Как настроить смартфоны и ПК. Информационный портал
  • Главная
  • Железо
  • Статья с помощью нейронных сетей. Нейронные сети: виды, принцип работы и области применения

Статья с помощью нейронных сетей. Нейронные сети: виды, принцип работы и области применения

Доброго времени вам суток, уважаемое Хабрасообщество.

Хочу вначале сделать маленький дисклеймер. Предыдущим постом в этом сообществе были рассмотрены основы искусственной нейронной сети. Я данной темой занималась для написания своей магистерской работы и соответственно прочитала в свое время достаточно литературы, поэтому мне бы хотелось немного дополнить и в дальнейшем продолжить вам рассказывать о том, что такое нейронная сеть, какое представление она имеет изнутри, как с ее помощью решают задачи и так далее…
Сразу оговорюсь, что я не гуру в данном вопросе, я его знаю (ну или знала, так как времени прошло уже достаточно) настолько глубоко, насколько мне было это необходимо для написания работающей нейронной сети для распознавания цифр, ее обучения и дальнейшего использования. Предметом исследования была структура нейронной сети для распознавания символов, а конкретно, зависимость между количеством нейронов в скрытом слое и сложностью выборки для входных данных (количеством символов для распознавания).

UPD : данный текст в основном является обобщением из прочитанной литературы. Он не написан мною лично. По крайней мере эта часть.
UPD2 : Скорей всего продолжения данной темы не будет, так как хабрапользователь , который является смотрителем данного блога, считает, что нет смысла писать здесь то, что можно прочитать из многочисленной литературы, которая есть по нейронным сетям. Так что извините.

Возможно первая часть будет в чем-то похожа на предыдущий пост хабрапользователя , но я считаю, что стоит более детально рассмотреть строение искусственного нейрона, у меня есть, что добавить, ну и, плюс ко всему, я хочу написать полноценную и законченную серию постов про нейросети, не опираясь на уже написанное. Надеюсь вам будет полезен данный материал.

Биологический прототип нейрона

Первой попыткой создания и исследования искусственных нейронных сетей считается работа Дж. Маккалока (J. McCulloch) и У. Питтса (W. Pitts) «Логическое исчисление идей, относящихся к нервной деятельности» (1943 г.), в которой были сформулированы основные принципы построения искусственных нейронов и нейронных сетей. И хотя эта работа была лишь первым этапом, многие идеи, описанные в ней, остаются актуальными и на сегодняшний день.

Искусственные нейронные сети индуцированы биологией, потому что они состоят из элементов, функциональные возможности которых аналогичны большинству функций биологического нейрона. Эти элементы можно организовать таким образом, который может соответствовать анатомии мозга, и они демонстрируют большое количество свойств, которые присущие мозгу. Например, они могут учиться на основе опыта, могут обобщать предыдущие прецеденты на новые случаи и выявлять существенные особенности из входных данных, которые содержат избыточную информацию.

Центральная нервная система имеет клеточное строение. Единица - нервная клетка, нейрон. Он состоит из тела и отростков, которые соединяют его с внешним миром (рис. 1.1). Отростки, по которым нейрон получает возбуждение, называются дендритами. Отросток, по которому нейрон передает возбуждение, называется аксоном, причем аксон у каждого нейрона один. Дендриты и аксон имеют довольно сложную ветвистую структуру. Место соединения аксона нейрона - источника возбуждения с дендритом называется синапсом. Основная функция нейрона состоит в передаче возбуждения из дендритов в аксон. Но сигналы, которые поступают из разных дендритов, могут влиять на сигнал в аксоне. Нейрон выдаст сигнал, если суммарное возбуждение превысит некоторое предельное значение, которое в общем случае меняется в некоторых границах. В противном случае на аксон сигнал выдан не будет: нейрон не ответит на возбуждение. У этой основной схемы много осложнений и исключений, однако большинство нейронных сетей моделируют именно эти простые свойства.

(рисунок 1.1) - Модель биологического нейрона

Нейрон имеет следующие основные свойства:

  • Принимает участие в обмене веществ и рассеивает энергию. Меняет внутреннее состояние со временем, реагирует на входные сигналы, формирует выходные воздействия и поэтому является активной динамической системой.
  • Имеет множество синапсов - контактов для передачи информации
Существуют два подхода к созданию искусственных нейронных сетей (НС). Информационный подход : безразлично, какие механизмы лежат в основе работы искусственных нейронных сетей, важно лишь, чтобы при решении задач информационные процессы в НС были подобны биологическим. Биологический : при моделировании важно полное биоподобие, и для этого необходимо детально изучать работу биологического нейрона.

Интенсивность сигнала, который получает нейрон (а следовательно и возможность его активации), сильно зависит от активности синапсов. Каждый синапс имеет длину, и специальные химические вещества передают сигнал вдоль него. Один из самых авторитетных исследователей нейросистем, Дональд Хебб, высказал постулат, что обучение состоит в первую очередь в изменениях «силы» синаптических связей. Например, в классическом опыте Павлова, каждый раз непосредственно перед кормлением собаки звонил колокольчик, и собака быстро научилась связывать звонок колокольчика с пищей. Синаптические связи между участками коры главного мозга, ответственными за слух, и слюнными железами усилились, и при возбуждении коры звуком колокольчика у собаки начиналось слюноотделение.

