Как настроить смартфоны и ПК. Информационный портал

Датчики тока компании Honeywell.

Измерение и контроль протекающего тока являются принципиальным требованием для широкого круга приложений, включая схемы защиты от перегрузки по току, зарядные устройства, импульсные источники питания, программируемые источники тока и пр. Один из простейших методов измерения тока -использование резистора с малым сопротивлением, - шунта между нагрузкой и общим проводом, падение напряжения на котором пропорционально протекающему току. Несмотря на то, что данный метод очень прост в реализации, точность измерений оставляет желать лучшего, т.к. сопротивление шунта зависит от температуры, которая не является постоянной. Кроме того, такой метод не позволяет организовать гальваническую развязку между нагрузкой и измерителем тока, что очень важно в приложениях, где нагрузка питается высоким напряжением.

Основные недостатки измерения тока с помощью резистивного шунта:

  • нагрузка не имеет прямой связи с «землей»;
  • нелинейность измерений, обусловленная температурным дрейфом сопротивления резистора;
  • отсутствие гальванической развязки между нагрузкой и схемой измерения.

В статье мы рассмотрим экономичный и прецизионный интегральный датчик тока ACS712 , принцип его работы, основанный на эффекте Холла, характеристики и способ подключения к микроконтроллеру для измерения постоянного тока. Статья разделена на две части: первая посвящена устройству и характеристикам датчика, вторая - интерфейсу с микроконтроллером и работе с датчиком.

Датчик тока ACS712 основан на принципе, открытом в 1879 году Эдвином Холлом (Edwin Hall), и названным его именем. Эффект Холла состоит в следующем: если проводник с током помещен в магнитное поле, то на его краях возникает ЭДС, направленная перпендикулярно, как к направлению тока, так и к направлению магнитного поля. Эффект иллюстрируется Рисунком 2. Через тонкую пластину полупроводникового материала, называемую элементом Холла, протекает ток I. При наличии магнитного поля на движущиеся носители заряда (электроны) действует сила Лоренца, искривляющая траекторию движения электронов, что приводит к перераспределению объемных зарядов в элементе Холла. Вследствие этого на краях пластины, параллельных направлению протекания тока, возникает ЭДС, называемая ЭДС Холла. Эта ЭДС пропорциональна векторному произведению индукции B на плотность тока I и имеет типовое значение порядка нескольких микровольт.

Микросхема ACS712 выпускается в миниатюрном 8-выводном корпусе SOIC для поверхностного монтажа (Рисунок 3). Она состоит из прецизионного линейного датчика Холла с малым напряжением смещения и медного проводника, проходящего у поверхности чипа и выполняющего роль сигнального пути для тока (Рисунок 4). Протекающий через этот проводник ток, создает магнитное поле, воспринимаемое встроенным в кристалл элементом Холла. Сила магнитного поля линейно зависит от проходящего тока. Встроенный формирователь сигнала фильтрует создаваемое чувствительным элементом напряжение и усиливает его до уровня, который может быть измерен с помощью АЦП микроконтроллера.

Рисунок 3.

На Рисунке 5 показано расположение выводов ACS712 и типовая схема его включения. Выводы 1, 2 и 3,4 образуют проводящий путь для измеряемого тока с внутренним сопротивлением порядка 1.2 мОм, что определяет очень малые потери мощности. Его толщина выбрана такой, чтобы прибор выдерживал силу тока в пять раз превышающую максимально допустимое значение. Контакты силового проводника электрически изолированы от выводов датчика (выводы 5 - 8). Расчетная прочность изоляции составляет 2.1 кВ с.к.з.

В низкочастотных приложениях часто требуется включить на выходе устройства простой RC фильтр, чтобы улучшить отношение сигнал-шум. ACS712 содержит внутренний резистор R F , соединяющий выход встроенного усилителя сигнала со входом выходной буферной схемы (см. Рисунок 6). Один из выводов резистора доступен на выводе 6 микросхемы, к которому подключается внешний конденсатор C F . Следует отметить, что использование конденсатора фильтра приводит к увеличению времени нарастания выходного сигнала датчика и, следовательно, ограничивает полосу пропускания входного сигнала. Максимальная полоса пропускания составляет 80 кГц при емкости фильтрующего конденсатора равной нулю. С ростом емкости C F полоса пропускания уменьшается. Для снижения уровеня шума при номинальных условиях рекомендуется устанавливать конденсатор C F емкостью 1 нФ.

Рисунок 6.

Чувствительность и выходное напряжение ACS712

Выходное напряжение датчика пропорционально току, протекающему через проводящий путь (от выводов 1 и 2 к выводам 3 и 4). Выпускается три варианта токового датчика для разных диапазонов измерения:

  • ±5 А (ACS712-05B),
  • ±20 А (ACS712-20B),
  • ±30 А (ACS712-30A)

Соответствующие уровни чувствительности составляют 185 мВ/А, 100 мА/В и 66 мВ/A. При нулевом токе, протекающем через датчик, выходное напряжение равно половине напряжения питания (Vcc/2). Необходимо заметить, что выходное напряжение при нулевом токе и чувствительность ACS712 пропорциональны напряжению питания. Это особенно полезно при использовании датчика совместно с АЦП.

Точность любого АЦП зависит от стабильности источника опорного напряжения. В большинстве схем на микроконтроллерах в качестве опорного используется напряжение питания. Поэтому при нестабильном напряжении питания измерения не могут быть точными. Однако если опорным напряжением АЦП сделать напряжение питания датчика ACS712, его выходное напряжение будет компенсировать любые ошибки аналого-цифрового преобразования, обусловленные флуктуациями опорного напряжения.

