Как настроить смартфоны и ПК. Информационный портал

Строение холодильника схема. Как работает холодильник

Однокамерные холодильники.

Однокамерные холодильники устроены довольно просто: компрессор, испаритель, пускозащитное реле и газо-механический датчик или электронный датчик (в зависимости от года производства).

Это, как правило, все однодверные холодильники с маленькой морозильной камерой внутри, она же и является основным источником холода для общей камеры (основной испаритель), так как по законам физики холодный воздух всегда опускается в низ, то у однокамерных холодильников морозильная камера всегда располагается в верху.

Работает это так:
Мотор-компрессор закачивает фреон в конденсатор, там он частично остывает и конденсируется, т.е. становится жидким. Затем, через патрон осушителя (фильтр) попадает в капиллярную трубку и, пройдя по ней, поступает в испаритель.

После поступления его в испаритель начинается физический процесс перехода его в газообразное состояние. Тем самым температура его меняется из плюсовой в минусовую, за счет чего охлаждается испаритель и в свою очередь температура в камере.
Газ пройдя весь испаритель попадает в мотор-компрессор в котором преобразуется опять в жидкое состояние и цикл повторяется вновь, до тех пор пока температура в камере не опустится до заданной, после чего терморегулятор отключит мотор-компрессор.

Под действие окружающей среды температура в камере начнет повышаться, терморегулятор почувствует повышения температуры, включит мотор-компрессор и цикл повторится.

Двухкамерные холодильники.

Двухкамерные холодильники устроены несколько сложнее однокамерных, расположение морозильной камеры возможно как верхнее так и нижнее, за счет того что в каждой камере установлен свой испаритель который охлаждает только объем своей камеры.
Так же двухкамерные холодильники бывают двух компрессорные, что дает возможность использование только одной необходимой в данное время камеры, камеры отгорожены друг от друга теплоизолирующей перегородкой, что исключает потерю холода, когда одна из камер отключена.

С одним компрессором раздельное использование камер не возможно, испарителя хоть и два, но в одно компрессорном холодильникеони замкнуты в одну цепь, у них один контур по которому циркулирует фреон. Работает одно компрессорный холодильник так: сначала охлаждается морозильная камера она всегда в приоритете, до тех пор, пока испаритель морозильной камеры не охладится до минусовой температуры фреон в холодильную камеру поступать не начнет. Отключение компрессора происходит по датчику испарителя холодильной камеры, после того как испаритель морозильной камеры полностью промерз, фреон начинает поступать в испаритель холодильной камеры, закачка фреона начинается с места входа капиллярной трубки а датчик всегда крепится на противоположном конце испарителя. Испаритель холодильной камеры охлаждается до минус 14 тогда датчик отключает компрессор, после отключения компрессора температура воздуха в холодильной камере под действием окружающей среды нагревается и нагревает испаритель, датчик чувствуя повышения температуры дает сигнал на включения компрессора и процесс повторяется вновь.

Двух камерные холодильники с двумя компрессорами значительно удобнее, позволяют использовать нужную вам камеру отдельно от той камеру в использовании которой нет необходимости оставляя ее выключенной, что в одно компрессорных холодильниках невозможно, это очень удобно и экономично.

С системой NO Frost.