Таким образом, будучи построенный из очень большого числа совсем простых элементов (каждый из которых берет взвешенную сумму входных сигналов и в случае, если суммарный вход превышает определенный уровень, передает дальше двоичный сигнал), мозг способен решать чрезвычайно сложные задачи.

Искуственный нейрон

Искусственный нейрон имитирует в первом приближении свойства биологического нейрона. На вход искусственного нейрона поступает некоторое множество сигналов, каждый с которых является выходом другого нейрона. Каждый вход множится на соответствующий вес, аналогичный синаптической силе, и все произведения суммируются, определяя уровень активации нейрона. На рисунке 1.2 представлена модель, которая реализует эту идею. Хотя сети бывают довольно разные, в основе почти всех их лежит эта конфигурация. Здесь множество входных сигналов, обозначенных x1, x2, ..., xn, поступают на искусственный нейрон. Эти входные сигналы отвечают сигналам, которые приходят в синапсы биологического нейрона. Каждый сигнал множится на соответствующий вес w1, w2,..., wn, и поступает на суммирующий блок, обозначенный ∑. Каждый вес отвечает «силе» одной биологической синаптической связи. Суммирующий блок, который соответствует телу биологического элемента, алгебраически объединяет взвешенные входы, создавая выход NET:


(рисунок 1.2) - Искусственный нейрон в первом приближении

Данное описание можно представить следующей формулой

где w0 - биас;
wі - вес i- го нейрона;
xі - выход i- го нейрона;
n - количество нейронов, которые входят в обрабатываемый нейрон

Сигнал w0, который имеет название биас, отображает функцию предельного значения, сдвига. Этот сигнал позволяет сдвинуть начало отсчета функции активации, которая в дальнейшем приводит к увеличению скорости обучения. Этот сигнал добавляется к каждому нейрону, он учится как и все другие весы, а его особенность в том, что он подключается к сигналу +1, а не к выходу предыдущего нейрона.

Полученный сигнал NET как правило обрабатывается функцией активации и дает выходной нейронный сигнал OUT (рис. 1.3)


(рисунок 1.3) - Искусственный нейрон с функцией активации

Если функция активации суживает диапазон изменения величины NET так, что при каждом значении NET значения OUT принадлежат некоторому диапазону - конечному интервалу, то функция F называется функцией, которая суживает. В качестве этой функции часто используются логистическая или «сигмоидальная» функция. Эта функция математически выражается следующим образом:

Основное преимущество такой функции - то, что она имеет простую производную и дифференцируется по всей оси абсцисс. График функции имеет следующий вид (рис. 1.4)


(рисунок 1.4) - Вид сигмоидальной функции активации

Функция усиливает слабые сигналы и предотвращает насыщение от больших сигналов.

Другой функцией, которая также часто используется, является гиперболический тангенс. По форме она похожа на сигмоидальную и часто используется биологами в качестве математической модели активации нервной клетки. Она имеет вид

Как и логистическая функция, гиперболический тангенс имеет S-образный вид, но он является симметричным относительно начала координат, и в точке NET=0 значение выходного сигнала OUT=0 (рис. 1.5). На графике можно увидеть, что эта функция, в отличии от логистической, принимает значение разных знаков, что является очень выгодным свойством для некоторых типов сетей.


(рисунок 1.5) - Вид функции активации - гиперболический тангенс

Рассмотренная модель искусственного нейрона игнорирует много свойств биологического нейрона. Например, она не принимает во внимание задержки во времени, которые влияют на динамику системы. Входные сигналы сразу порождают исходные. Но несмотря на это, искусственные нейронные сети, составленные из рассмотренных нейронов, выявляют свойства, которые присущи биологической системе.

ссылки на литературу:
1. Ф. Уоссермен. Нейрокомпьютерная техника: теория и практика. Перевод на русский язык Ю. А. Зуев, В. А. Точенов, 1992
2. И. В. Заенцев. Нейронные сети: основные модели. Учебное пособие к курсу “Нейронные сети”

Искусственный интеллект, нейронные сети, машинное обучение — что на самом деле означают все эти нынче популярные понятия? Для большинства непосвященных людей, коим и являюсь я сам, они всегда казались чем-то фантастическим, но на самом деле суть их лежит на поверхности. У меня давно созревала идея написать простым языком об искусственных нейронных сетях. Узнать самому и рассказать другим, что представляют собой эта технология, как она работают, рассмотреть ее историю и перспективы. В этой статье я постарался не залезать в дебри, а просто и популярно рассказать об этом перспективном направление в мире высоких технологий.

Искусственный интеллект, нейронные сети, машинное обучение - что на самом деле означают все эти нынче популярные понятия? Для большинства непосвященных людей, коим являюсь и я сам, они всегда казались чем-то фантастическим, но на самом деле суть их лежит на поверхности. У меня давно созревала идея написать простым языком об искусственных нейронных сетях. Узнать самому и рассказать другим, что представляет собой эта технология, как она работает, рассмотреть ее историю и перспективы. В этой статье я постарался не залезать в дебри, а просто и популярно рассказать об этом перспективном направление в мире высоких технологий.

