Как настроить смартфоны и ПК. Информационный портал

Написать слово двоичным кодом. Двоичный код

08. 06.2018

Блог Дмитрия Вассиярова.

Двоичный код — где и как применяется?

Сегодня я по-особому рад своей встрече с вами, дорогие мои читатели, ведь я чувствую себя учителем, который на самом первом уроке начинает знакомить класс с буквами и цифрами. А поскольку мы живем в мире цифровых технологий, то я расскажу вам, что такое двоичный код, являющийся их основой.

Начнем с терминологии и выясним, что означит двоичный. Для пояснения вернемся к привычному нам исчислению, которое называется «десятичным». То есть, мы используем 10 знаков-цифр, которые дают возможность удобно оперировать различными числами и вести соответствующую запись.

Следуя этой логике, двоичная система предусматривает использование только двух знаков. В нашем случае, это всего лишь «0» (ноль) и «1» единица. И здесь я хочу вас предупредить, что гипотетически на их месте могли бы быть и другие условные обозначения, но именно такие значения, обозначающие отсутствие (0, пусто) и наличие сигнала (1 или «палочка»), помогут нам в дальнейшем уяснить структуру двоичного кода.

Зачем нужен двоичный код?

До появления ЭВМ использовались различные автоматические системы, принцип работы которых основан на получении сигнала. Срабатывает датчик, цепь замыкается и включается определенное устройство. Нет тока в сигнальной цепи – нет и срабатывания. Именно электронные устройства позволили добиться прогресса в обработке информации, представленной наличием или отсутствием напряжения в цепи.

Дальнейшее их усложнение привело к появлению первых процессоров, которые так же выполняли свою работу, обрабатывая уже сигнал, состоящий из импульсов, чередующихся определенным образом. Мы сейчас не будем вникать в программные подробности, но для нас важно следующее: электронные устройства оказались способными различать заданную последовательность поступающих сигналов. Конечно, можно и так описать условную комбинацию: «есть сигнал»; «нет сигнала»; «есть сигнал»; «есть сигнал». Даже можно упростить запись: «есть»; «нет»; «есть»; «есть».

Но намного проще обозначить наличие сигнала единицей «1», а его отсутствие – нулем «0». Тогда мы вместо всего этого сможем использовать простой и лаконичный двоичный код: 1011.

Безусловно, процессорная техника шагнула далеко вперед и сейчас чипы способны воспринимать не просто последовательность сигналов, а целые программы, записанные определенными командами, состоящими из отдельных символов.

Но для их записи используется все тот же двоичный код, состоящий из нулей и единиц, соответствующий наличию или отсутствию сигнала. Есть он, или его нет – без разницы. Для чипа любой из этих вариантов – это единичная частичка информации, которая получила название «бит» (bit — официальная единица измерения).

Условно, символ можно закодировать последовательностью из нескольких знаков. Двумя сигналами (или их отсутствием) можно описать всего четыре варианта: 00; 01;10; 11. Такой способ кодирования называется двухбитным. Но он может быть и:

  • Четырехбитным (как в примере на абзац выше 1011) позволяет записать 2^4 = 16 комбинаций-символов;
  • Восьмибитным (например: 0101 0011; 0111 0001). Одно время он представлял наибольший интерес для программирования, поскольку охватывал 2^8 = 256 значений. Это давало возможность описать все десятичные цифры, латинский алфавит и специальные знаки;
  • Шестнадцатибитным (1100 1001 0110 1010) и выше. Но записи с такой длинной – это уже для современных более сложных задач. Современные процессоры используют 32-х и 64-х битную архитектуру;

Скажу честно, единой официальной версии нет, то так сложилось, что именно комбинация из восьми знаков стала стандартной мерой хранящейся информации, именуемой «байт». Таковая могла применяться даже к одной букве, записанной 8-и битным двоичным кодом. Итак, дорогие мои друзья, запомните пожалуйста (если кто не знал):

8 бит = 1 байт.

Так принято. Хотя символ, записанный 2-х или 32-х битным значением так же номинально можно назвать байтом. Кстати, благодаря двоичному коду мы можем оценивать объемы файлов, измеряемые в байтах и скорость передачи информации и интернета (бит в секунду).

