Как настроить смартфоны и ПК. Информационный портал
  • Главная
  • Windows 10
  • Временные и спектральные диаграммы на выходах функциональных блоков системы связи. Помехоустойчивость радиоканала связи с удаленными стационарными объектами

Временные и спектральные диаграммы на выходах функциональных блоков системы связи. Помехоустойчивость радиоканала связи с удаленными стационарными объектами

Известно , что помехоустойчивость и скрытность являются двумя важнейшими составляющими помехозащищенности СРС.

При этом в общем случае под помехоустойчивостью СРС с ППРЧ (впрочем, как и любых других СРС) понимается способность нормально функционировать, выполняя задачи по передаче и приему информации в условиях действия радиопомех. Следовательно, помехоустойчивость СРС – это способность противостоять вредному воздействию различного вида радиопомех, включая, в первую очередь, организованные помехи.

Стратегия борьбы с организованными помехами СРС с ППРЧ заключается, как правило, в «уходе» сигналов СРС от воздействия помех, а не в «противоборстве» с ними, как это реализуется в СРС с ФМ1ИПС. Поэтому в СРС с ППРЧ при защите от помех важной характеристикой является фактическое время работы на одной частоте. Чем меньше это время, тем выше вероятность того, что сигналы СРС с ППРЧ не будут подвержены воздействию организованных помех.

Помехоустойчивость СРС с ППРЧ зависит не только от времени работы на одной частоте, но и от других важных параметров станции помех (СП) и СРС, например, от вида помехи и ее мощности, мощности полезного сигнала, структуры приемного устройства и заложенных в СРС способов помехоустойчивости.

Эффективное воздействие помех на СРС с ППРЧ может быть достигнуто лишь при условии знания постановщиком помех соответствующих параметров сигналов СРС, например, центральных частот каналов, скорости скачков частоты, ширины информационной полосы частот, мощности сигнала и помехи в точке нахождения приемного устройства СРС. Указанные параметры СРС постановщик помех добывает, как правило, непосредственно с помощью станции радиотехнической разведки (РТР), а также путем пересчета измеренных параметров СРС в другие, функционально связанные с ними, характеристики СРС. Например, измерив длительность скачка частоты, можно рассчитать ширину полосы частотного канала приемника СРС.

В общем случае РТР путем приема и анализа перехваченных сигналов не только СРС, но и других радиоэлектронных средств (РЭС) обеспечивает сбор информации о противной стороне в целом. Сигналы СРС и РЭС содержат много технических характеристик, являющихся разведывательными сведениями. Эти характеристики определяют «электронный почерк» СРС и РЭС и позволяют установить их возможности, назначение и принадлежность.

Обобщенный алгоритм сбора данных радиотехнической разведкой о параметрах сигналов и характеристиках СРС изображен на рис.1.18.

Для оценки помехоустойчивости СРС в условиях воздействия различных видов помех необходимо иметь соответствующие показатели. При выбранных моделях сигнала, собственного шума приемного устройства и аддитивных помех в системах передачи дискретных сообщений предпочтительным показателем количественной меры помехоустойчивости является средняя вероятность ошибки (СВО) на бит информации .

Другие показатели помехоустойчивости СРС, например, требуемое отношение сигнал-помеха, при котором обеспечивается заданное качество приема информации, вероятность ошибки в кодовом слове и другие, могут быть выражены через СВО на бит. Минимизация СВО на бит при условии равновероятной передачи символов может быть достигнута за счет использования алгоритма, реализующего правило максимального правдоподобия

При всех ,

которое для двоичных СРС имеет вид:

где - отношение правдоподобия для -го сигнала.

При дальнейшем изложении наибольшее внимание будет сосредоточено на разработке и анализе алгоритмов расчета СВО на бит информации. Анализ СВО на бит будет проводиться в условиях действия гауссовских шумов приемного устройства СРС и аддитивных организованных помех, в основном, применительно к каноническим (типовым) системам с ЧМ, которые являются базовой основой более сложных СРС.