Немного истории

Впервые понятие искусственных нейронных сетей (ИНС) возникло при попытке смоделировать процессы головного мозга. Первым серьезным прорывом в этой сфере можно считать создание модели нейронных сетей МакКаллока-Питтса в 1943 году. Учеными впервые была разработана модель искусственного нейрона. Ими также была предложена конструкция сети из этих элементов для выполнения логических операций. Но самое главное, учеными было доказано, что подобная сеть способна обучаться.

Следующим важным шагом стала разработка Дональдом Хеббом первого алгоритма вычисления ИНС в 1949 году, который стал основополагающем на несколько последующих десятилетий. В 1958 году Фрэнком Розенблаттом был разработан парцептрон - система, имитирующая процессы головного мозга. В свое время технология не имела аналогов и до сих пор является основополагающей в нейронных сетях. В 1986 году практически одновременно, независимо друг от друга американскими и советскими учеными был существенно доработан основополагающий метод обучения многослойного перцептрона . В 2007 году нейронные сети перенесли второе рождение. Британский информатик Джеффри Хинтоном впервые разработал алгоритм глубокого обучения многослойных нейронных сетей, который сейчас, например, используется для работы беспилотных автомобилей.

Коротко о главном

В общем смысле слова, нейронные сети - это математические модели, работающие по принципу сетей нервных клеток животного организма. ИНС могут быть реализованы как в программируемые, так и в аппаратные решения. Для простоты восприятия нейрон можно представить, как некую ячейку, у которой имеется множество входных отверстий и одно выходное. Каким образом многочисленные входящие сигналы формируются в выходящий, как раз и определяет алгоритм вычисления. На каждый вход нейрона подаются действенные значения, которые затем распространяются по межнейронным связям (синопсисам). У синапсов есть один параметр - вес, благодаря которому входная информация изменяется при переходе от одного нейрона к другому. Легче всего принцип работы нейросетей можно представить на примере смешения цветов. Синий, зеленый и красный нейрон имеют разные веса. Информация того нейрона, вес которого больше будет доминирующей в следующем нейроне.

Сама нейросеть представляет собой систему из множества таких нейронов (процессоров). По отдельности эти процессоры достаточно просты (намного проще, чем процессор персонального компьютера), но будучи соединенными в большую систему нейроны способны выполнять очень сложные задачи.

В зависимости от области применения нейросеть можно трактовать по-разному, Например, с точки зрения машинного обучения ИНС представляет собой метод распознавания образов. С математической точки зрения - это многопараметрическая задача. С точки зрения кибернетики - модель адаптивного управления робототехникой. Для искусственного интеллекта ИНС - это основополагающее составляющее для моделирования естественного интеллекта с помощью вычислительных алгоритмов.

Основным преимуществом нейросетей над обычными алгоритмами вычисления является их возможность обучения. В общем смысле слова обучение заключается в нахождении верных коэффициентов связи между нейронами, а также в обобщении данных и выявлении сложных зависимостей между входными и выходными сигналами. Фактически, удачное обучение нейросети означает, что система будет способна выявить верный результат на основании данных, отсутствующих в обучающей выборке.

Сегодняшнее положение

И какой бы многообещающей не была бы эта технология, пока что ИНС еще очень далеки от возможностей человеческого мозга и мышления. Тем не менее, уже сейчас нейросети применяются во многих сферах деятельности человека. Пока что они не способны принимать высокоинтеллектуальные решения, но в состоянии заменить человека там, где раньше он был необходим. Среди многочисленных областей применения ИНС можно отметить: создание самообучающихся систем производственных процессов, беспилотные транспортные средства, системы распознавания изображений, интеллектуальные охранные системы, робототехника, системы мониторинга качества, голосовые интерфейсы взаимодействия, системы аналитики и многое другое. Такое широкое распространение нейросетей помимо прочего обусловлено появлением различных способов ускорения обучения ИНС.

На сегодняшний день рынок нейронных сетей огромен - это миллиарды и миллиарды долларов. Как показывает практика, большинство технологий нейросетей по всему миру мало отличаются друг от друга. Однако применение нейросетей - это очень затратное занятие, которое в большинстве случаев могут позволить себе только крупные компании. Для разработки, обучения и тестирования нейронных сетей требуются большие вычислительные мощности, очевидно, что этого в достатке имеется у крупных игроков на рынке ИТ. Среди основных компаний, ведущих разработки в этой области можно отметить подразделение Google DeepMind, подразделение Microsoft Research, компании IBM, Facebook и Baidu.

Конечно, все это хорошо: нейросети развиваются, рынок растет, но пока что главная задача так и не решена. Человечеству не удалось создать технологию, хотя бы приближенную по возможностям к человеческому мозгу. Давайте рассмотрим основные различия между человеческим мозгом и искусственными нейросетями.