Рассмотрим эту ситуацию на конкретном примере. Допустим, что для опорного напряжения АЦП и питания датчика ACS712 используется общий источник Vcc = 5.0 В. При нулевом токе через датчик его выходное напряжение составит Vcc/2 = 2.5 В. Если АЦП 10-разрядный (0…1023), то преобразованному выходному напряжению датчика будет соответствовать число 512. Теперь предположим, что вследствие дрейфа напряжение источника питания установилось на уровне 4.5 В. Соответственно, на выходе датчика будет 4.5 В/2 = 2.25 В, но результатом преобразования, все равно, будет число 512, так как опорное напряжение АЦП тоже снизилось до 4.5 В. Точно также, и чувствительность датчика снизится в 4.5/5 = 0.9 раз, составив 166.5 мВ/А вместо 185 мВ/А. Как видите, любые колебания опорного напряжения не будут источником ошибок при аналого-цифровом преобразовании выходного напряжения датчика ACS712.

На Рисунке 7 представлены номинальные передаточные характеристики датчика ACS712-05B при напряжении питания 5.0 В. Дрейф выходного напряжения в рабочем диапазоне температур минимален благодаря инновационной технологии стабилизации.

При проведении измерений в автомобильной электрике часто приходится снимать осциллограммы величин тока. Другими словами, не просто измерять, а подробно изучать. Классически для таких целей используются токовые трансформаторы или резисторы. Однако последние имеют частотные ограничения и влияют на изучаемую схему. Токовой датчик, основанный на регуляторе Холла, призван решить эту проблему.

Все бы хорошо, но стоят такие датчики недешево. Если же суметь собрать такой вариант своими руками, то можно неплохо сэкономить. Чтобы суметь изготовить модель собственного производства, можно использовать несколько эффективных схем.

Схема на микросхеме 711

ВНИМАНИЕ! Найден совершенно простой способ сократить расход топлива! Не верите? Автомеханик с 15-летним стажем тоже не верил, пока не попробовал. А теперь он экономит на бензине 35 000 рублей в год!

ACS 711 – тот самый чип, благодаря которому удастся изготовить токовый датчик или ТД на основе ДХ (датчика Холла). ЧД такого датчика будет равен почти 100 кГц, что будет вполне эффективно для проведения измерений.

Микросхема этого типа имеет выход, который интегрируется с усилителем. Последний, в свою очередь, за счет своей оперативности способен увеличивать возможности схемы вплоть до 1 А/В.

Что касается питания, то напряжение на усилитель поступает за счет применения внутреннего источника 2-полярного типа. Это может быть вариант NSD10 либо какой-нибудь другой. Сама микросхема питается уже посредством стабилизатора, имеющего выход с напряжением 3,3 В.

Проверенный «бюджетный» вариант

Вот, что надо предпринять для изготовления такого варианта:

  • в ферритовом кольце пропилить канавку по толщине корпуса;
  • на эпоксидный клей посадить МС;
  • сделать определенное количество витков на кольце (кол-во витков будет зависеть от конкретного напряжения);
  • в итоге получится бесконтактный вариант реле, функционирующий на электромагнитной основе.

Точность срабатывания такого ДТ и регулярность достаточно высокая. Единственным недостатком схемы можно назвать кол-во витков, определяемых чисто эмпирически. На самом деле расчетов конкретного типа нигде и нет. Приходится определять число витков для конкретного сердечника.

Готовый ДТ MLX91206

Кумулятивная схема, где используется тончайший слой ферромагнитоструктуры или ИМС. Последний выступает в качестве коммутатора магнитполя, обеспечивая тем самым, высокое усиление и наладку эквивалентности шумосигнала. Более актуален этот вариант ДТ для измерения постоянно-переменного напряжения до 90 кгц с изоляцией омического свойства, что характеризуется незначительными внедряемыми потерями и малым временем отклика.

Кроме того, из преимуществ можно выделить простоту сборки и маленькие размеры фюзеляжа.

ДТ MLX91206 – это регулятор, который пока удовлетворяет спрос в автопромышленности. Помимо этого, ДТ этого типа применяется в других источниках питания: для защиты от перегрузки, в двигательных системах и т.д.

Чаще всего ДТ на микросхеме MLX91206 применяется в гибридных автомобильных системах, как автоинверторы.

Интересно и то, что датчик этот оснащен качественной защитной системой от перенапряжения, что позволяет использовать его в качестве отдельного регулятора, интегрированного к кабелю.

Принцип функционирования датчика подобного типа основан на преобразовании магнитполя, возникаемого от токов, проходящих сквозь проводник. Схема не имеет верхнего ограничения измеряемого уровня напряжения, так как выход и его параметры в данном случае зависят от проводникового размера и непосредственной дистанции от ДТ.

Что касается отличий этого типа ДТ от аналогичных:

  1. Скорость аналогового выхода, которая выше (этому способствует ЦАП 12 бит).
  2. Наличие программируемого переключателя.
  3. Надежная защита от переплюсовки и перенапряжения.
  4. Выход ШИМ с разрешением АЦП 12 бит.
  5. Большущая полоса пропускания, параметры которой равны 90 кГц и многое другое.

Одним словом, ДТ этого типа является компактным и эффективным датчиком, изготовленным по технологии Триасис Холл. Технология подобного типа считается классической и традиционной, она чувствительна к плотности потока, который приложен четко параллельно поверхности.

