраняются в формате *.frs и могут быть экспортированы в один из растровых графических форматов (jpg, bmp, png и gif), а фрактальные анимации сохраняются как AVI-файлы.

Генерация фракталов возможна двумя способами - на основе базовых фрактальных изображений, построенных по входящим в поставку формулам, или с нуля. Первый вариант позволяет получить интересные результаты сравнительно просто, ведь выбрать подходящую формулу несложно, тем более что удобный файловый браузер позволит оценить качество фрактала из базы еще до создания на его основе фрактального изображения. У полученного таким путем фрактального изображения можно сменить цветовую палитру, добавить к нему фоновое изображение и определить режим смешивания фрактального и фонового слоев, а также степень прозрачности фрактального слоя. Затем можно будет подвергнуть фрактальное изображение трансформации, при необходимости масштабировать, определить размеры изображения и провести рендеринг. Создание изображения с нуля гораздо сложнее и предполагает выбор одного из двух способов. Можно выбрать тип фрактала почти из 150 вариантов. А затем уже перейти к изменению разнообразных параметров: настройке палитры, фона и пр. А можно попробовать создать свою пользовательскую формулу, воспользовавшись встроенным компилятором. Перед рендерингом готового изображения может потребоваться проведение автоматической коррекции цветового баланса и/или ручной коррекции яркости, контрастности и насыщенности.

Программа ChaosPro

ChaosPro - один из лучших бесплатных генераторов фрактальных изображений, с помощью которого нетрудно создать бесконечное множество удивительных по красоте фрактальных изображений. Программа имеет очень простой и удобный интерфейс и наряду с возможностью автоматического построения фракталов позволяет полностью управлять данным процессом за счет изменения большого количества настроек (число итераций, цветовая палитра, степень размытия, особенности проецирования, размер изображения и др.). Кроме того, создаваемые изображения могут быть многослойными (режимом смешивания слоев можно управлять) и к ним можно применить целую серию фильтров. Все накладываемые на строящиеся фракталы изменения тут же отражаются в окне просмотра. Созданные фракталы могут быть сохранены в собственном формате программы, либо в одном из основных фрактальных типов благодаря наличию встроенного компилятора. Или экспортированы в растровые изображения или 3D-объекты (если предварительно было получено трехмерное представление фрактала).

В списке возможностей программы:

Точная цветовая настройка, обеспечивающая плавные градиентные переходы цветов друг в друга;

Одновременное построение нескольких фракталов в разных окнах;

Возможность создания анимации на основе фрактальных изображений с определением ключевых анимационных фаз, которые могут отличаться по любому изменяемому параметру: углам поворота и вращения, цветовым параметрам и пр.;

Создание трехмерных представлений фракталов на основе обычных двумерных изображений;

Поддержка многих стандартных форматов фрактальных изображений, изображения в которых могут быть импортированы и отредактированы в среде ChaosPro.

Программа Apophysis

Apophysis - интересный инструмент для генерации фракталов на основе базовых фрактальных формул. Созданные по готовым формулам фракталы можно редактировать и неузнаваемо изменять, регулируя разнообразные параметры. Так, например, в редакторе их можно трансформировать, либо изменив лежащие в основе фракталов треугольники, либо применив понравившийся метод преобразования: волнообразное искажение, перспективу, размытие по Гауссу и др. Затем стоит поэкспериментировать с цветами, выбрав один из базовых вариантов градиентной заливки. Список встроенных заливок достаточно внушителен, и при необходимости можно автоматически подобрать наиболее подходящую заливку к имеющемуся растровому изображению, что актуально, например, при создании фрактального фона в том же стиле, что и иные изображения некоего проекта. При необходимости несложно подрегулировать гамму и яркость, изменить фон, масштабировать фрактальный объект и уточнить его расположение на фоне. Можно также подвергнуть результат разнообразным мутациям в нужном стиле. По окончании следует задать размеры конечного фрактального изображения и записать его визуализированный вариант в виде графического файла (jpg, bmp, png).

Программа Mystica

Mystica - универсальный генератор уникальных фантастических двумерных и трехмерных изображений и текстур, которые в дальнейшем можно использовать в разных проектах, например в качестве реальных текстур для Web-страниц, фонов Рабочего стола или фантастических фоновых изображений, которые могут быть задействованы, например, при оформлении детских книг. Пакет отличается нестандартным и достаточно сложным интерфейсом и может работать в двух режимах: Sample (ориентирован на новичков и содержит минимум настроек) и Expert (предназначен для профессионалов). Создаваемые изображения могут иметь любой размер и затем экспортироваться в популярные графические 2D-форматы. Прямо из окна программы их можно отправить по электронной почте, опубликовать в Html-галерее или создать на их основе видеоролик в форматах divx, mpeg4 и др. Встроенный трехмерный движок программы может быть использован при создании трехмерных сцен для компьютерных игр, например фантастических фонов и ландшафтов.

Генерация изображений осуществляется на основе заложенных в пакете фрактальных формул, а система подготовки изображения многоуровневая и включает очень подробную настройку цветов, возможность простейших трансформаций генерируемых элементов и массу прочих преобразований. В их числе применение фильтров, изменение освещения, корректировка цветовой гаммы, яркости и контрастности, изменение использованного при генерации материала, добавление к изображению "хаотических" структур и пр.

Трехмерная графика (3D)

Везде, от рекламы и динамических заставок до моделирования катастроф, применяются трехмерная компьютерная графика и анимация. Сегодня трехмерная графика способна за считанные дни осуществить спецэффекты, которые с помощью физических моделей, прозрачной фотографии и оптических принтеров еще недавно создавались месяцами. Уже не надо тратить тысячи человеко-часов на построение моделей, которые нужно затем установить на сцене, осветить, отснять и скомбинировать с остальными участниками эпизода. Достаточно посадить одного человека за PC, чтобы создать спецэффекты, дающие полное ощущение реальности.

Современный мир немыслим без 3D-технологий. А ведь трехмерная графика слышала в свой адрес немало упреков в полной неприменимости. Странно вспомнить, что трехмерная компьютерная графика когда-то носила ироническое название «решение в поисках проблемы».

Метод трехмерной графики сегодня творит чудеса: стало возможным «снимать» телепередачи исключительно при помощи компьютерных моделей. «Живой» ведущий свободно перемещается внутри сцены, при моделировании которой использована исключительно трехмерная графика, ходит вокруг объектов и может взаимодействовать с ними.