Холодильники с системой NoFrost отличаются от холодильников с обычной системой охлаждения тем, что весь процесс охлаждения холодильной и морозильной камеры скрыт от пользователя. В таких холодильниках нет привычных полок в морозильной камере обросших снегом, нет намерзания инея на задней стенки холодильной камеры. Охлаждение камер в холодильниках с системой NoFrost происходит за счет обдува холодным воздухом. Возникает вопрос, откуда же берется этот холодный воздух? Работают такие холодильники так: холодильник с системой NoFrost имеет, как правило, один испаритель расположен он всегда в морозильной камере, расположение морозильной камеры может быть как верхнее, так и нижнее. Испаритель располагается за пластиковой обшивкой. За испарителем расположен вентилятор, который всасывает теплый воздух из камеры пропускает его через испаритель, тем самым охлаждая его и подает уже холодный воздух по специальным каналам в холодильную и морозильную камеру. За счет этой циркуляции воздух в камерах охлаждается до заданной температуры, в холодильной камере это +4, +6 градусов в морозильной -18 принято считать, что в холодильниках с системой NoFrost не образовывается снег и они не требуют размораживания, это не совсем так снег в таких холодильниках нарастает на испарители который скрыт от глаз пользователя, в испаритель в строен электрический нагреватель (тен) который один раз в 8-16 часов включает механический или электронный таймер (в зависимости от модели холодильника) и весь образовавшийся снег тает, а талая вода стекает по дренажной трубке в специальную емкость от куда испаряется. Весь этот процесс не требует вашего участия.

Типы холодильников, их систем охлаждения

Первые устройства для охлаждения пищи и напитков появились несколько тысяч лет назад в Древнем Египте и Китае. В большинстве случаев древние холодильники представляли собой две емкости: меньшая с едой помещалась в большую, частично заполненную льдом или холодной водой. Очевидно, что такое устройство было доступно исключительно для богатых людей и являлось не только предметом роскоши, но и произведением искусства.

Научно-техническая революция XIX века внесла свой вклад и в технологии замораживания еды. Так, начиная с 1850 года в опытных и промышленных образцах, а с 1913 года и в бытовых холодильниках для охлаждения используются так называемые тепловые насосы - специальные устройства, переносящие тепло из рабочей (холодильной или морозильной) камеры во внешнюю среду.

Возможность длительного сохранения свежести продуктов была по достоинству оценена, поэтому к середине XX века холодильник был практически в каждой американской семье, у 30% хозяек из Западной Европы - и лишь у отдельных граждан Советского Союза, так как отец всех народов И. В. Сталин отнес холодильник к буржуазным излишествам. Маловероятно, чтобы Сталин целенаправленно старался уморить население несвежими продуктами, просто в предвоенные годы почти весь металл, необходимый в том числе и для изготовления холодильников, шел на строительство военной техники. Тем не менее начало массового производства холодильников в СССР совпало с развенчанием культа личности, поэтому, если секса в Советском Союзе не было еще долгих сорок лет до самого 1991 года, холодильники к концу 80-х годов были практически в каждой семье.

За последующие двадцать лет разгула демократии холодильники проникли на все кухни, в том числе деревенских и дачных домов. Современные хозяйки могут позволить себе покапризничать и выбрать из всего множества моделей подходящую им по цвету и размеру. Однако, несмотря на бесконечное их разнообразие, технология охлаждения и заморозки еды и напитков практически во всех холодильниках неизменна уже полвека.

Типы холодильников

Всего можно выделить четыре вида холодильных агрегатов, которые претендовали на звание домашних: компрессионный, абсорбционный, термоэлектрический и холодильник с вихревыми охладителями.

В последнем, крайне редком типе, не вышедшем за пределы прототипов и тестовых установок, охлаждение осуществляется за счет расширения сжатого компрессором воздуха в специальных камерах - вихревых охладителях . Эти устройства были надежны и безопасны, однако обладали крайне низким КПД, чудовищно шумели и поэтому практически не имели шансов на успех, особенно в быту.

Агрегаты второго типа - абсорбционные холодильники , конструкция которых была предложена Альбертом Эйнштейном - обеспечивают охлаждение рабочей камеры за счет испарения аммиака. Свое название они получили потому, что циркуляция хладагента происходит в процессе его растворения в жидкости, чаще всего в воде. Для дальнейшей работы холодильника этот раствор разделяется на воду и аммиак, после чего последний сжижается, затем испаряется и снова растворяется в воде, далее цикл повторяется с самого начала.