Помехозащищенность систем радиосвязи с расширением спектра сигналов методом псевдослучайной перестройки рабочей частоты. В.И. Борисов, В.М. Зинчук, А.Е. Лимарев, Н.П. Мухин, В.И. Шестопалов. / 2000

УДК 621.391.372.019

Помехозащищенность систем радиосвязи с расширением спектра сигналов методом псевдослучайной перестройки рабочей частоты. В.И. Борисов, В.М. Зинчук, А.Е. Лимарев, Н.П. Мухин, В.И. Шестопалов. - М.: Радио и связь, 2000. - 384 с.: ил. ISBN - 5-256-01392-0

Излагаются основные принципы и характеристики метода расширения спектра сигналов за счет псевдослучайной перестройки рабочей частоты (ППРЧ). Приводится анализ возможных способов повышения помехозащищенности типовых систем радиосвязи (СРС) с ППРЧ и частотной манипуляцией в условиях организованных помех и собственных шумов СРС. Решаются задачи синтеза и анализа помехоустойчивости адаптивных алгоритмов демодуляции сигналов с ППРЧ и частотным разнесением информационных символов в условиях априорной неопределенности относительно мощности сосредоточенной по спектру помехи. Приводятся типовые структурные схемы и алгоритмы функционирования основных устройств подсистемы синхронизации в СРС с ППРЧ, показатели и методы оценки эффективности циклических процедур поиска. Рассматривается совместное использование с СРС сигналов с ППРЧ и адаптивных антенных решеток (ААР). Анализируется алгоритм адаптации, обеспечивающий максимальное отношение сигнал-помеха. Описываются алгоритмы и рабочие характеристики энергетических обнаружителей, обеспечивающих обнаружение сигналов с ППРЧ в целях их радиоэлектронного подавления.

Для научных работников, инженеров, аспирантов и студентов старших курсов, специализирующихся в области исследования и разработки систем радиосвязи.

Ил.211. Табл.14. Библиогр.112 назв.

Рецензенты:
доктор техн. наук, профессор Ю.Г. Бугров
доктор техн. наук, профессор Ю.Г. Сосулин
доктор техн. наук, профессор Н.И. Смирнов

Предисловие

Важнейшим путем достижения требуемой помехозащищенности систем радиосвязи (СРС) при воздействии организованных (преднамеренных) помех является использование сигналов с псевдослучайной перестройкой рабочей частоты (ППРЧ) и применение оптимальных и квазиоптимальных алгоритмов обработки таких сигналов.

Проблеме помехозащищенности СРС с расширением спектра сигналов методом ППРЧ посвящено большое число работ отечественных и зарубежных авторов. К ним, в первую очередь, следует отнести широко известные монографии и труды научных школ Л.Е. Варакина и Г.И. Тузова; неизданные до настоящего времени на русском языке книги D.J. Torrieri "Principles of Secure Communication Systems", Dedham, MA.: Artech House, Inc., 1985; M.K. Simon, J.K. Omura, R.A. Scholtz, B.K. Levitt "Spread Spectrum Communication", vol. I-III, Rockville, MD.: Computer Science Press, 1985. В 1998 г. издательством "Artech House, Inc.", специализирующемся в области радиолокации, радиосвязи, радиоэлектронного подавления и др., опубликованы книги D.C. Schleher "Advanced Electronic Warfare Principles", E. Waltz "Introduction to Information Warfare". Ассоциация американских специалистов в области теории и техники связи под руководством профессора J.S. Lee (Inc. 2001, Jefferson Davis Highway, Suite 601. Arlington, Virginia 22202) опубликовала более десяти, в том числе и заказных, работ по различным аспектам помехозащищенности СРС с ППРЧ. В 1999 г. в издательстве "Радио и связь" вышла монография В.И. Борисова, В.М. Зинчука "Помехозащищенность систем радиосвязи. Вероятностно-временной подход".

Тем не менее, проблема эффективности СРС с ППРЧ, исследование и разработка перспективных способов повышения помехозащищенности СРС, особенно в условиях постоянного совершенствования тактики и техники радиоэлектронного подавления (РЭП), остаются актуальными и важными как с научной, так и с практической точки зрения.

Появившиеся в последнее время возможности широкого внедрения в СРС быстродействующей микропроцессорной техники и современной элементной базы позволяют реализовать новые принципы формирования, приема и обработки сигналов с ППРЧ, включая и частотное разнесение символов с высокой кратностью и малой длительностью элементов, совместное использование М-ичной частотной манипуляции (ЧМ) и помехоустойчивого кодирования, сигналов с ППРЧ и адаптивных антенных решеток и др. Все это позволяет обеспечить высокую помехозащищенность СРС при воздействии различных видов организованных помех.

Рассматриваемые в книге темы, их содержание и изложение отражают в определенной степени современное состояние основных аспектов проблемы помехозащищенности СРС, включая, в том числе, вопросы синхронизации, совместного применения в СРС сигналов с ППРЧ и адаптивных антенных решеток, а также обнаружения сигналов с ППРЧ станциями радиотехнической разведки, обеспечивающими эффективное функционирование систем РЭП. Содержание книги подчинено единой цели - анализу эффективности возможных способов повышения помехозащищенности СРС с ППРЧ в условиях РЭП.