Но сейчас трехмерная компьютерная графика позволяет любоваться подобными эффектами не только на экранах телевизоров - наша студия применит новейшие достижения в этой области для решения текущих презентационных задач. Даже обычная презентация проекта может стать именно такой интерактивной съемкой, если задействована не только трехмерная графика и анимация, но и программа Quest3D. Уровень, которого достигает трехмерная графика подобных презентаций, также не уступает лучшим игровым продуктам.

Уже не телевизионный персонаж, а Вы сами сможете «пройтись» по графической лестнице или приоткрыть дверь виртуального дома - точно так же, как это происходит с пользователем компьютерной игры. Сама картинка будет активно «реагировать» на Ваши действия, меняясь в зависимости от них. Такой уровень реалистичности еще недавно был недоступен, но цифровые технологии не стоят на месте, а трехмерная графика непрерывно совершенствуется, учитывая меняющиеся и все более сложные запросы современного дизайна. Загляните в мир будущего с нами - трехмерная компьютерная графика приблизит вас к нему!

растровый графика редактор векторный трехмерный

Фрактальная графика , как и векторная, основана на математических вычислениях . Однако её базовым элементом является сама математическая формула , то есть никаких объектов в памяти компьютера не хранится и изображение строится исключительно по уравнениям либосистемам уравнений . Таким способом строят как простейшие регулярные структуры, так и сложные иллюстрации, имитирующие природные ландшафты и трехмерные объекты.

Определение . Фрактал - это объект, отдельные элементарные части которого повторяют (наследуют) свойства своих «родительских » структур.

Понятия фрактал и фрактальная геометрия (от лат. fractus - состоящий из фрагментов ) впервые были предложены в 1975 г. математиком Б.Мандельбротом для обозначения нерегулярных , но самоподобных структур . Рождение фрактальной геометрии связывают с выходом в 1977 г. его книги «Фрактальная геометрия природы», в которой были объединены в единую систему научные разработки учёных, работавших в этой области (Пуанкаре, Жюлиа, Кантор и др.). С точки зрения компьютерной графики фрактальная геометрия незаменима при задании линий и поверхностей достаточно сложной формы, а также при генерации объектов, образы которых весьма похожи на природные.

Одним из основных свойств фракталов является их самоподобие . В самом простом случае небольшая часть фрактала содержит информацию обо всём фрактале в целом. Существует большое разнообразие фракталов. Потенциально наиболее полезным их видом являются фракталы на основе системы итеративных функций (Iterated Function System – IFS ). Метод IFS , изобретённый Майклом Барнсли и его коллегами из Технологического института шт. Джорджия (США), применительно к построению фрактальных изображений базируется на самоподобии их отдельных элементов и заключается в моделировании всего рисунка несколькими меньшими его фрагментами . Специальные уравнения позволяют переносить, поворачивать и изменять масштаб отдельных участков изображения, служащих компоновочными блоками для остальной части картины в целом.

Самыми известными природными фрактальными объектами являются деревья , от каждой ветки которых ответвляются меньшие, похожие на нее, от тех - еще меньшие и так далее. Появление новых элементов меньшего масштаба происходит по достаточно простому алгоритму. Очевидно, что описать такой объект можно всего лишь несколькими математическими уравнениями. Фрактальными свойствами обладают также и многие другие природные объекты: снежинка при увеличении тоже оказывается фракталом, по фрактальным алгоритмам растут кристаллы, растения и т.д.

Посмотрим, как строится простейший фрактал - фрактальный треугольник, его еще называют «снежинка Коха » (рис. 8.2.). Используя простейший алгоритм, треугольники можно достраивать аналогичным образом до бесконечности, что приведёт к получению объекта любого уровня сложности. При этом в отличие от векторной графики, ничего кроме самих уравнений в памяти ком-пьютера хранить не нужно. Вся информация, необходимая для воспроизведения этого фрактала, будет занимать всего лишь несколько десятков байт. Возникает вопрос - а можно ли сжимать данные, подобрав для этого подходящий фрактальный алгоритм? Принципиально - можно, и в этом направлении в настоящее время ведутся активные исследования. Некоторые уже разработанные фрактальные алгоритмы позволяют сжимать определенные типы файлов в 30 раз и более.

8.6.Трехмерная (3D) графика.

Трехмерная графика нашла широкое применение в таких областях, как научные расчеты, инженерное проектирование, компьютерное моделирование физических объектов и т.п. В качестве примера рассмотрим наиболее сложный вариант трехмерного моделирования - создание подвижного изображения реального физического тела . В упрощенном виде для пространственного моделирования объекта требуется:

§ Спроектировать и создать виртуальный каркас скелет ») объекта, наиболее полно соответствующий его реальной форме;

§ Спроектировать и создать виртуальные материалы (текстуры ), по физическим свойствам визуализации похожие на реальные;

§ Наложить виртуальные материалы на различные части поверхности объекта (спроецировать текстуры на объект );

§ Настроить физические параметры пространства , в котором будет находиться объект, т.е. задать освещение, гравитацию, свойства атмосферы и т.д.;

§ Задать траекторию движения объекта;

§ Наложить поверхностные эффекты на итоговый анимационный сюжет.

Для создания реалистичной каркасной модели объекта используют геометрические примитивы (прямоуголь­ник, куб, шар, конус и прочие) и гладкие , так назы­ваемые сплайновые поверхности . В последнем случае вид поверхности определя­ется расположенной в пространстве сеткой опор­ных точек , каждой из которых присваивается коэф­фициент , задающий степень её влиянии на часть поверхности , расположенной вблизи опорной точки . От взаимного распо­ложения точек и величины коэффициентов зависит форма и гладкость поверх­ности в целом. Деформация объекта в общем случае обеспечивается перемещением отдельных контрольных точек каркаса , связанных с близлежащими опорными точками и влияющих на них в соответствии с удаленностью друг от друга. Специальный инструментарий позволяет обрабатывать примитивы, составляющие объект, как единое целое с учетом их взаимодействия на основе заданной физической модели.

После формирования «скелета » объекта необходимо покрыть его поверхность требуемыми материалами (текстурами). При этом осуществляется так называемая визуализация поверхности , т.е. расчет коэффициента её прозрачности, угла преломления лучей света на границе материала и окружающего пространства и т.д. Закраска поверхностей объекта осуществляется, как правило, метода­ми Гуро или Фонга,) представляющими собой специальные алгоритмы расчета и формирования цветовых оттенков отдельных частей этих поверхностей.

