Как настроить смартфоны и ПК. Информационный портал
  • Главная
  • Windows 8
  • Как мы делали самую большую катушку тесла в россии. Сделай своими руками трансформатор Тесла (Tesla coil)

Как мы делали самую большую катушку тесла в россии. Сделай своими руками трансформатор Тесла (Tesla coil)

Для того, чтобы самостоятельно создать генератор Тесла, необходимо иметь такие детали:

  • конденсатор;
  • разрядник;
  • первичная катушка, которая должна иметь низкую индуктивность;
  • вторичная катушка, должна иметь высокую индуктивность;
  • конденсатор вторичный, должен иметь небольшую емкость;
  • проволока разных диаметров;
  • несколько трубок из пластика или картона;
  • обычная шариковая ручка;
  • фольга;
  • металлическое кольцо;
  • штырь, чтобы заземлить прибор;
  • металлический штырь, чтобы ловить заряд;

Пошаговая инструкция по сборке


Для того, чтобы изобретение работало исправно и не представляло угрозы, нужно тщательно додерживаться всех инструкций и быть очень осторожным.

Тщательно следуйте руководству, и проблем не возникнет:

  1. Выбрать подходящий трансформатор. Он определяет размер катушки, которую вы сможете сделать. Вам нужен такой, чтобы мог выдавать как минимум 5-15 Вт, и ток 30-100 миллиампер.
  2. Первый конденсатор. Его можно создать с помощью более мелких конденсаторов, скреплённых наподобие цепи. Они будут равномерно накапливать энергию в вашем первичном контуре. Но для этого они должны быть одинаковыми. Конденсатор можно снять с нерабочего телевизора, купить в магазине или сделать самостоятельно с помощью обычной пленки и фольги из алюминия. Чтобы ваш конденсатор был максимально мощным, он должен заряжаться постоянно. Заряд должен подаваться каждую секунду по 120 раз.
  3. Разрядник. Для одиночного разрядника можно взять провод, толщина которого больше 6 миллиметров. Это нужно, чтобы электроды смогли выдержать тепло, которое будет выделяться. Электроды можно охлаждать с помощью потока холодного воздуха, использовав фен, пылесос, кондиционер.
  4. Обмотка первой катушки. Вам нужна специальная форма, вокруг которой нужно намотать медную проволоку. Ее можно взять из старого ненужного электрического прибора или купить новую в магазине. Форма, на которую будет наматываться проволока должна быть либо в форме цилиндра или конуса. От длины проволоки напрямую зависит индуктивность катушки. А первичная, как уже написано выше, должна быть с низкой индукцией. Витков должно быть немного, и проволока может быть и не цельной, иногда используют куски, скрепляя их.
  5. Уже можно собрать созданные приборы в одно целое , присоединив их один к другому, как звенья в цепи. Если все сделано правильно, то они должны создать первичный колебательный контур, который будут передавать электроды.
  6. Вторичная катушка. Создается также, как и первая, на форму наматывается проволока, витков должно быть больше. Ведь вторая катушка нужна намного больше и выше, чем первая. Она не должна создавать вторичный контур, наличие которого может привести к сгоранию первичной катушки. Не забывайте о том, что эти катушки должны быть одинаковой частоты, чтобы исправно работать и не сгореть во время включения прибора.
  7. Другой конденсатор. Его форма может быть как круглой, так и сферической. Делается также, как и для первичной катушки.
  8. Соединение. Для создания вторичного контура нужно соединить оставшиеся катушку и конденсатор в одно целое. Но, необходимо заземлить контур, чтобы не нанести вред приборам, которые подключены в сеть. Заземлять нужно как можно дальше от проводки, которая размещена по всему дому. Заземлить очень просто – нужно воткнуть штырь в землю.
  9. Дроссель. Необходимо сделать дроссель, чтобы не поломать разрядником всю электросеть. Создать просто – плотно намотать проволоку на шариковую ручку.
  10. Собрать все вместе:
    • первичную и вторичную катушки;
    • трансформатор;
    • дроссели;
  11. Нужно разместить обе катушки рядом и присоединить к ним трансформатор с помощью дросселей. Если вторая катушка получилась больше первой, то первую можно разместить внутри.

Прибор начнет работать после подключения трансформатора.

Устройство


схема простейшего трансформатора Тесла

Данный прибор состоит из нескольких деталей:

  • 2 разных катушек: первичная и вторичная;
  • разрядника;
  • конденсатора;
  • тороида;
  • терминала;

Также, в состав первичной входят провод, диаметр которого больше 6 миллиметров и медная трубка. Чаще всего, она создается именно горизонтальной, но бывает еще вертикальной и в форме конуса. Для другой катушки используют намного больше провода, диаметр которого меньше, чем у первой.

Для создания трансформатора Тесла, не используют ферромагнитного сердечника, и таким образом, уменьшают индукцию между первичной и вторичной катушками. Если использовать ферромагнитный сердечник, то взаимоиндукция будет намного сильнее. А это не подходит для создания и нормального функционирования прибора Тесла.