Книга написана на основе собственных работ авторов, в ней широко использованы результаты исследований отечественных и зарубежных специалистов. При этом авторы, обращаясь по некоторым вопросам помехозащищенности СРС с ППРЧ к неизданным на русском языке трудам зарубежных специалистов, ряд материалов книги изложили в виде аналитических обзоров.

В книге используется доступный для инженеров математический аппарат, приводятся структурные схемы типовых СРС, графики и таблицы, иллюстрирующие возможности способов помехозащищенности СРС с ППРЧ. Желание упростить излагаемый материал привело к тому, что в книге главным образом рассматриваются типовые двоичные СРС с ЧМ, а каналы связи - без затухания и с гауссовскими помехами.

Чтение книги предполагает знание основ статистической теории связи, изложенных в наиболее известных, ставших уже классическими, монографиях В.И. Тихонова "Статистическая радиотехника", - М.: Радио и связь, 1982, и Б.Р. Левина "Теоретические основы статистической радиотехники", - М.: Радио и связь, 1989.

За большую помощь при работе над иностранной литературой авторы благодарны переводчикам Зыкову Н.А., Луневой С.А., Титовой Л.С.

Авторы признательны сотрудникам Воронежского НИИ связи Ю.Г. Белоус, Е.И. Гончаровой, Т.В. Доровских, Е.В. Ижбахтиной, Т.Ф. Капаевой, Н.А. Парфеновой, Е.В. Погосовой, О.И. Сорокиной и Н.Н. Старухиной за компьютерный набор материалов книги, проведение многочисленных расчетов, разработку и подготовку графического и иллюстративного материала.