Почему нейросети еще далеки до человеческого мозга?

Самым главным отличием, которое в корне меняет принцип и эффективность работы системы - это разная передача сигналов в искусственных нейронных сетях и в биологической сети нейронов. Дело в том, что в ИНС нейроны передают значения, которые являются действительными значениями, то есть числами. В человеческом мозге осуществляется передача импульсов с фиксированной амплитудой, причем эти импульсы практически мгновенные. Отсюда вытекает целый ряд преимуществ человеческой сети нейронов.

Во-первых, линии связи в мозге намного эффективнее и экономичнее, чем в ИНС. Во-вторых, импульсная схема обеспечивает простоту реализации технологии: достаточно использование аналоговых схем вместо сложных вычислительных механизмов. В конечном счете, импульсные сети защищены от звуковых помех. Действенные числа подвержены влиянию шумов, в результате чего повышается вероятность возникновения ошибки.

Итог

Безусловно, в последнее десятилетие произошел настоящий бум развития нейронных сетей. В первую очередь это связано с тем, что процесс обучения ИНС стал намного быстрее и проще. Также стали активно разрабатываться так называемые «предобученные» нейросети, которые позволяют существенно ускорить процесс внедрения технологии. И если пока что рано говорить о том, смогут ли когда-то нейросети полностью воспроизвести возможности человеческого мозга, вероятность того, что в ближайшее десятилетие ИНС смогут заменить человека на четверти существующих профессий все больше становится похожим на правду.

Для тех, кто хочет знать больше

  • Большая нейронная война: что на самом деле затевает Google
  • Как когнитивные компьютеры могут изменить наше будущее

Доступно показал насколько просто создать нейронную сеть для распознования картинок. Но есть одно но - то что он описал нейронной сетью не является. Перед его следующей статьей хочу рассказать вам как решить ту же задачу, но с использованием нейронной сети Кохонена.

Итак, распознавать мы будем цифры, написанные белым по черному, такие как эти:

Картинки 45 на 45 пикселей, а значит входов в нашу нейронную сеть будет 45 * 45.
Для простоты, распознаем только цифры от 0 до 5, поэтому нейронов у нас будет 6 - по одному на каждый ответ.

Cтруктура нашей нейросети:

Каждая связь входа сети с нейроном имеет свой вес. Импульс, проходя через связь, меняется: импульс = импульс * вес_связи.
Нейрон получает импульсы от всех входов и просто суммирует их. Нейрон набравший больший суммарный импульс побеждает. Все просто, реализуем!

Классы для представления элементов сети (C#):
// Вход
public class Input
{
// Связи с нейронами
public Link OutgoingLinks;
}

// Связь входа с нейроном
public class Link
{
// Нейрон
public Neuron Neuron;
// Вес связи
public double Weight;
}

public class Neuron
{
//Все входы нейрона
public Link IncomingLinks;
// Накопленный нейроном заряд
public double Power { get; set; }
}

Создание и инициализация сети дело скучное, кому интересно - смотрите приложенный исходник. Остановлюсь лишь на том, что цвет пикселя это число от 0 до 255, причем 0 - это черный, 255 - белый, цвета между ними - градации серого.

Состояние класса KohonenNetwork это массив Input и массив Neuron:
public class KohonenNetwork
{
private readonly Input _inputs;
private readonly Neuron _neurons;
...
}

Предположим, что наша сеть уже обучена. Тогда, чтобы узнать что изображено на картинке мы вызовем метод Handle, там все перемножится, сложится и найдется максимум:
// Пропустить вектор через нейронную сеть
public int Handle(int input)
{
for (var i = 0; i < _inputs.Length; i++)
{
var inputNeuron = _inputs[i];
foreach (var outgoingLink in inputNeuron.OutgoingLinks)
{
outgoingLink.Neuron.Power += outgoingLink.Weight * input[i];
}
}
var maxIndex = 0;
for (var i = 1; i < _neurons.Length; i++)
{
if (_neurons[i].Power > _neurons.Power)
maxIndex = i;
}
//снять импульс со всех нейронов:
foreach (var outputNeuron in _neurons)
{
outputNeuron.Power = 0;
}
return maxIndex;
}

Но перед тем как спрашивать у сети что-либо, её надо обучить. Для обучения предъявляем картинки и указываем что на них нарисовано:


Обучение - это изменение весов связей:
public void Study(int input, int correctAnswer)
{
var neuron = _neurons;
for (var i = 0; i < neuron.IncomingLinks.Length; i++)
{
var incomingLink = neuron.IncomingLinks[i];
incomingLink.Weight = incomingLink.Weight + 0.5 * (input[i] - incomingLink.Weight);
}
}

После обучения на двух шрифтах, нейронная сеть различает цифры и из других шрифтов. В том числе будет пройден контрольный тест на таких вот цифрах:
Конечно, для расспознавания капчей такая поделка не годится - все перестает работать, стоит только сдвинуть, растянуть или повернуть изображение.
Однако всем становится понятно, что использовать нейронные сети не так уж и сложно, если начинать с простых примеров.