Колебательный контур образуется благодаря первой катушке и подключенному к ней конденсатору. Также, в него входит и один нелинейный элемент, а именно – обычный газовый разрядник.

Вторичная образует такой же контур, но вместо конденсата используется емкость тороида, и сам межвитковой промежуток в катушке. Кроме того, такая катушка, чтобы не допустить электрический пробой, покрывается специальной защитой – эпоксидной смолой.

Терминал обычно используется в виде диска, но он может быть сделан и в виде сферы . Он необходим, чтобы получить длинные разряды из искр.

В этом приборе используются 2 колебательных контура, что и отличает это изобретение от всех остальных трансформаторов, которые состоят только из одного. Для того, чтобы данный трансформатор работал исправно, эти контуры должны иметь одну и ту же частоту.

Принцип работы


Катушки, которые вы создали, имеют колебательный контур. Если к первой катушке подвести напряжение, то она создаст собственное магнитное поле. С его помощью передается энергия от одной катушки к другой.

Вторичная катушка создает вместе с емкостью такой же контур, который способен накапливать энергию, которую передала первичная. Все работает по простой схеме – чем больше энергии способна передать первая катушка, а вторая – накопить, то тем больше будет напряжение. И результат будет более зрелищный.

Как говорилось выше, чтобы прибор начал работать, его необходимо подключить к питающему трансформатору. Для того, чтобы направить разряды, которые выдает генератор Тесла, нужно рядом разместить металлический предмет. Но делать это так, чтобы они не соприкасались. Если рядом положить лампочку, то она будет светиться. Но только в том случае, если напряжения будет достаточно.

Чтобы сделать самостоятельно изобретение Тесла, нужно делать математические расчеты, поэтому нужно иметь опыт. Или же найти инженера, который поможет правильно вывести формулы.

  1. Если опыта нет , то лучше не начинайте работу самостоятельно. Помочь вам сможет инженер.
  2. Будьте очень аккуратны , ведь разряды, которые выдает генератор Тесла, могут обжечь.
  3. Такое изобретение способно вывести из строя все подключенные устройства, перед включением будет лучше убрать их подальше.
  4. Все металлические предметы , которые находятся недалеко от включенного устройства, могут обжигать.

Который изготовлен своими руками . Я надеюсь, что описанная ниже информация, станет полезной для читателей и будет использована при изготовлении различных самоделок , в основе которых лежать принципы электричества.

Шаг 1: Опасность

В отличие от других экспериментов с использованием высоковольтного напряжения, разряд от катушки может быть очень опасным. Ваша нервная система и система кровообращения может получить серьезный ущерб. Не прикасайтесь к катушке, не при каких обстоятельствах.

Если это ваш первый проект такого рода, попросите человека с опытом помочь вам и соблюдайте правила техники безопасности.

Шаг 2: Сбор материалов

Катушка вторичной обмотки:

  • Пластиковая труба 38 мм в диаметре (чем длиннее, тем лучше);
  • Около 90 м медного эмалированного провода диаметром 0,5 мм;
  • 38 мм пластиковый переходник;
  • 38 мм металлический напольный фланец с резьбой;
  • Эмалевая краска в баллончике;
  • Круглый, гладкий металлический предмет – клемма для разрядки заряда.

Катушка первичной обмотки:

  • Около 3 м тонкой медной трубы.

Конденсаторы:

  • 6 стеклянных бутылок;
  • Кухонная соль;
  • Масло (я использовал рапсовое);
  • Алюминиевая фольга.

Блок питания высокого напряжения, который выдает около 9 кВ и 30 мА.

Шаг 3: Наматываем вторичную обмотку

Сделаем небольшое отверстие в верхней части трубы. Проденем в него один конец проволоки и обернём её вокруг трубы. Медленно и осторожно начинаем наматывать катушку, убедившись, что провода не пересекаются, и не остается пробелов. Этот шаг – самый тяжёлый и утомительный, но время будет потрачено не зря – в итоге у вас получится очень качественная катушка. Через каждые 20 витков наклеиваем липкую ленту на проволоку – она будет выступать в качестве барьера, если катушка начнёт разматываться. По завершению работы плотно обернём изоленту вокруг верхней и нижней части катушки и распылим на обмотку 2 или 3 слоя эмали.

Для намотки катушки была изготовлена самоделка , которая состоя из двигателя (3 оборота в минуту) и подшипника.

Шаг 4: Подготавливаем основу и наматываем первичную обмотку

Совместим металлическую подставку с центром нижней доски и просверлим отверстия для болтов. Установим болты «вверх ногами». Это позволит закрепить базу для первичной обмотки гайками с внешней стороны поделки . После чего прикрутим её к основе. Возьмём медную трубку и сформируем из неё перевернутый конус.

Разрядник – два болта торчащих из деревянной доски. Они регулируются, благодаря чему можно проводить настройку.