ПРЕДИСЛОВИЕ 8
ВВЕДЕНИЕ 10
Глава 1. СИСТЕМЫ РАДИОСВЯЗИ С РАСШИРЕНИЕМ СПЕКТРА СИГНАЛОВ МЕТОДОМ ПСЕВДОСЛУЧАЙНОЙ ПЕРЕСТРОЙКИ РАБОЧЕЙ ЧАСТОТЫ: ОБЩИЕ ПРИНЦИПЫ 13 1.1. Краткая характеристика расширения спектра сигналов методом ППРЧ 13 1.1.1. Основные принципы и методы расширения спектра сигналов 13 1.1.2. Метод псевдослучайной перестройки рабочей частоты 19 1.1.3. Типовые структурные схемы систем радиосвязи с ППРЧ 24
1.2. Коэффициент расширения спектра сигнала и запас помехоустойчивости системы радиосвязи с ППРЧ 36 1.3. Общая характеристика помехозащищенности систем радиосвязи с ППРЧ 42 1.3.1. Помехоустойчивость систем радиосвязи с ППРЧ 42 1.3.2. Скрытность сигналов систем радиосвязи с ППРЧ 44 1.3.3. Радиоэлектронный конфликт: "система радиосвязи - система РЭП" 53 1.4. Модели и краткая характеристика основных видов помех 56
Глава 2. ПОМЕХОУСТОЙЧИВОСТЬ ТИПОВЫХ СИСТЕМ РАДИОСВЯЗИ С ППРЧ И ЧАСТОТНОЙ МАНИПУЛЯЦИЕЙ 64 2.1. Условная вероятность ошибки на бит информации при двоичной ЧМ 64 2.2. Оценка воздействия шумовой помехи в части полосы на системы радиосвязи с ППРЧ и неслучайной ЧМ 73 2.3. Оценка воздействия шумовой помехи в части полосы на системы радиосвязи с ППРЧ и случайной двоичной ЧМ 80 2.4. Оценка воздействия ответных помех на системы радиосвязи с ППРЧ и ЧМ 86 2.4.1. Оценка временных возможностей станции ответных помех 86 2.4.2. Оценка воздействия ответных шумовых помех на системы радиосвязи с ППРЧ и ЧМ 96
2.4.3. Оценка воздействия ответных гармонических помех на системы радиосвязи с ППРЧ и ЧМ 102 2.5. Помехоустойчивость систем радиосвязи с ППРЧ, двоичной ЧМ и блоковым кодированием 111
Глава 3. СИНТЕЗ И АНАЛИЗ ЭФФЕКТИВНОСТИ АДАПТИВНЫХ АЛГОРИТМОВ РАЗЛИЧЕНИЯ СИГНАЛОВ С ППРЧ, ЧАСТОТНОЙ МАНИПУЛЯЦИЕЙ И РАЗНЕСЕНИЕМ СИМВОЛОВ ПО ЧАСТОТЕ 124 3.1. Синтез оптимального адаптивного алгоритма различения сигналов с внутрисимвольной ППРЧ и ЧМ 124 3.2. Квазиоптимальный адаптивный алгоритм различения сигналов с внутрисимвольной ППРЧ и двоичной ЧМ 132 3.3. Оценка помехоустойчивости синтезированного адаптивного алгоритма различения сигналов с внутрисимвольной ППРЧ и двоичной ЧМ 141 3.3.1. Случай "слабых" сигналов 142 3.3.2. Случай "сильных" сигналов 148
Глава 4. ПОМЕХОУСТОЙЧИВОСТЬ АДАПТИВНЫХ АЛГОРИТМОВ ДЕМОДУЛЯЦИИ СИГНАЛОВ С ВНУТРИБИТОВОЙ ППРЧ И ДВОИЧНОЙ ЧАСТОТНОЙ МАНИПУЛЯЦИЕЙ 152 4.1. Структурные схемы демодуляторов 152 4.2. Помехоустойчивость демодулятора с линейным сложением выборок 157 4.3. Помехоустойчивость демодулятора с нелинейным сложением выборок 164 4.4. Помехоустойчивость демодулятора с мягким ограничителем 170 4.5. Помехоустойчивость самонормирующегося демодулятора 173 4.6. Влияние адаптивной регулировки усиления на помехоустойчивость СРС 182 4.7. Сравнительный анализ помехоустойчивости демодуляторов сигналов с внутрибитовой ППРЧ и двоичной ЧМ 189
Глава 5. ПОМЕХОУСТОЙЧИВОСТЬ СИСТЕМ РАДИОСВЯЗИ С ППРЧ ПРИ СОВМЕСТНОМ ПРИМЕНЕНИИ ЧАСТОТНОЙ МАНИПУЛЯЦИИ, РАЗНЕСЕНИЯ СИМВОЛОВ ПО ЧАСТОТЕ И БЛОКОВОГО КОДИРОВАНИЯ 194 5.1. Помехоустойчивость систем радиосвязи с ППРЧ при М-ичной ЧМ и L-кратном разнесении символов по частоте 194 5.1.1. Условная вероятность ошибки на бит информации 197 5.1.2. 199 5.2. Помехоустойчивость систем радиосвязи с ППРЧ, М-ичной ЧМ, блоковым кодированием и L-кратным частотным разнесением кодовых слов 203 5.2.1. Структурная схема системы радиосвязи. 203 5.2.2. Средняя вероятность ошибки на бит информации. 206 5.2.3. Анализ средней вероятности ошибки на бит информации 209
Глава 6. СИНХРОНИЗАЦИЯ В СИСТЕМАХ РАДИОСВЯЗИ С ПСЕВДОСЛУЧАЙНОЙ ПЕРЕСТРОЙКОЙ РАБОЧЕЙ ЧАСТОТЫ 214 6.1. Назначение подсистемы синхронизации. 214 6.2. Описательная модель подсистемы синхронизации. 219 6.2.1. Типовая структурная схема подсистемы синхронизации 219 6.2.2. Типовые структурные схемы и алгоритмы функционирования основных устройств подсистемы синхронизации 221 6.3. Показатели и оценка эффективности циклических процедур поиска. 230 Приложение П.6.1. Верхняя граница среднего нормированного времени поиска 242 Приложение П.6.2. Верхняя граница вероятности правильного обнаружения 243
Глава 7. АДАПТИВНЫЕ АНТЕННЫЕ РЕШЕТКИ В СИСТЕМАХ РАДИОСВЯЗИ С ПСЕВДОСЛУЧАЙНОЙ ПЕРЕСТРОЙКОЙ РАБОЧЕЙ ЧАСТОТЫ 244 7.1. Влияние сигналов с ППРЧ на характеристики адаптивной антенной решетки 244 7.2. Максиминный алгоритм обработки сигналов и помех 256 7.3. Реализация и возможности максиминного алгоритма 259 7.4. Модернизация максиминного алгоритма 271 7.4.1. Параметрическая обработка. 272 7.4.2. Спектральная обработка 274 7.4.3. Обработка с упреждением. 277
Глава 8. ОБНАРУЖЕНИЕ СИГНАЛОВ С ПСЕВДОСЛУЧАЙНОЙ ПЕРЕСТРОЙКОЙ РАБОЧЕЙ ЧАСТОТЫ 281 8.1. Обнаружение сигналов неизвестной структуры. 281 8.2. Широкополосный энергетический обнаружитель 286 8.3. Многоканальные энергетические обнаружители 292 8.3.1. Квазиоптимальный многоканальный обнаружитель 293 8.3.2. Многоканальный обнаружитель типа сумматора с блоком фильтров 295 8.3.3. Модель обнаружителя типа сумматора с блоком фильтров при перехвате сигналов с медленной ППРЧ 297 8.3.4. Многоканальный обнаружитель типа сумматора с блоком фильтров в части полосы. 305 8.3.5. Рассогласование по времени и частоте между характеристиками сигнала с ППРЧ и параметрами обнаружителя. 309 8.3.5.1. Рассогласование по времени 310 8.3.5.2. Рассогласование по частоте 311 8.4. Многоканальный адаптивный энергетический обнаружитель в условиях воздействия мешающих сигналов 313 8.4.1. Структурная схема многоканального адаптивного энергетического обнаружителя с регулировкой порогового уровня 313 8.4.2. Вероятность ложной тревоги и адаптивная регулировка порогового уровня 316 8.4.3. Вероятность обнаружения. 320 8.4.4. Влияние рассогласования по времени на обнаружение сигналов. 323 8.5. Другие возможные типы обнаружителей сигналов с ППРЧ 331 8.5.1. Корреляционный радиометр. 331 8.5.2. Цифровой анализатор спектра. 332 8.5.3. Метод вскрытия частотно-временной матрицы сигнала с ППРЧ 334 Приложение П.8.1. Алгоритмы вычисления обобщенной Q-функции Маркума. 335 П.8.1.1. Постановка задачи 335 П.8.1.2. Представление степенными рядами. 339 П.8.1.3. Представление в виде рядов Неймана. 341 П.8.1.4. Численное интегрирование 345 П.8.1.5. Гауссовская аппроксимация 349 П.8.1.6. Численные результаты 350 Приложение П.8.2. Анализ вероятностно-временных характеристик алгоритмов обнаружения сигналов 353 П.8.2.1. Вероятностно-временные характеристики основных видов обнаружителей 353 П.8.2.2. Алгоритмы расчета вероятностно-временных характеристик основных видов обнаружителей 356 П.8.2.2.1. Обнаружитель детерминированных сигналов 356 П.8.2.2.2. Обнаружитель квазидетерминированных сигналов со случайной фазой 359 П.8.2.2.3 Обнаружитель сигналов неизвестной структуры. 360 П.8.2.2.4. Обнаружители с постоянным уровнем ложной тревоги 363 П.8.2.3 Численные результаты 367 СПИСОК ОСНОВНЫХ СОКРАЩЕНИЙ 372 ОСНОВНЫЕ УСЛОВНЫЕ ОБОЗНАЧЕНИЯ 374 СПИСОК ЛИТЕРАТУРЫ 377