Бинарная кодировка в действии

Для стандартизации записи информации для компьютеров было разработано несколько кодировочных систем, одна из которых ASCII, базирующаяся на 8-и битной записи, получила широкое распространение. Значения в ней распределены особым образом:

  • первый 31 символ – управляющие (с 00000000 по 00011111). Служат для служебных команд, вывода на принтер или экран, звуковых сигналов, форматирования текста;
  • следующие с 32 по 127 (00100000 – 01111111) латинский алфавит и вспомогательные символы и знаки препинания;
  • остальные, до 255-го (10000000 – 11111111) – альтернативная, часть таблицы для специальных задач и отображения национальных алфавитов;

Расшифровка значений в ней показано в таблице.

Если вы считаете, что «0» и «1» расположены в хаотичном порядке, то глубоко ошибаетесь. На примере любого числа я вам покажу закономерность и научу читать цифры, записанные двоичным кодом. Но для этого примем некоторые условности:

  • Байт из 8 знаков будем читать справа налево;
  • Если в обычных числах у нас используются разряды единиц, десятков, сотен, то здесь (читая в обратном порядке) для каждого бита представлены различные степени «двойки»: 256-124-64-32-16-8- 4-2-1;
  • Теперь смотрим на двоичный код числа, например 00011011. Там, где в соответствующей позиции есть сигнал «1» – берем значения этого разряда и суммируем их привычным способом. Соответственно: 0+0+0+32+16+0+2+1 = 51. В правильности данного метода вы можете убедиться, взглянув на таблицу кодов.

Теперь, мои любознательные друзья, вы не только знаете что такое двоичный код, но и умеете преобразовать зашифрованную им информацию.

Язык, понятный современной технике

Конечно, алгоритм считывания двоичного кода процессорными устройствами намного сложнее. Но зато его помощью можно записать все что угодно:

  • Текстовую информацию с параметрами форматирования;
  • Числа и любые операции с ними;
  • Графические и видео изображения;
  • Звуки, в том числе и выходящие и за предел нашей слышимости;

Помимо этого, благодаря простоте «изложения» возможны различные способы записи бинарной информации:

  • Изменением магнитного поля на ;
  • Дополняет преимущества двоичного кодирования практически неограниченные возможности по передаче информации на любые расстояния. Именно такой способ связи используется с космическими кораблями и искусственными спутниками.

    Так что, сегодня двоичная система счисления является языком, понятным большинству используемых нами электронных устройств. И что самое интересное, никакой другой альтернативы для него пока не предвидится.

    Думаю, что изложенной мною информации для начала вам будет вполне достаточно. А дальше, если возникнет такая потребность, каждый сможет углубиться в самостоятельное изучение этой темы.

    Я же буду прощаться и после небольшого перерыва подготовлю для вас новую статью моего блога, на какую-нибудь интересную тему.

    Лучше, если вы сами ее мне подскажите;)

    До скорых встреч.

    Двоичный код - это подача информации путем сочетания символов 0 или 1. Порою бывает очень сложно понять принцип кодирования информации в виде этих двух чисел, однако мы постараемся все подробно разъяснить.

    Кстати, на нашем сайте вы можете перевести любой текст в десятичный, шестнадцатеричный, двоичный код воспользовавшись Калькулятором кодов онлайн .

    Видя что-то впервые, мы зачастую задаемся логичным вопросом о том, как это работает. Любая новая информация воспринимается нами, как что-то сложное или созданное исключительно для разглядываний издали, однако для людей, желающих узнать подробнее о двоичном коде , открывается незамысловатая истина - бинарный код вовсе не сложный для понимания, как нам кажется. К примеру, английская буква T в двоичной системе приобретет такой вид - 01010100, E - 01000101 и буква X - 01011000. Исходя из этого, понимаем, что английское слово TEXT в виде двоичного кода будет выглядеть таким вот образом: 01010100 01000101 01011000 01010100. Компьютер понимает именно такое изложение символов для данного слова, ну а мы предпочитаем видеть его в изложении букв алфавита.