Шаг 5: Собираем конденсаторы

Вместо того, чтобы покупать конденсаторы, сделаем их своими руками . Для этого нам понадобится соленая вода, масло и алюминиевая фольга. Обернём бутылку фольгой и заполним её водой. Постарайтесь налить равное количество воды в каждую бутылку, так как одинаковый объем поможет сохранить стабильную выходную мощность. Максимальное количество соли, что вы можете разбавить в воде 0,359 г / мл (однако всё расчёты заканчивались тем, что получался сильный соляной раствор, поэтому уменьшил количество до 5 грамм). Убедитесь, что вы используете «правильное» количество соли на объём воды. Теперь влейте по несколько мл масла в бутылку. Пробейте отверстие в крышке и протяните в него длинный провод. Теперь у вас есть один полностью функционирующий конденсатор, нужно сделать еще 5.

Дополнительно, чтобы держать бутылки вместе, сделайте или найдите ящик для них.

Если вы используете БП 15 кВ 30 мА, необходимо использовать 8-12 бутылок, а не 6!

Шаг 6: Подключаем все воедино

Разводим проводку в соответствии со схемой. Земля вторичной обмотки не может быть поставлена на «землю» электросети здания, в этом случае она «сожжёт» все электроприборы в вашем доме.

Характеристики моих катушек:

  • 599 витков на вторичной катушке;
  • 6.5 витков на основной катушке.

Шаг 7: Запускаем установку

Вынесите её на улицу при первом запуске, поскольку действительно не безопасно запускать такое мощное устройство в помещении (высокий риск пожара). Нажмите на выключатель, и наслаждаться световым шоу. Мой БП с 9кВ и 30 мА, позволяет катушке испускать 15 см искры.

Шаг 8: На будущее…

Есть несколько вещей, которые необходимо изменить в моей следующей установке. Первое – конструкция первичной обмотки. Она должна быть более плотно свернута и состоять из большего числа витков. Второе – более качественно выполнить разрядник.

Спасибо за внимание!

19 июня 2014 в 04:41

Катушка Тесла из хозмага

  • DIY или Сделай сам

Имея патологическую тягу к сантехнической фурнитуре никак не могу приучить себя использовать ее по прямому назначению. Всегда в голову лезут идеи, что сделать из труб, фитингов и переходников так, чтобы уже никогда не использовать их в сантехнике. Так получилось и в этот раз. Делаем высоковольтный генератор Тесла на сантехнической фурнитуре.

Почему такой выбор? Все очень просто. Я сторонник элегантных и хорошо повторяемых технических решений. Минимум слесарки, доводки, допилки, доклепки. Жизнь должна радовать легкостью решений и изяществом форм.

Что понадобится?

В магазине оказалось все в наличии и покупка заняла буквально несколько минут.

На снимке все, что необходимо. Привожу оригинальные названия c магазинных этикеток
1. Труба 40x0.25м
2. Переходник кольцо на трубу 40мм
3. Лак высоковольтный (был в арсенале)
4. Муфта переходная на гладкий конец чугунной трубы на 50мм
5. Резиновая манжета на 50мм
6. Медный провод 0,14мм ПЭВ-2 (из старинных запасов)

Стоимость всей фурнитуры около 200 рублей. При покупке лучше выбрать магазин побольше, чтобы не объяснять охранникам и менеджерам зачем вы соединяете несоединяемые элементы с друг другом и как вам помочь найти то, что вам нужно. Также нам понадобится еще несколько недорогих деталей, о которых немного позднее. Но для начала немного отвлечемся…

Катушки Тесла и все такое

О Тесла сказано много и разного, но люди в большинстве своем (в том числе и я) единодушны в своем мнении - Тесла сделал не мало для развития науки и техники для своего времени. Многие его патенты воплотились в жизнь, часть же до сих пор остается за гранью понимания сути. Но основными заслугами Тесла можно считать исследования природы электричества. Особенно высоковольтного. Тесла поражал своих знакомых и коллег удивительными экспериментами в которых он без труда и опаски управлял высоковольтными генераторами, которые вырабатывали сотни тысяч, а иногда и миллионы вольт. В этой статье я описываю изготовление миниатюрного генератора Тесла, теория которого достаточно хорошо и подробно изучена. А теперь к делу!

Что мы должны получить?
В конце концов мы должны собрать наше устройство так, как показано на фото:

Шаг 1. Намотка высоковольтной катушки

Намотку основной высоковольтной катушки проводим на трубку проводом 0.1-0.15 мм. У меня в запасе был провод 0.14 мм. Это, пожалуй, самое занудное занятие. Намотку необходимо делать максимально аккуратно, виток к витку. Можно использовать оснастку, но я намотал катушки вручную. Кстати, я всегда что-то делаю минимум в двух экземплярах. Почему? Во-первых навык. Второе изделие получается просто конфеткой, да и всегда найдется человек, который начнет клянчить устройство (подари, продай, дай попользоваться и т.п.). Отдаю первое, второе остается в коллекции, глаз радуется, дружба крепнет, гармония в мире возрастает.