Измерения, которые удается провести с помощью готового датчика, изготовленного по технологии Триасис Холл, делятся на измерения небольшого напряжения до 2 А, тока средн. величины до 30 А и токов до 600 А (больших).

Рассмотрим подробнее возможности этих измерений.

  • Малые токи измеряются с помощью датчика за счет повышения параметров магнитполя через катушку вокруг ДТ. В данном случае чувствительность измерения будет обусловлена габаритами катушки и кол-вами витков.
  • Токи в диапазоне до 30 А или средние токи измеряются с учетом допустимости напряжения и общей рассеиваемости мощности дорожки. Последние обязаны быть довольно толстыми и широкими, иначе непрерывной обработки среднего тока достичь не удастся.
  • Наконец, измерение больших токов – это использование медных и толстых дорожек, способных приводить напряжение на обратной стороне печатной платы.

ДТ на эффекте Холла: общий взгляд

Что такое эффект Холла? Как известно, это явление основано на том, что если поместить в магнитное поле какой-либо полупроводник прямоугольного типа, и пропустить сквозь него напряжение, то на краях материала обязательно возникнет электрическая сила, направленная перпендикулярно магнитному полю.

Именно по этой причине магнитный датчик принято называть ДХ в честь ученого Холла, которому удалось первым раскрыть этот самый эффект.

Что дает этот самый эффект в автомобильной электрике? Все просто. Когда к ДХ подносится напряжение, то на краях пластины (она бывает расположена внутри ДХ) возникает разность потенциалов, и дается значение, пропорциональное СМП (силе магнитного поля).

Таким образом, в автомобильной сфере удалось использовать бесконтактные элементы, значительно лучше показавшие себя на практике, чем детали, оснащенные контактными группами. Последние приходилось регулярно чистить, ремонтировать, менять.

Бесконтактные ДХ успешно контролируют, например, скорость вращения валов, широко используются в системах зажигания, применимы в тахометрах и АБС.

Для измерений силы тока в различных электрических цепях с помощью микросхемы АС712 это удается сделать. Эффект Холла в данном случае оказывает неоспоримую помощь. Таким образом, удается изготавливать датчик или регулятор электрического тока на ДХ.

Подобные датчики позволят измерять силу не только постоянного, но и переменного тока, получать значения в млА.

Как правило, модуль с микросхемой АС712 функционирует строго от 5В, зато позволяет измерять максимальный уровень тока до 5 А. При этом напряжение должно быть выставлено в пределах значений от 2 квт.

Вообще, ДТ применяются повсеместно в электротехнике для создания коммуникаций обратной связи. В зависимости от конкретного места функционирования, ДТ классифицируются на несколько видов. Известны резистивные ДТ, токово-трансформаторные, ну и конечно, ДТ на эффекте Холла.

Нас интересуют ДТ на эффекте Холла. Они еще называются открытыми регуляторами или приборами с выходным сигналом по напряжению. Предназначение их: бесконтактным способом измерять переменный, постоянный и импульсный ток в диапазонах от плюс/минус 57 до плюс/минус 950 Ампер при в.о. 3 млс.

Выходное напряжение ДТ бывает четко соизмерно вычисляемым параметрам тока. 0-е значение напряжения равняется половинной величине тока питания. Тем самым, диапазон выхода тока составляет 0,25-0,75 В.

Настройку чувствительности ДТ легко провести методом трансформации числа витков тестируемого проводника по кругу магнитопровода регулятора.

Корпус ДТ обязан быть устроен из прочного РВТ пластика.

РВТ пластик – это пластиковый материал, получаемый посредством однородного сваривания.

Что касается жестких выводов корпуса ДТ, то их бывает 3. Предназначены они для пайки на плату.

Цепь выхода ДТ – пара комплектарно-биополярных транзисторов. Другими словами, это не что иное, как полупроводниковый прибор, в котором сформировано два перехода, а перенос заряда осуществляется носителями 2-х полярностей или иначе – электронами и квазичастицами.

ДТ на эффекте Холла бывают также оригинального и неоригинального производства. Первые выделяются привлекательным дизайном, надежны и способны давать высочайшую точность показаний. А вот ДТ неоригинального производства таких параметров не имеют, хотя тоже способны предоставить свои преимущества. К ним относится разборный корпус и низкая стоимость.

Внимание. Если ДТ легко разбирается путем вывинчивания 4-х винтиков, то перед вами не оригинальный прибор.

Разборка корпуса оригинального ДТ обязательно приведет к неудаче, так как они изготовлены в закрытом варианте. Конечно, можно постараться и добраться до внутренностей, однако это обязательно приводит к поломкам. Корпус таких приборов запаян со всех сторон, по всем стыкам.

Для сравнения внутренностей заводского ДТ и последующего собирания самодельной схемы рекомендуется воспользоваться, как и было написано выше, неоригинальным устройством. Например, пусть это будет китайский ДСТ-500. Он легко разбирается, схема срисовывается на ура, так как она простая, не содержит сложных заковырок.

Что касается функционирования, то она одинакова во всех типах ДТ:

  • силовой проводник под напряжением идет через магнитопровод;
  • образуется циклотронное поле;
  • ток идет по выравнивающей обмотке магнитопровода, чтобы стабилизировать поле;
  • компенсируемое напряжение должно быть ровно пропорционально напряжению в сил. проводнике.