В отличие от вихревых холодильников абсорбционные практически бесшумны, кроме того, в большинстве конструкций также отсутствуют движущиеся части. Устройства, основанные на этом принципе, обладают достаточно экзотической для бытовых устройств особенностью - они могут работать не на электричестве, а на сжигаемом топливе, например дровах. Это позволяет брать такие холодильники, например, в поход или на пляж. Несмотря на преимущества, не обошлось и без недостатков - относительно низкая удельная производительность, а также потенциальная опасность отравления ядовитыми веществами.

Автомобильный холодильник

В основе работы термоэлектрического холодильника лежит эффект Пельтье - охлаждение места контакта двух разных проводников при прохождении электрического тока. Холодильники на таких элементах надежны, бесшумны, но достаточно дороги и крайне малоэффективны по сравнению с другими тепловыми насосами. Несмотря на это, их можно встретить в автомобильных охладителях, водных и компьютерных кулерах.

Структура элемента Пельтье

В быту наиболее распространены компрессионные холодильники . Они основаны на свойстве вещества поглощать тепло при испарении. Хладагент (безопасный газ фреон) кипит в испарителе, охлаждая тем самым воздух внутренней камеры. Для завершения цикла его нужно снова превратить в жидкость. Это происходит при повышенном давлении, создаваемом компрессором в конденсаторе, при этом выделяется тепло. Конденсаторы могут размещаться сзади как в открытом виде (знакомая всем решетка), так и в закрытом (конденсатор защищен специальной пластиной, а для эффективного теплообмена сверху предусмотрены вентиляционные отверстия). Кроме того, некоторые производители размещают конденсатор в боковых стенках, что позволяет устанавливать холодильник впритык к стене.

Компрессор - самый шумный элемент холодильника

Этот тип теплового насоса относительно прост, дешев и безопасен при бытовом применении. Недостатком конструкции является шум, создаваемый компрессором, поэтому для снижения шумовой нагрузки его размещают на специальных виброподвесах.

Одно- и двухкомпрессорные холодильники

На рынке присутствуют холодильники, оснащенные как одним, так и двумя компрессорами. В последнем случае в каждой камере (холодильной и морозильной) реализована автономная система охлаждения, что позволяет независимо регулировать температуру и отключать неиспользуемые камеры. Это может быть полезным, например, при длительном отпуске или в том случае, когда временно нет необходимости замораживать и долго хранить продукты.

В холодильниках с одним компрессором для раздельного управления работой камер используется электромагнитный клапан, регулирующий подачу хладагента к испарителям. Для потребителей это означает, что разницы по сравнению с двухкомпрессорными моделями при эксплуатации они не заметят. Единственное отличие - нельзя отключить морозильную камеру.

В целом двухкомпрессорные модели несколько дороже, менее надежны (за счет большего количества элементов и, соответственно, большей вероятности поломки), однако потенциально имеют преимущество в том, что при отказе одного компрессора второй продолжает функционировать. Остается неясным, кто будет довольствоваться одной работающей камерой из двух возможных.

Системы охлаждения

Любые холодильники, даже самые современные, требуют регулярного обслуживания. В первую очередь это связано с тем, что на испарителях намерзает иней. Всего существует несколько систем, с тем или иным успехом борющихся с этой проблемой.

Наиболее распространенной является так называемая плачущая стенка или «плачка». Холодильник с такой системой работает следующим образом: испаритель на задней стенке охлаждает холодильную камеру, но при этом на нем образуется иней. На одном из этапов работы холодильника компрессор останавливается, охлаждение прекращается и иней тает, превращаясь в воду, которая стекает по дренажной системе в специальную емкость, расположенную вблизи компрессора. При работе последнего емкость нагревается и вода испаряется. Очевидно, что при этом в холодильной камере поддерживается достаточно высокая влажность.