Вопросы искусственного интеллекта и нейронных сетей в настоящее время становится популярным, как никогда ранее. Множество пользователей все чаще и чаще обращаются в с вопросами о том, как работают нейронные сети, что они из себя представляют и на чём построен принцип их деятельности?

Эти вопросы вместе с популярностью имеют и немалую сложность, так как процессы представляют собой сложные алгоритмы машинного обучения, предназначенные для различных целей, от анализа изменений до моделирования рисков, связанных с определёнными действиями.

Что такое нейронные сети и их типы?

Первый вопрос, который возникает у интересующихся, что же такое нейронная сеть? В классическом определении это определённая последовательность нейронов, которые объединены между собой синапсами. Нейронные сети являются упрощённой моделью биологических аналогов.

Программа, имеющая структуру нейронной сети, даёт возможность машине анализировать входные данные и запоминать результат, полученный из определённых исходников. В последующем подобный подход позволяет извлечь из памяти результат, соответствующий текущему набору данных, если он уже имелся в опыте циклов сети.

Многие воспринимают нейронную сеть, как аналог человеческого мозга. С одной стороны, можно считать это суждение близким к истине, но, с другой стороны, человеческий мозг слишком сложный механизм, чтобы была возможность воссоздать его с помощью машины хотя бы на долю процента. Нейронная сеть — это в первую очередь программа, основанная на принципе действия головного мозга, но никак не его аналог.

Нейронная сеть представляет собой связку нейронов, каждый из которых получает информацию, обрабатывает её и передаёт другому нейрону. Каждый нейрон обрабатывает сигнал совершенно одинаково.

Как тогда получается различный результат? Все дело в синапсах, которые соединяют нейроны друг с другом. Один нейрон может иметь огромное количество синапсов, усиливающих или ослабляющих сигнал, при этом они имеют особенность изменять свои характеристики с течением времени.

Именно правильно выбранные параметры синапсов дают возможность получить на выходе правильный результат преобразования входных данных.

Определившись в общих чертах, что собой представляет нейронная сеть, можно выделить основные типы их классификации. Прежде чем приступить к классификации необходимо ввести одно уточнение. Каждая сеть имеет первый слой нейронов, который называется входным.

Он не выполняет никаких вычислений и преобразований, его задача состоит только в одном: принять и распределить по остальным нейронам входные сигналы. Это единственный слой, который является общим для всех типов нейронных сетей, дальнейшая их структура и является критерием для основного деления.

  • Однослойная нейронная сеть. Это структура взаимодействия нейронов, при которой после попадания входных данных в первый входной слой сразу передаётся в слой выхода конечного результата. При этом первый входной слой не считается, так как он не выполняет никаких действий, кроме приёма и распределения, об этом уже было сказано выше. А второй слой производит все нужные вычисления и обработки и сразу выдаёт конечный результат. Входные нейроны объединены с основным слоем синапсами, имеющими различный весовой коэффициент, обеспечивающий качество связей.
  • Многослойная нейронная сеть. Как понятно из определения, этот вид нейронных сетей помимо входного и выходного слоёв имеет ещё и промежуточные слои. Их количество зависит от степени сложности самой сети. Она в большей степени напоминает структуру биологической нейронной сети. Такие виды сетей были разработаны совсем недавно, до этого все процессы были реализованы с помощью однослойных сетей. Соответственно подобное решение имеет намного больше возможностей, чем её предок. В процессе обработки информации каждый промежуточный слой представляет собой промежуточный этап обработки и распределения информации.

В зависимости от направления распределения информации по синапсам от одного нейрона к другому, можно также классифицировать сети на две категории.

  • Сети прямого распространения или однонаправленная, то есть структура, в которой сигнал движется строго от входного слоя к выходному. Движение сигнала в обратном направлении невозможно. Подобные разработки достаточно широко распространены и в настоящий момент с успехом решают такие задачи, как распознавание, прогнозы или кластеризация.
  • Сети с обратными связями или рекуррентная. Подобные сети позволяют сигналу двигаться не только в прямом, но и в обратном направлении. Что это даёт? В таких сетях результат выхода может возвращаться на вход исходя из этого, выход нейрона определяется весами и сигналами входа, и дополняется предыдущими выходами, которые снова вернулись на вход. Таким сетям свойственна функция кратковременной памяти, на основании которой сигналы восстанавливаются и дополняются в процессе обработки.

Это не единственные варианты классификации сетей.

Их можно разделить на однородные и гибридные опираясь на типы нейронов, составляющих сеть. А также на гетероассоциативные или автоассоциативные, в зависимости от метода обучения сети, с учителем или без. Также можно классифицировать сети по их назначению.

Где используют нейронные сети?

Нейронные сети используются для решения разнообразных задач. Если рассмотреть задачи по степени сложности, то для решения простейших задач подойдёт обычная компьютерная программа, более
усложнённые задачи, требующие простого прогнозирования или приближенного решения уравнений, используются программы с привлечением статистических методов.

