Cum se configurează smartphone-uri și PC-uri. Portal de informare

Integrala rădăcinii a 3-a. Integrale complexe

În secolul al V-lea î.Hr., filosoful antic grec Zenon din Elea și-a formulat celebrele aporii, dintre care cea mai faimoasă este aporia „Achile și țestoasa”. Iată cum sună:

Să presupunem că Ahile aleargă de zece ori mai repede decât țestoasa și este la o mie de pași în spatele ei. În timpul necesar lui Ahile pentru a parcurge această distanță, țestoasa se va târa o sută de pași în aceeași direcție. Când Ahile aleargă o sută de pași, țestoasa se târăște încă zece pași și așa mai departe. Procesul va continua la infinit, Ahile nu va ajunge niciodată din urmă cu țestoasa.

Acest raționament a devenit un șoc logic pentru toate generațiile următoare. Aristotel, Diogene, Kant, Hegel, Hilbert... Toți au considerat într-un fel sau altul aporia lui Zenon. Șocul a fost atât de puternic încât " ... discuțiile continuă până în prezent comunitatea științifică nu a reușit încă să ajungă la o opinie comună asupra esenței paradoxurilor ... analiza matematică, teoria seturilor, noi abordări fizice și filozofice au fost implicate în studiul problemei; ; niciunul dintre ele nu a devenit o soluție general acceptată la problemă...„[Wikipedia, „Aporia lui Zeno”. Toată lumea înțelege că sunt păcăliți, dar nimeni nu înțelege în ce constă înșelăciunea.

Din punct de vedere matematic, Zenon în aporia sa a demonstrat clar trecerea de la cantitate la . Această tranziție presupune aplicare în loc de cele permanente. Din câte am înțeles, aparatul matematic pentru utilizarea unităților de măsură variabile fie nu a fost încă dezvoltat, fie nu a fost aplicat aporiei lui Zeno. Aplicarea logicii noastre obișnuite ne duce într-o capcană. Noi, datorită inerției gândirii, aplicăm unități constante de timp valorii reciproce. Din punct de vedere fizic, se pare că timpul încetinește până când se oprește complet în momentul în care Ahile ajunge din urmă cu țestoasa. Dacă timpul se oprește, Ahile nu mai poate depăși țestoasa.

Dacă ne întoarcem logica obișnuită, totul cade la locul său. Ahile aleargă cu o viteză constantă. Fiecare segment ulterior al drumului său este de zece ori mai scurt decât cel anterior. În consecință, timpul petrecut pentru depășirea acestuia este de zece ori mai mic decât cel anterior. Dacă aplicăm conceptul de „infinit” în această situație, atunci ar fi corect să spunem „Achile va ajunge din urmă broasca testoasă infinit de repede”.

Cum să eviți această capcană logică? Rămâneți în unități constante de timp și nu treceți la unități reciproce. În limbajul lui Zeno arată astfel:

În timpul necesar lui Ahile pentru a alerga o mie de pași, țestoasa se va târa o sută de pași în aceeași direcție. În următorul interval de timp egal cu primul, Ahile va alerga încă o mie de pași, iar țestoasa se va târa o sută de pași. Acum Ahile este cu opt sute de pași înaintea broaștei țestoase.

Această abordare descrie în mod adecvat realitatea fără niciun paradox logic. Dar aceasta nu este o soluție completă a problemei. Afirmația lui Einstein despre irezistibilitatea vitezei luminii este foarte asemănătoare cu aporia lui Zeno „Achile și broasca țestoasă”. Mai trebuie să studiem, să regândim și să rezolvăm această problemă. Iar soluția trebuie căutată nu în număr infinit de mare, ci în unități de măsură.

O altă aporie interesantă a lui Zeno spune despre o săgeată zburătoare:

O săgeată zburătoare este nemișcată, deoarece în fiecare moment de timp este în repaus și, deoarece este în repaus în fiecare moment de timp, este întotdeauna în repaus.

În această aporie, paradoxul logic este depășit foarte simplu - este suficient să clarificăm că în fiecare moment de timp o săgeată zburătoare este în repaus în diferite puncte din spațiu, care, de fapt, este mișcare. Un alt punct trebuie remarcat aici. Dintr-o fotografie a unei mașini de pe șosea este imposibil să se determine nici faptul mișcării acesteia, fie distanța până la ea. Pentru a determina dacă o mașină se mișcă, aveți nevoie de două fotografii făcute din același punct în momente diferite, dar nu puteți determina distanța față de ele. Pentru a determina distanța până la o mașină, aveți nevoie de două fotografii făcute din diferite puncte ale spațiului la un moment dat, dar din ele nu puteți determina faptul de mișcare (desigur, mai aveți nevoie de date suplimentare pentru calcule, trigonometria vă va ajuta ). Ceea ce vreau să atrag atenția în mod deosebit este că două puncte în timp și două puncte în spațiu sunt lucruri diferite care nu trebuie confundate, deoarece oferă oportunități diferite de cercetare.

miercuri, 4 iulie 2018

Diferențele dintre set și multiset sunt descrise foarte bine pe Wikipedia. Să vedem.