Владельцы патента RU 2439794:

Изобретение относится к области радиосвязи и может быть использовано для обеспечения радиосвязи при наличии большого числа помех различной природы. Технический результат - повышение помехоустойчивости и мобильности системы связи. Устройство содержит М (М≥2) радиостанций, каждая из которых содержит N (N≥1) разнесенных антенн, подключенных к первым входам соответствующих приемных трактов, N аналого-цифровых преобразователей, радиомодем с подключенной приемопередающей антенной, мультиплексор, демультиплексор, адаптивный компенсатор помех, опорный генератор и блок управления. 4 ил.

Изобретение относится к области радиосвязи и может быть использовано для обеспечения радиосвязи при наличии большого числа помех различной природы.

Известна система радиосвязи, в радиостанциях (PC) которой используются адаптивные компенсаторы помех (АКП), приведенные, например, в описании полезной модели №30044 «Адаптивный компенсатор помех», 2002 г.

Недостатком указанного АКП является низкая эффективность при работе системы связи в сложной помеховой обстановке при числе помех больше одной.

Наиболее близкой по технической сущности является система радиосвязи, в радиостанции которой используется многоканальный адаптивный компенсатор помех, описанный в книге «Адаптивная компенсация помех в каналах связи» / Под ред. Ю.И.Лосева, М., Радио и связь, 1988, стр.22, принятая за прототип.

Структурная схема системы-прототипа, состоящей из N радиостанций, приведена на фиг.1.

Схема приемной части радиостанции-прототипа приведена на фиг.2, где обозначено:

1 - N - разнесенные антенные элементы;

2 - N - приемные тракты;

3 - блок управления;

4 - опорный генератор;

6 - N-канальный адаптивный компенсатор помех (АКП).