    На сегодняшний день двоичный код активно используется в программировании, поскольку работают вычислительные машины именно благодаря ему. Но программирование не свелось до бесконечного набора нулей и единиц. Поскольку это достаточно трудоемкий процесс, были приняты меры для упрощения понимания между компьютером и человеком. Решением проблемы послужило создание языков программирования (бейсик, си++ и т.п.). В итоге программист пишет программу на языке, который он понимает, а потом программа-компилятор переводит все в машинный код, запуская работу компьютера.

    Перевод натурального числа десятичной системы счисления в двоичную систему.

    Чтобы перевести числа из десятичной системы счисления в двоичную пользуются "алгоритмом замещения", состоящим из такой последовательности действий:

    1. Выбираем нужное число и делим его на 2. Если результат деления получился с остатком, то число двоичного кода будет 1, если остатка нет - 0.

    2. Откидывая остаток, если он есть, снова делим число, полученное в результате первого деления, на 2. Устанавливаем число двоичной системы в зависимости от наличия остатка.

    3. Продолжаем делить, вычисляя число двоичной системы из остатка, до тех пор, пока не дойдем до числа, которое делить нельзя - 0.

    4. В этот момент считается, что двоичный код готов.

    Для примера переведем в двоичную систему число 7:

    1. 7: 2 = 3.5. Поскольку остаток есть, записываем первым числом двоичного кода 1.

    2. 3: 2 = 1.5. Повторяем процедуру с выбором числа кода между 1 и 0 в зависимости от остатка.

    3. 1: 2 = 0.5. Снова выбираем 1 по тому же принципу.

    4. В результате получаем, переведенный из десятичной системы счисления в двоичную, код - 111.

    Таким образом можно переводить бесконечное множество чисел. Теперь попробуем сделать наоборот - перевести число из двоичной в десятичную.

    Перевод числа двоичной системы в десятичную.

    Для этого нам нужно пронумеровать наше двоичное число 111 с конца, начиная нулем. Для 111 это 1^2 1^1 1^0. Исходя из этого, номер для числа послужит его степенем. Далее выполняем действия по формуле: (x * 2^y) + (x * 2^y) + (x * 2^y), где x - порядковое число двоичного кода, а y - степень этого числа. Подставляем наше двоичное число под эту формулу и считаем результат. Получаем: (1 * 2^2) + (1 * 2^1) + (1 * 2^0) = 4 + 2 + 1 = 7.

    Немного из истории двоичной системы счисления.

    Принято считать, что впервые двоичную систему предложил Готфрид Вильгельм Лейбниц, который считал систему полезной в сложных математических вычислениях и науке. Но по неким данным, до его предложения о двоичной системе счисления, в Китае появилась настенная надпись, которая расшифровывалась при использовании двоичного кода . На надписи были изображены длинные и короткие палочки. Предполагая, что длинная это 1, а короткая палочка - 0, есть доля вероятности, что в Китае идея двоичного кода существовала многим ранее его официального открытия. Расшифровка кода определила там только простое натуральное число, однако это факт, который им и остается.

    Tool to make binary conversions. Binary code is a numeric system using base 2 used in informatics, symbols used in binary notation are generally zero and one (0 and 1).

    Answers to Questions

    You can edit this Q&A (add new info, improve translation, etc.) " itemscope="" itemtype="http://schema.org/Question">

    How to convert a number in binary?

    To convert a number to binary (with zeroes and ones) consists in a from base 10 to base 2 (natural binary code )

    Example: 5 (base 10) = 1*2^2+0*2^1+1*2^0 = 101 (base 2)

    The method consists in making successive divisions by 2 and noting the remainder (0 or 1 ) in the reverse order.

    Example: 6/2 = 3 remains 0, then 3/2 = 1 remains 1, then 1/2 = 0 remains 1. The successive remainders are 0,1,1 so 6 is written 110 in binary .

    You can edit this Q&A (add new info, improve translation, etc.) " itemscope="" itemtype="http://schema.org/Question">

    How to convert a text in binary?

    Associate with each letter of the alphabet a number, for example by using the code or the . This will replace each letter by a number that can then be converted to binary (see above).

    Example: AZ is 65,90 () so 1000001,1011010 in binary

    Similarly for binary to text translation, convert the binary to a number and then associate that number with a letter in the desired code.