După cum puteți vedea, „nu pot exista două elemente identice într-o mulțime”, dar dacă există elemente identice într-o mulțime, un astfel de set se numește „multiset”. Ființele rezonabile nu vor înțelege niciodată o asemenea logică absurdă. Acesta este nivelul papagalilor vorbitori și al maimuțelor dresate, care nu au inteligență din cuvântul „complet”. Matematicienii acționează ca formatori obișnuiți, propovăduindu-ne ideile lor absurde.

Pe vremuri, inginerii care au construit podul se aflau într-o barcă sub pod în timp ce testau podul. Dacă podul s-a prăbușit, inginerul mediocru a murit sub dărâmăturile creației sale. Dacă podul putea rezista la sarcină, talentatul inginer a construit alte poduri.

Indiferent de cât de matematicieni se ascund în spatele expresiei „amintește-mă, sunt în casă” sau, mai degrabă, „matematica studiază concepte abstracte”, există un cordon ombilical care le conectează inextricabil cu realitatea. Acest cordon ombilical este bani. Să aplicăm teoria mulțimilor matematicienilor înșiși.

Am studiat foarte bine matematica și acum stăm la casa de marcat, dăm salarii. Deci un matematician vine la noi pentru banii lui. Îi numărăm întreaga sumă și o întindem pe masa noastră în grămezi diferite, în care punem bancnote de aceeași valoare. Apoi luăm o bancnotă din fiecare grămadă și îi dăm matematicianului „setul său matematic de salariu”. Să-i explicăm matematicianului că va primi bancnotele rămase doar atunci când va dovedi că o mulțime fără elemente identice nu este egală cu o mulțime cu elemente identice. Aici începe distracția.

În primul rând, logica deputaților va funcționa: „Acest lucru se poate aplica și altora, dar nu și mie!” Apoi vor începe să ne liniștească că bancnotele de aceeași denominație au numere de bancnote diferite, ceea ce înseamnă că nu pot fi considerate aceleași elemente. Bine, să numărăm salariile în monede - nu există numere pe monede. Aici matematicianul va începe să-și amintească frenetic de fizică: diferite monede au cantități diferite de murdărie, structura cristalină și aranjarea atomilor este unică pentru fiecare monedă...

Și acum am cea mai interesantă întrebare: unde este linia dincolo de care elementele unui multiset se transformă în elemente ale unui set și invers? O astfel de linie nu există - totul este hotărât de șamani, știința nu este nici măcar aproape să zacă aici.

Uite aici. Selectăm stadioane de fotbal cu aceeași suprafață de teren. Zonele câmpurilor sunt aceleași - ceea ce înseamnă că avem un multiset. Dar dacă ne uităm la numele acestor stadioane, obținem multe, pentru că numele sunt diferite. După cum puteți vedea, același set de elemente este atât un set, cât și un multiset. Care este corect? Și aici matematicianul-șamanul-ascuțitor scoate un as de atuuri din mânecă și începe să ne vorbească fie despre un set, fie despre un multiset. În orice caz, ne va convinge că are dreptate.

Pentru a înțelege cum funcționează șamanii moderni cu teoria mulțimilor, legând-o de realitate, este suficient să răspundem la o întrebare: prin ce diferă elementele unui set de elementele altui set? Vă voi arăta, fără niciun „conceput ca nu un singur întreg” sau „neconceput ca un singur întreg”.

Duminică, 18 martie 2018

Suma cifrelor unui număr este un dans al șamanilor cu un tamburin, care nu are nimic de-a face cu matematica. Da, la lecțiile de matematică suntem învățați să găsim suma cifrelor unui număr și să o folosim, dar de aceea ei sunt șamani, pentru a-și învăța descendenții abilitățile și înțelepciunea, altfel șamanii pur și simplu vor muri.

Ai nevoie de dovezi? Deschideți Wikipedia și încercați să găsiți pagina „Suma cifrelor unui număr”. Ea nu există. Nu există nicio formulă în matematică care să poată fi folosită pentru a găsi suma cifrelor oricărui număr. La urma urmei, numerele sunt simboluri grafice cu care scriem numere, iar în limbajul matematicii sarcina sună astfel: „Găsiți suma simbolurilor grafice care reprezintă orice număr”. Matematicienii nu pot rezolva această problemă, dar șamanii o pot face cu ușurință.

Să ne dăm seama ce și cum facem pentru a găsi suma cifrelor unui număr dat. Și așa, să avem numărul 12345. Ce trebuie făcut pentru a găsi suma cifrelor acestui număr? Să luăm în considerare toți pașii în ordine.

1. Notează numărul pe o foaie de hârtie. Ce am făcut? Am convertit numărul într-un simbol numeric grafic. Aceasta nu este o operație matematică.

2. Tăiem o imagine rezultată în mai multe imagini care conțin numere individuale. Decuparea unei imagini nu este o operație matematică.

