Как настроить смартфоны и ПК. Информационный портал
  • Главная
  • Ошибки
  • Микросхемы кмоп — идеальное семейство логических схем. Элементная база различных логик: схемы, ттл, ттлш, кмоп

Микросхемы кмоп — идеальное семейство логических схем. Элементная база различных логик: схемы, ттл, ттлш, кмоп

Логические уровни КМОП микросхем при пятивольтовом питании показаны на рис.9.

Границы уровней логического нуля и единицы для КМОП микросхем при пятивольтовом питании приведена на рис. 10.

Рис. 10. Уровни логических сигналов на входе цифровых КМОП микросхем.

Из рисунка 10 видно, что запас по уровням срабатывания для обеспечения помехоустойчивости у КМОП более 1,1 В. Это почти втрое больше чем у ТТЛ.

При уменьшении напряжения питания границы логического нуля и логической единицы смещаются пропорционально изменению напряжения питания.

Семейства кмоп микросхем

Первые КМОП микросхемы не имели защитных диодов на входе, поэтому их монтаж представлял значительные трудности. Это семейство микросхем серии К172. Следующее улучшенное семейство микросхем серии К176 получило эти защитные диоды. Оно достаточно распространено и в настоящее время. Серия К1561 (иностранный аналог этих микросхем - C4000В.) завершает развитие первого поколения КМОП микросхем. В этом семействе было достигнуто быстродействие на уровне 90нс и диапазон изменения напряжения питания 3..15В.

Дальнейшим развитием КМОП микросхем стала серия SN74HC. Эти микросхемы отечественного аналога не имеют. Они обладают быстродействием 27нс и могут работать в диапазоне напряжений 2..6В. Они совпадают по цоколёвке и функциональному ряду с ТТЛ микросхемами, но не совместимы с ними по логическим уровням, поэтому одновременно были разработаны микросхемы серии SN74HCT (отечественный аналог - К1564), совместимые с ТТЛ микросхемами и по логическим уровням.

В это время наметился переход на трёхвольтовое питание. Для него были разработаны микросхемы SN74ALVC с временем задержки сигнала 5,5нс и диапазоном питания 1,65..3,6В. Эти же микросхемы способны работать и при 2,5 вольтовом питании. Время задержки сигнала при этом увеличивается до 9нс.

Наиболее перспективным семейством КМОП микросхем считается семейство SN74AUC с временем задержки сигнала 1,9нс и диапазоном питания 0,8..2,7В.

Цифровые микросхемы эмиттерно-связанной логики Общие сведения об эсл имс

Интегральные микросхемы на основе эмиттерно-связанной логики (ЭСЛ) получили широкое распространение в качестве элементной базы быстродействующей вычислительной и радиоэлектронной аппаратуры. Микросхемы на основе ЭСЛ имеют ряд достоинств, которые обеспечили их преимущество перед другими микросхемами при построении данного класса аппаратуры:

1. Хорошая схемно-техническая отработанность и, как следствие, сравнительно невысокая стоимость при изготовлении.

    Высокое быстродействие при средней потребляемой мощности или сверхвысокое быстродействие при большой потребляемой мощности.

    Малая энергия переключения.

    Высокая относительная помехоустойчивость.

    Высокая стабильность динамических параметров при изменении рабочей температуры и напряжения питания.

    Большая нагрузочная способность.

    Независимость тока потребления от частоты переключения.

    Способность ИМС работать на низкоомные линии связи и нагрузки.

    Широкий функциональный набор микросхем.

10. Удобство применения в условиях повышенной плотности компоновки с использованием многослойного печатного монтажа и низкоомных коаксиальных и плоских кабелей.

В настоящее время ИС ЭСЛ являются самыми быстродействующими микросхемами на основе кремния, выпускаемыми промышленностью как у нас в стране, так и за рубежом. Опыт проектирования аппаратуры, показывает, что применение ИС ЭСЛ оптимально для построения быстродействующих радиоэлектронных устройств, в частности ЭВМ высокого быстродействия, и менее эффективно при разработке радиоэлектронных устройств малого и среднего быстродействия.