Помимо этого, для компенсирования магнитпровода датчика, требуется измерять величинные и знаковые значения ДТ. Для этих целей в магнитопроводе следует прорезать отверстие, через которое, собственно говоря, и вставляется датчик Холла. Сигнал прибора будет форсироваться, снабжать мощностный эндотрон, выход которого интегрирован со стабилизирующей обмоткой.

Данным образом, основной целью подобной схемы станет пропуск такой доли напряжения сквозь обмотку, которая бы воздействовала на магнитное поле так, чтобы в разрыве магнитопровода значение приближалось к 0.

В целой зоне измеряемого напряжения при этом сохранится ювелирная точность КПД соизмеримости. Для измерения точного напряжения компенс. обмотки используется низкоомный резистор-прецизион. Величина падения тока на таком резисторе будет равна значению напряжения в силовой цепи.

ДТ подобного типа можно легко изготовить своими силами. Потребность в таких регуляторах постоянно растет, стоят они, как и говорилось, недешево.

Датчик Холла в конкретном случае желательно использовать специфический, бескорпусный. Установить его можно на узкую полоску тонкого фольго-стеклотекстолита. Под ним должно быть предусмотрено посадочное углубление, где он будет посажен на эпоксидный клей очень плотно.

Внимание. Толщина полоски текстолита в 0,8 мм будет считаться нормальной, так как зайдет в зазор без излишнего трения о стенки и без эффекта болтания.

ДТ — эталонная установка для вычисления напряжения высоковольтажного пульсара питания. Например, ток, потребляемый стартером или генератором. И с помощью датчика Холла осуществить это удается, используя всего лишь одну микросхему.

Напоследок интересное видео про датчик тока на основе датчика холла

Всем привет!

Пожалуй, стоит представиться немного - я обычный инженер-схемотехник, который интересуется также программированием и некоторыми другими областями электроники: ЦОС, ПЛИС, радиосвязь и некоторые другие. В последнее время с головой погрузился в SDR-приемники. Первую свою статью (надеюсь, не последнюю) я сначала хотел посвятить какой-то более серьезной теме, но для многих она станет лишь чтивом и не принесет пользы. Поэтому тема выбрана узкоспециализированная и исключительно прикладная. Также хочу отметить, что, наверное, все статьи и вопросы в них будут рассматриваться больше со стороны схемотехника, а не программиста или кого-либо еще. Ну что же - поехали!

Не так давно у меня заказывали проектирование «Система мониторинга энергоснабжения жилого дома», заказчик занимается строительством загородных домов, так что кто-то из вас, возможно, даже уже видел мое устройство. Данный девайс измерял токи потребления на каждой вводной фазе и напряжение, попутно пересылая данные по радиоканалу уже установленной системе «Умный дом» + умел вырубать пускатель на вводе в дом. Но разговор сегодня пойдет не о нем, а о его небольшой, но очень важной составляющей - датчике тока. И как вы уже поняли из названия статьи, это будут «бесконтактные» датчики тока от компании Allegro - ACS758-100 .
________________________________________________________________________________________________________________________

Даташит, на датчик о котором я буду рассказывать, можно посмотреть . Как несложно догадаться, цифра «100» в конце маркировки - это предельный ток, который датчик может измерить. Скажу честно - есть у меня сомнения по этому поводу, мне кажется, выводы просто не выдержат 200А долговременно, хотя для измерения пускового тока вполне подойдет. В моем устройстве датчик на 100А без проблем пропускает через себя постоянно не менее 35А + бывают пики потребления до 60А.

Рисунок 1 - Внешний вид датчика ACS758-100(50/200)

Перед тем, как перейду к основной части статьи, я предлагаю вам ознакомиться с двумя источниками. Если у вас есть базовые знания по электронике, то они будут избыточными и смело пропускайте этот абзац. Остальным же советую пробежаться для общего развития и понимания:

1) Эффект Холла. Явление и принцип работы
2) Современные датчики тока
________________________________________________________________________________________________________________________

Ну что же, начнем с самого важного, а именно с маркировки. Покупаю комплектующие в 90% случаев на www.digikey.com . В Россию компоненты приезжают через 5-6 дней, на сайте есть пожалуй все, также очень удобный параметрический поиск и документация. Так что полный список датчиков семейства можно посмотреть там по запросу "ACS758 ". Датчики мои были куплены там же - ACS758LCB-100B .

Внутри даташита по маркировке все расписано, но я все равно обращу внимание на ключевой момент "100В ":

1) 100 - это предел измерения в амперах, то есть мой датчик умеет измерять до 100А;
2) "В " - вот на эту букву стоит обратить внимание особо, вместо нее может быть также буква "U ". Датчик с буквой B умеет измерять переменный ток, а соответственно и постоянный. Датчик с буквой U умеет измерять только постоянный ток.

Также в начале даташита есть отличная табличка на данную тему:


Рисунок 2 - Типы датчиков тока семейства ACS758

Также одной из важнейших причин использования подобного датчика стала - гальваническая развязка . Силовые выводы 4 и 5 не связаны электрически с выводами 1,2,3. В данном датчике связь лишь в виде наведенного поля.

Еще в данной таблицы появился еще один важный параметр - зависимости выходного напряжения от тока. Прелесть данного типа датчиков в том, что у них выход напряжения, а не тока как у классических трансформаторов тока, что очень удобно. Например, выход датчика можно подсоединить напрямую ко входу АЦП микроконтроллера и снимать показания.

У моего датчика данное значение равно 20 мВ/А . Это означает, что при протекании тока 1А через выводы 4-5 датчика напряжение на его выходе увеличится на 20 мВ . Думаю логика ясна.