А вот задачи ещё более сложного уровня требуют совсем иного подхода. В частности, это относится к распознаванию образов, речи или сложному прогнозированию. В голове человека подобные процессы происходят неосознанно, то есть, распознавая и запоминая образы, человек не осознаёт, как происходит этот процесс, а соответственно не может его контролировать.

Именно такие задачи помогают решить нейронные сети, то есть то есть они созданы чтобы выполнять процессы, алгоритмы которых неизвестны.

Таким образом, нейронные сети находят широкое применение в следующих областях:

  • распознавание, причём это направление в настоящее время самое широкое;
  • предсказание следующего шага, эта особенность применима на торгах и фондовых рынках;
  • классификация входных данных по параметрам, такую функцию выполняют кредитные роботы, которые способны принять решение в одобрении займа человеку, полагаясь на входной набор разных параметров.

Способности нейросетей делают их очень популярными. Их можно научить многому, например, играть в игры, узнавать определённый голос и так далее. Исходя из того, что искусственные сети строятся по принципу биологических сетей, их можно обучить всем процессам, которые человек выполняет неосознанно.

Что такое нейрон и синапс?

Так что же такое нейрон в разрезе искусственных нейросетей? Под этим понятием подразумевается единица, которая выполняет вычисления. Она получает информацию со входного слоя сети, выполняет с ней простые вычисления и проедает её следующему нейрону.

В составе сети имеются три типа нейронов: входной, скрытый и выходной. Причём если сеть однослойная, то скрытых нейронов она не содержит. Кроме этого, есть разновидность единиц, носящих названия нейрон смещения и контекстный нейрон.

Каждый нейрон имеет два типа данных: входные и выходные. При этом у первого слоя входные данные равны выходным. В остальных случаях на вход нейрона попадает суммарная информация предыдущих слоёв, затем она проходит процесс нормализации, то есть все значения, выпадающие из нужного диапазона, преобразуются функцией активации.

Как уже упоминалось выше, синапс — это связь между нейронами, каждая из которых имеет свою степень веса. Именно благодаря этой особенности входная информация видоизменяется в процессе передачи. В процессе обработки информация, переданная синапсом, с большим показателем веса будет преобладающей.

Получается, что на результат влияют не нейроны, а именно синапсы, дающие определённую совокупность веса входных данных, так как сами нейроны каждый раз выполняют совершенно одинаковые вычисления.

При этом веса выставляются в случайном порядке.

Схема работы нейронной сети

Чтобы представить принцип работы нейронной сети не требуется особых навыков. На входной слой нейронов поступает определённая информация. Она передаётся посредством синапсов следующему слою, при этом каждый синапс имеет свой коэффициент веса, а каждый следующий нейрон может иметь несколько входящих синапсов.

В итоге информация, полученная следующим нейроном, представляет собой сумму всех данных, перемноженных каждый на свой коэффициент веса. Полученное значение подставляется в функцию активации и получается выходная информация, которая передаётся дальше, пока не дойдёт до конечного выхода. Первый запуск сети не даёт верных результатов, так как сеть, ещё не натренированная.

Функция активации применяется для нормализации входных данных. Таких функций много, но можно выделить несколько основных, имеющих наиболее широкое распространение. Их основным отличием является диапазон значений, в котором они работают.

  • Линейная функция f(x) = x, самая простая из всех возможных, используется только для тестирования созданной нейронной сети или передачи данных в исходном виде.
  • Сигмоид считается самой распространённой функцией активации и имеет вид f(x) = 1 / 1+e-×; при этом диапазон её значений от 0 до 1. Она ещё называется логистической функцией.
  • Чтобы охватить и отрицательные значения используют гиперболический тангенс. F(x) = e²× - 1 / e²× + 1 — такой вид имеет эта функция и диапазон который она имеет от -1 до 1. Если нейронная сеть не предусматривает использование отрицательных значений, то использовать её не стоит.

Для того чтобы задать сети данные, которыми она будет оперировать необходимы тренировочные сеты.

Интеграция — это счётчик, который увеличивается с каждым тренировочным сетом.

Эпоха — это показатель натренированности нейронной сети, этот показатель увеличивается каждый раз, когда сеть проходит цикл полного набора тренировочных сетов.

Соответственно, чтобы проводить тренировку сети правильно нужно выполнять сеты, последовательно увеличивая показатель эпохи.

В процессе тренировки будут выявляться ошибки. Это процентный показатель расхождения между полученным и желаемым результатом. Этот показатель должен уменьшаться в процессе увеличения показателя эпохи, в противном случае где-то ошибка разработчика.

Что такое нейрон смещения и для чего он нужен?

В нейронных сетях есть ещё один вид нейронов — нейрон смещения. Он отличается от основного вида нейронов тем, что его вход и выход в любом случае равняется единице. При этом входных синапсов такие нейроны не имеют.

Расположение таких нейронов происходит по одному на слой и не более, также они не могут соединяться синапсами друг с другом. Размещать такие нейроны на выходном слое не целесообразно.

Для чего они нужны? Бывают ситуации, в которых нейросеть просто не сможет найти верное решение из-за того, что нужная точка будет находиться вне пределов досягаемости. Именно для этого и нужны такие нейроны, чтобы иметь возможность сместить область определения.

