Как настроить смартфоны и ПК. Информационный портал
  • Главная
  • Windows 10
  • Реле модуль подключение к Arduino. Управление реле с помощью Arduino

Реле модуль подключение к Arduino. Управление реле с помощью Arduino

Подключение модуля реле к Ардуино потребуется, если вы решите управлять с помощью микроконтроллера мощной нагрузкой или переменным током. Модуль реле SRD-05VDC-SL-C позволяет управлять электрическими цепями с переменным током до 250 Вольт и нагрузкой до 10 Ампер. Рассмотрим схему подключения реле, как управлять модулем для включения светодиодной ленты и лампы накаливания.

Реле SRD-05VDC-SL-C описание и схема

Реле – это электромеханическое устройство, которое служит для замыкания и размыкания электрической цепи с помощью электромагнита. Принцип работы силового реле srd-05vdc очень прост. При подаче управляющего напряжения на электромагнитную катушку, в ней возникает электромагнитное поле, которое притягивает металлическую лапку и контакты мощной нагрузки замыкаются.

Если контакты реле замыкаются при подаче управляющего напряжения, то такое реле называют замыкающим. Если при подаче управляющего напряжения контакты реле размыкаются, а в нормальном состоянии контакты сомкнуты, то реле называется размыкающим. Также реле бывают постоянного и переменного тока, одноканальными, многоканальными и переключающими. Принцип действия у всех одинаковый.

Согласно характеристикам реле SRD-05VDC-SL-C, для переключения контактов достаточно около 5 Вольт 20 мА, выводы на Ардуино способны выдавать до 40 мА. Таким образом с помощью Ардуино мы можем управлять не только лампой накаливания, но и любым бытовым прибором — обогревателем, холодильником и т.д. Полевые транзисторы на Ардуино могут управлять токами только до 100 Вольт.

Схема подключения реле к Arduino UNO

Для занятия нам понадобятся следующие детали:

  • плата Arduino Uno / Arduino Nano / Arduino Mega;
  • блок питания 12 Вольт;
  • светодиодная лента;
  • провода «папа-папа» и «папа-мама».

Соберите схему, как показано на картинке выше. Подобная схема использовалась в проекте Светильник с управлением от пульта , где светодиодная лента включалась при помощи реле. Модуль имеет три контакта для управления от микроконтроллера Ардуино и два контакта для подключения мощной электрической цепи. Схема подключения реле к Ардуино УНО, Нано или Ардуино Мега ничем не отличается:

GND — GND
VCC — 5V
In — любой цифровой порт

После сборки электрической схемы, загрузите следующий скетч в микроконтроллер. Данная программа ничем не отличается от скетча для мигания светодиода на Ардуино, мы только поменяли в скетче порт и задали большее время задержки.

Скетч для управления реле от Ардуино

void setup () { pinMode (3, OUTPUT ); // объявляем пин 3 как выход } void loop () { digitalWrite (3, HIGH ); // замыкаем реле delay (3000); // ждем 3 секунды digitalWrite (3, LOW ); // размыкаем реле delay (1000); // ждем 1 секунду }

После загрузки скетча включите блок питания в цепь. Реле при этом должно устанавливаться в разрыве одного из проводов, идущего к LED ленте. Для безопасности лучше устанавливать реле в провод заземления. К минусам реле следует отнести щелчки при замыкании/размыкании контакта, поэтому для включения LED ленты и других приборов до 40 Вольт удобнее использовать транзисторы.

Видео. Управление LED лентой через реле

Реле может использоваться для создания автоматического светильника, где используется лампа накаливания 200 Вольт, а контроллер включает лампу, когда уровень освещенности в помещении станет меньше заданной величины. Также можно сделать автоматическое управление электрообогревателем в комнате.

Также часто читают:

Шилд блока реле 4 канала для Arduino UNO R3 и MEGA 2560

Реле — это электромеханические устройства, замыкающие и/или размыкающие контакты внешней электрической цепи при подаче в обмотку реле управляющего электрического тока. Этот ток порождает магнитное поле, вызывающее перемещение ферромагнитного якоря реле, механически связанного с электрическими контактами внешней электрической цепи. Последующее перемещение контактов коммутирует эту цепь.
К реле можно подключить лампочку, вентилятор, электромагнитный клапан для управление поливом и программно управлять этими устройствами изменением состояния на цифровых выводах Arduino.
Relay Shield — плата расширения для Arduino, на которой расположены 4 независимых реле TIANBO, подключённых к цифровым пинам Arduino. Это реле управляется напряжением 5 вольт и способно коммутировать до 3 ампер постоянного тока напряжением 24 В и переменного тока напряжением 125 В.

