Как настроить смартфоны и ПК. Информационный портал
  • Главная
  • Интересное
  • Крутая шпаргалка по сочетанию цветов. Рисуем в GIMP Свет в компьютерной графике

Крутая шпаргалка по сочетанию цветов. Рисуем в GIMP Свет в компьютерной графике

Цвет – один из факторов нашего восприятия светового излучения. Считалось, что белый свет – самый простой. Опыты Ньютона это опровергли. Ньютон пропустил белый свет через призму, в результате чего тот разложился на 7 составляющих (7 цветов радуги). При обратном процессе (т.е. пропускании набора различных цветов через другую призму) снова получался белый цвет.

Видимый нами свет – это лишь небольшой диапазон спектра электромагнитного излучения.

Белый цвет можно представить смесью всех цветов радуги. Иными словами, спектр белого является непрерывным и равномерным – в нем присутствуют излучения всех длин волн видимого диапазона. Можно предположить, что, если измерить интенсивность света, испускаемого или отраженного от объекта, во всех видимых длинах волн, то мы полностью определим цвет этого объекта.

Однако в реальности такое измерение не предсказывает визуальное представление объекта. Таким образом, можно определить только те оптические свойства, которые влияют на наблюдаемый цвет:
  1. Цветовой тон . Можно определить преобладающей длиной волны в спектре излучения. Цветовой тон позволяет отличить один цвет от другого.
  2. Яркость . Определяется энергией, интенсивностью светового излучения. Выражает количество воспринимаемого света.
  3. Насыщенность (чистота тона) . Выражается долей присутствия белого цвета. В идеально чистом цвете примесь белого отсутствует.

Поэтому для описания цвета вводится понятие цветовой модели - как способа представления большого количества цветов посредством разложения его на простые составляющие.

Для описания цветовых моделей существуют 2 системы цветности:


  • аддитивная : аддитивный синтез цвета предполагает получение цвета смешением излучений. В аддитивном синтезе под белым цветом мы понимаем смешение основных излучений в максимальном количестве, а чёрный цвет - полное отсутствие излучений.
  • субтрактивная : при субтрактивном синтезе компоненты излучения попадают в глаз не напрямую, а преобразуясь оптической средой - окрашенной поверхностью. Ее окраска выполняет функцию преобразователя энергии излучения источника света. Отражаясь от нее или проходя насквозь, одни лучи ослабляются сильнее, другие слабее.

Цветовая модель RGB.

В основе одной из наиболее распространенных цветовых моделей, называемой RGB моделью, лежит воспроизведение любого цвета путем сложения трех основных цветов: красного (Red), зеленого (Green) и синего (Blue). Каждый канал - R, G или B имеется свой отдельный параметр, указывающий на количество соответствующей компоненты в конечном цвете.

Основные цвета разбиваются на оттенки по яркости (от темного к светлому), и каждой градации яркости присваивается цифровое значение (например, самой темной – 0, самой светлой – 255).

В модели RGB цвет можно представить в виде вектора в трехмерной системе координат с началом отсчета в точке (0,0,0). Максимальное значение каждой из компонент вектора примем за 1. Тогда вектор (1,1,1) соответствует белому цвету. Внутри полученного куба и «находятся» все цвета, образуя цветовое пространство.
Важно отметить особенные точки и линии этой модели.

  • Начало координат: в этой точке все составляющие равны нулю, излучение отсутствует (черный цвет)
  • Точка, ближайшая к зрителю: в этой точке все составляющие имеют максимальное значение (белый цвет)
  • На линии, соединяющей предыдущие две точки (по диагонали), располагаются серые оттенки: от черного до белого (серая шкала, обычно - 256 градаций). Это происходит потому, что все три составляющих одинаковы и располагаются в диапазоне от нуля до максимального значения
  • Три вершины куба дают чистые исходные цвета, остальные три отражают двойные смешения исходных цветов.

Несмотря на неполный охват, стандарт RGB в настоящее время принят практических для всех излучающих устройств графического вывода (телевизоры, мониторы, плазменные панели и др.)

Цветовая модель CMY(K)

Модель CMY использует также три основных цвета: Cyan (голубой), Magenta (пурпурный, или малиновый) и Yellow (желтый).

Эти цвета описывают отраженный от белой бумаги свет трех основных цветов RGB модели.

Формирование цвета происходит на белом фоне.

Цвета являются прямо противоположными красному, синему и зеленому, т.е. голубой полностью поглощает красный, пурпурный - зеленый, а желтый - синий.

Например, соединение в равных долях всех трех красок CMY в одной точке приведет к тому, что весь белый свет не будет отражен, а следовательно, цвет окажется черным. А вот одновременно и в равной пропорции нанесенные всевозможные пары из тройки CMY дадут нам основные цвета RGB.

Цвета модели CMY являются дополнительными к цветам RGB. Дополнительный цвет - цвет, дополняющий данный до белого. Так, например, дополнительный для красного цвета – голубой; для зеленого – пурпурный; для синего - желтый

Особенные точки и линии модели.

  • Начало координат: при полном отсутствии краски (нулевые значения составляющих) получится белый цвет (белая бумага)
  • Точка, ближайшая к зрителю: при смешении максимальных значений всех трех компонентов должен получиться черный цвет.
  • Линия, соединяющая предыдущие две точки (по диагонали). Смешение равных значений трех компонентов даст оттенки серого.
  • Три вершины куба дают чистые исходные цвета, остальные три отражают двойные смешения исходных цветов.
Цветовая модель CMY является основной в полиграфии. В цветных принтерах также применяется данная модель. Но для, что для того, чтобы распечатать чёрный цвет, необходимо большое количество краски и кроме того смешание всех цветов модели CMY на самом деле даст не чёрный, а грязно-коричневый цвет. Поэтому, для усовершенствования модели CMY, в неё был введён дополнительный цвет - чёрный. Он является ключевым цветом при печати, поэтому последняя буква в названии модели - K (Key), а не B. Таким образом, модель CMYK является четырёхканальной. В этом заключается ещё одно отличие её от RGB.


Цветовая модель HSV

Рассмотренные модели ориентированы на работу с цветопередающей аппаратурой и для некоторых людей неудобны. Поэтому модель HSV опирается на интуитивные понятия тона насыщенности и яркости.

В цветовом пространстве модели HSV (Hue - тон , Saturation - насыщенность , Value - количество света ), используется цилиндрическая система координат, а множество допустимых цветов представляет собой шестигранный конус, поставленный на вершину.