Из всех параметров пространства, в котором будет существовать создаваемый объект, с точки зрения визуализации самым важным является определение источников света . В трехмерной графике принято использовать виртуальные эквиваленты реальных физичес­ких световых источников, таких как, например, Солнце (удаленный неточечный источник ), электри­ческая лампочка (точечный источник ), естественная освещенность вне видимости Солнца и Луны (растворен­ный свет ), прожектор (направленный источник ).

После завершения конструирования и визуализации объекта приступают к его «оживлению », то есть заданию параметров движения. Компьютерная анимация базируется на ключевых кадрах изображения . В первом кадре объект выставляется в исходное положение. Через определенный промежуток (например, в пятом кадре) задается новая ориентация объекта и так далее до конечного положения. Промежуточные кадры вычисляются программно по специальному алгоритму. При этом происхо­дит не просто линейная аппроксимация, а плавное изменение положения опорных точек объекта в соответствии с заданными условиями, определяемыми законами взаимодействия объектов между собой, разрешенными плоскостями движения, предельными углами поворотов, величинами ускорений и скоростей и т.д. Такой подход называют методом инверсной кинематики движения . Он хорошо работает при моделировании различных механических устройств. В случае с имитацией живых объектов используют так называемые скелетные модели , когда создается некий каркас, подвижный в точках, характерных для моделируемого объекта. Движения этих точек просчитываются предыдущим методом, затем на каркас накладывается оболочка из смоделированных поверхностей и осуществляется их визуализация путем наложения текстур с учетом условий освещенности.

Наиболее совершенный метод анимации заключается в фиксации реальных движений физического объекта. Для этого на объекте закрепляют в контрольных точках источники света и снимают заданное движение на видео- или кинопленку. Затем координаты этих точек по кадрам переводят в компьютер и присваивают соответствующим опорным точкам каркасной модели . В результате движе­ния смоделированного объекта оказываются практически неотличимыми от движений живого прототипа.

Процесс расчета реалистичных изображений в компьютерной графике называют рендерингом (визуализацией ). Применение сложных математических моделей позволяет имитировать такие физи­ческие эффекты, как взрывы, дождь, огонь, дым, туман и т.д. Однако их применение в полном объеме требует достаточно больших вычислитель­ных ресурсов и поэтому в персональных компьютерах обычно реализуется лишь в упро­щенных вариантах. По завершении рендеринга компьютерную трехмерную анимацию используют либо как самостоятельный продукт, либо в качестве отдельных частей или кадров других продуктов.

Особую область трехмерного моделирования в режиме реального времени состав­ляют тренажеры технических средств - автомобилей, судов, летательных и кос­мических аппаратов. В них очень точно должны быть смоделированы технические параметры реальных объектов и свойства окружающей физической среды. В более простых вариантах, например при обучении вождению наземных транспортных средств, тре­нажеры могут быть реализованы и на персональных компьютерах.

Среди программных средств создания и обработки трехмерной графики для персональных компьютеров можно выделить три пакета:

§ 3D Studio Max (фирмаKinetix). Пакет считается полупрофессиональным, однако его ресурсов вполне хватает для разработки качественных трехмерных изображений объектов неживой природы. Его отличительными особенностями являются поддержка большинства существующих аппаратных ускорителей 3D -графики, мощные световые эффекты и большое число программных дополнений от сторонних фирм. Сравнительная нетребовательность к аппаратным ресурсам позволяет использовать 3D Studio Max даже на ПК среднего уровня. Вместе с тем по средствам моделирования и анимации он все же уступает более разви­тым современным программным средствам.

§ Softimage 3D (фирмаMicrosoft). Программа изначально создавалась для специализированных графических станций и лишь сравнительно недавно была конвертирована под операционную систему Windows NT. Её отличают богатые возможности моделирования, наличие большого числа регулируемых физических и кинематографических параметров, качественный и достаточно быстрый модуль для рендеринга и множество программных дополнений, значительно расширяющих функции пакета. Однако на платформе IBM PC Softimage 3D выглядит несколько тяжеловато и требует достаточно мощных аппаратных ресурсов.

§ Maya (фирмыAlias, Wavefront, TDI). Один из наиболее передовых пакетов в классе средств создания и обработки трехмерной графики для персональных компьютеров с точки зрения интерфейса и функциональных возможностей. Существует в вариантах для различных операционных систем, в том числе и Windows NT. Весь инструментарий Maya сведен в четыре группы: анимация (Animation ), моделирование (Modeling ), физическое моделирование (Dynamic ) и визуализация (Rendering ). Пакет имеет модульное построение и включает в себя программные блоки, обеспечивающие имитацию физических твердых тел, захват движения, обработку звука, обработку вирту­альных моделей методами, характерными для реальной работы скульпторов и художников, а также сопряжение реальных натурных съемок с компьютерной анимацией и т.д.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Издательство СПбГПУ
УДК 681.3 (075) Рекомендовано к изданию Научно-методическим советом Псковского государственного политехнического института Рецензенты: - Ил

Основы информатики
1. Информация и информационные процессы Основные понятия: информация, информационные процессы, информационное общество, и

Информационные технологии
7. Технологии обработки текстовой информации Основные понятия: текстовый редактор и процессор, Формат текстового файла, Т


Типовая структура пользовательского интерфейса текстового процессора приведена на рис. 7.1 и она включает следующие элементы: § Строка главного меню содержит имена групп к

Текстовый файл. Основные элементы текстового документа
Утверждение. Текстовые файлы - наиболее простая и наглядная форма представления алфавитно-цифровой информации, позволяющая вводить, хранить, редактировать, читать на экране и печат

Этапы формирования текстового электронного документа
Любой текстовый документ в процессе своего формирования проходит следующие этапы (рис.7.2):) 1. Создание документа. 2. Вво

Редактирование текста
Операция редактированиятекста состоит в замене или корректировке неправильно введенных текстовых фрагментов, изменении некоторых атрибутов этих фрагментов и прочее. При выполнении

Выделение, удаление, копированиеи перемещение текста
Все эти перечисленные операции выполняются над отдельными символами, словами, фрагментами текста, абзацами целиком, страницами, несколькими страницами и даже документом в целом. Однако, необходимо

Поиск и замена фрагментов текста
Зачастую при форматировании текста возникает необходимость оперативного поиска и замены по всему набранному тексту документа неправильно набранных слов или словосочетаний, отдельных служебных симво

Стили и шаблоны
Наиболее мощным средством автоматизации форматирования в текстовых редакторах является механизм под названием «стиль». Известно два основных подхода к оформлению текстовог