    You can edit this Q&A (add new info, improve translation, etc.) " itemscope="" itemtype="http://schema.org/Question">

    How to translate binary

    The binary does not directly translate, any number encoded in binary remains a number. On the other hand, it is common in computer science to use binary to store text, for example by using the table, which associates a number with a letter. An translator is available on dCode.

    You can edit this Q&A (add new info, improve translation, etc.) " itemscope="" itemtype="http://schema.org/Question">

    What is a bit?

    A bit (contraction of binary digit) is a symbol in the binary notation: 0 or 1.

    You can edit this Q&A (add new info, improve translation, etc.) " itemscope="" itemtype="http://schema.org/Question">

    What is 1"s complement?

    In informatics, one"s complement is writing a number negatively inversing 0 and 1.

    Example: 0111 becomes 1000, so 7 becomes -7

    You can edit this Q&A (add new info, improve translation, etc.) " itemscope="" itemtype="http://schema.org/Question">

    What is 2"s complement?

    In informatics, one"s complement is writing a number negatively inversing 0 and 1 and adding 1.

    Example: 0111 becomes 1001

    Ask a new question

    Source code

    dCode retains ownership of the source code of the script Binary Code online. Except explicit open source licence (indicated Creative Commons / free), any algorithm, applet, snippet, software (converter, solver, encryption / decryption, encoding / decoding, ciphering / deciphering, translator), or any function (convert, solve, decrypt, encrypt, decipher, cipher, decode, code, translate) written in any informatic langauge (PHP, Java, C#, Python, Javascript, Matlab, etc.) which dCode owns rights will not be released for free. To download the online Binary Code script for offline use on PC, iPhone or Android, ask for price quote on

    Компьютеры не понимают слов и цифр так, как это делают люди. Современное программное обеспечение позволяет конечному пользователю игнорировать это, но на самых низких уровнях ваш компьютер оперирует двоичным электрическим сигналом, который имеет только два состояния : есть ток или нет тока. Чтобы «понять» сложные данные, ваш компьютер должен закодировать их в двоичном формате.

    Двоичная система основывается на двух цифрах – 1 и 0, соответствующим состояниям включения и выключения, которые ваш компьютер может понять. Вероятно, вы знакомы с десятичной системой. Она использует десять цифр – от 0 до 9, а затем переходит к следующему порядку, чтобы сформировать двузначные числа, причем цифра из каждого следующего порядка в десять раз больше, чем предыдущая. Двоичная система аналогична, причем каждая цифра в два раза больше, чем предыдущая.

    Подсчет в двоичном формате

    В двоичном выражении первая цифра равноценна 1 из десятичной системы. Вторая цифра равна 2, третья – 4, четвертая – 8, и так далее – удваивается каждый раз. Добавление всех этих значений даст вам число в десятичном формате.

    1111 (в двоичном формате) = 8 + 4 + 2 + 1 = 15 (в десятичной системе)

    Учет 0 даёт нам 16 возможных значений для четырех двоичных битов. Переместитесь на 8 бит, и вы получите 256 возможных значений. Это занимает намного больше места для представления, поскольку четыре цифры в десятичной форме дают нам 10000 возможных значений. Конечно, бинарный код занимает больше места, но компьютеры понимают двоичные файлы намного лучше, чем десятичную систему. И для некоторых вещей, таких как логическая обработка, двоичный код лучше десятичного.

    Следует сказать, что существует ещё одна базовая система, которая используется в программировании: шестнадцатеричная . Хотя компьютеры не работают в шестнадцатеричном формате, программисты используют её для представления двоичных адресов в удобочитаемом формате при написании кода. Это связано с тем, что две цифры шестнадцатеричного числа могут представлять собой целый байт, то есть заменяют восемь цифр в двоичном формате. Шестнадцатеричная система использует цифры 0-9, а также буквы от A до F, чтобы получить дополнительные шесть цифр.

    Почему компьютеры используют двоичные файлы

    Короткий ответ: аппаратное обеспечение и законы физики. Каждый символ в вашем компьютере является электрическим сигналом, и в первые дни вычислений измерять электрические сигналы было намного сложнее. Было более разумно различать только «включенное» состояние, представленное отрицательным зарядом, и «выключенное» состояние, представленное положительным зарядом.