Знакомая всем "плачущая" стенка

Работа такой системы предполагает разморозку испарителя морозильной камеры от нескольких раз в год до одного раза в несколько лет, в зависимости от условий эксплуатации - нагрузки, влажности, частоты открытия дверцы и прочих факторов. Такие устройства теоретически более надежны, чем модели с принудительным охлаждением, поскольку система более простая.

Второй тип - смешанное охлаждение , когда в холодильной камере оттаивание происходит автоматически ("плачущая" стенка), а в морозильной - с помощью электронагревателя. В зависимости от произволителя такая комбинированая система может называться по-разному - No Frost, Frost Free и т. д.

Третья, технически более сложная, система основана на охлаждении продуктов за счет потоков холодного воздуха. Скрытый за стенкой испаритель с помощью специальных вентиляторов охлаждает обе камеры. Его температура несколько ниже, чем внутри камер, и поэтому иней намерзает только на нем, при этом оттаивание, как и в случае комбинированной системы, происходит за счет специального нагревателя. В итоге стенки камер холодильника, оснащенного такой системой, не обмерзают, что значительно облегчает уход. Маркетинговые названия - Full No Frost, Full Frost Free и т. д.

Системы No Frost впечатляют полным отсутствием инея в морозилке

Нужно отметить, что, независимо от системы охлаждения, необходимо периодически проводить гигиеническую уборку холодильника, которую достаточно легко совмещать с разморозкой.

Полки

Несмотря на свою кажущуюся простоту, большую роль в работе холодильника играют полки. Дело в том, что старые, решетчатые, полки, при всех своих многочисленных недостатках, обладали одним серьезным преимуществом - обеспечивали качественную циркуляцию воздуха, а значит, и более равномерное охлаждение.

От полок во многом зависит удобство использования холодильника

Современные полки из закаленного стекла весьма удобны, красивы и гигиеничны, но существенно затрудняют конвекцию воздуха. Поэтому многие производители оснащают свои устройства принудительной вентиляцией для обеспечения качественного перемешивания воздуха. Как правило, каждое решение получает свое маркетинговое имя и преподносится как значительное усовершенствование, например Multi Air Flow, Dynamic Air Flow и т. д.

Дополнительные функции охлаждающей системы

Некоторые модели холодильников оснащены функцией суперзаморозки - она позволяет дополнительно охлаждать морозильную камеру, для того чтобы при добавлении новых продуктов не возрастала температура и не оттаивали уже хранящиеся. Кроме того, пониженная температура обеспечивает быструю заморозку, а значит, позволяет лучше сохранить полезные свойства пищи. Нужно отметить, что аналогичная функция существует и для холодильной камеры.

Существенным расширением функциональности холодильника, безусловно, являются так называемые зоны свежести . Такая зона представляет собой отдельную камеру или ячейку (ящик), в которой поддерживается температура, близкая к нулевой. Это позволяет без заморозки длительное время сохранять свежесть продуктов, в первую очередь скоропортящихся. Оптимальным является наличие отдельной камеры, похожей на холодильную, но меньших размеров. Такое разделение позволяет эффективно поддерживать температуру и влажность.

Зоны свежести уменьшают частоту походов в магазин

Обычно пользователям предлагаются две зоны свежести:

  • сухая, предназначенная для хранения мяса, птицы, рыбы, морепродуктов;
  • влажная, которая идеально подходит для сохранения овощей, фруктов, зелени.

Так, по информации компании - одной из родоначальниц нулевых зон - срок хранения ягод увеличивается в 3-4 раза, картофель и яблоки останутся свежими практически три месяца, а мясо и птица продержатся целую неделю вместо нескольких дней. Это означает, что планировать свой рацион и запасы можно с гораздо большей свободой. В более простых решениях, когда зона свежести представляет собой ящик или специальное отделение внутри холодильной камеры, такой контроль температуры и влажности по понятным причинам невозможен, что снижает полезность нулевой зоны.