Средства автоматизации ввода текста
При вводе текста эффективными средствами автоматизации являютсяавтозамена, автотекст, автопроверка орфографии и грамматики. Функция автозамена позволяет с

Автоматическое форматирование текстового документа
Под автоформатированиемпонимается автоматическое оформление текстового документа либо сразу при вводе текста, либо по окончании в случае активизации соответствующей команды. Систем

Создание таблиц
Определение. Таблица- это совокупность ячеек, расположенных в строках и столбцах, которые можно заполнять произвольным текстом или графикой.Ячейкойназывается прямо

Создание графических объектов с помощью встроенных средств
В современных текстовых процессорах можно создавать рисованные объекты, не закрывая документа, в который они должны быть, вставлены. Рисование происходит прямо в документе с использованием внутренн

Вставка объектов из других приложений
Как уже упоминалось, главным принципиальным достоинством современных текстовых процессоров является возможность создания сложных составных документов. Под сложным составным докумен

Основы издательского делопроизводства
Подготовка сложных составных документов к их изданию в виде брошюр, технических отчетов, сборников документов, журналов, книг и иной печатной продукции до недавнего времени достаточно сложным, труд

Теоретические основы представления графических данных
Представление компьютерных данных в графическом виде впервые было реализовано еще в середине 50-х годов 20-го века в задачах научных и военных исследований. С тех пор графический способ отображения

Форматы графических данных
В компьютерной графике используется несколько десятков различных форматов файлов для хранения изображений, но лишь часть из них стала стандартом и применяется в подавляющем большин

Растровая графика
Растровые изображения формируются в процессе преобразования графической инфор­мации из аналоговой формы в цифровую, например, при сканировании существующих на бумаге или фотоплен­к

Векторная графика
Векторные изображения формируются из объектов (точка, линия, окружность, треугольник, прямоугольник и пр.), которые хра­нятся в памяти компьютера в виде графических примити

Цвет и способы его описания
8.7.1. Понятие цвета и его характеристики.) Цвет чрезвычайно важен в компьютерной графике как средство усиления зритель

Способы описания цвета
Цвета в природе образуются различным образом. С одной стороны, световые источники (Солнце, лампочки, экраны компьютеров и телевизоров) излучают свет различных длин волн, воспринима

Цветовая палитра
Электронная цветовая палитра в компьютерной графике по предназначению подобна палитре художника, но включает в себя гораздо большее число цветов. Это своеобразная таблица данных, в

Системы управления цветом
При создании и обработке элементов компьютерной графики необходимо стремиться к тому, чтобы изображение выглядело практически одинаково на всех стадиях этого процесса, на любом устройстве отображен

Цветовая модель RGB
Цветовая модель RGB (Рис. 8.3.) является аддитивной, т.е. в ней любой цвет представляет собой сочетание в

Цветовая модель CMYK
Несветящиеся объекты поглощают часть спектра белого света, отражая цвета, определяющие окраску этих объектов. Цвета, которые образуются из белого света путем вычитания из него определенных участков

Цветовая модель CIE Lab
Модели RGB и CMYK являются аппаратно-зависимыми (в RGB значения базовых цветов определяются, как правило, качеством монит

Видеосистема персонального компьютера
Основным техническим средством для оперативного формирования и отображения как текстовой, так и графической информации в компьютере является видеосистема. Видеосистема ком

Графические редакторы и их возможности
Для созда­ния, просмотра и редактирования графических изображений на компьютере используют­ся специальные программы - графические редакторы, подразделяемые, как правило, на две кат

Растровые графические редакторы
Среди растровых графических редакторов есть простые, на­пример приложение Windows Paint, и мощные профессио­нальные графические системы, такие как пакет Ad

Векторные графические редакторы
К простейшим векторным графическим редакторам относятся, например, графические программные приложения в составе текстового процессора Microsoft Word и редактора эл

Редакторы электронных таблиц и табличные процессоры
9.1.1.Назначение, Основные функции, Классификация, Ценность любой информации в значительной мере определяется качеством её организации, и, более того, существенная

Форматы табличных файлов
Электронные таблицы, также как и другие электронные документы (текстовые, графические, комплексные), хранятся на внешних носителях в виде файлов. Как правило, при сохранении файлов электронных табл

Типовая структура пользовательского интерфейса
При работе с электронной таблицей на экране монитора выводятся рабочее поле таблицы и панель управления (рис.9.1). Панель управления обычно включа

Этапы формирования электронной таблицы
Любой табличный документ в процессе своего формирования проходит следующие этапы:) 1. Создание таблицы или ее загрузка. 2.

Ввод данных в ячейки
Ввод данных в ячейки таблицы производится стандартным технологическим приемом - путемнабора данных (чисел, текста, формул) с помощью клавиатуры. Ввод может осущест

Редактирование электронной таблицы
Редактирование электронной таблицы состоит в замене или корректировке неправильно введенных данных, изменении некоторых их атрибутов, изменении содержимого отдельных ячеек, их удал

Форматирование таблицы
Легкость восприятия информации в электронных таблицах резко улучшается при применении различных приемов форматирования, т.е. при оформлении таблицы в определенномпрофессиональном стиле

Сортировка, поиск и замена данных
Электронные таблицы позволяют осуществлять сортировку данных. Данные в электронных таблицах можно сортировать по возрастанию или по убыванию. Стро

Относительная и абсолютная адресация ячеек
При копировании или перемещении формулы в другое место таблицы необходимо организовать управление формированием адресов исходных данных. Очевидно, что в зависимости от внутренней логики выражений в

Средства автоматизации ввода данных
При вводе данных обычно используются следующие приемы автоматизации: · Повторный ввод (копирование)уже существующих данных путем использования буфера обме

Автоматическое форматирование электронных таблиц
Для обеспечения быстрого форматирования как содержимого ячеек, так и внешнего вида таблицы используются средства автоматического форматирования. К этим средствам можно отнести: · С

Автоматизация циклических вычислений и создания формул
Как уже отмечалось, современные табличные процессоры представляют собой мощные программные системы, ориентированные в первую очередь на эффективную математическую обработку разнообразной числовой и

Деловая графика в табличных процессорах
Деловая графика состоит в визуализации больших массивов числовых данных, т.е. в пред­ставлении их в наглядной графической форме, в виде диаграмм. Определение. Диаг

Агрегирование данных
Агрегирование данных состоит в формировании промежуточных итогов, а также создании сводных и консолидированных таблиц.