Высокое быстродействие обусловлено тем, что в этих элементах транзисторы работают в ненасыщенном режиме, в результате чего исключается накопление и рассасывание неосновных носителем заряда.

Структурно базовый элемент ЭСЛ содержит: источник опорного напряжения (ИОН), токовый переключатель (ТП) и эмиттерные повторители.

В основу токового переключателя на входе положена схема с объединенными эмиттерами (рис.11). Главные ее достоинства: постоянство суммарного тока эмиттеров / э = 1 э 1 + I э2 в процессе работы; наличие прямого и инверсного выходов U вых1 , U вых2 .

Рис. 11. Базовый логический элемент ЭСЛ

К современным цифровым микросхемам ЭСЛ относятся ИС серий 100, К100, 500, К500, 1500, KI500.

Типовое время задержки логических элементов ИМС серии К1550 0,7 нс, серии К500 0,5...2 нс; серии 138 2,9 нс. ЭСЛ микросхемы имеют помехоустойчивость по напряжению низкого и высокого уровней не менее 125 мВ и 150 мВ, разброс выходного напряжения низкого уровня 145...150 мВ, высокого уровня 200 мВ. Амплитуда логического сигнала U л до 800 мВ. В ИМС серии 500 уровень интеграции до 80 логических элементов на кристалле; функциональный набор микросхем - 48 модификаций, потребляемая элементом мощность Р пот =8...25мВт (в ненагруженном состоянии), энергия, потребляемая при переключении А = 50 пДж.

Базовый логический элемент ИМС К500 благодаря наличию прямого и инверсного выхода одновременно выполняет две функций: ИЛИ-НЕ и ИЛИ . В отрицательной логике выполняются функции И/И-НЕ. Электрическая схема базового элемента ЭСЛ состоит из трех цепей (рис.12): токового переключателя (ТП), выходных эмиттерных повторителей (ЭП) и источника опорного напряжения (ИОН).

Токовый переключатель построен на транзисторах VT 1- VT 5 и резисторах R 1- R 7 и представляет собой дифференциальный усилитель, работающий в режиме ключа, имеющий несколько входов. Увеличение числа входов ТП достигается параллельным подключением дополнительных входных транзисторов VT 1- VT 4.

Базовый ЛЭ работает следующим образом. При подаче на все входы схемы XI - X 4 напряжения низкого уровня (-1,7 В) входные транзисторы VT 1- VT 4 закрыты, транзистор VT 5 открыт, так как напряжение на его базе U ОП = -1,3 В выше.

Большая потребляемая и рассеиваемая мощности являются недостатками микросхем ЭСЛ, что является следствием их работы в ненасыщенном режиме. Малый логический перепад, с одной стороны, повышает быстродействие, а с другой снижает помехоустойчивость.

Наглядный пример тому, как всё сложно запутанно в определении приоритетов научно-исследовательских работ, это микросхемы КМОП и их появление на рынке.

Дело в том, что полевой эффект, который лежит в основе МОП-структуры был открыт ещё в конце 20-х годов прошлого века, но радиотехника тогда переживала бум вакуумных приборов (радиоламп) и эффекты, обнаруженные в кристаллических структурах, были признаны бесперспективными.

Затем в 40-е годы практически заново был открыт биполярный транзистор, а уже потом, когда дальнейшие исследования и усовершенствования биполярных транзисторов показали, что это направление ведёт в тупик, учёные вспомнили про полевой эффект.

Так появился МОП-транзистор , а позднее КМОП-микросхемы. Буква К в начале аббревиатуры означает комплементарный, то есть дополняющий. На практике это означает, что в микросхемах применяются пары транзисторов с абсолютно одинаковыми параметрами, но один транзистор имеет затвор n-типа, а другой транзистор имеет затвор p-типа. На зарубежный манер микросхемы КМОП называют CMOS (Complementary Metal-Oxide Semiconductor). Также применяются сокращения КМДП, К-МОП.

Среди обычных транзисторов примером комплементарной пары являются транзисторы КТ315 и КТ361.