Для управления 4 реле платы используются следующие выводы Arduino - D4, D5, D6, D7.. При подключении каждого вывода Arduino к схеме переключения реле используется гальваническая развязка, что предотвращает внешние наводки при включении/выключении, подключенной к реле нагрузки. В схеме реле используется транзистор p-n-p типа, для его открытия нужно подать на базу минус. Для этого используем функцию digitalWrite(pin, LOW). Транзистор будет открыт и через управляющую цепь потечет ток и реле сработает. Для отключения реле следует закрыть транзистор, подав на базу плюс, вызвав функцию digitalWrite(pin, HIGH).
О текущем состоянии каждого из них можно судить по индикаторным светодиодам, расположенным на плате. К каждому реле подведён клеммник на 3 провода, что позволяет использовать реле как в режиме "нормально разомкнутое", так и в режиме "нормально замкнутое".
В отличие от большиства модулей реле для Arduino, данная плата сделана в формате шилда, что значительно эконимит место и увеличивает надежность контакта между Arduino и реле.

Характеристики реле
Ток обмотки: 80 мА;
Максимальное коммутируемое напряжение: 24 В постоянного тока; 125 В переменного тока;
Максимальный коммутируемый ток: 3 А;
Рекомендованная частота переключения: до 1 Гц;
Время жизни: не менее 50 000 переключений.

Рассмотрим пример использования Relay Shield. Подключим к реле лампу освещения, которая будет включаться/выключаться в зависимости от освещенности помещения. В качестве датчика освещенности помещения будем использовать фоторезистор. Схема соединений.

// Используемый вывод для реле
#define PIN_RELAY 7
// Пин подключения фоторезистора
#define PIN_PHOTORESISTOR A0
// переменная для хранения показаний фоторезистора
int val_photo;
// граничное значение освещенности
#define VAL_PHOTO_ON 220
#define VAL_PHOTO_OFF 520

Void setup(void)
{
// подключение последовательного порта
Serial.begin(9600);
// настроить вывод реле как OUTPUT
pinMode(PIN_RELAY,OUTPUT);
// включить свет
digitalWrite(PIN_RELAY,LOW);
}
void loop(void)
{
// получение данных с фоторезистора
val_photo=analogRead(PIN_PHOTORESISTOR);
// включить
if(val_photo< VAL_PHOTO_ON)
digitalWrite(PIN_RELAY,LOW);
// выключить
else if(val_photo< VAL_PHOTO_OFF)
digitalWrite(PIN_RELAY,HIGH);
// пауза перед следующим измерением
delay(5000);

Цифровые пины на Arduino могут принимать значения high или low. Именно это свойство используется для управления большинством внешних двигателей, датчиков и т.п.

Но иногда возникают ограничения, связанные с тем, что устройсва требуют большие токи, чем может предоставить Arduino. Судя по спеку, платы Arduino предоставляют нам в распоряжение всего лишь 20 мА.

Если вы слишком часто будете работать с токами, которые превышают эти рекомендации, у вас не толь будет ненадежная электрическая цепь, но можно повредить и ваш контроллер Arduino.

Вместо этого вам надо подключать необходимую силу тока. Один из вариантов - использовать реле. Кроме этого, порой вам понадобятся и транзисторы, например, TIP122, который рассмотрен в этой статье.

Необходимые узлы

Основное преимущество данного подхода: его дешевизна.

Транзистор TIP122 можно найти в любом магазине радиотехнических деталей или заказать на Aliexpress, eBay.

Автоматические реле можно купить там же.

Описание транзистора TIP122 и его распиновка

TIP122 - это биполярный транзистор. То есть для базы надо обеспечить большее позитивное напряжение, чем на эмиттере, что позволит току поступать от эмиттера к коллектору. Расположение базы, эмиттера и коллектора TIP122 показаны на рисунке ниже.

Главное, что надо помнить об этом транзисторе - то, что он позволяет протекать току в 5 А от эмиттера через коллектор и 120 мА от эмиттера через базу.

Также очень круто то, что вы можете получить разницу в 100 В между коллектором и эмиттером и 100 вольт между коллектором и базой.