Основание конуса представляет яркие цвета и соответствует V = 1. Однако цвета основания V = 1 не имеют одинаковой воспринимаемой интенсивности. Тон (H ) измеряется углом, отсчитываемым вокруг вертикальной оси OV . При этом красному цвету соответствует угол 0°, зелёному – угол 120° и т. д. Цвета, взаимно дополняющие друг друга до белого, находятся напротив один другого, т. е. их тона отличаются на 180°. Величина S изменяется от 0 на оси OV до 1 на гранях конуса.

Конус имеет единичную высоту (V = 1) и основание, расположенное в начале координат. В основании конуса величины H и S смысла не имеют. Белому цвету соответствует пара S = 1, V = 1. Ось OV (S = 0) соответствует ахроматическим цветам (серым тонам).

Процесс добавления белого цвета к заданному можно представить как уменьшение насыщенности S , а процесс добавления чёрного цвета – как уменьшение яркости V . Основанию шестигранного конуса соответствует проекция RGB куба вдоль его главной диагонали.

Ахроматический и хроматический цвет

Так как свет является еще и волной, то, разумеется, он имеет длину волны. Длин волн бесконечное множество, но наш глаз в состоянии регистрировать только их небольшой диапазон, известный под названием видимой части спектра.

Цвет имеет психофизиологическую и психофизическую природу. Цвет предмета зависит не только от самого предмета, но также и от источника света, освещающего предмет и от системы человеческого видения. Некоторые предметы отражают свет (стена), другие его пропускают (стекло). Если поверхность, которая отражает только синий цвет, освещается красным светом, она будет казаться черной. Если источник зеленого света рассматривается через стекло, пропускающее только красный свет, он тоже покажется черным.

Зрительная система человека воспринимает электромагнитную энергию с длинами волн от 400 до 700 нм как видимый свет.

Источник или объект являются ахроматическим, если наблюдаемый свет содержит все видимые длины волн в примерно равных количествах. Ахроматический источник кажется белым, а свет от него - белым, черным или серым. Ахроматический свет - это то, что мы видим на экране черно-белого телевизора. Белыми выглядят объекты, ахроматически отражающие более 80 % света белого источника, а черными - менее 3 %. Промежуточные значения дают различные оттенки серого цвета.

Ахроматический свет характеризуется интенсивностью (яркостью). Свет называется хроматический, если он содержит длины волн в произвольных неравных количествах. Если длины волн сконцентрированы у верхнего края видимого спектра, то свет кажется красным, если у нижнего - то синим.

Но сама по себе эл/м энергия определенной длины волны не имеет никакого цвета. Ощущение цвета возникает в результате преобразования физических явлений в глазу или мозге человека. Объект кажется цветным, если он отражает или пропускает свет лишь в узком диапазоне длин волн и поглощает все остальные.

Психофизиологическое представление света опр-ся:

1) цветовой тон

2) насыщенность

3) светлота

Цветовой тон позволяет различать цвета (к, з, с).

Насыщенность определяет степень ослабления (разбавления) данного цвета белым цветом и позволяет различать розовый цвет от красного, голубой от синего. У чистого цвета насыщенность = 100 % и уменьшается по мере добавления белого. Насыщенность ахроматического цвета = 0 %.

Светлота - это интенсивность, которая не зависит от цветового тона и насыщенности. Ноль - значит черный, более высокие значения характеризуют более яркие значения.

Психофизические определяющие цвета:

1) доминирующая длина волны

2) чистота

3) яркость.

Доминирующая длина волны определяет монохроматический цвет (рис. б ) Þ l = 520 нм ® зеленый.

Чистота характеризует насыщенность цвета и определяется отношением Е 1 и Е 2 . Е 1 - характеризует степень разбавления чистого цвета с l = 520 нм белым. Если Е 1 стремится к 0, то чистота - к 100 %, если Е 1 ­ стремится к Е 2 , то свет - к белому и чистота - к 0.

Яркость пропорциональна энергии света и рассматривается как интенсивность на единицу площади. Для ахроматического света яркость есть интенсивность.

Художники используют другие характеристики цвета:

1) разбелы

2) оттенки

Разбелы получаются при добавлении в чистый цвет белого, оттенки - черного, тона - и черного, и белого.

Обычно встречаются не чистые монохроматические цвета, а их смеси. В основе 3-х компонентной теории света лежит предположение о том, что в сетчатке глаза есть 3 типа чувствительных к свету колбочек, которые воспринимают соответственно зеленый, красный и синий цвета. Относительная чувствительность глаза максимальна для зеленого цвета и минимальна для синего. Если на все 3 типа колбочек воздействует одинаковый уровень энергетической яркости (энергия в единицу t), то свет кажется белым.

Цветовые модели

RGB цвета используются в телевидении и выводе изображений на экран монитора. Эти три цвета дают возможность воспроизвести большинство цветов, которые вы можете видеть. Большинство, но не все. Цвета, производимые монитором, не являются абсолютно чистыми, поэтому и все производимые ими оттенки не могут быть воспроизведены с точностью.

Более того, яркостный диапазон мониторов сильно ограничен. Человеческий глаз в состоянии различать гораздо больше градаций яркости. Максимальная яркость монитора едва ли соответствует и половине максимальной яркости, которую наш глаз способен различить. Это часто может привести к сложностям при отображении сцен из реального мира, которые содержат широкие вариации яркости. Например, фотография пейзажа с фрагментом неба и участками земли находящимися в полной тени.

При моделировании света на компьютере все три цвета обрабатываются отдельно, за исключением каких-либо нестандартных ситуаций, когда цвета не влияют друг на друга. Иногда полноцветные изображения получают путем последовательного просчета красного, зеленого и синего изображений и их дальнейшим комбинированием.

Обычно компьютеры оперируют со светом в виде величин, определяющих количество содержащихся в нем красного, зеленого и синего цветов. Например, белый - это равное количество всех трех, Желтый - равное количество красного и зеленого и полное отсутствие синего. Все цветовые оттенки можно визуально представить в виде куба, где по осям координат будут отложены соответствующие величины трех исходных цветов. Это и есть трехцветная световая модель (RGB Model).

Системы смешивания основных цветов

1. Аддитивная - красный зеленый синий (RGB)

2. Субтрактивная - голубой (cyan, точнее сине-зеленый),

пурпурный (magenta), желтый (yellow)

Цвета одной системы являются дополнением к другой. Дополнительный цвет - это разность белого и данного цвета (Г=Б-К, П=Б-З, Ж=Б-С).

Аддитивная цветовая система удобна для светящихся поверхностей (экраны ЭЛТ, цветовые лампы). Субтрактивная цветовая система используется для отражающих поверхностей (цветные печатные устройства, типографские краски, несветящиеся экраны).