Сначала на рынке радиоэлектронных компонентов появилась серия К176 основанная на полевых транзисторах, и, как дальнейшее развитие этой серии, была разработана ставшая очень популярной серия К561. Эта серия включает в себя большое количество логических микросхем.

Поскольку полевые транзисторы не так критичны к напряжению питания, как биполярные, эта серия питается напряжением от +3 до +15V. Это позволяет широко использовать эту серию в различных устройствах, в том числе и с батарейным питанием. Кроме того, устройства собранные на микросхемах серии К561, потребляют очень маленький ток. Да и не мудрено, ведь основу КМОП-микросхем составляет полевой МДП-транзистор.

Например, микросхема К561ТР2 содержит четыре RS-триггера и потребляет ток 0,14 mA, а аналогичная микросхема серии К155 потребляла минимум 10 - 12 mA. Микросхемы на КМОП структурах обладают очень большим входным сопротивлением, которое может достигать 100 МОм и более, поэтому их нагрузочная способность достаточно велика. К выходу одной микросхемы можно подключить входы 10 - 30 микросхем. У микросхем ТТЛ такая нагрузка вызвала бы перегрев и выход из строя.

Поэтому конструирование узлов на микросхемах с применением КМОП транзисторов позволяет применять более простые схемные решения, чем при использовании микросхем ТТЛ.

За рубежом наиболее распространённый аналог серии К561 маркируется как CD4000. Например, микросхеме К561ЛА7 соответствует зарубежная CD4011.

Используя микросхемы серии К561, не следует забывать о некоторых нюансах их эксплуатации. Следует помнить, что хотя микросхемы работоспособны в большом диапазоне напряжений, при снижении напряжения питания падает помехоустойчивость, а импульс слегка «расползается». То есть чем напряжение питания ближе к максимуму, тем круче фронты импульсов.

На рисунке показан классический базовый элемент (вентиль), который осуществляет инверсию входного сигнала (элемент НЕ). То есть если на вход приходит логическая единица, то с выхода снимается логический ноль и наоборот. Здесь наглядно показана комплементарная пара транзисторов с затворами "n" и "p" типов.

На следующем рисунке показан базовый элемент 2И - НЕ. Хорошо видно, что резисторы, которые присутствуют в аналогичном элементе ТТЛ микросхемы, здесь отсутствуют. Из двух таких элементов легко получить триггер, а из последовательного ряда триггеров прямая дорога к счётчикам, регистрам и запоминающим устройствам.

При всех положительных качествах интегральных микросхем серии К561 у них, конечно, есть и недостатки. Во-первых, по максимальной рабочей частоте КМОП микросхемы заметно уступают микросхемам с другой логикой и работающей на биполярных транзисторах.

Частота, на которой уверенно работает серия К561, не превышает 1 МГц. Для согласования микросхем основанных на МОП структурах с другими сериями, например, ТТЛ, применяются преобразователи уровня К561ПУ4, К561ЛН2 и другие. Эти микросхемы также синхронизируют быстродействие, которое у разных серий может отличаться.

Но самый большой недостаток микросхем на комплементарных МОП структурах, это сильнейшая чувствительность микросхемы к статическому электричеству. Поэтому на заводах и лабораториях оборудуются специальные рабочие места. На столе все работы производятся на металлическом листе, который подключён к общей шине заземления. К этой шине подключается и корпус паяльника, и металлический браслет, одеваемый на руку работнику.

Некоторые микросхемы поступают в продажу упакованные в фольгу, которая закорачивает все выводы между собой. При работе в домашних условиях также необходимо найти возможность для стекания статического заряда хотя бы на трубу отопления. При монтаже первыми распаиваются выводы питания, а уже затем все остальные.

Комплементарная МОП логика (КМОП - КМДП -CMOS - Complementary Metal-Oxide-Semiconductor) сегодня является основной в производстве больших интегральных схем микропроцессорных комплектов, микроконтроллеров, СБИС персональных компьютеров, ИС памяти. Кроме ИС высокой интеграции для создания электронного обрамления БИС и несложных электронных схем выпущено несколько поколений КМОП серий малой и средней интеграции. В основе лежит рассмотренный ранее инвертор (рис 2.9) на комплементарных (взаимодополняющих) МОП транзисторах с индуцированным каналом разной проводимости p и n типа, выполненных на общей подложке (входные охранные цепочки не показаны).