Использование электронных таблиц для решения задач
Качественная и глубокая проработка математических и алгоритмических возможностей современных табличных процессоров превратила их мощный математический инструмент подготовки и проведения прикладных

Статистическая обработка данных и решение задач прогнозирования
Статистическая обработка данных - это самый распространенный прием анализа числовой информации, с помощью которого вычисляются разнообразные статистические оценки рядов данных, которые в общем случ

Решение задач моделирования объектов, процессов, явлений
Кроме рассмотренных в пп. 9.8.1 и 9.8.2 задач, табличные процессоры позволяют решить и много других задач моделирования финансово-экономи-ческих, управленч

Базы данных
С самого начала развития вычислительной техники образовались два основных направления ее использования: § Первое - это применение вычислительной техники для выполнения численных ра

Требования, предъявляемые к БД и информации, хранящейся в ней
Для того, чтобы компьютерная БД приносила людям пользу, она должна отвечать следующему ряду требований: § Адекватность

Типы баз данных
За время использования компьютерных БД было предложено несколько типовых структур (по-другому называемых видами или типами БД), н

Основные объекты в базах данных
К основным объектам баз данныхотносятсятаблицы (отношения, relations), метаданные (metadata), индексы (indexes) и представления (view) )

Виды запросов и способы их организации
Определение. Любые манипуляции с данными в базах данных, такие как выбор, вставка, удаление, обновление данных, изменение или выбор метаданных, называются запросами к базе данных (query)

Понятие мультимедиа. Гипертекст и гипермедиа. Объекты мультимедиа
Термин мультимедиа (от англ. multimedia) можно перевести как «много сред» или «много носителей», т.е.: Определение.

Схемы хранения и воспроизведения мультимедиа-файлов
Для реализации мультимедиа компьютер должен быть оснащен следующими компонентами: § Аппаратными средствами, реализующими доступ к мультимедиа-данным, их создание и воспроизведение - иными

Средства создания мультимедиа документов (обзор)
В настоящее мультимедиа-технологии нашли широкое применение при создании разнообразных документов делового и развлекательного характера, презентационного назначения, когда возникает необходимость п

Компьютерные сети
Телекоммуникации в широком смысле этого понятия - это общение между субъектами, которыми могут быть люди, приборы, компьютеры, любые технические системы, находящимися на таком

Топология сети
Определение. Структура связей абонентов (узлов) вычислительной сети или, иными словами, метод их соединения в распределенную вычислительную среду, образующий некоторую физическую г

Архитектура сети
Определение. Системное описание вычислительной сети, определяющее функциональное назначение сетевых узлов при взаимодействии их друг с другом с целью обмена данными и организации у

Средства реализации сетей
В структуре сети любого масштаба легко выделить основные компоненты, без которых она не может быть реализована. Это, прежде всего: · Аппаратные средства, которые включают:

Основные пользовательские функции Internet
Развивая глобальные распределенные вычислительные среды (РВС) человечество создает на планете Земля новую универсальную интеллектуальную информационную среду. Одним из самых ярких

Структура Internet
Определение. Internet- это объединенная сеть, использующая технологию статистического мультиплексирования и устройства маршрутизации пакетов типа

Адресация в Internet
С точки зрения пользователя Internet - это совокупность крупных сетевых узлов (хостов или информационных серверов), объединенных между собой

Базовые информационные службы Интернет
Изначально сеть Internet была задумана и построена с целью автоматизациипроцессов обработки данных. Термин «обработка данных» озн

Off-line-сервисы Internet
§ Служба электронной почты e-mail, предоставляющая пользователю возможность обмена сообщения с другими абонентами по электронными коммуникациям. Можно пересылать текстовые сообщени

On-line-сервисs Internet
§ Служба удаленного файлового обмена FTP (File Transfer Protocol), предоставляющая FTP-клиенту механизм интерактивного доступа к файлохран

Internet-провайдеры
Интернет-провайдерами (от англ. to provide - предоставлять) называются сетевые компании, предоставляющие доступ к услугам глобальной сети Интернет

Web-браузеры
Как уже упоминалось ранее для просмотра WWW-ресурсовглобальной сетиИнтернет необходимо на клиентских станциях, подключенных к сети, установить клиентские программн

Основы технологии WWW
12.6.1.Архитектура распределенной Web-системы. Фундаментом Web-систем являются четыре компоненты:)

Пособие для поступающих в вуз
Под общей редакцией доцента, к.т.н. В.С. Белова Технический редактор В.С. Белов Компьютерная верстка: авторский коллектив

На сегодняшний день является второй по росту популярности из четырёх видов компьютерной графики (далее КГр).

Так же есть Растровая и Векторная . Одна – для создания фотореалистичных изображений; Другая – для создания сложных геометрических объектов; и Трёхмерная – как отдельный вид от предыдущих для создания объёмных зрительно-подобных изображений и объектов.


Фрактал – основа Фрактальной графики, это математически построенная фигура, являющаяся частью точной её копии в разы большей, чем одна часть. В свою очередь, большая фигура является частью еще большей.

Чтобы было лучше понять, представьте треугольник, состоящий из трёх треугольников, каждый из которых состоит из 3-х меньших и т.д. Таким образом получается матрёшка, где одна копия встроена в большую копию. Но это не значит, что всё изображение будет однообразным. Далее из таких треугольников, можно состряпать куда более сложную композицию, походящую на естественный объект встречающийся в повседневной жизни. Процесс наследования можно продолжать до бесконечности, без увеличения размера файла.

Посему мы не могли не заметить, как сильно схожи Фрактальная и Векторная графики. Обе имеют в своей базе данных файла информацию о математической формуле или системе формул, задающих очертания фигуры и конечных её размерах.

Для тех, кто изучает данный вид компьютерной графики с научной точки зрения, будет не лишним знать о существовании ряда базовых понятий этой сферы:

«Фрактальный треугольник», «Фрактальная фигура», «Фрактальный объект», «Фрактальная прямая», «Фрактальная композиция», «Объект-родитель», «Объект наследник».

В связи с недавней распространенностью этого формата КГр, на сегодняшний день существует достаточно мало теоретической базы в плане терминологий и практической в плане создания больших или иных элементов.


Сейчас трудно недооценить возможности и важность фракталов в создании реалистичных изображений. Фрактальная компьютерная графика позволяет создавать абстрактные композиции, с возможностью осуществления множества различных приемов: горизонтали и вертикали, диагональные направления, симметрию и асимметрию и т.д. Из-за малой истории и плохой распространенности, очень мало людей, в том числе программистов, аниматоров и простых художников в мире действительно хорошо знакомы и умеют обращаться с Фрактальной графикой на должном уровне. Её пока что не практикуют в университетах. В школьной программе о ней не упоминается ни слова. А ведь сейчас это самый перспективный вид графики, даже перспективнее трёхмерной.