Следующий момент, какое же напряжение будет на выходе? Учитывая, что питание «человеческое», то есть однополярное, то при измерение переменного тока должна быть «точка отсчета». В данном датчике эта точка отсчета равна 1/2 питания (Vcc). Такое решение часто бывает и это удобно. При протекании тока в одну сторону на выходе будет "1/2 Vcc + I*0.02V ", в другом полупериоде, когда ток протекает в обратную сторону напряжение на выходе будет уже "1/2 Vcc - I*0.02V ". На выходе мы получаем синусоиду, где «ноль» это 1/2Vcc . Если же мы измеряем постоянный ток, то на выходе у нас будет "1/2 Vcc + I*0.02V ", потом при обработке данных на АЦП просто вычитаем постоянную составляющую 1/2 Vcc и работаем с истинными данными, то есть с остатком I*0.02V .

Теперь пришло время проверить на практике то, что я описал выше, а вернее вычитал в даташите. Чтобы поработать с датчиком и проверить его возможности, я соорудил вот такой «мини-стенд»:


Рисунок 3 - Площадка для тестирования датчика тока

Первым делом я решил подать на датчик питание и измерить его выход, чтобы убедиться в том, что за «ноль» у него принято 1/2 Vcc . Схему подключения можно взять в даташите, я же, желая лишь ознакомиться, не стал тратить время и лепить фильтрующий конденсатор по питанию + RC цепочку ФНЧ на выводе Vout. В реальном же устройстве без них никуда! Получил в итоге такую картинку:


Рисунок 4 - Результат измерения «нуля»

При подаче питания с моей платки STM32VL-Discovery я увидел вот такие результаты - 2.38В . Первый же вопрос, который возник: "Почему 2,38, а не описанные в даташите 2.5? " Вопрос отпал практически мгновенно - измерил я шину питания на отладке, а там 4.76-4.77В. А дело все в том, что питание идет с USB, там уже 5В, после USB стоит линейный стабилизатор LM7805, а это явно не LDO с 40 мВ падением. Вот на нем это 250 мВ примерно и падают. Ну да ладно, это не критично, главное знать, что «ноль» это 2.38В. Именно эту константу я буду вычитать при обработке данных с АЦП.

А теперь проведем первое измерение, пока лишь с помощью осциллографа. Измерять буду ток КЗ моего регулируемого блока питания, он равен 3.06А . Это и встроенный амперметр показывает и флюка такой же результат дала. Ну что же, подключаем выходы БП к ногам 4 и 5 датчика (на фото у меня витуха брошена) и смотрим, что получилось:


Рисунок 5 - Измерение тока короткого замыкания БП

Как мы видим, напряжение на Vout увеличилось с 2.38В до 2.44В . Если посмотреть на зависимость выше, то у нас должно было получиться 2.38В + 3.06А*0.02В/А , что соответствует значению 2.44В. Результат соответствует ожиданиям, при токе 3А мы получили прибавку к «нулю» равную 60 мВ . Вывод - датчик работает, можно уже работать с ним с помощью МК.

Теперь необходимо подключить датчик тока с одному из выводов АЦП на микроконтроллере STM32F100RBT6. Сам камушек очень посредственный, системная частота всего 24 МГц, но данная платка у меня пережила очень много и зарекомендовала себя. Владею ею уже, наверное, лет 5, ибо была получена нахаляву во времена, когда ST их раздавали направо и налево.

Сначала по привычке я хотел после датчика поставить ОУ с коэф. усиления «1», но, глянув на структурную схему, понял, что он внутри уже стоит. Единственное стоит учесть, что при максимальном токе выходное питание будет равно питанию датчика Vcc, то есть около 5В, а STM умеет измерять от 0 до 3.3В, так что необходимо в таком случае поставить делитель напряжения резистивный, например, 1:1,5 или 1:2. У меня же ток мизерный, поэтому пренебрегу пока этим моментом. Выглядит мое тестовое устройство примерно так:


Рисунок 6 - Собираем наш «амперметр»

Также для визуализации результатов прикрутил китайский дисплей на контроллере ILI9341, благо валялся под рукой, а руки до него никак не доходили. Чтобы написать для него полноценную библиотеку, убил пару часов и чашку кофе, благо даташит на удивление оказался информативным, что редкость для поделок сыновей Джеки Чана.

Теперь необходимо написать функцию для измерения Vout с помощью АЦП микроконтроллера. Рассказывать подробно не буду, по STM32 уже и так море информации и уроков. Так что просто смотрим:

Uint16_t get_adc_value() { ADC_SoftwareStartConvCmd(ADC1, ENABLE); while(ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC) == RESET); return ADC_GetConversionValue(ADC1); }
Далее, чтобы получить результаты измерения АЦП в исполняемом коде основного тела или прерывания, надо прописать следующее:

Data_adc = get_adc_value();
Предварительно объявив переменную data_adc:

Extern uint16_t data_adc;
В итоге мы получаем переменную data_adc, которая принимает значение от 0 до 4095, т.к. АЦП в STM32 идет 12 битный. Далее нам необходимо превратить полученный результат «в попугаях» в более привычный для нас вид, то есть в амперы. Поэтому необходимо для начала посчитать цену деления. После стабилизатора на шине 3.3В у меня осциллограф показал 3.17В, не стал разбираться, с чем это связано. Поэтому, разделив 3.17В на 4095, мы получим значение 0.000774В - это и есть цена деления. То есть получив с АЦП результат, например, 2711 я просто домножу его на 0.000774В и получу 2.09В.

