Как настроить смартфоны и ПК. Информационный портал
  • Главная
  • Безопасность
  • Собираем солнечный генератор для чрезвычайных ситуаций. Солнечная генерация обгоняет ветер

Собираем солнечный генератор для чрезвычайных ситуаций. Солнечная генерация обгоняет ветер

Начиная с нефтяного кризиса 1970-х годов, общество начало задумаваться о поиске альтернативы традиционной углеводородной энергетике. Потенциал солнечной энергии, как самый большой и доступный для человечества, всегда приковывал внимание научного сообщества. Использование возобновляемой энергии легло в основу концепции целых социальных и политических движений. В последние десять-пятнадцать лет солнечная энергетика быстро развивалась и получила некоторое распространение в секторе электрогенерации. В целом, можно говорить об экспонециальном тренде роста электрогенерации фотовольтаики в последние двадцать лет :


Казалось бы, сейчас уже достаточно эмпирических данных, а значит можно оценить возможности отрасли отнюдь не теоретически. Но несмотря на это, мнения остаются крайне полярны. Одна сторона отмечает, что себестоимость электроэнергии солнечных электростанций дороже традиционных, отсутствуют рентабельные технологии хранения электроэнергии, необходимые по причине суточных колебаний генерации и многое другое. Другая же сторона рапортует об экспоненциальном росте электрогенерации СЭС, снижении себестоимости ниже уровня традиционной тепловой электроэнергетики. Кто же прав? Как мы часто отмечаем, истина посередине. На наш взгляд, причина разногласий в оценках достаточно проста и разрешает спор противоречащих сторон: актуальность солнечной энергетики очень сильно варьируется по множеству параметров и в зависимости от ситуации оказывается прав то лагерь сторонников, то наоборот. Здесь и далее под солнечной энергетикой подразумевается фотоэвольтаика, применение гелиотермальных технологий пока дороже и такие электростанции менее распространены.

Концептуальный уровень - нишевый подход

По каким причинам возник сыр-бор разногласий?
Инсоляция. Если сравнивать Калифорнию и северные области России, то можно говорить о четырёхкратной разнице с пропорциональным влиянием на себестоимость.
Последние 35 лет цены на фотоэлементы сокращались и даже появилась эмпирическая закономерность: каждые 5 лет цена падает в два раза. Таким образом, оценки себестоимости солнечной генерации постоянно устаревают и этот фактор должен учитываться в обсуждении.
Сложность электрораспределительных сетей, необходимость в технологиях хранения генерируемой электроэнергии, маневровых мощностях, росте пропускной способности магистральных электросетей увеличивается с ростом доли солнечной энергетики в электробалансе.
Себестоимость традиционной электроэнергетики сильно варьируется в зависимости от выбора исследуемого государства и временного периода.
Можно ещё долго продолжать, но очевидно, что если рассмотреть вариант с высокой инсоляцией, с предпологаемыми низкими ценами ближайшего будущего, небольшой долей в электробалансе и дорогой местной традиционной электроэнергетикой, то солнечная энергетика значительно превзойдёт традиционную по рентабельности и не потребует особых инвестиций в инфраструктуру. Для обратной же ситуации солнечная энергетика будет выглядеть неприемлемо.

Таким образом, нельзя “рубить с плеча” и бросаться тезисами о солнечной энергетике без оглядки на территориальные, климатические и другие условия конкретного случая. На наш взгляд, следует применять “нишевый” подход, чтобы понять приемлемость солнечной электрогенерации.

Количественные оценки - себестоимость электроэнергии

Оценки себестоимости электрогенерации фотовольтаики зависят от выбранной методологии, стоимости капитала и других параметров, поэтому для получения общей картины стоит опираться на множество независимых оценок:

Верхние границы традиционной энергетики, не говоря уже о генерации из нефтепродуктов, пересекаются с нижними границами оценок себестоимости электроэнергии фотовольтаики. Совместно с другими нюансами это и создаёт ниши привлекательности солнечной энергетики. По нашим оценкам, на сегодня их размер составляет примерно 3-5% мировой электрогенерации. Вне этих узких ниш солнечная энергетика, в целом и на сегодня, экономически не целесообразна.

Размер ниш незначителен относительно всей мировой электрогенерации, но он всё ещё превышает установленые мощности в три раза, что предоставляет солнечной энергетике возможности для дальнейшего многолетнего роста. Учитывая факторы роста потребления электроэнергии в развивающихся странах, снижения стоимости солнечной электрогенерации и увеличения стоимости традиционой генерации, логично предположить, что “ниши” будут со временем увеличиваться. Рассмотрим примеры.

Архипелаг солнечной энергетики

Если смотреть на общем уровне, то на сегодня и в целом применение солнечной энергетики достаточно малообосновано. Но среди океана традиционной энергетики есть место и отдельным островам фотовольтаики. Перечислим причины, по которым появились ниши для солнечной энергетики:

Замещение нефтепродуктов . Во-первых, уже упомянутая себестоимость. Например, Япония, которая занимает третье место в мировой электрогенерации, 10% электроэнергии производит из нефтепродуктов и это не следствие фукусимской трагедии - так было и ранее. По данным Всемирного Банка, в 43 странах доля нефтеподуктов (мазут, дизельное топливо) в электрогенерации выше 10% . Обычно, такая электрогенерация применяется временно, для прохождения дневных пиков потребления электроэнергии, так как ночью электропотребление существенно ниже. Эту дорогую во всех смыслах пиковую дневную генерацию, $100/МВт*ч и выше в случае нефтепродуктов, удобно и дешево заменить солнечной ($100 и ниже), чем Япония и начала заниматься. Аналогичная ситуация может наблюдаться и в случае дорогого импорта природного газа.