Рис 3.8. Двухвходовые КМОП логические элементы а) И-НЕ, б) ИЛИ-НЕ

Как и в случае простого инвертора, особенностью ЛЭ является наличие двух ярусов транзисторов относительно выходного вывода. Логическая функция, выполняемая всей схемой, определяется транзисторами нижнего яруса. Для реализации И-НЕ в положительной логике транзисторы с n-каналом включаются последовательно друг с другом, с p-каналом – параллельно, а для реализации ИЛИ-НЕ – наоборот (Рис 3.8).

Микросхемы КМОП-структуры близки к идеальным ключам: в статическом режиме они практически не потребляют мощности, имеют большое входное и малое входное сопротивления, высокую помехозащищенность, большую нагрузочную способность, хорошую температурную стабильность, устойчиво работают в широком диапазоне питающих напряжений (от +3 до +15 В). Выходной сигнал практически равен напряжению источника питания. При Еп=+5В обеспечивается совместимость логических уровней со стандартной ТТЛ/ТТЛШ-логикой. Пороговое напряжение при любом напряжении питания равно половине напряжения питания U пор = 0,5 Еп, что обеспечивает высокую помехоустойчивость.

Логические элементы с большим числом входов организованы подобным же образом. В номенклатуре микросхем КМОП есть ЛЭ И, ИЛИ, И-НЕ, ИЛИ-НЕ, И-ИЛИ-НЕ, с количеством входов до 8. Увеличить число входных переменных можно с помощью дополнительных логических элементов, принадлежащих к той же серии ИС.

Отечественная промышленность выпускает несколько универсальных КМОП серий: К164, К176, К561, К564, К1561, К1564.

К176 – стандартная КМОП t з =200 нс, I пот £100 мкА

К564, К561, К1561 – усовершенствованная КМОП t з =15 нс (15 В), I пот =1-100 мкА

К1564 – высокоскоростная КМОП (функциональный аналог серии 54HC) t з =9-15 нс, Uпит=2-6 В, I пот £10 мкА

Основные технические характеристики ИС серии К564 (К561) приведены ниже:

Напряжение питания U п, В …………………………..3-15

Мощность потребления

В статическом режиме, мкВт/корпус …………0,1

При f=1 МГц, U п =10 В, С н =50 пф, мвт ……….20

Допустимая мощность рассеивания. Мвт/корпус …..500

Входное напряжение, В ……………….от -0,5В до U п + 0,5В

Выходное напряжение, В

Низкого уровня ………………………… не более 0,05В,

Высокого уровня …………………не менее U п + 0,5В

Средняя задержка распространения сигнала при С н =15 нф

Для U п =+5 В, нс ………………………………50

Для U п =+10 В, нс ……………………………..20,

Рабочая температура, 0 С

Серия 564 ………………………..от -60 до +125

Серия К561 ……………………….от -40 до +85

Если развитие ТТЛ-серий, главным образом, шло в сторону уменьшения энергопотребления, то КМОП-серии развивались в направлении повышения быстродействия. В конце концов, победила КМОП-технология. Последующие поколения стандартной логики выпускаются уже только по ней. Таким образом, второе поколение микросхем стандартной логики выпускается по КМОП-технологии, но сохраняет полное функциональное соответствие с ТТЛ-сериями.

Интегральные микросхемы транзисторно-транзисторной логики представляют собой микросборки малой степени интеграции, построенные на биполярных транзисторах. Основным их минусом является малое количество на один кристалл, а также критичность к напряжению питания и достаточно большой ток потребления.

На схеме чуть выше изображен простой логический элементов - 3И – НЕ . В его основе лежит обычный биполярный многоэмиттерный транзистор VT1. Уровень логического нуля на его выходе появится в случае наличии высоких уровней на всех трех эмиттерах одновременно. VT2 берет на себя функцию инвертирования (элемент НЕ), а многоэмиттерный VT1 является логическим элементом 3И.