В нашей же задачи напряжение лишь «посредник», его нам еще необходимо перевести в амперы. Для этого нам надо вычесть из результата 2.38В, а остаток поделить на 0.02 [В/А]. Получилась вот такая формула:

Float I_out = ((((float)data_adc * presc)-2.38)/0.02);
Ну что же, пора залить прошивку в микроконтроллер и посмотреть результаты:


Рисунок 7 - Результаты измерения данных с датчика и их обработка

Измерил собственное потребление схемы как видно 230 мА. Измерив тоже самое поверенной флюкой, оказалось, что потребление 201 мА. Ну что же - точность в один знак после запятой это уже очень круто. Объясню, почему… Диапазон измеряемого тока 0..100А, то есть точность до 1А это 1%, а точность до десятых ампера это уже 0,1%! И прошу заметить, это без каких либо схемотехнических решений. Я даже поленился повесить фильтрующие кондеры по питанию.

Теперь необходимо замерить ток короткого замыкания (КЗ) моего источника питания. Выкручиваю ручку на максимум и получаю следующую картину:


Рисунок 8 - Измерения тока КЗ

Ну и собственно показания на самом источнике с его родным амперметром:


Рисунок 9 - Значение на шкале БП

На самом деле там показывало 3.09А, но пока я фотографировал, витуха нагрелась, и ее сопротивление выросло, а ток, соответственно, упал, но это не так страшно.

В заключение даже и не знаю, чего сказать. Надеюсь, моя статья хоть как-то поможет начинающим радиолюбителям в их нелегком пути. Возможно, кому-то понравится моя форма изложения материала, тогда могу продолжить периодически писать о работе с различными компонентами. Свои пожелания по тематике можно высказать в комментариях, я постараюсь учесть.

Для правильной, надежной и безотказной работы современных изделий силовой и не очень электроники очень важно правильно определять величины и формы как напряжений, так токов, действующих в устройстве. От выбора такого, казалось бы, простого элемента, как измеритель электротока или напряжения, может зависеть и судьба проекта, и финансовые успехи или неудачи при эксплуатации, и даже жизни людей. Одним из самых подходящих для таких измерений (в дальнейшем, мы будем стараться использовать термин «преобразование», так как ООО «Лаборатория ДТиН» поддерживает мнение, что датчики по определению не являются измерительными приборами) вариантом являются измерители, работа которых основана на эффекте Холла. Преимуществом этих преобразователей являются отсутствие потерь энергии в контролируемой цепи, гальваническая развязка между входной и выходной цепями, быстродействие, способность работать в широком диапазоне температур и питающих напряжений, возможность непосредственного сопряжения с различными устройствами контроля и управления.

Точность измерителей электротока на эффекте Холла находится в пределах от 0.2 до 2 процентов и зависит, прежде всего, от примененной в конструкции прибора схемотехники. Они широко применяются в различных электроустановках, как правило, в цепях защиты, контроля и управления, но, например, в силу ряда ограничений практически никогда не применяются для коммерческого учета электроэнергии. Подобные преобразователи электрических сигналов можно найти и в современном сварочном аппарате, и в системе управления лифтом, и в автомобиле, работа железнодорожного транспорта немыслима ныне без этих устройств. Приборы, работающие на эффекте Холла, могут преобразовывать как переменный, так и постоянный электроток. Несмотря на то, что часто их называют «трансформатором тока», этот факт является их главным отличием и преимуществом.

Эффект Холла был обнаружен более 130 лет назад, американским ученым Эдвином Холлом, в ходе экспериментов с магнитными полями. С тех пор этот эффект описан многократно в самой разнообразной литературе. Основан он на появлении поперечной разности электрических потенциалов у проводника с постоянным током, находящегося в магнитном поле.

На что нужно обратить внимание при выборе прибора для измерений показателей

  1. Напряжение питания. Для промышленных измерительных приборов используется, как двуполярное (±12В, ±15В, ±18В, ±24В.), так и однополярное (+5, 12, 24 В.) питание. Выбор его зависит как от возможностей и потребностей разработчика, так и от условий сопряжения с блоками контроля и управления.
  2. Точность преобразования. Как мы уже упоминали, существующие измерители, работающие на эффекте Эдвина Холла обладают точностью от 0.2 до 2 процентов при этом этот параметр, как правило, определяется тем, как построен сам измеритель — по схеме прямого усиления или компенсационной, со 100% обратной связью. Как и в большинстве случаев, более точный измерительный прибор компенсационного типа на один и тот же номинальный электрический ток стоит дороже своего собрата, собранного по схеме прямого усиления, как правило, имеет большие габариты и однозначно большее потребление электротока от источника питания. Плюсами его будут не только большая точность, которую мы уже упоминали, но лучшие линейность и помехозащищенность.
  3. Диапазон преобразования. Такие конструкции способны преобразовывать входной сигнал в пропорциональный выходной или соответствующий цифровой сигнал силой тока от нескольких сот миллиампер до нескольких тысяч Ампер. Разумеется, подобный механизм на 10кА и больше, дороже своего собрата на 25А
  4. Корпус. Данные агрегаты могут иметь различные типы корпусов. Существуют варианты для установки на печатную плату, шасси или ДИН-рейку.
  5. Температура, при которой данные модули способны исправно работать. Так, пониженная рабочая температура для измерительных приборов, работающих с током и напряжением, как правило, −40 C, но существуют изделия, сохраняющие работоспособность и при −50, и даже −55C. Повышенная рабочая температура для большинства современных изделий достигает +85C, существуют образцы, работающие и при +105C.