Шаг 2. Изоляция высоковольтной катушки

Следующий важный шаг - изоляция высоковольтной катушки. Не буду говорить, что катушку надо 20 раз пропитать воском, оборачивать лакотканью или применять вываривание в масле. Все это колчаковские подходы. Мы люди современные, поэтому используем высоковольтный лак (см. первое фото. марку лака не указываю, можно погуглить) и широкую термоусадку. Лаком покрываем в два - три слоя. Сушим слой минимум 20-30 минут. Лак наносится прекрасно. Результат великолепный! Катушка становиться просто вечной! Стоимость лака не велика. Триста рублей баллон. Думаю, хватит на десяток подобных устройств. НО!!!

Лак оказался ОЧЕНЬ ТОКСИЧНЫМ! Буквально через минуту у меня разболелась голова и началась рвота у кота. Работу пришлось остановить. Помещение срочно проветривать, нанесение лака остановить. Срочно пришлось бежать в магазин. Мне купить пиво, а коту молока, чтобы оправиться от отравления:

По хорошему нанесение лака необходимо проводить под вытяжкой, но (после спасения себя и кота) я делал это на улице. Благо погода располагала, не было ветра и пыли, а дождь не лил. Затем необходимо надеть широкую термоусадку и усадить катушку термофеном. Делать это необходимо аккуратно, с середины к краям. Должно получиться плотно и ровно.

Шаг 3. Изготовление индуктора и сбор всей конструкции

Пожалуй, самая ответственная часть генератора. Я анализировал многие конструкции подобных устройств и многие авторы делают одну и ту же ошибку. Во-первых, используется достаточно тонкий провод, во вторых, нет равномерного и существенного (не менее 1 см) зазора с высоковольтной катушкой и используется много витков. Это совершенно не нужно. Достаточно 2..4-х витков в первой трети высоковольтной катушки. Для индуктора используем полую медную отожженную трубку диаметром 8 мм, что обеспечивает минимальную индуктивность и просто великолепные характеристики генератора при эксплуатации. Три витка наматываем на резиновую манжету в пазы. Чтобы трубку не заламывало - наполните ее плотно мелким песком. После аккуратно высыпьте песок. После сбора всей конструкции все должно выглядеть как на фото:

Медная трубка, пожалуй, самая дорогая позиция в этой самоделке. Аж целых 150 рублей. Куплена также в хозмаге.

Некоторые тонкости...

Тонкости связаны с конструкцией контактов индуктора. Они выполнены из отожженной медной полосы и закрыты термоусадкой. Это обеспечивает минимальную индуктивность конструкции, что является очень важным. Контакты спрятаны внутри муфты. Все соединения должны быть как можно короче и выполнены широкими медными лентами, что снижает различные потери. На верх устройства одеваем переходник-кольцо, которое прижимает медный круглый контакт, на который припаян верхний вывод высоковольтной катушки. Конструкция вверху подлита жидкой резиной. В центре выведен мини-разъем.

Шаг 4. Подключение и испытание генератора

Существует примерно 2 миллиона способов запитать подобное устройство. Остановимся на самом простом - с помощью схемы, изображенной на данном рисунке:

Понадобится пара резисторов, конденсатор, транзистор не забудьте поставить на радиатор. Номиналы указаны. Ресурс схемы, думаю, не большой, но учитывая дешевизну транзисторов и срочность желания увидеть результат это уже не в счет.


Если все собрано верно, схема заработает сразу. Если генерации нет, то переключите контакты индуктора наоборот. У меня заработало сразу. Генерация начинается с 5-7 вольт. Уже на 6 вольт генерация устойчивая, на 12 вольт всё пылает вокруг. На фото можно видеть, что вся конструкция обдувается вентилятором, так как транзистор изрядно греется, хоть и поставлен на радиатор. На удивление схема очень надежна. На 12 вольт работает часами и очень устойчиво. При выключенном свете и «дохленькой» лампочке светит ярко. Источник питания для катушки лучше взять помощнее (с выходным током не менее 2-3 ампер).

Видео работы устройства можно посмотреть

Катушка Тесла представляет собой высокочастотный резонансный трансформатор без ферромагнитного сердечника, с помощью которого можно получить высокое напряжение на вторичной обмотке. Под действием высокого напряжения в воздухе происходит электрический пробой, подобно разряду молнии. Устройство изобретено Николой Теслой, и носит его имя.

По типу коммутирующего элемента первичного контура, катушки Тесла подразделяются на искровые (SGTC – Spark gap Tesla coil), транзисторные (SSTC – Solid state Tesla coil, DRSSTC – Dual resonant solid state Tesla coil). Я буду рассматривать только искровые катушки, являющиеся самыми простыми и распространенными. По способу заряда контурного конденсатора, искровые катушки делятся на 2 типа: ACSGTC – Spark gap Tesla coil, а также DCSGTC – Spark gap Tesla coil. В первом варианте, заряд конденсатора осуществляется переменным напряжением, во втором используется резонансный заряд с подведением постоянного напряжения.