Уравнение монохроматического цвета:

где C - цвет,

R, G, B - 3 потока света,

r, g, b - относительные количества потоков света (от 0 до 1).

Соотношение между двумя цветовыми системами можно выразить математически:

Цветовые пространства RGB и CMY 3-хмерны и условно их можно изобразить в виде куба;

Началом координат в цветном кубе RGB является черный цвет, а в CMY - белый. Ахроматические, т.е. серые цвета, в обеих моделях расположены по диагонали от Б до Ч.

Модели RGB и CMY аппаратно-ориентированы. Модель HVS ориентирована на пользователя. В основе лежат интуитивно принятые художниками понятия разбела, оттенка, тона.

Цветовая модель HSV

Смит предложил построить модель субъективного восприятия в виде объемного тела HVS

(Н - цветовой тон (Hue)

S - насыщенность (Saturation)

V - светлота (Value))

Если цветной куб RGB спроецировать на плоскость вдоль диагонали Б-Ч, получается шестиугольник с основными и дополнительными цветами в вершинах. Интенсивность возрастает от 0 в вершине до 1 на верхней грани. Насыщенность определяется расстоянием от оси, а тон - углом (0° - 360°), отсчитываемым от красного цвета. Насыщенность меняется от 0 на оси до 1 на границе шестиугольника.

Насыщенность зависит от цветового охвата (расстояние от оси до границы). При S=1 цвета полностью насыщены. Ненулевая линейная комбинация трех основных цветов не может быть полностью насыщена. Если S=0, Н неопределен, т.е. лежит на центральной оси и является ахроматическим (серым)

Чистые цвета у художников: V=1, S=1

Разбелы - цвета с увеличенным содержанием белого, т.е. с меньшим S (лежат на плоскости шестиугольника)

Оттенки - цвета с уменьшенным V (ребра от вершины)

Тон - цвета с уменьшенным S и с уменьшенным V.

Модель HLS

В основе цветной модели HLS, применяемой фирмой Textronix, лежит цветная система Оствальда.

Н - цветовой тон (Hue)

L - светлота (Lightness)

S - насыщенность (Saturation)

Модель п.с. двойной шестигранный конус. Цветной тон задается углом поворота вокруг вертикальной оси относительно красного цвета. Цвета следуют по периметру, как и в модели HVS. HLS - результат модификации HSV за счет вытягивания вверх белого цвета. Дополнение каждого цвета отстоит на 180° от этого цветового тона. Насыщенность измеряется в радиальном направлении от 0 до 1. светлота измеряется вертикально по оси от 0 (Ч) до 1 (Б).

Для ахроматических цветов S=0, а максимально насыщенные цветовые тона получаются при S=1, L=0,5.

Цилиндрическая цветовая модель

Используется цветовая система Манселла, основанная на наборе образцов света. Система Манселла - это стандарт восприятия. Цвет определяется:

Цветовым тоном

Насыщенностью

Светлотой

На центральной оси - значение интенсивности меняется от черного к белому. Цветовой тон определяется углом. Главное преимущество - одинаковые приращения насыщенности, тона и интенсивности вызывают ощущения одинаковых изменений при восприятии.

Цветовая гармония

Цветные дисплеи и устройства получения твердых копий позволяют создавать широкий диапазон цветов. Одни цветовые сочетания хорошо гармонируют друг с другом, другие - взаимно несовместимы. Как отбирать цвета, чтобы они гармонировали друг с другом?

Выбор цветов обычно определяется путем проведения гладкой траектории в цветовом пространстве и/или путем ограничения диапазона используемых цветов в цветовой модели плоскостями (или шестигранными конусами) постоянной насыщенности

Использование цветов одного и того же цветового тона

Использование двух дополнительных цветов и их смесей

Использование цветов постоянной светлоты

При выборе цветов случайным образом, они будут выглядеть слишком яркими. Смит провел эксперимент, где сетка 16´16 заполнялась цветами случайным образом и имела мало привлекательный вид.

Если рисунок включает несколько цветов, то в качестве фона надо использовать дополнение к одному из них. Если цветов много, то фон лучше сделать серым.

Если 2 примыкающих друг к другу цвета не гармонизируют, их можно разделить черной линией.

С физиологической точки зрения низкая чувствительность глаза к синему цвету означает, что на черном фоне трудно различить синий цвет. Отсюда следует, что желтый цвет (дополнительный к синему) трудно различить на белом (дополнительный к черному).

СЖАТИЕ ИЗОБРАЖЕНИЙ

Основные сведения

Стоит начать считывать цветные или полутоновые изображения сканером в ½ формата А4 и 100 Мб-ый диск будет заполнен меньше чем за 1 час (размер графического файла от 400 Кб до нескольких Мб). А сравнимый по качеству с телепередачей компьютерный фильм требует хранения данных объемом около 22 Мб/сек. Поэтому остро встала проблема сжатия и восстановления информации. Но сжатие файла сильно зависит от его структуры.

Принципиально сжатие делят на архивацию и компрессию. Первое - без потери качества, второе - с потерями. Разница между этими способами в том, что второй не подразумевает полного восстановления исходного сохраненного изображения в полном качестве. Но каким бы не был алгоритм компрессии данных, для работы с ним файл нужно проанализировать и распаковать, т. е. вернуть данные в исходный незапакованный вид для их быстрой обработки (обычно это происходит прозрачно для пользователя).

Архивация, или сжатие графических данных, возможно как для растровой, так и для векторной графики. При этом способе уменьшения данных, программа анализирует наличие в сжимаемых данных некоторых одинаковых последовательностей данных, и исключает их, записывая вместо повторяющегося фрагмента ссылку на предыдущий такой же (для последующего восстановления). Такими одинаковыми последовательностями могут быть пикселы одного цвета, повторяющиеся текстовые данные, или некая избыточная информация, которая в рамках данного массива данных повторяется несколько раз. Например, растровый файл, состоящий из подложки строго одного цвета (например, серого), имеет в своей структуре очень много повторяющихся фрагментов.

Компрессия (конвертирование) данных - это способ сохранения данных таким образом, при использовании которого не гарантируется (хотя иногда возможно) полное восстановление исходных графических данных. При таком способе хранения данных обычно графическая информация немного "портится" по сравнению с оригинальной, но этими искажениями можно управлять, и при их небольшом значении ими вполне можно пренебречь. Обычно файлы, сохраненные с использованием этого способа хранения, занимают значительно меньше дискового пространства, чем файлы, сохраненные с использованием простой архивации (сжатия). Суть методов сжатия с потерей качества - ликвидировать те места, которые человеческим глазом не воспринимаются или воспринимаются не очень хорошо, другими словами, практически не заметны. Чем выше степень компрессии, тем больше ущерб качеству. Оптимальное решение выбирается для конкретного случая с учетом применения.