Приемная часть радиостанции-прототипа содержит N разнесенных антенн 1, подключенных к первым входам соответствующих N приемных трактов 2. Выход общего опорного генератора 4 подключен ко вторым входам соответствующих N приемных каналов 2, линейные выходы которых через соответствующие N аналого-цифровые преобразователи 5 подключены к соответствующим входам N-канального АКП 6, выход которого является выходом полезного сигнала. Выход блока управления 3 соединен с третьими входами приемных трактов 2.

Устройство-прототип работает следующим образом.

Полезный сигнал и помехи, приходящие с различных направлений, принимаются одновременно всеми антеннами 1. С выходов приемных антенн смесь сигнала и помех поступает на входы соответствующих приемных трактов 2, где производится частотная селекция, преобразование входного колебания на промежуточную частоту и необходимое линейное усиление. Для когерентного приема сигналов N разнесенными антеннами 1 используется общий опорный генератор 4. Блок управления 3 формирует сигналы, управляющие частотой настройки и другими параметрами всех приемных трактов одновременно.

Смеси сигнала и помех с выхода каждого приемного тракта преобразуются в N аналого-цифровых преобразователях 5 в цифровые отсчеты и поступают на вход N-канального компенсатора помех 6. На выходе АКП 6 формируются отсчеты полезного сигнала, очищенного от помех для дальнейшей обработки в радиостанции: демодуляции, декодирования и т.д.

С одной стороны, необходимость одновременного подавления большого (больше одной) числа помех возникает достаточно редко. И поэтому большие габариты и масса PC, обусловленные наличием многоканального приемного устройства и многоэлементной антенной системы, в большинстве случаев являются избыточными. С другой стороны, в случае, например, военной радиосвязи даже короткое нарушение связи вследствие воздействия помех влечет за собой исключительно тяжелые потери. Отсюда возникает необходимость компромисса, заключающегося в том, чтобы число компенсационных каналов приема АКП наращивать только по мере появления помеховых воздействий, то есть необходимость в динамическом изменении конфигурации приемного устройства PC в зависимости от помеховой обстановки. А это возможно при совместном использовании приемных каналов и антенн близко (на расстоянии нескольких длин волн) расположенных однотипных PC, например, узла связи.

Недостатком известной системы связи является громоздкость реализации в радиостанциях многоканального приемного устройства и многоэлементной антенной системы. Этот недостаток является решающим в случае, например, мобильных средств связи.

Задачей предлагаемого технического решения является повышение помехоустойчивости и мобильности системы связи.

Для решения поставленной задачи в систему радиосвязи, состоящую из М (М≥2) радиостанций, каждая из которых содержит N (N≥1) разнесенных антенн, подключенных к первым входам соответствующих приемных трактов, линейные выходы которых через соответствующие N аналого-цифровые преобразователи подсоединены к соответствующим N входам адаптивного компенсатора помех, а также опорный генератор, выход которого соединен со вторыми входами N приемных трактов, и блок управления, подключенный к третьим входам приемных трактов, согласно изобретению, в приемную часть каждой радиостанции системы введены радиомодем с подключенной приемопередающей антенной, а также мультиплексор и демультиплексор, причем выходы N аналого-цифровых преобразователей соединены с соответствующими входами мультиплексора, выход которого соединен с информационным входом радиомодема, информационный выход которого соединен с входами блока управления и демультиплексора, К выходов которого подсоединены к соответствующим введенным К входам адаптивного компенсатора помех, при этом управляющие входы мультиплексора, демультиплексора и радиомодема подсоединены к соответствующим выходам блока управления.

Схема приемной части PC, входящей в предлагаемую систему радиосвязи, приведена на фиг.3, где обозначено:

1.1-1.N - разнесенные антенные элементы;

2.1-2.N - приемные тракты;

3 - блок управления;

4 - опорный генератор;

5.1-5.N - аналого-цифровые преобразователи (АЦП);

6 - N-канальный аналоговый компенсатор помех (АКП);

7 - мультиплексор;

8 - демультиплексор;

9 - радиомодем;

10 - приемопередающая антенна радиомодема.