3. Convertiți simbolurile grafice individuale în numere. Aceasta nu este o operație matematică.

4. Adăugați numerele rezultate. Acum asta e matematica.

Suma cifrelor numărului 12345 este 15. Acestea sunt „cursurile de tăiere și cusut” de la șamani pe care le folosesc matematicienii. Dar asta nu este tot.

Din punct de vedere matematic, nu contează în ce sistem de numere scriem un număr. Deci, în sisteme de numere diferite, suma cifrelor aceluiași număr va fi diferită. În matematică, sistemul numeric este indicat ca indice în dreapta numărului. Cu numărul mare 12345, nu vreau să-mi păcălesc capul, să luăm în considerare numărul 26 din articolul despre. Să scriem acest număr în sisteme de numere binar, octal, zecimal și hexazecimal. Nu ne vom uita la fiecare pas la microscop, am făcut-o deja. Să ne uităm la rezultat.

După cum puteți vedea, în sisteme numerice diferite, suma cifrelor aceluiași număr este diferită. Acest rezultat nu are nimic de-a face cu matematica. Este la fel ca și cum ai determina aria unui dreptunghi în metri și centimetri, ai obține rezultate complet diferite.

Zero arată la fel în toate sistemele de numere și nu are sumă de cifre. Acesta este un alt argument în favoarea faptului că. Întrebare pentru matematicieni: cum este ceva care nu este un număr desemnat în matematică? Ce, pentru matematicieni nu există nimic în afară de numere? Pot permite asta șamanilor, dar nu și oamenilor de știință. Realitatea nu este doar despre cifre.

Rezultatul obținut ar trebui considerat ca o dovadă că sistemele numerice sunt unități de măsură pentru numere. La urma urmei, nu putem compara numerele cu unități de măsură diferite. Dacă aceleași acțiuni cu diferite unități de măsură ale aceleiași mărimi duc la rezultate diferite după compararea lor, atunci acest lucru nu are nimic de-a face cu matematica.

Ce este matematica reală? Acesta este momentul în care rezultatul unei operații matematice nu depinde de mărimea numărului, de unitatea de măsură folosită și de cine efectuează această acțiune.

Semnează pe uşă El deschide ușa și spune:

Oh! Asta nu este toaleta pentru femei?
-Tânără! Acesta este un laborator pentru studiul sfințeniei nefilice a sufletelor în timpul înălțării lor la cer! Halo în partea de sus și săgeată în sus. Ce altă toaletă?

Femeie... Aureola de sus și săgeata în jos sunt masculine.

Dacă o astfel de operă de artă de design îți fulgerează în fața ochilor de mai multe ori pe zi,

Atunci nu este surprinzător că găsiți brusc o pictogramă ciudată în mașina dvs.:

Personal, fac un efort să văd minus patru grade la o persoană care face caca (o poză) (o compoziție din mai multe imagini: un semn minus, numărul patru, o denumire de grade). Și nu cred că această fată este o proastă care nu știe fizică. Ea are doar un stereotip puternic de a percepe imaginile grafice. Și matematicienii ne învață asta tot timpul. Iată un exemplu.

1A nu este „minus patru grade” sau „unu a”. Acesta este „pooping om” sau numărul „douăzeci și șase” în notație hexazecimală. Acei oameni care lucrează constant în acest sistem numeric percep automat un număr și o literă ca un simbol grafic.

Găsirea integralei nedefinite este o problemă foarte comună în matematica superioară și în alte ramuri tehnice ale științei. Nici cele mai simple probleme fizice nu pot fi rezolvate fără a calcula mai multe integrale simple. Prin urmare, încă de la vârsta școlară ni se învață tehnici și metode de rezolvare a integralelor sunt date numeroase tabele cu integrale ale celor mai simple funcții. Cu toate acestea, în timp, toate acestea sunt uitate în siguranță, fie că nu avem suficient timp pentru calcule, fie că avem nevoie găsiți soluția integralei nedefinite dintr-o funcţie foarte complexă. Pentru a rezolva aceste probleme, serviciul nostru vă va fi indispensabil, permițându-vă să găsiți cu acuratețe integrala nedefinită online.

Rezolvați integrale nedefinite

Serviciu online la site-ul web vă permite să găsiți rezolvarea integralei online rapid, gratuit și de înaltă calitate. Puteți înlocui căutarea în tabele pentru integrala necesară cu serviciul nostru, unde, introducând rapid funcția dorită, veți primi o soluție la integrala nedefinită într-o versiune tabelară. Nu toate site-urile de matematică sunt capabile să calculeze integrale nedefinite ale funcțiilor online rapid și eficient, mai ales dacă trebuie să găsiți integrală nedefinită dintr-o funcție complexă sau astfel de funcții care nu sunt incluse în cursul general de matematică superioară. Site-ul web site-ul web va ajuta rezolva integral online și face față sarcinii. Folosind soluția online a integralei de pe site, veți obține întotdeauna răspunsul exact.