Иногда не стоит прибегать к компрессии: проще уменьшить избыточный размер, цветность или разрешение. Результат тот же - уменьшение размера.

Ребята, мы вкладываем душу в сайт. Cпасибо за то,
что открываете эту красоту. Спасибо за вдохновение и мурашки.
Присоединяйтесь к нам в Facebook и ВКонтакте

Схема № 1. Комплементарное сочетание

Комплементарными, или дополнительными, контрастными, являются цвета, которые расположены на противоположных сторонах цветового круга Иттена. Выглядит их сочетание очень живо и энергично, особенно при максимальной насыщенности цвета.

Схема № 2. Триада - сочетание 3 цветов

Сочетание 3 цветов, лежащих на одинаковом расстоянии друг от друга. Обеспечивает высокую контрастность при сохранении гармонии. Такая композиция выглядит достаточно живой даже при использовании бледных и ненасыщенных цветов.

Схема № 3. Аналогичное сочетание

Сочетание от 2 до 5 цветов, расположенных рядом друг с другом на цветовом круге (в идеале - 2–3 цвета). Впечатление: спокойное, располагающее. Пример сочетания аналогичных приглушенных цветов: желто-оранжевый, желтый, желто-зеленый, зеленый, сине-зеленый.

Схема № 4. Раздельно-комплементарное сочетание

Вариант комплементарного сочетания цветов, только вместо противоположного цвета используются соседние для него цвета. Сочетание основного цвета и двух дополнительных. Выглядит эта схема почти настолько же контрастно, но не настолько напряженно. Если вы не уверены, что сможете правильно использовать комплементарные сочетания, - используйте раздельно-комплементарные.

Схема № 5. Тетрада - сочетание 4 цветов

Цветовая схема, где один цвет - основной, два - дополняющие, а еще один выделяет акценты. Пример: сине-зеленый, сине-фиолетовый, красно-оранжевый, желто-оранжевый.

Схема № 6. Квадрат

Сочетания отдельных цветов

  • Белый: сочетается со всем. Наилучшее сочетание с синим, красным и черным.
  • Бежевый: с голубым, коричневым, изумрудным, черным, красным, белым.
  • Серый: с цветом фуксии, красным, фиолетовым, розовым, синим.
  • Розовый: с коричневым, белым, цветом зеленой мяты, оливковым, серым, бирюзовым, нежно-голубым.
  • Фуксия (темно-розовый): с серым, желто-коричневым, цветом лайма, зеленой мяты, коричневым.
  • Красный: с желтым, белым, бурым, зеленым, синим и черным.
  • Томатно-красный: голубой, цвет зеленой мяты, песчаный, сливочно-белый, серый.
  • Вишнево-красный: лазурный, серый, светло-оранжевый, песчаный, бледно-желтый, бежевый.
  • Малиново-красный: белый, черный, цвет дамасской розы.
  • Коричневый: ярко-голубой, кремовый, розовый, палевый, зеленый, бежевый.
  • Светло-коричневый: бледно-желтый, кремово-белый, синий, зеленый, пурпурный, красный.
  • Темно-коричневый: лимонно-желтый, голубой, цвет зеленой мяты, пурпурно-розовый, цветом лайма.
  • Рыжевато-коричневый: розовый, темно-коричневый, синий, зеленый, пурпурный.
  • Оранжевый: голубой, синий, лиловый, фиолетовый, белый, черный.
  • Светло-оранжевый: серый, коричневый, оливковый.
  • Темно-оранжевый: бледно-желтый, оливковый, коричневый, вишневый.
  • Желтый: синий, лиловый, светло-голубой, фиолетовый, серый, черный.
  • Лимонно-желтый: вишнево-красный, коричневый, синий, серый.
  • Бледно-желтый: цвет фуксии, серый, коричневый, оттенки красного, желтовато-коричневый, синий, пурпурный.
  • Золотисто-желтый: серый, коричневый, лазурный, красный, черный.
  • Оливковый: апельсиновый, светло-коричневый, коричневый.
  • Зеленый: золотисто-коричневый, оранжевый, салатный, желтый, коричневый, серый, кремовый, черный, сливочно-белый.
  • Салатный цвет: коричневый, желтовато-коричневый, палевый, серый, темно-синий, красный, серый.
  • Бирюзовый: цвет фуксии, вишнево-красный, желтый, коричневый, кремовый, темно-фиолетовый.
  • Электрик красив в сочетании с золотисто-желтым, коричневым, светло-коричневым, серым или серебряным.
  • Голубой: красный, серый, коричневый, оранжевый, розовый, белый, желтый.
  • Темно-синий: светло-лиловый, голубой, желтовато-зеленый, коричневый, серый, бледно-желтый, оранжевый, зеленый, красный, белый.
  • Лиловый: оранжевый, розовый, темно-фиолетовый, оливковый, серый, желтый, белый.
  • Темно-фиолетовый: золотисто-коричневый, бледно-желтый, серый, бирюзовый, цвет зеленой мяты, светло-оранжевый.
  • Черный универсален, элегантен, смотрится во всех сочетаниях, лучше всего с оранжевым, розовым, салатным, белым, красным, сиреневатым или желтым.

Усиления зритель­ного впечатления и повышения информационной насыщенности изображения. Ощущение цвета формируется человеческим мозгом в результате анализа светового потока, попадающего на сетчатку глаза от излучающих или отражающих объектов. Восприятие цвета зависит от физических свойств света, т. е. электромагнитной энергии, от его взаимодействия с физическими веществами, а также от их интерпретации зрительной системой человека. Зрительная система человека воспринимает электромагнитную энергию с длинами волн от 400 до 700 нм как видимый свет (1 нм = 10 -9 м). Свет принимается либо непосредственно от источника, например электрической лампочки, либо косвенно при отражении от поверхности объекта или преломлении в нем. Источник или объект является ахроматическим, если наблюдаемый свет содержит все видимые длины волн в приблизительно равных количествах. Ахроматический источник кажется белым, а отраженный или преломленный ахроматический свет - белым, черным или серым . Белыми выглядят объекты, ахроматически отражающие более 80% света белого источника, а черными - менее 3%. Промежуточные значения дают различные оттенки серого. Хотя трудно определить различие между светлотой и яркостью, светлота обычно считается свойством несветящихся или отражающих объектов и изменяется от черного до белого, а яркость является свойством самосветящихся или излучающих объектов и изменяется в диапазоне от низкой до высокой . Если воспринимаемый свет содержит длины волн в произвольных неравных количествах, то он называется хроматическим. Если длины волн сконцентрированы у верхнего края видимого спектра, то свет кажется красным или красноватым, т. е. доминирующая длина волны лежит в красной области видимого спектра. Если длины волн сконцентрированы в нижней части видимого спектра, то свет кажется синим или голубоватым, т. е. доминирующая длина волны лежит в синей части спектра. Однако сама по себе электромагнитная энергия определенной длины волны не имеет никакого цвета. Ощущение цвета возникает в результате преобразования физических явлений в глазу и мозге человека. Цвет объекта зависит от распределения длин волн источника света и от физических свойств объекта. Объект кажется цветным, если он отражает или пропускает свет лишь в узком диапазоне длин волн и поглощает все остальные .