Фракталом можно делать большее. Структура фрактала похожа на составляющие кристалла, снежинки. Тем самым на выходе мы получаем некую невиданную доселе композицию цвета и форм. И всё из-за одной(2-3) нехитрых формул, изменив переменные которой, можно кардинально изменить само изображение.

Данный вид графики незаменим при создании таких сложных повторяющихся объектов, состоящих из самоподобных частей, как облака, горы, вода и т.д. Фактически, благодаря фракталу, найден способ эффективной реализации сложных неевклидовых объектов, образы которых весьма похожи на природные. Позволим заметить, что акромя графики, так же есть и живопись, и музыка. Все они построены на технологии фрактала.

Бесспорными достоинствами фрактала являются:

  • Малый размер исполняемого файла при большом изображении.
  • Бесконечная масштабируемость и увеличение сложности картинки.
  • Незаменимость в построении сложных фигур, состоящих из однотипных элементов (облака, вода и т.д.).
  • Относительная легкость в создании сложных композиций.
  • Фотореалистичность.

Недостатки :

  • Все вычисления делаются компьютером, чем сложнее изображение, тем больше загруженность ЦП и ОЗУ.
  • Неосвоенность технологии.
  • Плохое распространение и поддержка различными системами.
  • Небольшой спектр создания объектов изображений.
  • Ограниченность материнских математических фигур.

В общем то, как всегда. У всего есть достоинства и недостатки. Графика тем более грешит и тем, и тем.

Фрактальная графика , как и векторная, основана на математических вычислениях . Однако её базовым элементом является сама математическая формула , то есть никаких объектов в памяти компьютера не хранится и изображение строится исключительно по уравнениям либосистемам уравнений . Таким способом строят как простейшие регулярные структуры, так и сложные иллюстрации, имитирующие природные ландшафты и трехмерные объекты.

Определение . Фрактал - это объект, отдельные элементарные части которого повторяют (наследуют) свойства своих «родительских » структур.

Понятия фрактал и фрактальная геометрия (от лат. fractus - состоящий из фрагментов ) впервые были предложены в 1975 г. математиком Б.Мандельбротом для обозначения нерегулярных , но самоподобных структур . Рождение фрактальной геометрии связывают с выходом в 1977 г. его книги «Фрактальная геометрия природы», в которой были объединены в единую систему научные разработки учёных, работавших в этой области (Пуанкаре, Жюлиа, Кантор и др.). С точки зрения компьютерной графики фрактальная геометрия незаменима при задании линий и поверхностей достаточно сложной формы, а также при генерации объектов, образы которых весьма похожи на природные.

Одним из основных свойств фракталов является их самоподобие . В самом простом случае небольшая часть фрактала содержит информацию обо всём фрактале в целом. Существует большое разнообразие фракталов. Потенциально наиболее полезным их видом являются фракталы на основе системы итеративных функций (Iterated Function System – IFS ). Метод IFS , изобретённый Майклом Барнсли и его коллегами из Технологического института шт. Джорджия (США), применительно к построению фрактальных изображений базируется на самоподобии их отдельных элементов и заключается в моделировании всего рисунка несколькими меньшими его фрагментами . Специальные уравнения позволяют переносить, поворачивать и изменять масштаб отдельных участков изображения, служащих компоновочными блоками для остальной части картины в целом.

Самыми известными природными фрактальными объектами являются деревья , от каждой ветки которых ответвляются меньшие, похожие на нее, от тех - еще меньшие и так далее. Появление новых элементов меньшего масштаба происходит по достаточно простому алгоритму. Очевидно, что описать такой объект можно всего лишь несколькими математическими уравнениями. Фрактальными свойствами обладают также и многие другие природные объекты: снежинка при увеличении тоже оказывается фракталом, по фрактальным алгоритмам растут кристаллы, растения и т.д.

Посмотрим, как строится простейший фрактал - фрактальный треугольник, его еще называют «снежинка Коха » (рис. 8.2.). Используя простейший алгоритм, треугольники можно достраивать аналогичным образом до бесконечности, что приведёт к получению объекта любого уровня сложности. При этом в отличие от векторной графики, ничего кроме самих уравнений в памяти ком-пьютера хранить не нужно. Вся информация, необходимая для воспроизведения этого фрактала, будет занимать всего лишь несколько десятков байт. Возникает вопрос - а можно ли сжимать данные, подобрав для этого подходящий фрактальный алгоритм? Принципиально - можно, и в этом направлении в настоящее время ведутся активные исследования. Некоторые уже разработанные фрактальные алгоритмы позволяют сжимать определенные типы файлов в 30 раз и более.


8.6.Трехмерная (3D) графика.

Трехмерная графика нашла широкое применение в таких областях, как научные расчеты, инженерное проектирование, компьютерное моделирование физических объектов и т.п. В качестве примера рассмотрим наиболее сложный вариант трехмерного моделирования - создание подвижного изображения реального физического тела . В упрощенном виде для пространственного моделирования объекта требуется:

§ Спроектировать и создать виртуальный каркас скелет ») объекта, наиболее полно соответствующий его реальной форме;

§ Спроектировать и создать виртуальные материалы (текстуры ), по физическим свойствам визуализации похожие на реальные;

§ Наложить виртуальные материалы на различные части поверхности объекта (спроецировать текстуры на объект );

§ Настроить физические параметры пространства , в котором будет находиться объект, т.е. задать освещение, гравитацию, свойства атмосферы и т.д.;

§ Задать траекторию движения объекта;

§ Наложить поверхностные эффекты на итоговый анимационный сюжет.

Для создания реалистичной каркасной модели объекта используют геометрические примитивы (прямоуголь­ник, куб, шар, конус и прочие) и гладкие , так назы­ваемые сплайновые поверхности . В последнем случае вид поверхности определя­ется расположенной в пространстве сеткой опор­ных точек , каждой из которых присваивается коэф­фициент , задающий степень её влиянии на часть поверхности , расположенной вблизи опорной точки . От взаимного распо­ложения точек и величины коэффициентов зависит форма и гладкость поверх­ности в целом. Деформация объекта в общем случае обеспечивается перемещением отдельных контрольных точек каркаса , связанных с близлежащими опорными точками и влияющих на них в соответствии с удаленностью друг от друга. Специальный инструментарий позволяет обрабатывать примитивы, составляющие объект, как единое целое с учетом их взаимодействия на основе заданной физической модели.