Chiar dacă doriți să calculați integral integrala, datorită serviciului nostru vă va fi ușor să vă verificați răspunsul, să găsiți o greșeală sau o greșeală de tipar sau să vă asigurați că sarcina este finalizată fără cusur. Dacă rezolvați o problemă și trebuie să calculați integrala nedefinită ca acțiune auxiliară, atunci de ce să pierdeți timpul cu aceste acțiuni pe care poate le fi efectuate deja de o mie de ori? Mai mult, calculele suplimentare ale integralei pot fi cauza unei greșeli de tipar sau a unei mici erori, care a condus ulterior la un răspuns incorect. Doar folosiți serviciile noastre și găsiți integrală nedefinită online fara nici un efort. Pentru probleme practice de găsire integrală funcții online acest server este foarte util. Trebuie să introduceți funcția dată, obțineți soluție online a integralei nedefiniteși comparați răspunsul cu soluția dvs.

O funcție irațională a unei variabile este o funcție care este formată dintr-o variabilă și constante arbitrare folosind un număr finit de operații de adunare, scădere, înmulțire (creștere la o putere întreagă), împărțire și rădăcini. O funcție irațională diferă de una rațională prin aceea că funcția irațională conține operații pentru extragerea rădăcinilor.

Există trei tipuri principale de funcții iraționale, ale căror integrale nedefinite sunt reduse la integrale ale funcțiilor raționale. Acestea sunt integrale care conțin rădăcini de puteri întregi arbitrare dintr-o funcție fracțională liniară (rădăcinile pot fi de puteri diferite, dar din aceeași funcție fracțională liniară); integrale ale unui binom diferențial și integrale cu rădăcina pătrată a unui trinom pătrat.

Notă importantă. Rădăcinile au mai multe semnificații!

Când se calculează integrale care conțin rădăcini, sunt adesea întâlnite expresii ale formei, unde este o funcție a variabilei de integrare. Trebuie avut în vedere faptul că. Adică la t >< 0 , |t| = t. La or 0 0 , |t| = - t .< 0 Prin urmare, atunci când se calculează astfel de integrale, este necesar să se ia în considerare separat cazurile t > 0 și t< 0 .

Este posibilă și o a doua abordare, în care integrandul și rezultatul integrării pot fi considerate funcții complexe ale variabilelor complexe. Atunci nu trebuie să acordați atenție semnelor din expresiile radicale. Această abordare este aplicabilă dacă integrandul este analitic, adică o funcție diferențiabilă a unei variabile complexe. În acest caz, atât integrandul, cât și integrala sa sunt funcții cu mai multe valori. Prin urmare, după integrare, la înlocuirea valorilor numerice, este necesar să se selecteze o ramură cu o singură valoare (suprafața Riemann) a integrandului, iar pentru aceasta să se selecteze ramura corespunzătoare a rezultatului integrării.

Iraționalitate liniară fracțională

Acestea sunt integrale cu rădăcini din aceeași funcție liniară fracțională:
,
unde R este o funcție rațională, sunt numere raționale, m 1, n 1, ..., m s, n s sunt numere întregi, α, β, γ, δ sunt numere reale.
Astfel de integrale sunt reduse la integrala unei funcții raționale prin substituție:
, unde n este numitorul comun al numerelor r 1, ..., r s.

Rădăcinile pot să nu provină neapărat dintr-o funcție fracțională liniară, ci și dintr-o funcție liniară (γ = 0, δ = 1), sau pe variabila de integrare x (α = 1, β = 0, γ = 0, δ = 1).

Iată exemple de astfel de integrale:
, .

Integrale din binoame diferențiale

Integralele din binoamele diferențiale au forma:
,
unde m, n, p sunt numere raționale, a, b sunt numere reale.
Astfel de integrale se reduc la integrale ale funcțiilor raționale în trei cazuri.

1) Dacă p este un număr întreg. Înlocuirea x = t N, unde N este numitorul comun al fracțiilor m și n.
2) Dacă - un număr întreg. Înlocuirea a x n + b = t M, unde M este numitorul numărului p.
3) Dacă - un număr întreg. Înlocuirea a + b x - n = t M, unde M este numitorul numărului p.

În alte cazuri, astfel de integrale nu sunt exprimate prin funcții elementare.

Uneori, astfel de integrale pot fi simplificate folosind formule de reducere:
;
.

Integrale care conțin rădăcina pătrată a unui trinom pătrat

Astfel de integrale au forma:
,
unde R este o funcție rațională. Pentru fiecare astfel de integrală există mai multe metode de rezolvare.
1) Utilizarea transformărilor duce la integrale mai simple.
2) Aplicați substituții trigonometrice sau hiperbolice.
3) Aplicați substituții Euler.

Să ne uităm la aceste metode mai detaliat.

1) Transformarea funcției integrand

Aplicând formula și efectuând transformări algebrice, reducem funcția integrand la forma:
,
unde φ(x), ω(x) sunt funcții raționale.

Tipul I

Integrala formei:
,
unde P n (x) este un polinom de grad n.

Astfel de integrale se găsesc prin metoda coeficienților nedeterminați folosind identitatea:

.
Diferențiând această ecuație și echivalând laturile stângă și dreaptă, găsim coeficienții A i.