В машинной графике применяются две системы смешения основных цветов: аддитивная - красный, зеленый, синий (RGB) и субтрактивная - голубой, пурпурный, желтый (CMY). Цвета одной системы являются дополнительными к другой: голубой - к красному, пурпурный - к зеленому, желтый - к синему. Дополнительный цвет - это разность белого и данного цвета: голубой это белый минус красный, пурпурный - белый минус зеленый, желтый - белый минуc синий. Хотя красный можно считать дополнительным к голубому, по традиции красный, зеленый и синий считаются основными цветами, а голубой, пурпурный, желтый - их дополнениями. Интересно, что в спектре радуги или призмы пурпурного цвета нет, т. е. он порождается зрительной системой человека. Для отражающих поверхностей , например типографских красок, пленок и несветящихся экранов применяется субтрактивная система CMY. В субтрактивных системах из спектра белого цвета вычитаются длины волны дополнительного цвета. Например, при отражении или пропускании света сквозь пурпурный объект поглощается зеленая часть спектра. Если получившийся свет отражается или преломляется в желтом объекте, то поглощается синяя часть спектра и остается только красный цвет. После его отражения или преломления в голубом объекте цвет становится черным, так как при этом исключается весь видимый спектр. По такому принципу работают фотофильтры. Аддитивная цветовая система RGB удобна для светящихся поверхностей, например экранов ЭЛТ или цветных ламп.

Способы описания цвета

В компьютерной графике применяют понятие цветового разрешения (другое назва­ние - глубина цвета ). Оно определяет метод кодирования цветовой информации для ее воспроизведения на экране монитора. Для отображения черно-белого изобра­жения достаточно одного бита (белый и черный цвета). Восьмиразрядное кодирование позволяет отобразить 256 градаций цветового тона. Два байта (16 бит) определяют 65 536 оттенков. При 24-разрядном способе кодирования возможно определить более 16,5 миллионов цветов

С практической точки зрения цветовому разрешению близко понятие цветового охвата, имеется в виду диапазон цветов, который можно воспроизвести на устройствах вывода. Цветовые модели расположены в трехмерной системе координат, которая образует цветовое пространство. При этом исходят из законов Грассмана о том, что цвет можно выразить точкой в трехмерном пространстве.

Цветовая модель CIE Lab

В1920 году была разработана цветовая пространственная модель CIE Lab

L,a,b - обозначения осей координат в этой системе). Система является аппаратно независи­мой и потому часто применяется для переноса данных между устройствами. В модели CIE Lab любой цвет определяется светлотой (I) и хроматическими компонентами: параметром а, изменяющимся в диапазоне от зеленого до красного, и параметром b, изменяющимся в диапазоне от синего до желтого . Цветовой охват модели CIE Lab значительно превосходит возможности мониторов и печатных устройств, поэтому перед выводом изображения, представленного в этой модели, его приходится пре­образовывать. Данная модель была разработана для согласования цветных фото­химических процессов с полиграфическими. Сегодня она является принятым по умолчанию стандартом для программы Adobe Photoshop.

Цветовая модель RGB

Рис.. Аддитивная цветовая модель RGB

Цветовая модель RGB является аддитивной, то есть любой цвет представляет собой сочетание в различной пропорции трех основных цветов - красного, зеле­ного, синего. Она служит основой при создании и обработке компью­терной графики, предназначенной для электронного воспроизведения (на мони­торе, телевизоре). При наложении одного компонента основного цвета на другой яркость суммарного излучения увеличивается. Совмещение трех компонентов дает ахроматический серый цвет, который при увеличении яркости приближается к белому цвету. При 256 градационных уровнях тона черному цвету соответствуют нулевые значения RGB, а белому - максимальные, с координатами (255,255,255).

RGB с Альфа - каналом

Альфа-канал позволяет объединять изображение с его фоном. Каж­дое значение пикселя содержит дополнительное Альфа-значение, размер которого в битах равен глуби­не цвета изображения. Цветовая модель RGB с Альфа - каналом может использоваться только при глубине цвета равной 8 и 16 битам.

Нулевое значение Альфа - канала означает, что пиксель полностью прозрачен, и в этом случае фон полностью виден через изображение.

Значение Альфа – канала равному 2 глубина цвета изображения -1

соответствует полностью непрозрачному пикселю; это означает, что фон полностью закрыт изо­бражением. Когда значение Альфа - канала равно промежу­точной величине, цвет пикселя сливается с фоном посредством некоторого алгоритма.

Цветовая модель HSB


Рис. Цветовая модель HSB
Цветовая модель HSB разработана с максимальным учетом особенностей восприя­тия цвета человеком. Она построена на основе цветового круга Манселла. Цвет описывается тремя компонентами: оттенком (Hue ), насыщенностью (Saturation ) и яркостью (Brightness ). Значение цвета выбирается как вектор, исходящий из центра окружности. Точка в центре соответствует белому цвету, а точки по периметру окружности - чистым спектральным цветам. Направление вектора задается в градусах и определяет цветовой оттенок. Длина вектора определяет насыщенность цвета. На отдельной оси, называемой ахроматической , задается яркость, при этом нулевая точка соответствует черному цвету. Цветовой охват модели HSB перекры­вает все известные значения реальных цветов.

Модель HSB принято использовать при создании изображений на компьютере с имитацией приемов работы и инструментария художников. Существуют специ­альные программы, имитирующие кисти, перья, карандаши. Обеспечивается ими­тация работы с красками и различными полотнами. После создания изображения его рекомендуется преобразовать в другую цветовую модель, в зависимости от предполагаемого способа публикации. В настоящее время эта цветовая модель используется только в некоторых программах обработки изображения.