Не чересчур ли это? Для большинства проектов на Arduino - действительно чересчур. Но при этом они дешевые и когда появляется новая идея, не приходится заморачиваться и подбирать нужный транзистор, так как этот наверняка подойдет. Когда проект или конструкция апробирована, можно оптимизировать уже после тестового образца.

Автоматическое реле Bosch Cube. Распиновка и описание

Эти реле могут обеспечивать различные напряжения и силу тока. То реле, о котором пойдет речь дальше обеспечивает напряжение 12 В и силу тока 20/30 А. То есть, при замкнутых контактах сила тока составляет 20А, при разомкнутых - 30 А.

Кроме того, на моем реле сопротивление катушки примерно равно 95 Ом.

Сила тока, которая нужна для катушки гораздо больше чем та, которую может предоставить Arduino, но ее становится вполне достаточно после использования транзистора TIP122, который выдает 5 А.


Схема и описание подключения Arduino, TIP122 и реле

На электросхеме, которая приведена ниже, выход high D0 подключен к базе TIP122 и благодаря этому ток может проходить к пину 86 на реле. Благодаря этому подается питание на реле и в нем замыкаются контакты 30 и 87. После этого вы можете запитывать любое ваше внешнее устройство.


Пояснения к использованию и программа для Arduino, TIP122 и автоматического реле

В этом примере мы соберем небольшую схему, в которой Arduino используется для управления автоматическим реле. После загрузки скетча на микроконтроллер, реле включится на две секунды и отключится на две секунды. Это будет продолжаться, пока вы не отключите питание от вашей платы Arduino.

Схема подключения соответствует той, которую мы рассмотрели выше. Ниже представлен ее более наглядный вариант.


Скопируйте, вставьте скетч в Arduino IDE и загрузите его на Arduino.

Перед загрузкой программы отключите внешний источник питания.

// Тест: TIP122 и Arduino

int nRelayDrive = 0; // пин 0 у нас для управления реле

pinMode(nRelayDrive, OUTPUT); // объявляем реле в качестве выхода

digitalWrite(nRelayDrive, LOW); // включаем реле

digitalWrite(nRelayDrive, HIGH); // отключаем реле

Проверка

Отключите ваш USB кабель от персонального компьютера и подключите внешний источник питания к Arduino и реле. Дайте вашему миикроконтроллеру время для перезагрузки. Если все было сделано правильно, вы должны услышать характерный клик реле, которое будет замыкать и размыкать контакт через каждые две секунды.

P.S. В данном проекте в качестве источника питания использовался аккумулятор от машины на 12 Вольт, но можно использовать и другой.

Оставляйте Ваши комментарии, вопросы и делитесь личным опытом ниже. В дискуссии часто рождаются новые идеи и проекты!

Проведена ревизия статьи, доступны Eagle файлы для скачивания, добавлены 3 варианта реле модулей.

В вашем проекте требуется включать/выключать освещение, либо что-нибудь иное, что, в силу потребляемого напряжения и тока, нельзя подключить напрямую к портам Arduino? С данной задачей отлично справится реле модуль!

Немного теории

Электромагнитное реле - устройство, замыкающее и размыкающее механические электрические контакты (зеленые точки) при подаче на обмотку реле (выводы обмотки отмечены красными точками) электрического тока.

Реле бывают различными по величине коммутируемого тока и напряжения, по количеству пар коммутационных контактов, по питающему напряжению катушки реле. Для наглядного примера остановимся на синих, знакомых глазу Ардуинщика, реле марки SONGLE SRD-05VDC. Они позволяют коммутировать до 10А 30V DC и 10A 250V AC, при подаче на обмотку реле всего 5 Вольт.


Реле модуль с транзистором в ключевом режиме

В архиве "Реле модуль DIP "

Казалось бы, раз реле включается от пяти вольт, то можно просто напросто подключить реле к цифровому выводу как светодиод. Но не всё так просто. Дело в том, что реле потребляет около 70мА, в то время как порт контроллера способен выдать лишь 20мА. Справиться с этой проблемой нам поможет биполярный транзистор + небольшая обвязка. Транзистор представляет из себя радиодеталь с тремя ногами: база, коллектор и эмиттер. В данном случае будем использовать NPN типа. Когда на базе транзистора нет сигнала - он закрыт, при появлении напряжения транзистор открывается и ток беспрепятственно течет через переход коллектор-эмиттер. С транзистором определились, переходим к обвязке.