Сама катушка представляет собой конструкцию из двух обмоток и тора. Вторичная обмотка цилиндрическая, наматывается на диэлектрической трубе медным обмоточным проводом, в один слой виток к витку, и имеет обычно 500-1500 витков. Оптимальное соотношение диаметра и длины обмотки равно 1:3,5 – 1:6. Для увеличения электрической и механической прочности, обмотку покрывают эпоксидным клеем или полиуретановым лаком. Обычно размеры вторичной обмотки определяют исходя из мощности источника питания, то есть высоковольтного трансформатора. Определив диаметр обмотки, из оптимального соотношения находят длину. Далее подбирают диаметр обмоточного провода, так чтобы количество витков примерно равнялось общепринятому значению. В качестве диэлектрической трубы обычно применяют канализационные пластиковые трубы, но можно изготовить и самодельную трубу, при помощи листов чертежного ватмана и эпоксидного клея. Здесь и далее речь идет о средних катушках, мощностью от 1 кВт и диаметром вторичной обмотки от 10 см.

На верхний конец трубы вторичной обмотки устанавливают полый проводящий тор, обычно выполненный из алюминиевой гофрированной трубы для отвода горячих газов. В основном диаметр трубы подбирают равным диаметру вторичной обмотки. Диаметр тора обычно составляет 0,5-0,9 от длины вторичной обмотки. Тор имеет электрическую емкость, которая определяется его геометрическими размерами, и выступает в роли конденсатора.

Первичная обмотка располагается у нижнего основания вторичной обмотки, и имеет спиральную плоскую или коническую форму. Обычно состоит из 5-20 витков толстого медного или алюминиевого провода. В обмотке протекают высокочастотные токи, вследствие чего скин-эффект может иметь значительное влияние. Из-за высокой частоты ток распределяется преимущественно в поверхностном слое проводника, тем самым уменьшается эффективная площадь поперечного сечения проводника, что приводит к увеличению активного сопротивления и уменьшению амплитуды электромагнитных колебаний. Поэтому лучшим вариантом для изготовления первичной обмотки будет полая медная трубка, или плоская широкая лента. Над первичной обмоткой по внешнему диаметру иногда устанавливают незамкнутое защитное кольцо (Strike Ring) из того же проводника, и заземляют. Кольцо предназначено для предотвращения попадания разрядов в первичную обмотку. Разрыв необходим для исключения протекания тока по кольцу, иначе магнитное поле, созданное индукционным током, будет ослаблять магнитное поле первичной и вторичной обмотки. От защитного кольца можно отказаться, если заземлить один конец первичной обмотки, при этом попадание разряда не причинит вреда компонентам катушки.

Коэффициент связи между обмотками зависит от их взаимного расположения, чем они ближе, тем больше коэффициент. Для искровых катушек типичное значение коэффициента равно K=0,1-0,3. От него зависит напряжение на вторичной обмотке, чем больше коэффициент связи, тем больше напряжение. Но увеличивать коэффициент связи выше нормы не рекомендуется, так как между обмотками начнут проскакивать разряды, повреждающие вторичную обмотку.


На схеме представлен простейший вариант катушки Тесла типа ACSGTC.
Принцип действия катушки Тесла основан на явлении резонанса двух индуктивно связанных колебательных контуров. Первичный колебательный контур состоит из конденсатора С1, первичной обмотки L1, и коммутируется разрядником, в результате чего образуется замкнутый контур. Вторичный колебательный контур образован вторичной обмоткой L2 и конденсатором С2 (тор обладающий емкостью), нижний конец обмотки обязательно заземляется. При совпадении собственной частоты первичного колебательного контура с частотой вторичного колебательного контура, происходит резкое возрастание амплитуды напряжения и тока во вторичной цепи. При достаточно высоком напряжении происходит электрический пробой воздуха в виде разряда, исходящего из тора. При этом важно понимать, что представляет собой замкнутый вторичный контур. Ток вторичного контура течет по вторичной обмотке L2 и конденсатору С2 (тор), далее по воздуху и земле (так как обмотка заземлена), замкнутый контур можно описать следующим образом: земля-обмотка-тор-разряд-земля. Таким образом, захватывающие электрические разряды представляют собой часть контурного тока. При большом сопротивлении заземления разряды, исходящие из тора будут бить прямо по вторичной обмотке, что не есть хорошо, поэтому нужно делать качественное заземление.

После того как размеры вторичной обмотки и тора определены, можно посчитать собственную частоту колебаний вторичного контура. Здесь надо учитывать, что вторичная обмотка кроме индуктивности обладает некоторой емкостью из-за немалых размеров, которую надо учитывать при расчете, емкость обмотки необходимо сложить с емкостью тора. Далее надо прикинуть параметры катушки L1и конденсатора C1первичного контура, так чтобы собственная частота первичного контура была близка к частоте вторичного контура. Емкость конденсатора первичного контура обычно составляет 25-100 нФ, исходя из этого, рассчитывают количество витков первичной обмотки, в среднем должно получиться 5-20 витков. При изготовлении обмотки необходимо увеличить количество витков, по сравнению с расчетным значением, для последующей настройки катушки в резонанс. Рассчитать все эти параметры можно по стандартным формулам из учебника физики, также в сети есть книги по расчету индуктивности различных катушек. Существуют и специальные программы калькуляторы для расчета всех параметров будущей катушки Тесла.