Льдогенератор, несомненно, порадует ваших гостей

Еще одним приятным дополнением может стать льдогенератор - специальное устройство, автоматически готовящее лед. Как правило, такие холодильники напрямую подключаются к источнику холодной воды, которая фильтруется для повышения качества льда. Нужно отметить, что в ряде случаев некоторые производители льдогенераторами могут называть специальную систему лотков, предусматривающую минимальную автоматизацию получения льда.

Чтобы не растеряться в случае поломки кухонной техники, современной хозяйке приходится разбираться в том, как работает холодильник, микроволновка, плита и другие помощники человека. Назначение холодильного шкафа - сохранение свежести продуктов, поэтому работа его должна быть бесперебойной, ведь вызов мастера для ремонта иногда нельзя осуществить сразу. Понимание принципа действия бытового холодильника способно сэкономить время и деньги, а некоторые поломки можно исправить самостоятельно.

Рис. 1. 1 - испаритель, 2 - конденсатор, 3 - фильтр-осушитель, 4 - капилляр, 5 - компрессор

Рабочий агрегат холодильника состоит из 4 частей:

  • компрессор;
  • конденсатор;
  • испаритель;
  • хладагент.

Настоящее сердце всей системы - компрессор . Он обеспечивает циркуляцию хладагента по множеству тонких трубок, часть из которых можно увидеть на задней внешней стенке холодильного шкафа. Другая часть скрыта под панелью внутри камеры в современных моделях, но в старых рефрижераторах они образуют стенки морозильного отделения либо просто закреплены на потолке камеры. Во время работы компрессор сильно нагревается, как любой двигатель, и должен время от времени отдыхать. Чтобы он не вышел из строя от перегрева, внутри находится реле, которое при достижении определенной температуры двигателя размыкает электрическую цепь. В этот момент компрессор выключается.

Трубочки на внешней стенке холодильника - это конденсатор . Назначение его в том, чтобы отдать тепло в окружающее пространство. Компрессор, перекачивая хладагент, загоняет его в конденсатор под давлением. В результате газообразное вещество (фреон, изобутан) переходит в жидкое состояние и довольно сильно нагревается. Вот эти излишки тепла и должны рассеяться во внешнюю среду, чтобы хладагент сам охладился до комнатной температуры.

В инструкциях к рефрижераторам обычно пишут о том, что их нужно вдали от нагревательных приборов.

Зная о том, как должен работать холодильник, рачительные хозяева постараются обеспечить своему помощнику наилучшие условия для легкого охлаждения компрессора и конденсатора. Это поможет ему прослужить дольше.

Для того, чтобы получить холод в камере, существует другая часть системы трубок, куда сжиженный газ попадает потом. Ее называют испарителем . От конденсатора она отделена фильтром-осушителем и капилляром - очень тонкой трубочкой, которая не пропускает сразу весь сжиженный хладагент, а заставляет компрессор с усилием проталкивать его в испаритель. Попадая туда, небольшие количества фреона моментально вскипают и расширяются, снова переходя в газообразное состояние. Во время этого процесса происходит поглощение большого количества тепла. Трубочки внутри камеры охлаждаются сами и охлаждают воздух в холодильнике. Потом хладагент возвращается в компрессор, и весь цикл начинается сначала.

Чтобы продукты в камере не превратились в лед, внутри нее установлен терморегулятор . Шкала с делениями позволяет установить желаемый уровень охлаждения, и как только нужные показатели будут достигнуты, холодильник отключается.

Однокамерный и двухкамерный холодильник

Охлаждающий агрегат во всех моделях современных рефрижераторов устроен по единому принципу . Но разница в работе разных модификаций все-таки есть. Заключена она в особенностях течения хладагента в холодильниках с одной или двумя камерами.