Для корректной работы потребуются два резистора R1 и R2. R1 является токоограничительным и устанавливается для защиты порта контроллера. Во избежание ложных срабатываний, базу транзистора следует притянуть к земле резистором R2. Катушка реле является по сути своей индуктивностью, при резком обрыве тока на ней происходит скачок напряжения, который в последствии может вывести транзистор из строя. За сим следует замкнуть катушку на саму себя установив для этого диод D1 встречно напряжению.

Реле модуль с опторазвязкой

В архиве "Реле модуль DIP (оптрон) " и "Реле модуль SMD (оптрон) "

Более навороченным вариантом является реле модуль и опторазвязкой. Опторазвязка позволяет разделить цепь питания обмотки реле и сигнальную цепь Arduino.

В модулях используются широко распространенные оптроны PC817 (EL817), так что проблем с покупкой возникнуть не должно. Оптрон представляет из себя радиодеталь внутри которой находится фотодиод и фототранзистор, т.е сигнал передается через свет, Оптрон имеет 4 вывода назначение которых можно увидеть на картинке снизу.

При использовании оптрона схема не сильно усложнится. Добавится только токоограничительный резистор R1 для фотодиода. Т.к не всегда под рукой оказывается два источника питания, то на модулях было решено оставить возможность работы от одного источника путем замыкания джампера (об этом чуть ниже).

Подключение реле модуля с опторазвязкой

1. Питание от различных источников

Питание обмотки реле подключается к контактам "RV" и "RG", а управляющее к выводам "S" и "G".

2. Питание от одного источника

Замкнув джампер, мы объединили земли. Теперь модуль можно питать от одного источника.

В архиве лежат шаблоны под ЛУТ, Eagle файлы и списки деталей.

Открываем изображение => Печать => Во всю страницу

Для облегчения распайки smd компонентов с обратной стороны платы, где нет маркировки, приведу картинку.

Реле Ардуно позволяет подключить устройства, работающие в режимах с относительно большими токами или напряжения. Мы не можем напрямую подключить к плате Arduino мощные насосы, двигатели, даже обычную лампочку накаливания – плата не предназначена для такой нагрузки и работать не будет. Именно поэтому нам придется добавить в схему реле, который вы можете встретить в любом проекте. В этой статье мы поговорим о том, что такое реле, какие они бывают, как можно их подключить своем ардуино проекте.

Реле – это шлюз, который позволяет соединить вместе электрические цепи с совершенно разными параметрами. Обычный шлюз на реке соединяет водные каналы, расположенные на разной высоте, открывая или закрывая ворота. Реле в ардуино включает или выключает внешние устройства, определенным образом замыкая или размыкая отдельную электрическую сеть, в которую они подключены. С помощью ардуино и реле мы управляем процессом включения или выключения так же, как включаем или выключаем свет дома – подавая команду на замыкание или размыкание. Ардуино подает сигнал, само же замыкание или размыкание “мощной” цепи будет делать реле через специальные внутренние механизмы. Реле можно представить себе в виде дистанционного пульта, с помощью которого мы выполняем нужные действия с помощью относительно “слабых” сигналов.

Реле характеризуется следующими параметрами:

  • Напряжение или ток срабатывания.
  • Напряжение или ток отпускания.
  • Время срабатывания и отпускания.
  • Рабочие ток и напряжение.
  • Внутреннее сопротивление.

В зависимости от типа этих внутренних размыкающих механизмов и особенностях устройства можно выделить две основные группы реле: электромеханические реле (включение с помощью электромагнита) и твердотельные реле (включение через специальные полупроводниковые компоненты).

Электромагнитные и твердотельные реле

Электромагнитное реле

Электромагнитное реле – это электрическое устройство, которое механическим путем замыкает или размыкает цепь нагрузки при помощи магнита. состоит из электромагнита, подвижного якоря и переключателя. Электромагнит – это провод, который намотан на катушку из ферромагнетика. В роли якоря выступает пластина из магнитного материала. В некоторые модели устройства могут быть встроены дополнительные электронные компоненты: резистор для более точного срабатывания реле, конденсатор для уменьшения помех, диод для устранения перенапряжений.

Работает реле благодаря электромагнитной силе, возникающей в сердечники при подаче тока по виткам катушки. В исходном состоянии пружина удерживает якорь. Когда подается управляющий сигнал, магнит начинает притягивать якорь и замыкать либо размыкать цепь. При отключении напряжения якорь возвращается в начальное положение. Источниками управляющего напряжения могут быть датчики (давления, температуры и прочие), электрические микросхемы и прочие устройства, которые подают малый ток или малое напряжение.