Настройка осуществляется путем изменения индуктивности первичной обмотки, то есть один конец обмотки подсоединен к схеме, а другой никуда не подключается. Второй контакт выполняют в виде зажима, который можно перекидывать с одного витка на другой, тем самым используется не вся обмотка, а только ее часть, соответственно меняется индуктивность, и собственная частота первичного контура. Настройку выполняют во время предварительных запусков катушки, о резонансе судят по длине выдаваемых разрядов. Существует также метод холодной настройки резонанса при помощи ВЧ генератора и осциллографа или ВЧ вольтметра, при этом катушку запускать не надо. Необходимо взять на заметку, что электрический разряд обладает емкостью, вследствие чего собственная частота вторичного контура может немного уменьшаться во время работы катушки. Заземление также может оказывать небольшое влияние на частоту вторичного контура.

Разрядник является коммутирующим элементом в первичном колебательном контуре. При электрическом пробое разрядника под действием высокого напряжения, в нем образуется дуга, которая замыкает цепь первичного контура, и в нем возникают высокочастотные затухающие колебания, в течение которых напряжение на конденсаторе С1 постепенно уменьшается. После того как дуга гаснет, контурный конденсатор С1 вновь начинает заряжаться от источника питания, при следующем пробое разрядника начинается новый цикл колебаний.

Разрядник подразделяется на два типа: статический и вращающийся. Статический разрядник представляет собой два близко расположенных электрода, расстояние между которыми регулируют так чтобы электрический пробой между ними происходил в то время, когда конденсатор С1 заряжен до наибольшего напряжения, или немного меньше максимума. Ориентировочное расстояние между электродами определяют исходя из электрической прочности воздуха, которая составляет около 3 кВ/мм при стандартных условиях окружающей среды, а также зависит от формы электродов. Для переменного сетевого напряжения, частота срабатываний статического разрядника (BPS – beats per second) составит 100Гц.

Вращающийся разрядник (RSG – Rotary spark gap) выполняется на основе электродвигателя, на вал которого насажен диск с электродами, с каждой стороны диска устанавливаются статические электроды, таким образом, при вращении диска, между статическими электродами будут пролетать все электроды диска. Расстояние между электродами делают минимальным. В таком варианте можно регулировать частоту коммутаций в широких пределах управляя электродвигателем, что дает больше возможностей по настройке и управлению катушкой. Корпус двигателя необходимо заземлить, для защиты обмотки двигателя от пробоя, при попадании высоковольтного разряда.

В качестве контурного конденсатора С1 применяют конденсаторные сборки (MMC – Multi Mini Capacitor) из последовательно и параллельно соединенных высоковольтных высокочастотных конденсаторов. Обычно применяют керамические конденсаторы типа КВИ-3, а также пленочные К78-2. В последнее время намечен переход на бумажные конденсаторы типа К75-25, которые неплохо показали себя в работе. Номинальное напряжение конденсаторной сборки для надежности должно быть в 1,5-2 раза больше амплитудного напряжения источника питания. Для защиты конденсаторов от перенапряжения (высокочастотные импульсы) устанавливают воздушный разрядник параллельно всей сборке. Разрядник может представлять собой два небольших электрода.

В качестве источника питания для зарядки конденсаторов используется высоковольтный трансформатор Т1, или несколько последовательно или параллельно соединенных трансформаторов. В основном начинающие тесластроители используют трансформатор из микроволновой печи (MOT – Microwave Oven Transformer), выходное переменное напряжение которого составляет ~2,2 кВ, мощность около 800 Вт. В зависимости от номинального напряжения контурного конденсатора, МОТы соединяют последовательно от 2 до 4 штук. Применение только одного трансформатора не целесообразно, так как из-за небольшого выходного напряжения зазор в разряднике будет очень малым, итогом будут нестабильные результаты работы катушки. Моты имеют недостатки в виде слабой электропрочности, не рассчитаны для работы в длительном режиме, сильно греются при большой нагрузке, поэтому часто выходят из строя. Более разумно использовать специальные масляные трансформаторы типа ОМ, ОМП, ОМГ, которые имеют выходное напряжение 6,3 кВ, 10 кВ, и мощность 4 кВт, 10 кВт. Можно также изготовить самодельный высоковольтный трансформатор. При работе с высоковольтными трансформаторами не следует забывать о технике безопасности, высокое напряжение опасно для жизни, корпус трансформатора необходимо заземлить. При необходимости последовательно с первичной обмоткой трансформатора можно установить автотрансформатор, для регулировки напряжения зарядки контурного конденсатора. Мощность автотрансформатора должна быть не меньше мощности трансформатора T1.

Дроссель Lд в цепи питания необходим для ограничения тока короткого замыкания трансформатора при пробое разрядника. Чаще всего дроссель находится в цепи вторичной обмотки трансформатора T1. Вследствие высокого напряжения, необходимая индуктивность дросселя может принимать большие значения от единиц до десятков Генри. В таком варианте он должен обладать достаточной электропрочностью. С таким же успехом дроссель можно установить последовательно с первичной обмоткой трансформатора, соответственно здесь не требуется высокая электропрочность, необходимая индуктивность на порядок ниже, и составляет десятки, сотни миллигенри. Диаметр обмоточного провода должен быть не меньше диаметра провода первичной обмотки трансформатора. Индуктивность дросселя рассчитывают из формулы зависимости индуктивного сопротивления от частоты переменного тока.