Предлагаемое устройство содержит N приемных антенн 1, подсоединенных к первым входам соответствующих N приемных трактов 2, выходы которых соединены с входами соответствующих N АЦП 5, выходы которых соединены с соответствующими N входами АКП 6, выход которого является выходом полезного сигнала. При этом выход опорного генератора 4 соединен со вторыми входами N приемных трактов 2. Кроме того, выходы N АЦП 5 соединены с соответствующими входами мультиплексора 7, выход которого соединен с информационным входом радиомодема 9 с подключенной к его другому входу приемопередающей антенной 10, информационный выход радиомодема 9 подсоединен к входам демультиплексора 8 и блока управления 3. Причем К выходов демультиплексора 8 соединены с введенными К входами АКП 6 соответственно. Первый выход блока управления 3 соединен со вторыми входами приемных трактов 2. Управляющие входы мультиплексора 7, демультиплексора 8 и радиомодема 9 подсоединены к соответствующим выходам блока управления 3.

В каждой радиостанции, имеющей минимальное число антенн N (следовательно, минимальные габариты), например, две, имеется встроенный АКП с (N+K) входами, позволяющий компенсировать (N+K-1) помех. Из них N входов обеспечиваются собственными антеннами, а К дополнительных входов обеспечиваются антеннами соседних PC, оцифрованные сигналы которых передаются с помощью встроенных радиомодемов. При одновременном воздействии более чем одной помехи, двухканальный компенсатор не позволяет выделять полезный сигнал.

В этом случае в предлагаемой системе связи PC, обслуживающая абонента с высоким приоритетом, имеет возможность увеличить число подавляемых помех без увеличения своих габаритов за счет использования дополнительных антенн и приемных трактов, расположенных в других радиостанциях узла связи.

Для обеспечения такой возможности в каждую PC дополнительно введен радиомодем с приемопередающей антенной, работающий в другом частотном диапазоне. Он обеспечивает, во-первых, внешнее управление по радиоканалу от более приоритетного абонента режимом работы (частотой настройки и т.д.) отдельных радиотрактов в PC. Во-вторых, через радиомодем передаются (или принимаются) цифровые значения отсчетов сигналов с выхода линейных радиотрактов соседних PC.

Предлагаемая система связи работает следующим образом.

Каждая PC может работать в системе либо как ведущая (с высоким приоритетом), либо как ведомая (с низким приоритетом).

В первом случае (с высоким приоритетом) PC работает следующим образом.

Начальная организация локальной сети встроенных радиомодемов не требует внешних команд и обеспечивается их внутренним программным обеспечением, как только они оказываются на расстоянии взаимной досягаемости. При этом радиомодемы автоматически обмениваются технологическими данными, в частности, о значении системного времени, взаимных приоритетах и т.п. Это реализовано в большинстве известных встраиваемых радиомодемах, например, таких как Bluetooth, ZigBee и др.

Далее, блок управления 3 ведущей PC через свой радиомодем передает ведомым PC команды, обеспечивающие настройку этих PC на одну и ту же частоту, а затем инициирует передачу через их встроенные радиомодемы цифровых отсчетов принятых сигналов.

Принятые по каналу радиомодема оцифрованные сигналы ведомых PC после демодуляции поступают на демультиплексор 8 и вход блока управления 3. В зависимости от индивидуального номера ведомой PC и номера ее антенны в локальной сети, блок управления адресует отсчеты сигнала этой PC на одни и те же выходы демультиплексора 8. Таким образом, на N входов АКП поступают отсчеты сигналов собственных радиотрактов, а на К других входов поступают отсчеты К ведомых PC. В результате количество подавляемых помех увеличивается до (N+K-1) без увеличения габаритов PC.

Во втором случае (с низким приоритетом) PC работает следующим образом.

После начальной организации локальной сети радиомодемов ведомая PC через свой радиомодем принимает команды управления настройкой (их получает блок управления PC), а затем блок управления 3 направляет последовательно через мультиплексор 7 отсчеты сигналов N приемных каналов на информационный вход радиомодема 9. Отсчеты сигналов радиотрактов передаются в виде пакетов в ведущую PC.

На фиг.4 представлена временная диаграмма сигналов (пакетов), принимаемых ведущей радиостанцией по каналу радиомодема 9. В момент Т=0 в самой ведущей радиостанции (в АЦП 5) производится взятие отсчетов сигналов с выхода собственных приемных трактов 2.

Длительность кадра, в котором периодически передаются данные от других PC, не должна превышать длительности интервала дискретизации Т д =1/F д, где F д - частота дискретизации принимаемого сигнала. Она, как известно, должна быть, по крайней мере, в два раза выше верхней частоты в спектре сигнала. Таким образом, до конца интервала Т д в ведущей PC оказываются отсчеты сигнала, принятого соседними PC в один и тот же момент времени.