Электромагнитное реле применяется в схемах автоматики, при управлении различными технологическими установками, электроприводами и другими устройствами. Реле предназначено для регулирования напряжений и токов, может использоваться как запоминающее или преобразующее устройство, также может фиксировать отклонения параметров от нормальных значений.

Классификация электромагнитных реле:

  • Управляющий ток может быть как постоянным, так и переменным. В первом случае устройство может быть нейтральным или поляризованным. Для переменного тока якорь выполняется из электротехнической стали, чтобы уменьшить потери.
  • Якорное или герконовое реле. Для якорного процесс замыкания и размыкания происходит при помощи перемещения якоря, для герконового характерно отсутствие сердечника, магнитное поле воздействует на электрод с контактами.
  • Быстродействие – до 50 мс, до 150 мс и от 1 с.
  • Зщитное покрытие – герметизированное, зачехленное и открытое.

По сравнению с полупроводниковыми устройствами электромагнитное реле обладает преимуществами – оно стоит недорого, коммутация большой нагрузки при небольшом размере устройства, малое выделение тепла на катушке. Из недостатков можно выделить медленное срабатывание, помехи и сложность коммутации индуктивных нагрузок.

Твердотельные реле

Твердотельные реле считаются хорошей альтернативой электромагнитным, они представляет собой модульное полупроводниковое устройство, которое производится по гибридной технологии. В составе реле имеются транзисторы, симисторы или тиристоры. По сравнению с электромагнитными устройствами твердотельные реле обладают рядом преимуществ:

  • Долгий срок эксплуатации.
  • Быстродействие.
  • Малые размеры.
  • Отсутствуют посторонние шумы, акустические помехи, дребезги контактов.
  • Низкое потребление энергии.
  • Качественная изоляция.
  • Стойкость к вибрации и ударам.
  • Нет дугового разряда, что позволяет работать во взрывоопасных местах.

Работают по следующему принципу: подается управляющий сигнал на светодиод, происходит гальваническая развязка управляющей и коммутируемой цепей, затем сигнал переходит на фотодиодную матрицу. Напряжение регулирует силовым ключом.

Твердотельные реле также имеют несколько недостатков. Во-первых, при коммутации происходит нагрев устройства. Повышение температуры устройства приводит к ограничению регулируемого тока – при температурах, превышающих 60 градусов, уменьшается величина тока, максимальная рабочая температура 80 градусов.

Твердотельные реле классифицируются по следующим признакам:

  • Тип нагрузки – однофазные и трехфазные.
  • Способ управления – коммутация происходит за счет постоянного напряжения, переменного или ручного управления.
  • Метод коммутации: контроль перехода через ноль (применяется для слабоиндуктивных, емкостных и резистивных нагрузок), случайное включение (индуктивные и резистивные нагрузки, которым необходимо мгновенное срабатывание) и фазовое управление (изменение выходного напряжения, регулировка мощности, управление лампами накаливания).

Реле в проектах Ардуино

Наиболее распространенное реле для платы Ардуино выполняется в виде модуля, например, SONGLE SRD-05VDC. Устройство управляется напряжением 5 В, может коммутировать до 10 А 30 В DC и 10 А 250 В AC.

Схема изображена на рисунке. Реле состоит из двух не связанных между собой цепей – управляющая цепь А1 и А2 и управляемая 1, 2 и 3.

Между А1 и А2 имеется металлический сердечник. Если пустить по нему электрический ток, к нему притянется якорь (2). 1, 3 – неподвижные контакты. При отсутствии тока якорь будет около контакта 3.

Подключение реле к Ардуино

Рассмотрим одноканальный модуль реле. Он имеет всего 3 контакта, подключаются они к Ардуино Uno следующим образом: GND – GND, VCC – +5V, In – 3. Вход реле – инвертирован, так что высокий уровень на In выключает катушку, а низкий – включает.

Светодиоды нужны для индикации – при загорании красного LED1 подается напряжение на реле, при загорании зеленого LED2 происходит замыкание. Когда включается микроконтроллер, транзистор закрыт. Для его открытия на базу нужен минус, подается при помощи функции digitalWrite(pin, LOW);. Транзистор открывается, протекает ток через цепь, реле срабатывает. Чтобы его выключить, на базу подается плюс при помощи digitalWrite(pin, HIGH);.

Лучшие статьи по теме