Фильтр низких частот (ФНЧ) предназначен для исключения проникновения высокочастотных импульсов первичного контура в цепь дросселя и вторичной обмотки трансформатора, то есть для их защиты. Фильтр может быть Г-образным или П-образным. Частоту среза фильтра выбирают на порядок меньше резонансной частоты колебательных контуров катушки, но при этом частота среза должна быть намного больше частоты срабатывания разрядника.


При резонансном заряде контурного конденсатора (тип катушки – DCSGTC), используют постоянное напряжение, в отличии от ACSGTC. Напряжение вторичной обмотки трансформатора T1 выпрямляют с помощью диодного моста и сглаживают конденсатором Св. Емкость конденсатора должна быть на порядок больше емкости контурного конденсатора С1, для уменьшения пульсаций постоянного напряжения. Величина емкости обычно составляет 1-5 мкФ, номинальное напряжение для надежности выбирают в 1,5-2 раза больше амплитудного выпрямленного напряжения. Вместо одного конденсатора можно использовать конденсаторные сборки, желательно не забывая про выравнивающие резисторы при последовательном соединении нескольких конденсаторов.

В качестве диодов моста применяют последовательно соединенные высоковольтные диодные столбы типа КЦ201 и др. Номинальный ток диодных столбов должен быть больше номинального тока вторичной обмотки трансформатора. Обратное напряжение диодных столбов зависит от схемы выпрямления, по соображениям надежности обратное напряжение диодов должно быть в 2 раза больше амплитудного значения напряжения. Возможно изготовление самодельных диодных столбов путем последовательного соединения обычных выпрямительных диодов (например 1N5408, Uобр = 1000 В, Iном = 3 А), с применением выравнивающих резисторов.
Вместо стандартной схемы выпрямления и сглаживания можно собрать удвоитель напряжения из двух диодных столбов и двух конденсаторов.

Принцип работы схемы резонансного заряда основан на явлении самоиндукции дросселя Lд, а также применения диода отсечки VDо. В момент времени, когда конденсатор C1 разряжен, через дроссель начинает течь ток, возрастая по синусоидальному закону, при этом в дросселе накапливается энергия в виде магнитного поля, а конденсатор при этом заряжается, накапливая энергию в виде электрического поля. Напряжение на конденсаторе возрастает до напряжения источника питания, при этом через дроссель течет максимальный ток, и падение напряжения на нем равно нулю. При этом ток не может прекратиться мгновенно, и продолжает течь в том же направлении из-за наличия самоиндукции дросселя. Зарядка конденсатора продолжается до удвоенного значения напряжения источника питания. Диод отсечки необходим для предотвращения перетекания энергии от конденсатора обратно в источник питания, так как между конденсатором и источником питания появляется разность потенциалов равная напряжению источника питания. На самом деле напряжение на конденсаторе не достигает удвоенного значения, из-за наличия падения напряжения на диодном столбе.

Применение резонансного заряда позволяет более эффективно и равномерно передавать энергию на первичный контур, при этом для получения одинакового результата (по длине разряда), для DCSGTC требуется меньшая мощность источника питания (трансформатор Т1), чем для ACSGTC. Разряды приобретают характерный плавный изгиб, вследствие стабильного питающего напряжения, в отличии от ACSGTC, где очередное сближение электродов в RSG может приходиться по времени на любой участок синусоидального напряжения, включая попадание на нулевое или низкое напряжение и как следствие переменная длина разряда (рваный разряд).

Ниже на картинке представлены формулы для расчета параметров катушки Тесла:

Предлагаю ознакомиться с моим опытом постройки .

Ни для кого не является секретом кто такой знаменитый Никола Тесла. Мистические истории, которые рассказывают о нем, на сегодня не обсуждаем. Вспомним известные изобретения, о которых спорят до сегодняшнего дня.

Основные изобретения

  • Беспроводная передача энергии на длительные расстояния;
  • Флуоресцентное свечение;
  • Электрочасы;
  • Турбина;
  • Электрические печи;
  • Люминесцентные лампы;
  • Электронный микроскоп.

Перечислить все его 800 изобретений просто нет возможности. Одним из изобретений, которое поражает яркими явлениями в виде молния образных вспышек, считают высокочастотные катушки Тесла. Они представляет собой резонансный трансформатор. Данное устройство уже не одно десятилетие поражает мощью больших разрядов. Увидев работу устройства, не сможете забыть удивительное явление, которые создает яркие световые эффекты, напоминающие собой управляемые молнии. Используя катушки диаметром в 60 метров и полюс из медной сферы, Тесла разместил их над лабораторией и генерировал разряды. Длина, их достигала более, сорока метров.