Цветовая модель YCbCr

Изображения в формате JPEG почти всегда сохраняются с использованием трехкомпонентного цветового пространства YCbCr. Компонент Y или яркость представляет яркость изображения. Компоненты Cb и Cr определяют цветность. Значение Cb задает синеву изображения, а значение Cr задает его красноту.

Соотношение между цветовыми моделями YCbCr и RGB находят по соответствующим формулам.


Все рассмотренные выше модели относятся к аддитивным. Это означает, что компоненты добавляют цвет в изображение. Чем выше значение компонента, тем ближе цвет к белому.
Цветовая модель CMYK, цветоделение

Рис. Цветовая модель CMYK
Цветовая модель относится к субтрактивным, и ее используют при подго­товке публикаций к печати. Цветовыми компонентами CMY служат цвета, полу­ченные вычитанием основных из белого:

голубой (cyan) = белый - красный = зеленый + синий;

пурпурный (magenta) = белый - зеленый = красный + синий;

желтый (yellow) = белый - синий = красный + зеленый.

Такой метод соответствует физической сущности восприятия отраженных от печат­ных оригиналов лучей. Голубой, пурпурный и желтый цвета называются дополнительными , потому что они дополняют основные цвета до белого. Отсюда вытекает и главная проблема цветовой модели CMY - наложение друг на друга дополни­тельных цветов на практике не дает чистого черного цвета. В модели CMYK большие значения компонентов представляют цвета, более близкие к черному. При комбинации голубой, пурпурной и желтой красок поглощается весь цвет, что теоретически должно приводить к черному цвету, но на практике чистый черный цвет не создается. Поэтому в цветовую модель был включен компонент чистого черного цвета. Так появилась четвертая буква в аббревиатуре цветовой модели CMYK (Cyan, Magenta, Yellow, blacK ). Между моделью и RGB нет однозначного соответствия. На одно и то же значение RGB отображается множество значений CMYK.

Для печати на полиграфическом оборудовании цветное компьютерное изображение необходимо разделить на составляющие, соответствующие компонентам цветовой модели CMYK. Этот процесс называют цветоделением . В итоге получают четыре отдельных изображения, содержащих одноцветное содержимое каждого компонента в оригинале. Затем в типографии с форм, созданных на основе цветоделенных пленок, печатают многоцветное изображение, получаемое наложением цветов CMYK.


Гамма

Цветовые модели, используемые для представления изобра­жений, основываются на предположении, что между значе­нием цветового компонента и цветом, видимым на экране, существует линейная связь. В действительности применяе­мые устройства отображения не реагируют линейно на по­ступающий входной сигнал. Гамма приближение описывает нелинейные характеристики этих устройств. С ма­тематической точки зрения, Гамма - степенная функция:

Настройка Гаммы изображения может выполняться как со­вместно с преобразованием в цветовое пространство XYZ, так и отдельно. Регулировка Гаммы оказывает большее воздей­ствие на вид изображения на компьютерном мониторе, чем преобразование в цветовое пространство XYZ и обратно.

Эффект воздействия Гаммы на изображение состоит в при­ дании компоненту более темного или более светлого оттенка.

Системы координат

Для создания сложного реалистического компьютерного изображения необходимо математическую модель изображаемого объекта или процесса достоверно повторить на экране в пространстве и во времени. При этом необходимо задавать положение точек, линий и поверхностей в различных системах координат. Положение точки в Евклидовом пространстве задается радиус-вектором, который имеет n координат и разложение по n линейно-независимым базисным векторам. Совокупность базисных векторов и единиц измерения расстояний вдоль этих векторов составляет систему координат . Для описания формы графических объектов, задания расположения объектов в пространстве и их проекций на экране дисплея используют различные СК, наиболее удобные в каждом конкретном случае. Положение точек в пространстве удобно описывается с помощью декартовой системы координат. Декартова система координат имеет три направленные прямые линии, которые не лежат в одной плоскости – оси координат, оси пересекаются в одной точке – начале координат . На осях выбирается единица измерения. Положение любой точки в пространстве описывается через координаты этой точки, которые представляют собой расстояния от начала координат до проекций точки на соответствующие оси координат. Для практических расчетов удобнее , чтобы оси координат были расположены взаимно перпендикулярно. Такая система координат называется ортогональной . Взаимное расположение осей в ортогональной системе координат может быть двух видов. Ось 0 z может проходить в направлении от наблюдателя в плоскость листа – это левосторонняя система координат. Если ось 0 z проходит от плоскости листа к наблюдателю – это правосторонняя система координат.

Системы координат наиболее часто применяемые в компьютерной графике

Мировая система координат является основной системой координат, в ней заданы все объекты сцены. Одной из распространенных задач компьютерной графики является изображение двумерных графиков в некоторой системе координат. Эти графики предназначены для отображения зависимости между переменными, заданными с помощью функций. Например, графики, характеризующих восприятие света глазом человека. Чтобы получить такой график, прикладная программа должна описать различные выходные примитивы (точки, линии, цепочки символов), указав их местоположение и размеры в прямоугольной системе координат. Единицы измерения, в которых задаются эти объекты, зависят от их природы: изменение температуры, например, можно отображать в градусах за час, перемещение тела в пространстве - в километрах в секунду, и т. д. Эти прикладные (или ориентированные на пользователя) координаты позволяют задавать объекты в двумерном или трехмерном мире пользователя, и их принято называть мировыми координатами .

Неподвижная мировая система координат (МСК) x, y, z, содержит точку отсчета (начало координат) и линейно независимый базис (совокупность базисных векторов – осей координат), благодаря этому возможно цифровое описание геометрических свойств любого графического объекта в абсолютных величинах . Мировую систему координат обозначим x м y м z м .

Модельная система координат – система координат, в которой задана внутренняя структура объектов.

Экранная система координат - в ней задается положение проекций геометрических объектов на экране дисплея. Проекция точки в ЭСК имеет координату z э =0. Однако не следует отбрасывать эту координату, т. к. МСК и ЭСК часто выбираются совпадающими, а также вектор проекции [ x э y э 0] может участвовать в преобразованиях, к которых нужны не две, а три координаты.

Выбор точки и направления зрения можно описать математически, введя декартову систему координат наблюдателя , начало которой находится в точке обзора, а одна из осей совпадает с направлением зрения

Система координат сцены (СКС) x с y с z с , в которой описывается положение всех объектов сцены – некоторой части мирового пространства с собственными началом отсчета и базисом, которые используются для описания положения объектов независимо от МСК.