Классификация преобразователей по принципу построения.

  1. Преобразователь прямого усиления. Достоинства — компактные размеры, небольшое энергопотребление, возможность работать с электросигналами от единиц ампер до десятков килоампер, невысокая цена. Применяются для работы с сигналами в диапазоне частот от постоянного тока до 25, реже 50 кГц. Ошибка преобразования и нелинейность в пределах единиц процентов. Этот вид изделий имеет высокую перегрузочную способность, относительно недороги и компактны.
  2. Измерители со 100% обратной связью, так же известные как «компенсационные», или «датчики с нулевым магнитным потоком». Как видно из названия, главным отличительным признаком его является наличие контура, замкнутого по магнитному потоку. Применяются такие устройства для преобразования первичного сигнал от сотен миллиампер до десятков килоампер, любой формы и частоты, начиная от постоянного тока и заканчивая на уровне 100-150-200 кГц. Компенсационные преобразователи данных сигналов отличаются лучшими точностью, линейностью, устойчивостью к внешним магнитным полям. Диапазон преобразования у этих инструментов ниже, чем у конструкций прямого усиления
  3. Датчик напряжения. Разновидность компенсационного устройства прибора преобразователя электросигналов, отличающаяся наличием встроенной первичной обмотки с большим количеством витков. Измерение напряжения происходит путем преобразования небольшого первичного сигнала (как правило, при номинальном напряжении его значение 5 или 10 мА, выбор зависит от разработчика), задаваемого включенным последовательно с первичной катушкой резистором, в пропорциональный выходной сигнал. Данные аппараты отличаются достаточно широким диапазоном входных напряжений, но имеют ограничения по частоте входного сигнала, так как первичная обмотка обладает существенной индуктивностью.
  4. Относительно новый тип преобразователя — интегральный, является развитием схемы прямого усиления. Достоинство — малые габариты, невысокая цена. За время с момента появления в 1879 году и до сегодняшнего дня аппараты, работающие на эффекте, открытом Эдвином Холлом изменились очень и очень заметно. Увеличились точность, надежность, существенно улучшилась температурная стабильность, неуклонно уменьшаются габариты и цены этих механизмов. Все эти улучшения стали возможны как в результате развития технологий в производстве электронных компонентов, так и в результате новых требований, предъявляемых к этому классу изделий. Все большее и большее применение находится им в современной жизни, насыщенной электронными и электрическими устройствами.

Современная промышленность выдвигает особые требования к надежности и стабильности работы преобразователей электрических данных, применяемых для контроля работы и управления сложнейшими системами. Это вынуждает продолжать совершенствовать конструкцию приборов, улучшая их технические характеристики, делая более и более надежными, простыми и удобными в применении.

Как правило, начинающий разработчик впадает в крайности, закладывает точность не хуже 0.1%, и частотную характеристику от 100кГц и потом долго удивляется тому, что предложенное ему решение стоит денег, сопоставимых с ценой половины, а то и всей его разработки. В большинстве современных применений за счет улучшения параметров силовых полупроводников точности в 1-2% оказывается более чем достаточно, и ключевым фактором в выборе преобразователей становится надежность и стабильность работы, но эти вопросы не связаны напрямую со схемотехникой и достойны отдельного рассмотрения.

Современные датчики тока подразделяются на следующие типы:
— резистивные датчики (токовые шунты);
— датчики тока на эффекте Холла;
— трансформаторы тока;
— волоконно-оптические датчики тока (ВОДТ) на эффекте Фарадея;
— пояс Роговского;
— токовые клещи
Каждый обладает своими достоинствами и недостатками, которые и ограничивают сферу его применения.

да
Токоизмерительные резисторы Трансформаторы тока Датчики Холла
Измеряемый ток Постоянный Переменный Постоянный и переменный
Диапазон измеряемого тока До 20 А До 1000А До 1000А
Погрешность измерений 1% 5% 10%
Гальваническая развязка нет есть есть
Вносимые потери есть есть Нет
Частотный диапазон 100 кГц 50/60/400 Гц 200 кГц
Относительная стоимость низкая высокая средняя
Требуют внешний источник питания нет нет

Главным недостатком резистивного датчика тока является необходимость подключать датчик непосредственно в цепь измерения. Главным недостатком трансформатора тока является измерение только переменных токов промышленной частоты. Датчик тока на основе эффекта Холла обладает рядом преимуществ, которые заключаются в возможности измерения как постоянных, так и переменных токов, и малых размерах. К их главным достоинствам следует отнести отсутствие вносимых с систему потерь мощности, широкий диапазон частот. Недостатком является необходимость внешнего источника питания и зависимость от температуры.

Датчики тока Allegro Microsystems

Компания Allegro Microsystems специализируется на разработке и производстве аналого-цифровых силовых микросхем и датчиков тока на основе эффекта Холла. Для диапазона 5-200 А предлагаются интеллектуальные микросхемы, а для диапазона до 1000 А и выше - линейные микросхемы с дистанционным измерением тока. Датчики работают в расширенном диапазоне температур, что позволяет использовать их в жестких условиях эксплуатации.
Основными областями применения являются системы автомобильной и силовой электроники, промышленная автоматика, аппаратура общего применения.

Принцип работы

Датчики состоят из очень точного линейного датчика Холла, интегрированного на кристалл микросхемы, и медного проводника, размещенного близко к кристаллу. Электрический ток, протекая через проводник, создает магнитное поле, которое фиксируется датчиком Холла и преобразуется в напряжение, пропорциональное значению входного тока.