По описанной выше схеме работает однокамерный холодильный шкаф. Вне зависимости от того, находится ли испаритель прямо в камере, как в старых моделях, спрятан за стенкой при капельной системе, или в модификации , принцип работы одинаков. Но когда над или под охлаждающим отделением расположена морозильная камера, рефрижератору требуется еще один компрессор. Схема работы для морозилки остается прежней.

Охлаждающее отделение, где температура не опускается ниже 0 °C, начинает работать только потом, когда морозильник достаточно охладился и отключился. В этот момент хладагент из системы морозильника начинает поступать в компрессор камеры с плюсовой температурой, и проходит цикл конденсации и испарения уже на этом уровне. Поэтому на вопрос о том, сколько , пока включится охлаждающая камера, точного ответа дать нельзя. Все зависит от объема морозильника и настроек терморегулятора.

Что такое быстрая заморозка?

Этими словами обозначают одну из функций морозильной камеры в двухкамерных моделях. В зависимости от модификации, холодильник в этом режиме может работать в течение долгого времени, не отключая компрессор. Таким образом достигается ускоренное промораживание большого объема продуктов.

При активации режима быстрой заморозки на панели некоторых камер загораются световые индикаторы, обозначающие, что компрессор включен, и холодильник работает. В этом случае необходимо помнить о том, что автоматического отключения не произойдет, а принудительная работа агрегата в течение длительного времени приводит к сокращению ресурса.

Режим быстрой заморозки не следует включать на срок более 72 часов.

После того, как он будет отключен вручную, индикаторы на панели гаснут, а двигатель компрессора выключается.

Современные модели холодильных шкафов очень разнообразны. Нынешние хозяйки незнакомы с таким видом домашней работы, как . Капельные системы и необмерзающие камеры значительно упростили жизнь человека, но основные принципы работы этих бытовых приборов остались прежними.

Сегодня в охлаждении нуждается огромное количество продуктов, а еще без холода невозможно реализовать многие технологические процессы. То есть с необходимостью применения холодильных установок мы сталкиваемся в быту, в торговле, на производстве. Далеко не всегда удается использовать естественное охлаждение, ведь оно сможет понизить температуру лишь до параметров окружающего воздуха.

На выручку приходят холодильные установки. Их действие основано на реализации несложных физических процессов испарения и конденсации. К преимуществам машинного охлаждения относится поддержание в автоматическом порядке постоянных низких температур, оптимальных для определенного вида продукта. Также немаловажными являются незначительные удельные эксплуатационные, ремонтные затраты и расходы на своевременное техническое обслуживание.

Для получения холода используется свойство холодильного агента корректировать собственную температуру кипения при изменении давления. Чтобы превратить жидкость в пар, к ней подводится определенное количество теплоты. Аналогично конденсация парообразной среды наблюдается при отборе тепла. На этих простых правилах и основывается принцип работы холодильной установки.

Это оборудование включает в себя четыре узла:

  • компрессор
  • конденсатор
  • терморегулирующий вентиль
  • испаритель

Между собой все эти узлы соединяются в замкнутый технологический цикл при помощи трубопроводной обвязки. По этому контуру подается холодильный агент. Это вещество, наделенное способностью кипеть при низких отрицательных температурах. Этот параметр зависит от давления парообразного хладагента в трубках испарителя. Более низкое давление соответствует низкой температуре кипения. Процесс парообразования будет сопровождаться отнятием тепла от той окружающей среды, в которую помещено теплообменное оборудование, что сопровождается ее охлаждением.

При кипении образуются пары хладагента. Они поступают на линию всасывания компрессора, сжимаются им и поступают в теплообменник-конденсатор. Степень сжатия зависит от температуры конденсации. В данном технологическом процессе наблюдается повышение температуры и давления рабочего продукта. Компрессором создают такие выходные параметры, при которых становится возможным переход пара в жидкую среду. Существуют специальные таблицы и диаграммы для определения давления, соответствующего определенной температуре. Это относится к процессу кипения и конденсации паров рабочей среды.