Объектная система координат (ОСК) x о y о z о , связанная с конкретным объектом и совершающая с ним все движения в СКС или МСК.
Изображение трехмерных объектов сопряжено с целым рядом задач. Прежде всего надо помнить, что изображение является плоским, поэтому надо добиться адекватной передачи визуальных свойств предметов, дать достаточно наглядное представление о глубине. В дальнейшем группы трехмерных объектов, предназначенных для изображения, будем называть пространственной сценой , а ее двумерное изображение - образом .

Рис. 4.3. Объектная система координат и система координат наблюдателя
Видимый образ формируется на некоторой плоскости, которую в дальнейшем будем называть картинной плоскостью . Способы преобразования трехмерного объекта в двумерный образ (проекции ) могут быть различными. Так или иначе, но полученный образ также должен быть описан в некоторой двумерной системе координат. В зависимости от способа его получения реальные размеры образа также могут быть различны. Различные виды проецирования будут подробно рассмотрены позднее.

Рис. 4.4. Картинная плоскость и экран

Поскольку нашей конечной целью является получение изображения на экране, то перенесение образа сопровождается изменением масштаба в соответствии с размерами экрана. Обычно началом координат в системе координат образа считается левый нижний угол листа с изображением. На экране дисплея начало координат традиционно находится в левом верхнем углу. Отображение рисунка с картинной плоскости на экран должно производиться с минимальным искажением пропорций, что само по себе вносит ограничение на область экрана, занимаемую рисунком. Изменение масштаба должно осуществляться с сохранением пропорций области (рис. 4.4).

Объекты в системе координат картинной плоскости задаются в каких- либо единицах измерения, причем масштаб одинаков по обеим осям координат. На экране единицей измерения является пиксель, который следует рассматривать как прямоугольный, поэтому масштабы по горизонтальной и вертикальной осям могут быть различны, что необходимо учитывать при задании коэффициентов масштабирования

Пример преобразований в системах координат

Для того, чтобы управлять изображением на экране, вносить изменения в его положение, ориентацию и размер производят геометрические преобразования. Они позволяют изменять характеристики объектов в пространстве. Допустим необходимо создать на компьютере изображение движения солнца по небу и автомобиля по земле. Данную картину наблюдатель видит из определенной точки в пространстве в определенном направлении. Чтобы описать эти сложные преобразования математически сначала следует выбрать системы координат.

Первая система координат – мировая, зададим ее осями x м y м z м , она размещается в некоторой точке и остается всегда неподвижной.

Вторая система координат определяет положение наблюдателя в пространстве и задает направление взгляда – система координат наблюдателя x n y n z n .

Третья система – система координат объекта, их будет две: система координат солнца и система координат автомобиля. Эти системы могут перемещаться и изменять свое положение в пространстве относительно мировой системы координат. Координаты точек объектов задаются в системах координат объектов, каждая из них привязана к мировой системе координат. Система координат наблюдателя тоже перемещается относительно мировой системы координат. Чтобы увидеть трехмерный объект на дисплее нужно выполнить:


  • Преобразовать координаты объекта, заданные в собственной системе координат, в мировые координаты;

  • Преобразовать координаты объекта из мировой системы в систему координат наблюдателя;
Спроецировать полученные координаты на плоскость в с системе координат наблюдателя, при этом мы будем иметь положение всех объектов сцены в координатах сцены.

Этапы построения изображений
Как было сказано ранее, компьютерная графика изучает методы построения изображений различных геометрических объектов и сцен. Главными этапами построения изображений являются:


  • Моделирование, которое использует методы математического описания объектов и сцен самой разной природы в двух- и трехмерном пространстве.

  • Визуализация – методы построения реалистических изображений объемного мира на плоском экране дисплея ЭВМ, при этом модели объектов и сцен преобразуются в статическое изображение или фильм (последовательность статических кадров).
Все графические объекты приводятся к алгоритмическому виду, это отличает компьютерную графику от обычной.

Геометрические преобразования

Цель изучения геометрических преобразований – научиться описывать движение объектов и визуализировать объекты математически. Геометрическое преобразование – это отображение образа точки, принадлежащей n -мерному Евклидову пространству в точку n ’ -мерного прообраза. К геометрическим преобразованиям относятся проективные преобразования и аффинные преобразования.


Проективные преобразования. Проекции

Для того чтобы синтезировать изображение на экране ПК, необходимо предложить способ математического описания объектов в трехмерном пространстве или на плоскости. Проективные преобразования изображают сцену в желаемом ракурсе. Проекцией называется способ перехода трехмерных объектов к их изображению на плоскости. Проецирование – это отображение трехмерного пространства на двухмерную картинную плоскость (КП). Получение проекции основывается на методе трассировки лучей. Из центра проецирования (проектора) проводятся лучи через каждую точку объекта до пересечения с КП. Фигура на плоскости, которая образуется точками пересечения лучей с картинной плоскостью, является проекцией объекта. Важным свойством любого метода проецирования является достоверность восприятия объекта по его проекции. Проекции, одинаково хорошо подходящей для любых задач не существует. Плоская геометрическая проекция – это тип проецирования на плоскую поверхность прямыми линиями. Плоские геометрические проекции бывают центральные и параллельные. Если центр проекции находится на конечном расстоянии от проекционной плоскости, то это центральная проекция. Если центр проекции удален на бесконечность, то такая проекция является параллельной. Центральные проекции имеют от одной до трех точек схода. Точкой схода называется точка пересечения центральных проекций всех параллельных прямых, которые не параллельны проекционной плоскости.


2012 -> Стерлитамакский филиал
2012 -> Питання про виникнення людини хвилює людство здавна. У XIX ст
2012 -> Методические рекомендации по проведению занятий с применением интерактивных форм обучения
2012 -> Тема опыта
2012 -> Вопросы к экзамену Планирование и организация работы кадровой службы Современные концепции управления персоналом

Понятия света и цвета в компьютерной графике являются основополагающими. Обычно свет представляет собой непрерывный поток волн с различными длинами и различными амплитудами. Такой свет можно характеризовать энергетической спектральной кривой (рис. 2.2), где само значение функции представляет собой вклад волн с длиной волны  в общий волновой поток.

Рис. 2.2. Спектральная кривая света

Ощущение цвета возникает в мозге при возбуждении и торможении цветочувствительных клеток - рецепторов глазной сетчатки человека, колбочках. У человека существует три вида колбочек - «красные», «зелёные» и «синие», соответственно. Светочувствительность колбочек невысока, поэтому для хорошего восприятия цвета необходима достаточная освещённость или яркость. Каждое цветовое ощущение у человека может быть представлено в виде суммы ощущений этих трех цветов.