Корпуса датчиков

Для производства датчиков на 5-200 А применяется flip chip технология, которая предоставляет ряд значительных преимуществ для разработчика:
— повышенная чувствительность, датчик Холла расположен очень близко к проводнику тока
— высокая гальваническая изоляция, до 3600 В rms в течение 60 секунд
— низкое сопротивление первичной цепи, менее 1 мОм, снижение потерь мощности
— стандартные корпуса для поверхностного монтажа.

Датчики на диапазон 50-200 А выпускаются в корпусе собственной разработки - СВ. Этот корпус включает медный проводник и аналоговый датчик Холла и позволяет измерять постоянный ток до 200 А и импульсный до 1200 А. Датчики калибруются при производстве, выдерживают напряжение пробоя до 4800 В rms в течение 60 секунд, обеспечивают изоляцию до 700 В и усиленную изоляцию до 4500 В. Сопротивление проводника составляет 100 мОм, поэтому микросхемы имеют сверхнизкую потерю мощности при измерении максимального тока.

Термокомпенсация

В датчиках тока используется запатентованная технология цифровой термокомпенсации, которая позволяет значительно улучшить как погрешность чувствительности и выходного напряжения в рабочей точке. Оба параметра измеряются на этапе финального тестирования в двух режимах: при комнатной температуре и при 85…150°С. Эти данные хранятся в EEPROM памяти. В результате датчики Allegro имеют суммарную погрешность ±1% в диапазоне 25…150°С. Такая калибровка на последней стадии производства устраняет необходимость в температурной калибровке после монтажа на печатную плату.

Применение датчиков тока в электроприводе

Датчики тока Allegro могут применяться в нескольких узлах электропривода благодаря наличию гальванической развязки и хорошим параметрам скорости dV/dt.
Они могу использоваться для измерения постоянного тока шины (1), тока фазы (2) или на тока нижнего уровня.

Гальваническая изоляция позволяет использовать датчики Allegro для измерения тока фазы двигателя напрямую. Это упрощает блок управления и уменьшает шумы. Датчики ACS710, ACS711 и ACS716 имеют выходы ошибки, которые можно использовать для обнаружения короткого замыкания или других явлений, вызванных высоким током.
Основные датчики тока для электропривода:

Датчики тока в усилителях мощности

Правильное управление усилителем мощности в базовой станции или портативном радиоприемнике - основа для правильного компромисса между выходной мощностью и КПД.
Ток смещения - это ключевой параметр для контроля на большинстве выходных каскадов, поэтому компания Allegro предлагает несколько датчиков тока для решения данной задачи.

ACS711 Датчик тока 100 кГц в корпусе QFN/SOIC
ACS712 Датчик тока 80 кГц в корпусе SOIC

Преимущества датчиков тока Allegro

— возможность измерения постоянного тока, переменного тока и их комбинаций;
— малые потери энергии и, как следствие, малое выделение тепла, уменьшенные габариты и возможность контролировать большие токи;
— встроенная гальваническая развязка

Высокая точность, гальваническая изоляция измерительной схемы, термостабильность и малые габариты делают датчики хорошим решением для применения в преобразовательной технике, бытовой, автомобильной и промышленной электронике.

Датчики на 0-50 А

3000 SOICW-16 ACS716
Серия Тип датчика Напр-е питаия, В Диапазон измерений, А Напр-е изоляции, Вrms Полоса пропускания, кГц Темп. диапазон* Тип корпуса
ACS709 Двунапр. 3.3, 5 ±12 to 75 2100 120 L QSOP-24
ACS710 Двунапр. 5 ±12 to 75 120 K
ACS711 Двунапр. 3.3 ±12.5 to 25 <100 В пост.тока 100 E, K SOIC-8,
QFN-12
ACS712 Двунапр. p>5 ±5 to 30 2100 80 E SOIC-8
ACS713 Однонапр. 5 20 to 30 2100 80 E SOIC-8
ACS714 Двунапр. 5 ±5 to 30 2100 80 E, L SOIC-8
ACS715 Однонапр. 5 20 to 30 2100 80 E, L SOIC-8
Двунапр. 3.3 ±75 3000 120 K SOICW-16
ACS717 Двунапр. 3.3 ±10 to 20 4800 40 K SOICW-16
ACS718 Двунапр. 6 ±10 to 20 4800 40 K SOICW-16
ACS764 Однонапр. 3.3 16 or 32 <100 В пост.тока 2 X QSOP-24

Датчики тока 50-200 А

*Условное обозначение температурного диапазона:
Е = -40…85°C
K = -40…125°C
L = -40…150°C
S = -20…85°C

Система обозначений
ACS758 L CB TR -100 B-PFF-T
1 2 3 4 5 6 7
1. Серия
2. Температурный диапазон:
Е = -40…85°C
K = -40…125°C
L = -40…150°C
S = -20…85°C
3. Тип корпуса:
СВ - корпус СВ
LC - SOIC-8
4. Упаковка:
не обознач. - в пенале
TR - на ленте
5. Диапазон измеряемого тока, А
6. Тип датчика: В - двунаправленный, U - однонаправленный
7. Модификация корпуса для датчиков 50-200А, состоит из 3-буквенного обозначения:
Первая буква - пластиковый корпус
Вторая буква - токовый проводник, S - прямой, F - изогнутый
Третья буква - выводы, S - прямые, F - угловые

Дополнительная информация


Лучшие статьи по теме