Несмотря на перечисленные минусы самая популярная серия ТТЛ, К155 пользуется огромной популярностью и сегодня, посмотрите сколько радиосамоделок можно собрать на .

Серия К155 является самой огромной серией ТТЛ. В ней более 100 микросборок выполняющих различные логические функции и операции (И, ИЛИ, НЕ, И – НЕ, ИЛИ – НЕ, триггеры, регистры, счётчики, сумматоры.

Уровень логической единицы в микросхемах этой ТТЛ серии лежит в диапазоне напряжений от 2,4 V до 5 V), а уровень логического нуля не более 0,4 V.

Почти все микросборки этой серии, выпускаются в стандартном 14 выводном корпусе. С точкой или выемкой ключа, обазначающей первый вывод. 7-й вывод это корпус или минус. 14 лежащий напротив первого, это плюс.

Следующим шагом в эволючии К155 стала серия К555, в которой базовый ТТЛ принцип сохранен, но в коллекторные переходы транзисторов добавлены . Поэтому К555 серию назвали ТТЛШ (ТТЛ и диод Шоттки). В ТТЛЩ потребляемая мощность снизилась где-то в 2 раза, а быстродействие резко возрасло.

Микросхемы КМОП

Буква К в начале аббревиатуры расшифровывается как - комплементарный . На практике это говорит о том, что в микросборке используются пары с одинаковыми параметрами, но один транзистор имеет затвор n-типа, а другой соответственно p-типа. Еще их называют CMOS (Complementary Metal-Oxide Semiconductor).

На рисунке приведен пример классического базового логического элемента НЕ. То есть если на вход придет единица, то на выходе будет уже логический ноль и наоборот.

Элемент 2И – НЕ . Из парочки этих логических элементов легко получить , а из нескольких триггеров - счетчик, регистр и элементарный запоминающие устройства.

И теперь о ложке дегтя: на максимальной рабочей частоте КМОП элементы заметно уступают другой логикой на биполярных транзисторах (ТТЛ) и они оффигенно чувствительны к статическому электричеству.


Микросхемы на основе КМДП структур

Цифровые ИМС на основе КМДП структур все шире используются при разработке разнообразных электронных схем, на что имеются весьма веские причины. КМДП ИМС - это в высшей степени универсальные и легко применяемые устройства, которые обладают уникальными свойствами, нехарактерными для других классов цифровых ИМС.

Комплементарными эти ИМС названы потому, что они изготовлены на основе КМДП транзисторов, т.е. на основе пар полевых транзисторов со структурой: металл - окисел(диэлектрик) - полупроводник, имеющих очень близкие характеристики и каналы разных типов проводимости. ИМС, построенные по такому принципу потребляют от источника питания существенно меньшую мощность, чем все другие ИМС и могут работать в более широком диапазоне уровней питающих напряжений. Электронные наручные часы и устройства для автомобиля, медицинские электронные приборы, телевизионные приемники, портативные калькуляторы - это лишь немногие примеры устройств, в которых используются КМДП ИМС.

Основные достоинства цифровых ИМС на КМОП-структурах - большое входное сопротивление транзисторов (R вх) 10 12 Ом) и высокий уровень интеграции. При выполнении импульсных устройств на интегральных логических элементах КМОП сопротивления времязадающих резисторов вследствие высоких входных сопротивлений транзисторов не ограничены сверху, следовательно, для получения импульсов с большой длительностью не следует увеличивать электрическую емкость времязадающих конденсаторов.

Комплементарные структуры представляют собой взаимодополняющие пары биполярных (p-n-p и n-p-n) или МДП (p-канальных и n-канальных) транзисторов, что позволяет значительно улучшить характеристики ИМС. Они изготавливаются на общей подложке в карманах, изолированных от подложки либо p-n -переходом, либо диэлектрической пленкой. Комплементарные транзисторы выполняются в виде горизонтальной и вертикальной структур.