То есть вес синапса меняет изгиб графика функции, тогда как нейрон смещения позволяет осуществить сдвиг по оси координат Х, таким образом, чтобы нейросеть смогла захватить область недоступную ей без сдвига. При этом сдвиг может быть осуществлён как вправо, так и влево. Схематически нейроны сдвига обычно не обозначаются, их вес учитывается по умолчанию при расчёте входного значения.

Также нейроны смещения позволят получить результат в том случае, когда все остальные нейроны выдают 0 в качестве выходного параметра. В этом случае независимо от веса синапса на каждый следующий слой будет передаваться именно это значение.

Наличие нейрона смещения позволит исправить ситуацию и получить иной результат. Целесообразность использования нейронов смещения определяется путём тестирования сети с ними и без них и сравнения результатов.

Но важно помнить, что для достижения результатов мало создать нейронную сеть. Её нужно ещё и обучить, что тоже требует особых подходов и имеет свои алгоритмы. Этот процесс сложно назвать простым, так как его реализация требует определённых знаний и усилий.

Всем привет!

Буквально вчера нашел книгу Тарика Рашида «Создай свою нейросеть». Книга является бестселлером (топ 1 продаж) в разделе «Искусственный интеллект». Книга свежая, вышла в прошлом году.

Впечатления от первых разделов замечательные. Одно из лучших введений в сферу нейросетей из всех мною виденных. Книга мне так понравилась, что я решил перевести ее на русский язык и выкладывать сюда в виде статей. Часть материала из книги пойдет на улучшение уже существующих глав, часть на следующие.

Перевел уже два первых раздела 1 главы. Вы можете этих разделов.

Читайте - наслаждайтесь!

1 Глава. Как они работают.

1.1 Легко для меня, тяжело для тебя

Все компьютеры являются калькуляторами в душе. Они умеют очень быстро считать.

Не стоит их в этом упрекать. Они отлично выполняют свою работу: считают цену с учетом скидки, начисляют долговые проценты, рисуют графики по имеющимся данным и так далее.

Даже просмотр телевизора или прослушивание музыки с помощью компьютера представляют собой выполнение огромного количества арифметических операций снова и снова. Это может прозвучать удивительно, но отрисовка каждого кадра изображения из нулей и единиц, полученных через интернет задействует вычисления, которые не сильно сложнее тех задач, которые мы все решали в школе.

Однако, способность компьютера складывать тысячи и миллионы чисел в секунду вовсе не является искусственным интеллектом. Человеку сложно так быстро складывать числа, но согласитесь, что эта работа не требует серьезных интеллектуальных затрат. Надо придерживаться заранее известного алгоритма по складыванию чисел и ничего более. Именно этим и занимаются все компьютеры - придерживаются четкого алгоритма.

С компьютерами все ясно. Теперь давайте поговорим о том, в чем мы хороши по сравнению с ними.

Посмотрите на картинки ниже и определите, что на них изображено:

Вы видите лица людей на первой картинке, морду кошки на второй и дерево на третьей. Вы распознали объекты на этих картинках. Заметьте, что вам хватило лишь взгляда, чтобы безошибочно понять, что на них изображено. Мы редко ошибаемся в таких вещах.

Мы мгновенно и без особого труда воспринимаем огромное количество информации, которое содержат изображения и очень точно определяем объекты на них. А вот для любого компьютера такая задача встанет поперек горла.

У любого компьютера вне зависимости от его сложности и быстроты нет одного важного качества - интеллекта, которым обладает каждый человек.

Но мы хотим научить компьютеры решать подобные задачи, потому что они быстрые и не устают. Искусственный интеллект как раз занимается решением подобного рода задач.

Конечно компьютеры и дальше будут состоять из микросхем. Задача искусственного интеллекта - найти новые алгоритмы работы компьютера, которые позволят решать интеллектуальные задачи. Эти алгоритмы не всегда идеальны, но они решают поставленные задачи и создают впечатление, что компьютер ведет себя как человек.

Ключевые моменты

  • Есть задачи легкие для обычных компьютеров, но вызывающие трудности и людей. Например, умножение миллиона чисел друг на друга.
  • С другой стороны, существуют не менее важные задачи, которые невероятно сложны для компьютера и не вызывают проблем у людей. Например, распознавание лиц на фотографиях.

1.2 Простая предсказательная машина

Давайте начнем с чего-нибудь очень простого. Дальше мы будет отталкиваться от материала, изученного в этом разделе.

Представьте себе машину, которая получает вопрос, «обдумывает» его и затем выдает ответ. В примере выше вы получали картинку на вход, анализировали ее с помощью мозгов и делали вывод об объекте, который на ней изображен. Выглядит это как-то так:

Компьютеры на самом деле ничего не «обдумывают». Они просто применяют заранее известные арифметические операции. Поэтому давайте будем называть вещи своими именами:

Компьютер принимает какие-то данные на вход, производит необходимые вычисления и выдает готовый результат. Рассмотрим следующий пример. Если на вход компьютеру поступает выражение ​\(3 \times 4 \) ​, то оно преобразуется в более простую последовательность сложений. Как итог, получаем результат - 12.