Конденсатор – это теплообменник, в котором горячие пары хладагента охлаждаются до температуры конденсации и переходят из пара в жидкость. Это происходит путем отбора от теплообменника тепла окружающим воздухом. Процесс реализуется при помощи естественной или же искусственной вентиляции. Второй вариант зачастую применяется в промышленных холодильных машинах.

После конденсатора жидкая рабочая среда поступает в терморегулирующий вентиль (дроссель). При его срабатывании давление и температура понижается рабочих параметров испарителя. Технологический процесс вновь идет по кругу. Чтобы получить холод необходимо подобрать температуру кипения хладагента, ниже параметров охлаждаемой среды.

На рисунке представлена схема простейшей установки, рассмотрев которую можно наглядно представить принцип работы холодильной машины. Из обозначений:

  • «И» — испаритель
  • «К» -компрессор
  • «КС» — конденсатор
  • «Д» — дроссельный вентиль

Стрелочками указано направление технологического процесса.

Помимо перечисленных основных узлов, холодильная машина оснащается приборами автоматики, фильтрами, осушителями и иными устройствами. Благодаря им установка максимально автоматизируется, обеспечивая эффективную работу с минимальным контролем со стороны человека.

В качестве холодильного агента сегодня в основном используются различные фреоны. Часть из них постепенно выводится из употребления ввиду негативного воздействия на окружающую среду. Доказано, что некоторые фреоны разрушают озоновый слой. Им на смену пришли новые, безопасные продукты, такие как R134а, R417а и пропан. Аммиак применяется лишь в масштабных промышленных установках.

Теоретический и реальный цикл холодильной установки

На этом рисунке представлен теоретический цикл простейшей холодильной установки. Видно, что в испарителе происходит не только непосредственно испарение, но и перегрев пара. А в конденсаторе пар превращается в жидкость и несколько переохлаждается. Это необходимо в целях повышения энергоэффективности технологического процесса.

Левая часть кривой – это жидкость в состоянии насыщения, а правая – насыщенный пар. То, что между ними – паро-жидкостная смесь. На линии D-A` происходит изменение теплосодержания холодильного агента, сопровождающееся выделением тепла. А вот отрезок В-С` наоборот, указывает на выделение холода в процессе кипения рабочей среды в трубках испарителя.

Реальный рабочий цикл отличается от теоретического ввиду наличия потерь давления на трубопроводной обвязке компрессора, а также на его клапанах.

Чтобы компенсировать данные потери работа сжатия должна быть увеличена, что снизит эффективности цикла. Данный параметр определяется отношением холодильной мощности, выделяемой в испарителе к мощности, потребляемой компрессором и электрической сети. Эффективность работы установки – это сравнительный параметр. Он не указывает непосредственно на производительность холодильника. Если данный параметр 3,3, это будет указывать, что на единицу электроэнергии, потребляемой установкой, приходится 3,3 единицы произведенного ею холода. Чем больше этот показатель, тем выше эффективность установки.

Устройство и принцип работы холодильной установки

ТЕПЛОВЫЕ И ВОЗДУШНЫЕ ПОТОКИ

В работе холодильника используют основные законов термодинамики. Как это происходит, следует рассмотреть подробно. Прежде всего, нужно отметить простые, интуитивно понятные факты:

  • Холодильник отбирает тепло из объектов, которые находятся внутри него, а не целенаправленно охлаждает продукты.
  • Тепло распространяется от теплых предметов к более холодным. Чем выше разность температур объектов, тем быстрее перемещается тепло, и так происходит, пока температура станет везде одинаковой.

Когда в холодильник кладут теплые продукты, тепловая энергия уходит из них в окружающий воздух морозильной камеры или низкотемпературного отделения. Содержимое в результате охлаждается, и этот эффект мы отмечаем, как желательный. Но поскольку воздух нагрелся, его тоже, в свою очередь, нужно где-то охладить.