Такие стрелы создавали эффекты невероятной красоты, при этом звук грома (освобожденная энергия) был слышен за 25 километров. Над башней плыл светящийся шар диаметр, которого был не менее 30 метров. Людей поражало необычайное зрелище пляшущих по земле искр. Кроме того когда кто либо пытался открыть водопроводный кран получал охапку цветных огоньков. Подобный экспериментальный запуск состоялся в 1904 году.

Если вы специалист любитель, у вас есть заветная мечта повторить работу гениального изобретателя, тогда попытаемся разобраться, как собрать катушку Тесла. Несмотря на то, что сама работа не сложная, многие не могут с ней справиться. Для того чтобы все получилось, надо знать принцип работы катушки Тесла. Устройство имеет несколько названий, но все они обозначают одно, и то же:

  • Трансформатор Тесла (основное название);
  • Катушка Тесла;
  • Тесла.

Принцип работы катушки Тесла.

Следует помнить, что это универсальная трансформаторная конструкция, которая изготавливается из двух обмоток, не имеющих общего сердечника, поскольку он усиливает взаимоиндукцию. Первая (первичка) катушка, к ней подводят переменное напряжение, которое создает магнитное поле. С его помощью полученная энергия первичной катушки передается во вторую обмотку.

Вторая модель также создает контур (колебательный), но разница в том, что конденсат, заменяет емкость тороида. Вся полученная энергия определенное время сохраняется в данном контуре в виде напряжения. Отсюда вытекает вывод: чем больше мы накопим энергии, тем выше будет полученное напряжение. На выходе оно составляет ни много ни мало миллионы вольт. Это дает возможность наблюдать удивительное зрелище электрических разрядов. Длина импульсов достигает нескольких метров. Чтобы повторить изобретение, в первую очередь появляется вопрос, как собрать катушку Тесла. Для этого вам потребуется:

  1. Тороид. Выполняет три основных функции – снижает резонансные частоты, создает накопление энергии, формирует магнитные поля. Производят тороиды из алюминиевой стали или гофры;
  2. Вторичная модель катушки (основная деталь), должна обладать значительной индуктивностью;
  3. Первичная низко индуктивная катушка. Для изготовления используют медные трубы;
  4. Защитное кольцо используют для того чтобы не вышла из строя электроника;
  5. Обязательное заземление ;
  6. Металлическая проволока, имеющая разный диаметр;

После того как вы подготовите весь требуемый материал переходите к пошаговому созданию изобретения.

Работа начинается с обмотки.

Для того чтобы сделать обмотку на первой катушке, подготовьте специальную форму. Она должна быть конусной или цилиндрической. Вокруг намотайте проволоку из медного сплава. Оборотов должно быть не меньше десяти. Делать витки следует плотно, но в тоже время обязательно следует контролировать, чтобы не было нахлестов. После того как закончите обмотку обязательно заизолируйте и укрепите полученные витки используя для этого лак. Помните!!! Длина проволоки влияет на индуктивность, а она на первой катушке обязана быть только низкой.

Вторичная модель создается аналогично, но количество витков увеличивается. Их должно быть как минимум тысяча, при этом трансформационный коэффициент больше в пятьдесят раз по количественному соотношению второй обмотки к первичной. Намотка вторичной катушки Тесла должна быть мощнее. Но при этом должна иметь равную к первичной обмотке частоту, поскольку разница приведет к сгоранию первой катушки.

После того как закончили первый этап работы, переходите к подготовке трансформатора. Его следует выбирать очень тщательно, он должен строго соответствовать размерам катушки. Используя мелкие конденсаторы равных размеров, объедините их между собой, в цепь. Благодаря этому у вас будет потенциал для равномерного накопления энергии в первичном контуре. Чтобы он был достаточно мощным, полученный конденсатор должен постоянно получать зарядку. Получив основные элементы, соедините все, используя для этого дросселя. Полученный прибор начнет работать только после того как вы подключите трансформатор.

Виды получаемых разрядов:

  1. Стримеры – это тонкие каналы, которые имеют большое количество разветвлений, создают тусклое свечение и содержат ионизированные газовые атомы. Применяются разряды для ионизации воздуха;
  2. Спарк представляет собой скользящий разряд искр;
  3. Коронный вид разряда представляет собой свечение ионов, которые находятся в электрополе высокого напряжения;
  4. Дуговой разряд.

Не применяя провода, используя данное высокочастотное устройство, у вас будет возможность поддерживать свечение ламп. Кроме того на крае обмотки будет вырабатываться яркая красивая искра, к ней можно прикоснуться руками, поскольку она относительно безопасная. Но как советуют специалисты трансформаторное устройство нельзя включать возле ПК, телефонов или посторонних бытовых приборов, поскольку они могут выйти из строя. В том случае, если получится самостоятельно создать такую катушку, прежде чем начинать проводить испытание следует придерживаться определенных правил:

  1. Прибор может вывести из строя все электроприборы, которые включены в электрическую сеть;
  2. Находитесь подальше от предметов, сделанных из металла, поскольку сможете получить ожог.

Делитесь своими знаниями и опытом удачного создания катушки Тесла в

Лучшие статьи по теме