Основными характеристиками цвета являются цветовой тон, насыщенность, яркость.

Определение 2.6. Цветовой тон – атрибут визуального восприятия, согласно которому область кажется обладающей одним из воспринимаемых цветов (красного(R ) , зелёного(G ) или синего(В )). Является основной цветовой характеристикой.

Определение 2.7. Насыщенность – характеристика, выражаемая долей присутствия белого цвета. В идеально чистом цвете примесь белого отсутствует. Если, например, к чистому красному цвету добавить в определенной пропорции белый цвет, то получится светлый бледно-красный цвет.

Определение 2.8. Яркость – характеристика, определяемая энергией, интенсивностью светового излучения. Выражает количество воспринимаемого света.

Обыкновенный цвет (солнца, лампочки) состоит из всех цветов радуги. Если пропустить его через призму, то он разложится в цветной спектр радуги. Эти цвета представляют частоты электромагнитных колебаний, которые представляются невооруженным глазом.

Различают излучаемый и отраженный свет. Излучаемый свет - свет, выходящий из активного источника, содержит в себе все цвета. Отраженный свет может содержать все цвета, их комбинацию или только один цвет. Так как цвет может получиться в процессе излучения и поглощения, то существуют два противоположных метода его описания:

Система аддитивных цветов;

Система субтрактивных цветов.

Цветовая модель RGB. Аддитивный цвет получается при соединении лучей света разных цветов. Отсутствие всех цветов в этой системе есть черный цвет. Присутствие всех цветов – белый цвет. Эта система работает с излучаемым цветом, например, от монитора компьютера. В этой системе используется три основных цвета: красный, зеленый, синий (RGB). Система цветов RGB. Наиболее распространена и популярна. Используется в мониторах.

Цветовая модель CMY. В системе субтрактивных цветов происходит обратный процесс. Определенный цвет получается вычитанием других цветов из общего луча света. Белый цвет появляется в результате отсутствия всех цветов, тогда как их присутствие дает черный цвет. Эта система работает с отраженным цветом.

В системе субтрактивных цветов основными являются голубой, пурпурный, желтый (CMY – Cyan, Magenta, Yellow). При их смешении предполагается, что должен получиться черный цвет. В действительности типографские краски поглощают свет не полностью, и поэтому комбинация трех основных цветов выглядит темно-коричневой. Эта система используется в основном в полиграфии. Преобразование рисунков из системы RGB в систему CMYK сталкивается с рядом проблем. Основная сложность в том, что в разных системах цвета могут меняться. В этих системах различна природа получения цветов, и поэтому то, что отображается на экране монитора никогда нельзя в точности повторить при печати. Процесс преобразования усложняется необходимостью корректировать несовершенство типографских красок.

Цветовая модель HSV. Рассмотренные выше цветовые модели так или иначе используют смешение некоторых основных цветов. Цветовую модель HSV, можно отнести к альтернативному типу.

Рис. 2.3. Цветовая модель HSV

В модели HSV (рис. 2.3) цвет описывается следующими параметрами: цветовой тон H (Hue), насыщенность S (Saturation), яркость, светлота V(Value). Значение H измеряется в градусах от 0 до 360, поскольку здесь цвета радуги располагаются по кругу в таком порядке: красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый. Значения S и V находятся в диапазоне (0…1).

Примеры кодирования цветов для модели HSV. При S=0 (т.е. на оси V) - серые тона. Значение V=0 соответствует черному цвету. Белый цвет кодируется как S=0, V=1. Цвета, расположенные по кругу напротив друг друга, т.е. отличающиеся по H на 180 º, являются дополнительными. Задание цвета с помощью параметров HSV достаточно часто используется в графических системах, причем обычно показывается развертка конуса.

Цветовая модель HSV удобна для применения в тех графических редакторах, которые ориентированы не на обработку готовых изображений, а на их создание своими руками. Существуют такие программы, которые позволяют имитировать различные инструменты художника (кисти, перья, фломастеры, карандаши), материалы красок (акварель, гуашь, масло, тушь, уголь, пастель) и материалы полотна (холст, картон, рисовая бумага и пр.).

Существуют и другие цветовые модели, построенные аналогично HSV, например модели HLS (Hue, Lighting, Saturation) и HSB также использует цветовой конус. В модели HSB тоже три компонента: оттенок цвета (Hue), насыщенность цвета (Saturation) и яркость цвета (Brightness). Регулируя их, можно получить столь же много произвольных цветов, как и при работе с другими моделями.

Цветовая модель Lab. Все вышеперечисленные модели описывают цвет тремя параметрами и в достаточно широком диапазоне. Теперь рассмотрим цветовую модель, в которой цвет задается одним числом, но уже для ограниченного диапазона цветов (оттенков).

На практике часто используются черно-белые (серые) полутоновые изображения. Серые цвета в модели RGB описываются одинаковыми значениями компонентов, т.е. r i = g i = b i . Таким образом, для серых изображений нет необходимости использовать тройки чисел - достаточно и одного числа. Это позволяет упростить цветовую модель. Каждая градация определяется яркостью Y. Значение Y=0 соответствует черному цвету, максимальное значение Y – белому.

Для преобразования цветных изображений, представленных в системе RGB, в градации серого используют соотношение

Y = 0,299R + 0,587G + 0,114B,

где коэффициенты при R, G и B учитывают различную чувствительность зрения к соответствующим цветам и, кроме того, их сумма равна единице.

Очевидно, что обратное преобразование R =Y, G =Y, B =Y не даст никаких других цветов, кроме градаций серого.

Разнообразие моделей обусловлено различными областями их использования. Каждая из цветовых моделей была разработана для эффективного выполнения отдельных операций: ввода изображений, визуализаций на экране, печати на бумаге, обработки изображений, сохранения в файлах, колориметрических расчетов и измерений. Преобразование из одной модели в другую может привести к искажению цветов изображения.

Контрольные вопросы и задания

1. Какие виды представления видеоинформации Вы знаете?

2. Что представляет собой битовая глубина?

3. Что такое разрешающая способность растра?

4. Какие характеристики влияют на размер изображения?

5. В чем особенность масштабирования растровых и векторных изображений?

6. Назовите основные характеристики цвета?

7. Какие цветовые системы Вы знаете?

8. Дайте определение аддитивной системе цветов. В каких устройствах она используется?

9. Что представляет собой система субтрактивных цветов?

10. Перечислите альтернативные цветовые системы.

Лучшие статьи по теме