Благодаря наличию в локальной сети системных часов, отсчеты сигналов во всех разнесенных радиотрактах производятся одновременно. Пакетный режим передачи отсчетов позволяет затем объединять на входе АКП 6 ведущей PC отсчеты сигналов, взятые в один и тот же момент в разнесенных ведомых PC.

Пространственно-разнесенный прием, осуществляемый с помощью приемных радиотрактов других объектов, связанных по локальной сети, будем называть сетевым приемом.

Таким образом, в условиях сетевого приема все антенны, подключенные к своим радиотрактам PC, расположенных на узле связи, представляют собой общий ресурс, который может оперативно перераспределяться с помощью локальной сети, образованной встроенными в PC радиомодемами, в зависимости от числа и приоритета обслуживаемых абонентов и изменяющейся помеховой обстановки.

Такое построение системы связи обеспечивает в самом крайнем случае, при воздействии комплекса помех, объединение ресурсов всех имеющихся на узле связи PC для обеспечения устойчивой связью наиболее приоритетное должностное лицо.

Кроме этого, в предлагаемой системе связи обеспечивается существенное повышение надежности радиосвязи путем предоставления технической возможности любому должностному лицу (при оперативной необходимости или в случае отказа своей PC) воспользоваться любой работоспособной PC соседних объектов, охваченных локальной сетью связи и управления.

В частном случае, в каждой PC системы может быть одна антенна и один приемный тракт (N=1). Такая PC лишена возможности подавления помех. Однако, благодаря наличию в ней АКП с (К+1) входами, появляется возможность обеспечить подавление К помех при наличии в зоне локальной сети К PC.

Описанное объединение ресурсов с целью помехоустойчивости наиболее ответственных линий связи возможно не только при организации узла связи, но в любом случае, когда PC оказываются в пределах досягаемости встроенных радиомодемов. Например, при движении отдельных PC на транспортных средствах в колонне, когда близко расположенные PC могут быть объединены через локальную сеть.

Помехоустойчивость ШПСС

Основные сведения о широкополосных сигналах

1.1Определение ШПС. Применение ШПС в системах связи

Широкополосными (сложными, шумоподобными) сигналами (ШПС) называют такие сигналы, у которых произведения активной ширины спектра F на длительность T много больше единицы. Это произведение называется базой сигнала B. Для ШПС

B = FT>>1 (1)

Широкополосными сигналы иногда называют сложными в отличие от простых сигналов (например, прямоугольные, треугольные и т.д.) с В=1.Поскольку у сигналов с ограниченной длительностью спектр имеет неограниченную протяженность, то для определения ширины спектра используют различные методы и приемы.

Повышение базы в ШПС достигается путем дополнительной модуляции (или манипуляции) по частоте или фазе на времени длительности сигнала. В результате, спектр сигнала F (при сохранении его длительности T) существенно расширяется. Дополнительная внутрисигнальная модуляция по амплитуде используется редко.

В системах связи с ШПС ширина спектра излучаемого сигнала F всегда много больше ширины спектра информационного сообщения.

ШПС получили применение в широкополосных системах связи (ШПСС), так как:

· позволяют в полной мере реализовать преимущества оптимальных методов обработки сигналов;

· обеспечивают высокую помехоустойчивость связи;

· позволяют успешно бороться с многолучевым распространением радиоволн путем разделения лучей;

· допускают одновременную работу многих абонентов в общей полосе частот;

· позволяют создавать системы связи с повышенной скрытностью;

· обеспечивают электромагнитную совместимость (ЭМС) ШПСС с узкополосными системами радиосвязи и радиовещания, системами телевизионного вещания;

· обеспечивают лучшее использование спектра частот на ограниченной территории по сравнению с узкополосными системами связи.

Помехоустойчивость ШПСС

Она определяется широко известным соотношением, связывающим отношение сигнал-помеха на выходе приемника q 2 с отношением сигнал-помеха на входе приемника ρ 2:

q 2 = 2Вρ 2 (2)

где ρ 2 = Р с /Р п (Р с, Р п - мощности ШПС и помехи);

q 2 = 2E/ N п,Е - энергия ШПС, N п - спектральная плотность мощности помехи в полосе ШПС. Соответственно Е = Р с Т, a N п = Р п /F;

В- база ШПС.

Отношение сигнал-помеха на выходе q 2 определяет рабочие характеристики приема ШПС, а отношение сигнал-помеха на входе ρ 2 - энергетику сигнала и помехи. Величина q 2 может быть получена согласно требованиям к системе (10...30 дБ) даже если ρ 2

Лучшие статьи по теме