После формирования «скелета » объекта необходимо покрыть его поверхность требуемыми материалами (текстурами). При этом осуществляется так называемая визуализация поверхности , т.е. расчет коэффициента её прозрачности, угла преломления лучей света на границе материала и окружающего пространства и т.д. Закраска поверхностей объекта осуществляется, как правило, метода­ми Гуро или Фонга,) представляющими собой специальные алгоритмы расчета и формирования цветовых оттенков отдельных частей этих поверхностей.

Из всех параметров пространства, в котором будет существовать создаваемый объект, с точки зрения визуализации самым важным является определение источников света . В трехмерной графике принято использовать виртуальные эквиваленты реальных физичес­ких световых источников, таких как, например, Солнце (удаленный неточечный источник ), электри­ческая лампочка (точечный источник ), естественная освещенность вне видимости Солнца и Луны (растворен­ный свет ), прожектор (направленный источник ).

После завершения конструирования и визуализации объекта приступают к его «оживлению », то есть заданию параметров движения. Компьютерная анимация базируется на ключевых кадрах изображения . В первом кадре объект выставляется в исходное положение. Через определенный промежуток (например, в пятом кадре) задается новая ориентация объекта и так далее до конечного положения. Промежуточные кадры вычисляются программно по специальному алгоритму. При этом происхо­дит не просто линейная аппроксимация, а плавное изменение положения опорных точек объекта в соответствии с заданными условиями, определяемыми законами взаимодействия объектов между собой, разрешенными плоскостями движения, предельными углами поворотов, величинами ускорений и скоростей и т.д. Такой подход называют методом инверсной кинематики движения . Он хорошо работает при моделировании различных механических устройств. В случае с имитацией живых объектов используют так называемые скелетные модели , когда создается некий каркас, подвижный в точках, характерных для моделируемого объекта. Движения этих точек просчитываются предыдущим методом, затем на каркас накладывается оболочка из смоделированных поверхностей и осуществляется их визуализация путем наложения текстур с учетом условий освещенности.

Наиболее совершенный метод анимации заключается в фиксации реальных движений физического объекта. Для этого на объекте закрепляют в контрольных точках источники света и снимают заданное движение на видео- или кинопленку. Затем координаты этих точек по кадрам переводят в компьютер и присваивают соответствующим опорным точкам каркасной модели . В результате движе­ния смоделированного объекта оказываются практически неотличимыми от движений живого прототипа.

Процесс расчета реалистичных изображений в компьютерной графике называют рендерингом (визуализацией ). Применение сложных математических моделей позволяет имитировать такие физи­ческие эффекты, как взрывы, дождь, огонь, дым, туман и т.д. Однако их применение в полном объеме требует достаточно больших вычислитель­ных ресурсов и поэтому в персональных компьютерах обычно реализуется лишь в упро­щенных вариантах. По завершении рендеринга компьютерную трехмерную анимацию используют либо как самостоятельный продукт, либо в качестве отдельных частей или кадров других продуктов.

Особую область трехмерного моделирования в режиме реального времени состав­ляют тренажеры технических средств - автомобилей, судов, летательных и кос­мических аппаратов. В них очень точно должны быть смоделированы технические параметры реальных объектов и свойства окружающей физической среды. В более простых вариантах, например при обучении вождению наземных транспортных средств, тре­нажеры могут быть реализованы и на персональных компьютерах.

Среди программных средств создания и обработки трехмерной графики для персональных компьютеров можно выделить три пакета:

§ 3D Studio Max (фирмаKinetix). Пакет считается полупрофессиональным, однако его ресурсов вполне хватает для разработки качественных трехмерных изображений объектов неживой природы. Его отличительными особенностями являются поддержка большинства существующих аппаратных ускорителей 3D -графики, мощные световые эффекты и большое число программных дополнений от сторонних фирм. Сравнительная нетребовательность к аппаратным ресурсам позволяет использовать 3D Studio Max даже на ПК среднего уровня. Вместе с тем по средствам моделирования и анимации он все же уступает более разви­тым современным программным средствам.

§ Softimage 3D (фирмаMicrosoft). Программа изначально создавалась для специализированных графических станций и лишь сравнительно недавно была конвертирована под операционную систему Windows NT. Её отличают богатые возможности моделирования, наличие большого числа регулируемых физических и кинематографических параметров, качественный и достаточно быстрый модуль для рендеринга и множество программных дополнений, значительно расширяющих функции пакета. Однако на платформе IBM PC Softimage 3D выглядит несколько тяжеловато и требует достаточно мощных аппаратных ресурсов.

§ Maya (фирмыAlias, Wavefront, TDI). Один из наиболее передовых пакетов в классе средств создания и обработки трехмерной графики для персональных компьютеров с точки зрения интерфейса и функциональных возможностей. Существует в вариантах для различных операционных систем, в том числе и Windows NT. Весь инструментарий Maya сведен в четыре группы: анимация (Animation ), моделирование (Modeling ), физическое моделирование (Dynamic ) и визуализация (Rendering ). Пакет имеет модульное построение и включает в себя программные блоки, обеспечивающие имитацию физических твердых тел, захват движения, обработку звука, обработку вирту­альных моделей методами, характерными для реальной работы скульпторов и художников, а также сопряжение реальных натурных съемок с компьютерной анимацией и т.д.

Математика буквально пронизана гармонией, и графика фрактальная – прямое тому подтверждение. Наука присутствует при создании каждого ее элемента, поэтому она отражает всю красоту.

Создатель фрактальной геометрии, профессор Мальдерброт, писал в своих книгах, что рассматриваемая графика представляет собой не просто повторяющиеся изображения. Это – структура любого существа или объекта на планете, живого и неживого. К примеру, ДНК является основой, одной интеграцией. Но если код начинает повторяться, тогда появляется человек.

Основы фрактальной графики

Что такое фрактальная графика? Это одна или несколько геометрических фигур, каждая из которых подобна другой. То есть, изображение составляется из одинаковых частей.

Само слово «фрактал» может употребляться, если фигура обладает одним или несколькими из этих свойств:

Множество объектов природного или искусственного происхождения наделяются свойствами фракталов. К ним относятся кровеносные системы человека и животного, кроны и корни деревьев и так далее.

Фрактальная компьютерная графика становится популярной потому, что добиться красоты и реалистичности можно посредством простого построения при помощи соответствующего оборудования. Нужно только задать правильную математическую формулу и указать количество повторений.