    Для тех, кто не знает, почему «выключено» представлено положительным зарядом, это связано с тем, что электроны имеют отрицательный заряд, а больше электронов – больше тока с отрицательным зарядом.

    Таким образом, ранние компьютеры размером с комнату использовали двоичные файлы для создания своих систем, и хотя они использовали более старое, более громоздкое оборудование, они работали на тех же фундаментальных принципах. Современные компьютеры используют, так называемый, транзистор для выполнения расчетов с двоичным кодом.

    Вот схема типичного транзистора:

    По сути, он позволяет току течь от источника к стоку, если в воротах есть ток. Это формирует двоичный ключ. Производители могут создавать эти транзисторы невероятно малыми – вплоть до 5 нанометров или размером с две нити ДНК. Это то, как работают современные процессоры, и даже они могут страдать от проблем с различением включенного и выключенного состояния (хотя это связано с их нереальным молекулярным размером, подверженным странностям квантовой механики ).

    Почему только двоичная система

    Поэтому вы можете подумать: «Почему только 0 и 1? Почему бы не добавить ещё одну цифру?». Хотя отчасти это связано с традициями создания компьютеров, вместе с тем, добавление ещё одной цифры означало бы необходимость выделять ещё одно состояние тока, а не только «выключен» или «включен».

    Проблема здесь в том, что если вы хотите использовать несколько уровней напряжения, вам нужен способ легко выполнять вычисления с ними, а современное аппаратное обеспечение, способное на это, не жизнеспособно как замена двоичных вычислений. Например, существует, так называемый, тройной компьютер , разработанный в 1950-х годах, но разработка на том и прекратилась. Тернарная логика более эффективна, чем двоичная, но пока ещё нет эффективной замены бинарного транзистора или, по крайней мере, нет транзистора столь же крошечных масштабов, что и двоичные.

    Причина, по которой мы не можем использовать тройную логику, сводится к тому, как транзисторы соединяются в компьютере и как они используются для математических вычислений. Транзистор получает информацию на два входа, выполняет операцию и возвращает результат на один выход.

    Таким образом, бинарная математика проще для компьютера, чем что-либо ещё. Двоичная логика легко преобразуется в двоичные системы, причем True и False соответствуют состояниям Вкл и Выкл .

    Бинарная таблица истинности, работающая на двоичной логике, будет иметь четыре возможных выхода для каждой фундаментальной операции. Но, поскольку тройные ворота используют три входа, тройная таблица истинности имела бы 9 или более. В то время как бинарная система имеет 16 возможных операторов (2^2^2), троичная система имела бы 19683 (3^3^3). Масштабирование становится проблемой, поскольку, хотя троичность более эффективна, она также экспоненциально более сложна.

    Кто знает? В будущем мы вполне возможно увидим тройничные компьютеры, поскольку бинарная логика столкнулась с проблемами миниатюризации. Пока же мир будет продолжать работать в двоичном режиме.

    На данном уроке будет рассмотрена тема «Кодирование информации. Двоичное кодирование. Единицы измерения информации». В ходе него пользователи смогут получить представление о кодировании информации, способах восприятия информации компьютеров, единицах ее измерения и двоичном кодировании.

    Тема: Информация вокруг нас

    Урок: Кодирование информации. Двоичное кодирование. Единицы измерения информации

    На данном уроке будут рассмотрены следующие вопросы:

    1. Кодирование как изменение формы представления информации.

    2. Как компьютер распознает информацию?

    3. Как измерить информацию?

    4. Единицы измерения информации.

    В мире кодов

    Зачем люди кодируют информацию?

    1. Скрыть ее от других (зеркальная тайнопись Леонардо да Винчи, военные шифровки).

    2. Записать информацию короче (стенография, аббревиатура, дорожные знаки).

    3. Для более легкой обработки и передачи (азбука Морзе, перевод в электрические сигналы - машинные коды).

    Кодирование - это представление информации с помощью некоторого кода.

    Код - это система условных знаков для представления информации.