В транзисторах горизонтальной структуры эмиттер, база, и коллектор расположены на одной горизонтальной плоскости, поэтому инжектированные в базу неосновные носители перемещаются не перпендикулярно поверхности кристалла, а вдоль нее. Такие транзисторы называются торцевыми (латеральными). При изготовлении торцевых

транзисторов p-n-p - типа формирование эмиттеров осуществляется во время базовой диффузии n-p-n - транзисторов. Затем путем второй базовой диффузии эмиттер p-n-p - транзистора окружается коллектором. Базой транзистора служит исходный слой полупроводника n-типа между этими областями. Ширина базы, следовательно, и значение коэффициента передачи тока базы и определяются расстоянием между окнами, протравливаемыми в фоторежиме для эмиттера и коллектора.

В вертикальных структурах база располагается под эмиттером (инжектированные неосновные носители перемещаются в направлении, перпендикулярном поверхности кристалла). Все три области p-n-p - транзистора (коллектор, база и эмиттер) формируются путем диффузии. Такие комплементарные структуры сложны в изготовлении из-за высоких требований точности концентрации легирующих примесей. Однако транзисторы, изготовленные по такой технологии, имеют больший, чем транзисторы с горизонтальной структурой козффициент передачи тока базы и и высокое напряжение пробоя коллекторного перехода.


Рис. 16.10.

Принципиальное отличие КМОП-схем от nМОП-технологии заключается в отсутствии в схеме активных сопротивлений. К каждому входу схемы подключена пара транзисторов с различным типом канала. Транзисторы с каналом p-типа подключены подложкой к источнику питания, поэтому образование канала в них будет происходить при достаточной большой разности потенциалов между подложкой и затвором, причем потенциал на затворе должен быть отрицательным относительно подложки. Такое состояние обеспечивается подачей на затвор потенциала земли (т.е. логического 0 ). Транзисторы с каналом n-типа подключены подложкой к земле, поэтому образование канала в них будет происходить при подаче на затвор потенциала источника питания (т.е. логической 1 ). Одновременная подача на такие пары транзисторов с разным типом каналов логического нуля или логической единицы приводит к тому, что один транзистор пары обязательно будет открыт, а другой закрыт. Таким образом, создаются условия к подключению выхода либо к источнику п итания, либо к земле.

Так, в простейшем случае, для схемы инвертора (рис. 16.10) при А=0 транзистора VT1 будет открыт, а VT2 закрыт. Следовательно, выход схемы F будет подключен через канал VT1 к источнику питания, что соответствует состоянию логической единицы: F=1 . При А=1 транзистор VT1 будет закрыт (на затворе и подложке одинаковые потенциалы), а VT2 открыт. Следовательно, выход схемы F будет подключен через канал транзистора VT2 к земле. Это соответствует состоянию логического нуля: F=0 .

Логическое сложение (рис. 16.11) осуществляется за счет последовательного соединения p-каналов транзисторов VT1 и VT2. При подаче хотя бы одной единицы единого канала у данных транзисторов не образуется. В то же время благодаря параллельному соединению VT3 и VT4 осуществляется открытие соответствующего транзистора в нижней части схемы, обеспечивающее подключение выхода F к земле. Получается F=0 при подаче хотя бы одной логической 1 – это правило ИЛИ-НЕ.


Рис. 16.11.

Функция И-НЕ осуществляется за счет параллельного соединения VT1 и VT2 в верхней части схемы и последовательного соединения VT3 и VT4 в нижней части (рис. 16.12). При подаче хотя бы на один вход нуля единый канал на VT3 и VT4 не образуется, выход будет отключен от земли. В то же время хотя бы один транзистор в верхней части схемы (на затвор которого подан логический ноль) будет обеспечивать подключение выхода F к источнику питания: F=1 при подаче хотя одного нуля – правило И-НЕ.


Рис. 16.12.

Краткие итоги

В зависимости от элементной базы, различают различные технологии производства ИМС. Основными являются ТТЛ на биполярных транзисторах и nМОП и КМОП на полевых транзисторах .

Ключевые термины

nМОП-технология полевых транзисторов с индуцированным каналом n-типа.