Как создать элемент фрактальной графики?

Создание фрактальной графики будет различаться в зависимости от ее классификации: геометрическая, алгебраическая или стохастическая. Несмотря на разницу, итог всегда будет одинаковым. Поскольку фрактальная графика начинается с геометрии, то следует рассмотреть ее создание на соответствующем примере:

Обычно нулевое условие представляется в виде треугольника.

Чтобы построить изображение, нужно применить две процедуры. Во-первых, DrawTriangle. Она строит треугольник по точкам, заданным пользователем. Во-вторых, DrawGenerator. Она указывает количество точек. Каждая процедура может повторяться несколько раз или бесконечно долго. Для определения этого показателя применяется численный аргумент n.

Другие действия с фрактальной графикой

После того как элемент фрактальной графики был создан, с ним можно производить различные дополнительные действия:

Нужно помнить, что изображения фрактальной графики в конечном итоге предсказать невозможно. Когда треугольник слишком увеличивается, то просмотр будет нереальным, пользователь увидит только черное окно. Когда желаемая текстура обнаружена, все изменения с ней нужно проводить в минимальном порядке, постоянно сохраняя допустимый вариант.

Программы для генерации

Нет такого человека, которого бы не привлекала фрактальная графика. Программы, участвующие в ее создании, представлены в большом количестве. Поэтому надо разобраться в наиболее подходящих для новичков.

Продукт Art Dabbler представляет собой лучший вариант, если пользователь раньше не имел дело с его налогами. Здесь можно не только освоить графику, но и научиться рисовать на компьютере. К другим преимуществам следует отнести небольшое количество занимаемой памяти и интуитивно понятный интерфейс.

Другая программа – Ultra Fractal. Она уже ориентирована на работу профессионалов, новичкам сложно будет в ней разобраться. Интерфейс здесь достаточно сложный, но производители выполнили его на примере обычного Photoshop. Если пользователь имел дело с этой программой, то в кнопках разберется быстро. Особенность Ultra Fractal заключается в том, что здесь выполняется не только графика фрактальная в качестве стандартного и обычного изображения, но и анимация. Формулы для составления прилагаются, но при необходимости пользователь сможет задействовать свою.

Существующие форматы

Форматы фрактальной графики определяют форму и способ хранения файловых данных. Некоторые из них включают в себя большой объем информации. Поэтому их необходимо сжимать. Причем делать это не посредством архивирования, а непосредственно в файле. Если правильно его выбрать, то сжатие будет происходить автоматически. Есть несколько алгоритмов этой процедуры.

Если перед пользователем аппликация, большая часть которой выдержана в одном цвете, то разумно использовать форматы BMP и PCX. Здесь заменяется последовательность повторяющихся величин.

Диаграмму, которая очень редко, но все-таки используется во фрактальной графике, логично поместить в TIFF или GIF.

Часть форматов является универсальной. То есть, их можно просмотреть в большинстве редакторов. Но если пользователю важна качественная обработка изображений, тогда нужно применять оригинальную программу.

Форматы фракталы не поддерживаются браузерами. Именно поэтому осуществляется их преображение, если есть необходимость загрузить на тот или иной сайт.

Сферы применения

Применение фрактальной графики можно назвать фактически повсеместным. Более того, эта область постоянно расширяется. На данный момент можно отметить следующие области:

На данный момент практикуется применение фракталов в производстве различного оборудования. Например, уже запущен конвейер по созданию антенн, отлично принимающих сигналы.

Примеры

Примеры фрактальной графики распространены от примитивных до очень сложных повторяющихся элементов. Уникальной особенностью данного типа является то, что рисунок можно составить исключительно из восклицательных или вопросительных знаков.

Стандартными, но относительно сложными примерами компьютерной фрактальной графики являются облака, горы, морские побережья и так далее. Их зачастую используют при создании игр.

Самым простым примером можно назвать кривую Коха. Во-первых, она не имеет конкретной длины, и ее называют бесконечной. Во-вторых, здесь полностью отсутствует гладкость. Поэтому невозможно построить касательную.

Плюсы и минусы

Свое распространение совсем недавно заполучила фрактальная графика. Достоинства и недостатки ее слишком размыты, поскольку отсутствует нормальная теоретическая база. Терминология и принципы ее использования до конца не изучены, несмотря на то, что они действенные и рабочие.

Достоинства фрактальной графики заключаются в нескольких факторах:

Недостатки фрактальной графики тоже присутствуют. Во-первых, без компьютера здесь не обойтись. Причем, чем длиннее количество повторений, тем больше загружается процессор. Соответственно, только качественное компьютерное оборудование способно справиться с построением сложных изображений.

Во-вторых, присутствуют ограничения в исходных математических фигурах. Некоторые изображения создать посредством фракталов не удастся.

Сходства и различия между фракталом и вектором

Векторная и фрактальная графика очень различаются между собой:

Несмотря на многообразие отличительных черт, эти два вида графики объединяет качество изображения. Оно остается неизменным, независимо от уровня масштабирования.

Трехмерная, векторная, растровая, фрактальная графика схожи в одном – все они широко используются в решении различных компьютерных задач. Чтобы получить действительно качественное изображение, нужно задействовать каждую из них.

Уникальные особенности фракталов

Графика фрактальная не имеет аналогов. Она уникальна в своем роде. Во-первых, один ее небольшой участок может рассказать сразу обо всем рисунке или изображении. Информация обо всем фрактале доступна, т.к. он является самоподобным.

В центре любого изображения, относящегося к данному типу графики, располагается равносторонний треугольник. Все остальные детали рисунка являются либо его частями, либо уменьшенными/увеличенными копиями. То есть, в составлении изображения принимает участие один конкретный элемент.

Для того чтобы использовать фрактальную графику, не нужны никакие объекты, хранящиеся в памяти компьютера. Приступить к созданию можно, имея под рукой одну только математическую формулу.

Заключение

Графика фрактальная очень реалистична. Происходит это потому, что ее детали и элементы постоянно встречаются в окружении человека – горы, облака, морские берега, различные природные явления. Часть из них остается постоянно в одном и том же состоянии, вроде деревьев, каменистых участков. Остальные же непрерывно меняются, как мерцающее огненное пламя или кровь, двигающаяся по сосудам.

Развитие фрактальных технологий на сегодняшний день – одна из прогрессирующих областей науки. Она используется не только в компьютерной графике. Возможно, если ученым удастся докопаться до их сути, человек начнет намного лучше понимать этот мир.

Лучшие статьи по теме