Для удаления избытка тепла из нагретого воздуха и замены его возле охлаждаемых продуктов важна правильная организация воздушных потоков. Движение воздуха осуществляет принудительная вентиляция. Воздух проходит через испаритель, оснащенный вентилятором. Там тепло передается хладагенту (обычно газу фреону) быстро, поскольку велика разность температур. Температура фреона достаточно низкая - от -10ºС до -40ºС. В классических холодильниках хладагент протекает по каналам в стенках морозильной камеры и радиаторам, выступающим внутрь основной камеры. Их располагают сверху, чтобы более тяжелый холодный воздух опускался вниз самотоком.

СИСТЕМА РАЗМОРАЖИВАНИЯ

При открывании двери холодильника внутрь попадает много теплого и насыщенного влагой воздуха. Испаритель очень холодный, и вода сразу конденсируется на его поверхности, покрывая ее инеем, а затем - все более толстым слоем намерзшего льда. Лед препятствует теплообмену между воздухом и фреоном. Эффективность работы холодильника падает, он потребляет больше электроэнергии и сильнее изнашивается. Для предотвращения этого нужно время от времени размораживать холодильник.

Современные системы размораживают по таймеру - через 6-12 часов охлаждение воздуха прекращается, несколько минут лед тает, и поверхность испарителя освобождается от него. Таймер бывает механический или автоматический. Сложная электроника или ручной таймер регулярно прекращает работу компрессора и включает оттайку (электронагреватель), которая подогревает испаритель. Стекающую воду собирают в поддон через дренажные отверстия, откуда она испаряется, если воды много - придется ее вылить вручную. Для защиты охлаждающего контура от перегрева при оттаивании устанавливают термостат. Он размыкает электрическую цепь по достижении определенной температуры.

КОНТРОЛЬ ТЕМПЕРАТУРЫ

Охлажденные продукты выделяют меньшее количество тепла, воздух остается холодным длительное время. Термостат регулирует процесс, включая и выключая компрессор на основании показаний термометра. Рабочий диапазон температур настраивают рукояткой регулировки, обычно он составляет несколько градусов.

Как правило, в холодильнике лишь один испаритель, он поставляет холодный воздух повсюду - в морозилку и основное отделение. Для поддержания в морозилке более низкой температуры охлажденный воздух преимущественно находится в ней, лишь малое его количество поступает в другие отсеки. Баланс воздуха между морозильником и основным отделением регулируют заслонкой. Она находится в канале, соединяющем отсеки, и работает под управлением отдельного регулятора.

КУДА УХОДИТ ТЕПЛО?

Нагретый фреон из испарителя подают в компрессор, где сжимают поршнем и он сильно нагревается, согласно законам термодинамики. Электрическая энергия из сети переходит в обмотках двигателя в механическую, а затем в поршневой камере - в тепловую. Законы сохранения выполняются безупречно. Вывести излишнее тепло из раскаленного фреона просто, он горячее комнатного воздуха и охлаждается при прохождении через конденсатор - решетку, выступающую наружу на задней стороне холодильника.

В «продвинутых» моделях холодильников воздух продувается через конденсатор отдельным вентилятором. Тепло конденсатора можно использовать для испарения воды из поддона, стекающей в него при разморозке. Таким образом, влага возвращается туда, откуда пришла - в окружающую холодильник атмосферу. Охлажденный в конденсаторе фреон поступает обратно в холодильный контур, где компрессор создает разрежение, и газ расширяется, достигая очень низких температур. Цикл повторяется. Задача инженеров-разработчиков - правильно рассчитать объем и форму камер холодильника, мощность устройств, чтобы КПД системы был максимальным. Современные холодильники в этом отношении доведены до идеала.

Статья специально написана простыми словами, чтобы обычный владелец любого бытового холодильника смог бы разобраться в устройстве этой техники.

Дополнительная информация

Лучшие статьи по теме