Tipul II

Integrala formei:
,
unde P m (x) este un polinom de gradul m.

Înlocuirea t = (x - α) -1 această integrală este redusă la tipul anterior. Dacă m ≥ n, atunci fracția ar trebui să aibă o parte întreagă.

tipul III

Aici facem înlocuirea:
.
După care integrala va lua forma:
.
În continuare, constantele α, β trebuie alese astfel încât coeficienții lui t din numitor să devină zero:
B = 0, B 1 = 0.
Apoi integrala se descompune în suma integralelor de două tipuri:
,
,
care sunt integrate prin substituții:
u 2 = A 1 t 2 + C 1,
v 2 = A 1 + C 1 t -2 .

2) Substituții trigonometrice și hiperbolice

Pentru integralele de forma , a > 0 ,
avem trei substituții principale:
;
;
;

Pentru integrale, a > 0 ,
avem următoarele înlocuiri:
;
;
;

Și în sfârșit, pentru integrale, a > 0 ,
înlocuirile sunt după cum urmează:
;
;
;

3) Substituții Euler

De asemenea, integralele pot fi reduse la integrale ale funcțiilor raționale ale uneia dintre cele trei substituții Euler:
, pentru a > 0;
, pentru c > 0 ;
, unde x 1 este rădăcina ecuației a x 2 + b x + c = 0.

Dacă această ecuație are rădăcini reale.

Integrale eliptice
,
În concluzie, luați în considerare integralele de forma:

unde R este o funcție rațională, .
.

Astfel de integrale se numesc eliptice. În general, ele nu sunt exprimate prin funcții elementare. Cu toate acestea, există cazuri când există relații între coeficienții A, B, C, D, E, în care astfel de integrale sunt exprimate prin funcții elementare.

Mai jos este un exemplu legat de polinoamele reflexive. Astfel de integrale sunt calculate folosind substituții:
.

Exemplu

Calculați integrala:

.
Soluţie 0 Să facem o înlocuire. 0 Aici la x >< 0 (u>< 0 ) ia semnul superior ′+ ′. La x


.

(u

) - inferior ′-′.
Răspuns

Literatura folosita:

N.M. Gunther, R.O. Kuzmin, Culegere de probleme de matematică superioară, „Lan”, 2003.

Integrale complexe Acest articol încheie subiectul integralelor nedefinite și include integrale pe care le consider destul de complexe. Lecția a fost creată la solicitările repetate ale vizitatorilor care și-au exprimat dorința ca pe site să fie analizate exemple mai dificile., unde poți stăpâni subiectul aproape de la zero. Studenții mai experimentați se pot familiariza cu tehnici și metode de integrare care nu au fost încă întâlnite în articolele mele.

Ce integrale vor fi luate în considerare?

Mai întâi vom lua în considerare integralele cu rădăcini, pentru soluția cărora o folosim succesiv înlocuire variabilăŞi integrare pe părți. Adică, într-un exemplu, două tehnici sunt combinate simultan. Și chiar mai mult.

Apoi ne vom familiariza cu interesante și originale metoda de reducere a integralei la sine. Destul de multe integrale sunt rezolvate astfel.

Al treilea număr al programului va fi integrale ale fracțiilor complexe, care au trecut peste casa de casă în articolele anterioare.

În al patrulea rând, vor fi analizate integrale suplimentare din funcțiile trigonometrice. În special, există metode care evită înlocuirea trigonometrică universală consumatoare de timp.

(2) În funcția integrand, împărțim numărătorul la numitor termen cu termen.

(3) Folosim proprietatea de liniaritate a integralei nedefinite. În ultima integrală imediat puneți funcția sub semnul diferențial.

(4) Luăm integralele rămase. Rețineți că într-un logaritm puteți folosi paranteze mai degrabă decât un modul, deoarece .

(5) Efectuăm o înlocuire inversă, exprimând „te” din înlocuirea directă:

Studenții masochiști pot diferenția răspunsul și pot obține integrandul original, așa cum tocmai am făcut eu. Nu, nu, am făcut verificarea în sensul corect =)

După cum puteți vedea, în timpul soluției a trebuit să folosim chiar mai mult de două metode de soluție, așa că pentru a face față unor astfel de integrale aveți nevoie de abilități de integrare încrezătoare și destul de multă experiență.

În practică, desigur, rădăcina pătrată este mai comună, iată trei exemple pentru a o rezolva singur:

Exemplul 2

Aflați integrala nedefinită

Exemplul 3

Aflați integrala nedefinită

Exemplul 4

Aflați integrala nedefinită

Aceste exemple sunt de același tip, astfel încât soluția completă de la sfârșitul articolului va fi doar pentru Exemplul 2. Exemplele 3-4 au aceleași răspunsuri; Ce înlocuitor să folosiți la începutul deciziilor cred că este evident. De ce am ales exemple de același tip? Deseori găsite în rolul lor. Mai des, poate, doar ceva de genul .