    Способы кодирования информации

    1. Графический (см. Рис. 1) (с помощью рисунков и знаков).

    Рис. 1. Система сигнальных флагов (Источник)

    2. Числовой (с помощью чисел).

    Например: 11001111 11100101.

    3. Символьный (с помощью символов алфавита).

    Например: НКМБМ ЧГЁУ.

    Декодирование - это действие по восстановлению первоначальной формы представления информации. Для декодирования необходимо знать код и правила кодирования.

    Средством кодирования и декодирования служит кодовая таблица соответствия. Например, соответствие в различных системах счисления - 24 - XXIV, соответствие алфавита каким-либо символам (Рис. 2).


    Рис. 2. Пример шифра (Источник)

    Примеры кодирования информации

    Примером кодирования информации является азбука Морзе (см. Рис. 3).

    Рис. 3. Азбука Морзе ()

    В азбуке Морзе используется всего 2 символа - точка и тире (короткий и длинный звук).

    Еще одним примером кодирования информации является флажковая азбука (см. Рис. 4).

    Рис. 4. Флажковая азбука ()

    Также примером является азбука флагов (см. Рис. 5).

    Рис. 5. Азбука флагов ()

    Всем известный пример кодирования - нотная азбука (см. Рис. 6).

    Рис. 6. Нотная азбука ()

    Рассмотрим следующую задачу:

    Используя таблицу флажковой азбуки (см. Рис. 7), необходимо решить следующую задачу:

    Рис. 7

    Старший помощник Лом сдает экзамен капитану Врунгелю. Помогите ему прочитать следующий текст (см. Рис. 8):

    Вокруг нас существуют преимущественно два сигнала, например:

    Светофор: красный - зеленый;

    Вопрос: да - нет;

    Лампа: горит - не горит;

    Можно - нельзя;

    Хорошо - плохо;

    Истина - ложь;

    Вперед - назад;

    Есть - нет;

    Всё это сигналы, обозначающие количество информации в 1 бит.

    1 бит - это такое количество информации, которое позволяет нам выбрать один вариант из двух возможных.

    Компьютер - это электрическая машина, работающая на электронных схемах. Чтобы компьютер распознал и понял вводимую информацию, ее надо перевести на компьютерный (машинный) язык.

    Алгоритм, предназначенный для исполнителя, должен быть записан, то есть закодирован, на языке, понятном компьютеру.

    Это электрические сигналы: проходит ток или не проходит ток.

    Машинный двоичный язык - последовательность "0" и "1". Каждое двоичное число может принимать значение 0 или 1.

    Каждая цифра машинного двоичного кода несет количество информации, равное 1 бит.

    Двоичное число, которое представляет наименьшую единицу информации, называется б ит . Бит может принимать значение либо 0, либо 1. Наличие магнитного или электронного сигнала в компьютере означает 1, отсутствие 0.

    Строка из 8 битов называется б айт . Эту строку компьютер обрабатывает как отдельный символ (число, букву).

    Рассмотрим пример. Слово ALICE состоит из 5 букв, каждая из которых на языке компьютера представлена одним байтом (см. Рис. 10). Стало быть, Alice можно измерить как 5 байт.

    Рис. 10. Двоичный код (Источник)

    Кроме бита и байта, существуют и другие единицы измерения информации.

    Список литературы

    1. Босова Л.Л. Информатика и ИКТ: Учебник для 5 класса. - М.: БИНОМ. Лаборатория знаний, 2012.

    2. Босова Л.Л. Информатика: Рабочая тетрадь для 5 класса. - М.: БИНОМ. Лаборатория знаний, 2010.

    3. Босова Л.Л., Босова А.Ю. Уроки информатики в 5-6 классах: Методическое пособие. - М.: БИНОМ. Лаборатория знаний, 2010.

    2. Фестиваль "Открытый урок" ().

    Домашнее задание

    1. §1.6, 1.7 (Босова Л.Л. Информатика и ИКТ: Учебник для 5 класса).

    2. Стр. 28, задания 1, 4; стр. 30, задания 1, 4, 5, 6 (Босова Л.Л. Информатика и ИКТ: Учебник для 5 класса).

    Лучшие статьи по теме