Выглядит не слишком впечатляюще. Это нормально. С помощью этих тривиальных примеров вы увидите идею, которую реализуют нейросети.

Теперь представьте себе машину, которая преобразует километры в мили:

Теперь представьте, что мы не знаем формулу, с помощью которой километры переводятся в мили. Мы знаем только, что зависимость между двумя этими величинами линейная . Это означает, что если мы в два раза увеличим дистанцию в милях, то дистанция в километрах тоже увеличится в два раза. Это интуитивно понятно. Вселенная была бы очень странной, если бы это правило не выполнялось.

Линейная зависимость между километрами и милями дает нам подсказку, в какой форме надо преобразовывать одну величину в другую. Мы можем представить эту зависимость так:

\[ \text{мили} = \text{километры} \times C \]

В выражении выше ​\(C \) ​ выступает в роли некоторого постоянного числа - константы. Пока мы не знаем, чему равно ​\(C \) ​.

Единственное, что нам известно - несколько заранее верно отмеренных расстояний в километрах и милях.

И как же узнать значение ​\(C \) ​? А давайте просто придумаем случайное число и скажем, что ему-то и равна наша константа. Пусть ​\(C = 0.5 \) ​. Что же произойдет?

Принимая, что ​\(C = 0.5 \) ​ мы из 100 километров получаем 50 миль. Это отличный результат принимая во внимания тот факт, что ​\(C = 0.5 \) ​ мы выбрали совершенно случайно! Но мы знаем, что наш ответ не совсем верен, потому что согласно таблице верных замеров мы должны были получить 62.137 мили.

Мы промахнулись на 12.137 миль. Это наша погрешность - разница между полученным ответом и заранее известным правильным результатом, который в данном случае мы имеем в таблице.

\[ \begin{gather*} \text{погрешность} = \text{правильное значение} — \text{полученный ответ} \\ = 62.137 — 50 \\ = 12.137 \end{gather*} \]

Вновь смотрим на погрешность. Полученное расстояние короче на 12.137. Так как формула по переводу километров в мили линейная (​\(\text{мили} = \text{километры} \times C \) ​), то увеличение значения ​\(C \) ​ увеличит и выходной результат в милях.

Давайте теперь примем, что ​\(C = 0.6 \) ​ и посмотрим, что произойдет.

Так как ​\(C=0.6 \) ​, то для 100 километров имеем ​\(100 \times 0.6 = 60 \) ​ миль. Это гораздо лучше предыдущей попытки (в тот раз было 50 миль)! Теперь наша погрешность очень мала - всего 2.137 мили. Вполне себе точный результат.

Теперь обратите внимание на то, как мы использовали полученную погрешность для корректировки значения константы ​\(C \) ​. Нам нужно было увеличить выходное число миль и мы немного увеличили значение ​\(C \) ​. Заметьте, что мы не используем алгебру для получения точного значения ​\(C \) ​, а ведь мы могли бы. Почему? Потому что на свете полно задач, которые не имеют простой математической связи между полученным входом и выдаваемым результатом.

Именно для задач, которые практически не решаются простым подсчетом нам и нужны такие изощренные штуки, как нейронные сети.

Боже мой! Мы хватанули слишком много и превысили правильный результат. Наша предыдущая погрешность равнялась 2.137, а теперь она равна -7.863. Минус означает, что наш результат оказался больше правильного ответа, так как погрешность вычисляется как правильный ответ — (минус) полученный ответ.

Получается, что при ​\(C=0.6 \) ​ мы имеем гораздо более точный выход. На этом можно было бы и закончить. Но давайте все же увеличим ​\(C \) ​, но не сильно! Пусть ​\(C=0.61 \) ​.

Так-то лучше! Наша машина выдает 61 милю, что всего на 1.137 милю меньше, чем правильный ответ (62.137).

Из этой ситуации с превышением правильного ответа надо вынести важный урок. По мере приближения к правильному ответу параметры машины стоит менять все слабее и слабее. Это поможет избежать неприятных ситуаций, которые приводят к превышению правильного ответа.

Величина нашей корректировки ​\(C \) ​ зависит от погрешности. Чем больше наша погрешность, тем более сильно мы меняем значение ​\(C \) ​. Но когда погрешность становиться маленькой, необходимо менять ​\(C \) ​ по чуть-чуть. Логично, не так ли?

Верьте или нет, но только что вы поняли самую суть работы нейронных сетей. Мы тренируем «машины» постепенно выдавать все более и более точный результат.

Важно понимать и то, как мы решали эту задачу. Мы не решали ее в один заход, хотя в данном случае так можно было бы поступить. Вместо этого, мы приходили к правильному ответу по шагам так, что с каждым шагом наши результаты становились лучше.

Не правда ли объяснения очень простые и понятные? Лично я не встречал более лаконичного способа объяснить, что такое нейросети.

Если вам что-то непонятно, задавайте вопросы на форуме.

Мне важно ваше мнение - оставляйте комментарии 🙂

Лучшие статьи по теме