Dar nu întotdeauna, când sub funcțiile arctangente, sinus, cosinus, exponențial și alte funcții există o rădăcină a unei funcții liniare, trebuie să utilizați mai multe metode simultan. Într-un număr de cazuri, este posibil să „coboare ușor”, adică imediat după înlocuire, se obține o integrală simplă, care poate fi luată într-un mod elementar. Cea mai ușoară dintre sarcinile propuse mai sus este Exemplul 4, în care, după înlocuire, se obține o integrală relativ simplă.

Prin reducerea integralei la sine

O metodă inteligentă și frumoasă. Să aruncăm o privire la clasicii genului:

Exemplul 5

Aflați integrala nedefinită

Sub rădăcină este un binom pătratic, iar încercarea de a integra acest exemplu poate da ceainicului o bătaie de cap ore în șir. O astfel de integrală este luată în părți și redusă la sine. În principiu, nu este dificil. Dacă știi cum.

Să notăm integrala luată în considerare printr-o literă latină și să începem soluția:

Să integrăm pe părți:

(1) Pregătiți funcția integrand pentru împărțirea termen cu termen.

(2) Împărțim termenul funcției integrand cu termen. Poate că nu este clar pentru toată lumea, dar îl voi descrie mai detaliat:

(3) Folosim proprietatea de liniaritate a integralei nedefinite.

(4) Luați ultima integrală (logaritmul „lung”).

Acum să ne uităm la începutul soluției:

Iar la final:

Ce s-a întâmplat? Ca urmare a manipulărilor noastre, integrala a fost redusă la sine!

Să echivalăm începutul și sfârșitul:

Deplasați-vă în partea stângă cu o schimbare de semn:

Și le mutăm pe cele două în partea dreaptă. Ca urmare:

Constanta, strict vorbind, ar fi trebuit adăugată mai devreme, dar am adăugat-o la sfârșit. Recomand cu tărie să citiți care este rigoarea aici:

Nota: Mai strict, etapa finală a soluției arată astfel:

Astfel:

Constanta poate fi redesemnată prin . De ce poate fi redenumit? Pentru că încă o acceptă orice valori, iar în acest sens nu există nicio diferență între constante și.
Ca urmare:

Un truc similar cu renotare constantă este utilizat pe scară largă în ecuatii diferentiale. Și acolo voi fi strict. Și aici permit o astfel de libertate doar pentru a nu vă încurca cu lucruri inutile și pentru a concentra atenția tocmai asupra metodei de integrare în sine.

Exemplul 6

Aflați integrala nedefinită

O altă integrală tipică pentru soluție independentă. Soluție completă și răspuns la sfârșitul lecției. Va fi o diferență cu răspunsul din exemplul anterior!

Dacă sub rădăcina pătrată există un trinom pătrat, atunci soluția se rezumă în orice caz la două exemple analizate.

De exemplu, luați în considerare integrala . Tot ce trebuie să faci este mai întâi selectați un pătrat complet:
.
În continuare, se efectuează o înlocuire liniară, care face „fără consecințe”:
, rezultând integrala . Ceva familiar, nu?

Sau acest exemplu, cu un binom pătratic:
Selectați un pătrat complet:
Și, după înlocuirea liniară, obținem integrala, care se rezolvă și folosind algoritmul deja discutat.

Să ne uităm la două exemple tipice despre cum să reduceți o integrală la sine:
– integrală a exponenţialului înmulţit cu sinus;
– integrală a exponenţialului înmulţit cu cosinus.

În integralele enumerate pe părți va trebui să integrați de două ori:

Exemplul 7

Aflați integrala nedefinită

Integrandul este exponențialul înmulțit cu sinusul.

Integram de două ori pe părți și reducem integrala la sine:


Ca urmare a dublei integrări pe părți, integrala a fost redusă la sine. Echivalăm începutul și sfârșitul soluției:

O mutam în partea stângă cu o schimbare de semn și ne exprimăm integrala:

Gata. În același timp, este indicat să pieptănați partea dreaptă, adică. scoateți exponentul din paranteze, iar între paranteze plasați sinusul și cosinusul într-o ordine „frumoasă”.

Acum să revenim la începutul exemplului, sau mai precis, la integrarea pe părți:

Am desemnat exponentul ca. Se pune întrebarea: este exponentul care trebuie notat întotdeauna cu? Nu neapărat. De fapt, în integrala considerată fundamental nu contează, ce înțelegem prin , am fi putut merge în altă direcție:

De ce este posibil acest lucru? Deoarece exponențialul se transformă în sine (atât în ​​timpul diferențierii, cât și în timpul integrării), sinusul și cosinusul se transformă reciproc unul în celălalt (din nou, atât în ​​timpul diferențierii, cât și în timpul integrării).

Adică putem desemna și o funcție trigonometrică. Dar, în exemplul luat în considerare, acest lucru este mai puțin rațional, deoarece vor apărea fracții. Dacă doriți, puteți încerca să rezolvați acest exemplu folosind a doua metodă, răspunsurile trebuie să se potrivească.