Буфер на 3 состояния – выходная часть схемы ТТЛ, обеспечивающая возможность перехода в третье, высокоимпедансное состояние.

КМОП-технология - технология производства ИМС на базе полевых транзисторов с каналами обоих типов электропроводности.

Открытый коллектор – вариант реализации буферной части элементов ТТЛ без резистора в цепи нагрузки, который выносится за пределы схемы.

Схемы с активной нагрузкой – схемы ТТЛ, в которых состояние буферной цепи определяется состоянием не одного, а двух транзисторов.

Транзисторно-транзисторная логика – технология производства ИМС на базе биполярных транзисторов.

Принятые сокращения

КМОП – комплементарный, металл, оксид, полупроводник

Набор для практики

Упражнения к лекции 16

Упражнение 1

Вариант 1 к упражнению 1 .Нарисовать схему 3-входового элемента ИЛИ-НЕ по nМОП-технологии.

Вариант 2 к упражнению 1 .Нарисовать схему 3-входового элемента И-НЕ по nМОП-технологии.

Вариант 3 к упражнению 1 .Нарисовать схему 4-входового элемента ИЛИ-НЕ по nМОП-технологии.

Упражнение 2

Вариант 1 к упражнению 2 .Нарисовать схему 3-входового элемента ИЛИ-НЕ по КМОП-технологии.

Вариант 2 к упражнению 2 .Нарисовать схему 3-входового элемента И-НЕ по КМОП-технологии.

Вариант 3 к упражнению 2 .Нарисовать схему 4-входового элемента ИЛИ-НЕ по КМОП-технологии.

Упражнение 3

Вариант 1 к упражнению 3 .Нарисовать схему 3-входового элемента ИЛИ-НЕ по ТТЛ-технологии.

Вариант 2 к упражнению 3 .Нарисовать схему 3-входового элемента И-НЕ по ТТЛ-технологии.

Вариант 3 к упражнению 3 .Нарисовать схему 4-входового элемента ИЛИ-НЕ по ТТЛ-технологии.

Упражнение 4

Вариант 1 к упражнению 4 .Нарисовать схему 3-входового элемента ИЛИ по nМОП-технологии.

Вариант 2 к упражнению 4 .Нарисовать схему 3-входового элемента И по nМОП-технологии.

Вариант 3 к упражнению 4 .Нарисовать схему 4-входового элемента ИЛИ по nМОП-технологии.

Упражнение 5

Вариант 1 к упражнению 5 .Нарисовать схему 3-входового элемента ИЛИ по КМОП-технологии.

Вариант 2 к упражнению 5 .Нарисовать схему 3-входового элемента И по КМОП-технологии.

Вариант 3 к упражнению 5 .Нарисовать схему 4-входового элемента ИЛИ по КМОП-технологии.

Упражнение 6

Вариант 1 к упражнению 6 .Нарисовать схему 3-входового элемента ИЛИ по ТТЛ-технологии.

Вариант 2 к упражнению 6 .Нарисовать схему 3-входового элемента И по ТТЛ-технологии.

Вариант 3 к упражнению 6 .Нарисовать схему 4-входового элемента ИЛИ по ТТЛ-технологии.

Упражнение 7

Вариант 1 к упражнению 7 .Нарисовать схему элемента 2И-ИЛИ-НЕ по ТТЛ-технологии.

Вариант 2 к упражнению 7 .Нарисовать схему элемента 2И-ИЛИ-НЕ по КМОП-технологии.

Вариант 3 к упражнению 7 .Нарисовать схему элемента 2И-ИЛИ-НЕ по nМОП-технологии.

Упражнение 8

Вариант 1 к упражнению 8 .Нарисовать схему 3-входового элемента ИЛИ-НЕ с буфером на 3 состояния.

Вариант 2 к упражнению 8 .Нарисовать схему 3-входового элемента И-НЕ с открытым коллектором.

Вариант 3 к упражнению 8 .Нарисовать схему 3-входового элемента ИЛИ с буфером на 3 состояния.

Лучшие статьи по теме