Exemplul 8

Aflați integrala nedefinită

Acesta este un exemplu de rezolvat singur. Înainte de a vă decide, gândiți-vă ce este mai avantajos în acest caz să desemnați ca , o funcție exponențială sau o funcție trigonometrică? Soluție completă și răspuns la sfârșitul lecției.

Și, desigur, nu uitați că majoritatea răspunsurilor din această lecție sunt destul de ușor de verificat prin diferențiere!

Exemplele luate în considerare nu au fost cele mai complexe. În practică, integralele sunt mai frecvente acolo unde constanta este atât în ​​exponent, cât și în argumentul funcției trigonometrice, de exemplu: . Mulți oameni se vor încurca într-o astfel de integrală, iar eu deseori mă confund. Faptul este că există o mare probabilitate de apariție a fracțiilor în soluție și este foarte ușor să pierzi ceva prin nepăsare. În plus, există o mare probabilitate de eroare în semne, rețineți că exponentul are semnul minus, iar acest lucru introduce o dificultate suplimentară.

În etapa finală, rezultatul este adesea cam așa:

Chiar și la sfârșitul soluției, ar trebui să fii extrem de atent și să înțelegi corect fracțiile:

Integrarea fracțiilor complexe

Ne apropiem încet de ecuatorul lecției și începem să luăm în considerare integralele fracțiilor. Din nou, nu toate sunt super complexe, doar că dintr-un motiv sau altul exemplele au fost puțin „off topic” în alte articole.

Continuând tema rădăcinilor

Exemplul 9

Aflați integrala nedefinită

În numitorul de sub rădăcină există un trinom pătratic plus un „apendice” sub forma unui „X” în afara rădăcinii. O integrală de acest tip poate fi rezolvată folosind o substituție standard.

Noi decidem:

Înlocuirea aici este simplă:

Să ne uităm la viața după înlocuire:

(1) După înlocuire, reducem termenii de sub rădăcină la un numitor comun.
(2) O scoatem de sub rădăcină.
(3) Numătorul și numitorul se reduc cu . În același timp, sub rădăcină, am rearanjat termenii într-o ordine convenabilă. Cu ceva experiență, pașii (1), (2) pot fi săriți prin efectuarea orală a acțiunilor comentate.
(4) Integrala rezultată, după cum vă amintiți din lecție Integrarea unor fracții, se decide metoda de extracție a pătratului complet. Selectați un pătrat complet.
(5) Prin integrare obținem un logaritm „lung” obișnuit.
(6) Efectuăm înlocuirea inversă. Dacă inițial , apoi înapoi: .
(7) Acțiunea finală are drept scop îndreptarea rezultatului: sub rădăcină aducem din nou termenii la un numitor comun și îi scoatem de sub rădăcină.

Exemplul 10

Aflați integrala nedefinită

Acesta este un exemplu de rezolvat singur. Aici se adaugă o constantă la singurul „X”, iar înlocuirea este aproape aceeași:

Singurul lucru pe care trebuie să-l faceți în plus este să exprimați „x” de la înlocuirea care se efectuează:

Soluție completă și răspuns la sfârșitul lecției.

Uneori, într-o astfel de integrală poate exista un binom pătratic sub rădăcină, acest lucru nu schimbă metoda de soluție, va fi și mai simplu. Simțiți diferența:

Exemplul 11

Aflați integrala nedefinită

Exemplul 12

Aflați integrala nedefinită

Scurte soluții și răspunsuri la sfârșitul lecției. Trebuie remarcat faptul că Exemplul 11 ​​este exact integrală binomială, a cărui metodă de rezolvare a fost discutată la clasă Integrale ale funcțiilor iraționale.

Integrală a unui polinom necompunebil de gradul 2 la putere

(polinom la numitor)

Un tip mai rar de integrală, dar întâlnită totuși în exemple practice.

Exemplul 13

Aflați integrala nedefinită

Dar să revenim la exemplul cu numărul norocos 13 (sincer, nu am ghicit corect). Această integrală este, de asemenea, una dintre cele care pot fi destul de frustrante dacă nu știi cum să rezolvi.

Soluția începe cu o transformare artificială:

Cred că toată lumea înțelege deja cum se împarte numărătorul la numitor termen cu termen.

Integrala rezultată este luată în părți:

Pentru o integrală de forma ( – număr natural) derivăm recurent formula de reducere:
, Unde – integrală de un grad mai mic.

Să verificăm validitatea acestei formule pentru integrala rezolvată.
În acest caz: , , folosim formula:

După cum puteți vedea, răspunsurile sunt aceleași.

Exemplul 14

Aflați integrala nedefinită

Acesta este un exemplu de rezolvat singur. Soluția eșantion utilizează formula de mai sus de două ori consecutiv.

Dacă sub gradul este indivizibil trinom pătrat, atunci soluția este redusă la un binom prin izolarea pătratului perfect, de exemplu:

Ce se întâmplă dacă există un polinom suplimentar în numărător? În acest caz, se utilizează metoda coeficienților nedeterminați, iar integrandul este extins într-o sumă de fracții. Dar în practica mea există un astfel de exemplu niciodată întâlnit, așa că am ratat acest caz în articol Integrale ale funcțiilor fracționale-raționale, îl voi omite acum. Dacă încă întâlniți o astfel de integrală, uitați-vă la manual - totul este simplu acolo. Nu cred că este indicat să includem materiale (chiar simple), probabilitatea de întâlnire care tinde spre zero.

Integrarea funcțiilor trigonometrice complexe

Adjectivul „complex” pentru majoritatea exemplelor este din nou în mare măsură condiționat. Să începem cu tangente și cotangente în puteri mari. Din punctul de vedere al metodelor de rezolvare folosite, tangenta și cotangenta sunt aproape același lucru, așa că voi vorbi mai mult despre tangentă, ceea ce înseamnă că metoda demonstrată de rezolvare a integralei este valabilă și pentru cotangente.

În lecția de mai sus ne-am uitat substituție trigonometrică universală pentru rezolvarea unui anumit tip de integrale ale funcţiilor trigonometrice. Dezavantajul substituției trigonometrice universale este că utilizarea sa duce adesea la integrale greoaie cu calcule dificile. Și în unele cazuri, înlocuirea trigonometrică universală poate fi evitată!

Să luăm în considerare un alt exemplu canonic, integrala unuia împărțită la sinus:

Exemplul 17

Aflați integrala nedefinită

Aici puteți utiliza substituția trigonometrică universală și puteți obține răspunsul, dar există o modalitate mai rațională. Voi oferi soluția completă cu comentarii pentru fiecare pas:

(1) Folosim formula trigonometrică pentru sinusul unui unghi dublu.
(2) Efectuăm o transformare artificială: Împărțim la numitor și înmulțim cu .
(3) Folosind formula binecunoscută la numitor, transformăm fracția într-o tangentă.
(4) Aducem funcția sub semnul diferențial.
(5) Luați integrala.

Câteva exemple simple pe care le puteți rezolva singur:

Exemplul 18

Aflați integrala nedefinită

Notă: primul pas ar trebui să fie utilizarea formulei de reducere și efectuați cu atenție acțiuni similare cu exemplul anterior.

Exemplul 19

Aflați integrala nedefinită

Ei bine, acesta este un exemplu foarte simplu.

Soluții complete și răspunsuri la sfârșitul lecției.

Cred că acum nimeni nu va avea probleme cu integralele:
etc.

Care este ideea metodei? Ideea este de a folosi transformări și formule trigonometrice pentru a organiza doar tangente și derivata tangentă în integrand. Adică vorbim despre înlocuirea: . În exemplele 17-19 am folosit de fapt această înlocuire, dar integralele au fost atât de simple încât ne-am descurcat cu o acțiune echivalentă - subsumând funcția sub semnul diferențial.

Raționament similar, așa cum am menționat deja, poate fi efectuat pentru cotangentă.

Există, de asemenea, o condiție prealabilă formală pentru aplicarea înlocuirii de mai sus:

Suma puterilor cosinusului și sinusului este un număr întreg negativ PAR, De exemplu:

pentru integrală – un număr întreg negativ PAR.

! Nota : dacă integrandul conține DOAR un sinus sau DOAR un cosinus, atunci integrala este luată și pentru un grad impar negativ (cele mai simple cazuri sunt în Exemplele nr. 17, 18).

Să ne uităm la câteva sarcini mai semnificative bazate pe această regulă:

Exemplul 20

Aflați integrala nedefinită

Suma puterilor sinusului și cosinusului: 2 – 6 = –4 este un număr întreg negativ PAR, ceea ce înseamnă că integrala poate fi redusă la tangente și derivata ei:

(1) Să transformăm numitorul.
(2) Folosind formula binecunoscută, obținem .
(3) Să transformăm numitorul.
(4) Folosim formula .
(5) Aducem funcția sub semnul diferențial.
(6) Efectuăm înlocuirea. Este posibil ca studenții mai experimentați să nu efectueze înlocuirea, dar este totuși mai bine să înlocuiți tangenta cu o singură literă - există mai puțin risc de confuzie.

Exemplul 21

Aflați integrala nedefinită

Acesta este un exemplu de rezolvat singur.

Stai acolo, rundele campionatului sunt pe cale să înceapă =)

Adesea, integrandul conține un „mezul”:

Exemplul 22

Aflați integrala nedefinită

Această integrală conține inițial o tangentă, care duce imediat la un gând deja familiar:

Voi lăsa transformarea artificială chiar de la început și pașii rămași fără comentarii, deoarece totul a fost deja discutat mai sus.

Câteva exemple creative pentru propria dvs. soluție:

Exemplul 23

Aflați integrala nedefinită

Exemplul 24

Aflați integrala nedefinită

Da, în ele, desigur, puteți reduce puterile sinusului și cosinusului și puteți utiliza substituția trigonometrică universală, dar soluția va fi mult mai eficientă și mai scurtă dacă este efectuată prin tangente. Soluție completă și răspunsuri la sfârșitul lecției

Cele mai bune articole pe această temă