Дефицит собственных энергоресурсов . Другим наглядным примером является Индия. В стране имеется катастрофический дефицит как электроэнергии, так и собственной добычи энергоресурсов, о чём красноречиво говорили предвыборные обещания премьер-министра: “Электричество в каждый дом!”. Столь острая нехватка мотивирует решать вопрос любыми путями, да и помимо базовой генерации, нужна и пиковая. Но в стране недостаточные ресурсы угля и не проложено ни одного газопровода - США много лет грозят Пакистану санкциями за согласие войти в проект транспортировки газа из Ирана в Индию через свою территорию, хотя недавно дело сдвинулось с мёртвой точки.

Итогом хронического энергодефицита, политических игр внешних игроков, импортозависимости и т.п. стало решение нарастить долю солнечной электрогенерации, благо высокая инсоляция и дешевая рабочая сила позволят сделать это относительно дёшево, пусть и дороже угольной энергетики. В условиях бешенной динамики экономики (рост 7,5% за 2014г) и вышеперечисленных причин это лучше чем текущее полное отсутствие доступа к электроэнергии у 250 млн. граждан Индии. Министерство Новой и Возобновляемой Энергетики запустило программу проектов с символичным названием “ультра мега солнечные электростанции”, в рамках которой выделены территории под парки солнечных электростанций, подведена инфраструктура и т.п. Ближайшая цель - 100 ГВт к 2022 году .

Экологические факторы . Себестоимость тепловой генерации в большинстве стран ниже солнечной, особенно в Китае. Но, например, здоровье за деньги не купишь. Загрязнение воздуха ежегодно уносит жизни порядка 0,5-1 млн жителей Китая и негативно влияет на социальную и политическую обстановку. Вдобавок, две трети мировых производственных мощностей фотоэлементов находятся именно в поднебесной . Так появилась очередная ниша для солнечной энергетики и Национальный Центр Возобновляемой Энергетики Китая ставит целью 100 ГВт установленной мощности к 2020г и 400 ГВт к 2030 . Учитывая, что за первый квартал 2015 года установленная мощность фотовольтаики в Китае увеличилась на 5 ГВт и достигла 33 ГВт , цели выглядят вполне адекватно.

Есть и комплексные случаи, например Австралия. Пока генерирующие компании и политические силы спорят кто виноват в высоких розничных ценах на электроэнергию, а именно $250-350/МВт*ч, 14% домохозяйств уже используют фотоэлементы . И так далее.

Таким образом, при использовании нишевого подхода становится очевидно, что в случае конкретных узких ниш правда на стороне приверженцев солнечной энергетики, а в остальных случаях справедливы уже тезисы противников. Но, по-прежнему, упрощения велики и нюансы корректного подхода будут рассмотриваться и ниже.

Перспективы. Себестоимость как функция от времени.

Вопрос развития энергетики не должен ориентироваться на тактические факторы и текущую себестоимость. Срок службы АЭС приближается к столетию, капитальные расходы на разработку отдельных месторождений углеводородов вышли на порядок сотен миллиардов долларов с соответствующим масштабом сроков окупаемости, себестоимость электроэнергии фотоэлементов снижается ежегодно на 15% и так далее. То есть, подход обязан быть стратегичным и с горизонтом планирования в несколько десятилетий, а в случае Франции и России, где особая роль отводится атомной энергетике, горизонт планирования выходит на исторический масштаб - век. А значит контрпродуктивно ориентироваться на текущую себестоимость электрогенерации.

Прогноз, как известно, дело неблагодарное. Тем не менее, это лучше чем ничего. Технологический прогресс позволял экспоненциально удешевлять производство фотоэлементов (в 200 раз за последние 35 лет), инверторов и т.п., а развитие рынка толкает вниз и цены установки и обслуживания. Маловероятно, что прогресс остановится, а рабочие станут менее квалифицированными, поэтому ожидается и дальнейшее снижения цен на фотоэлементы и сопутствующие услуги, в то время как цены на энергоресурсы “при прочих равных” будут расти. Общая суть всех прогнозов одинакова - экспоненциальное снижение себестоимости, которое отмечалось последние 35 лет, продолжится и видимых причин для остановки прогресса пока нет:

В рамках “нишевого подхода” логично опираться на нижнюю границу себестоимости, так как своё развитие солнечная энергетика начинает с наиболее рентабельных ситуаций и будет долго и медленно заполнять их. Заполнение даже 5% мировой электрогенерации займёт около 10 лет.

В соответствии с прогнозами Международного Энергетического Агентства, членом которого является и Россия, и немецкого Института Солнечной Энергетики им. Фраунгофера, солнечная энергия дешевеет, но не становится “дармовой”. Дешёвая традиционная энергетика таких стран как Россия, США, Китай, Норвегия и т.п., предположительно, будет дешевле солнечной в течение многих лет.

Сетевой контекст

Проблема интеграции солнечной энергетики большого масштаба в единую энергосеть сегодня не решена и, более того, решения нет даже на горизонте. “Солнце” это удобный вариант справиться с дневными пиками потребления, но в ряде случаев существует проблема вечернего пика не говоря уже о зиме. Даже неожиданный летний утренний туман, скрывший солнце от нескольких гигаватт фотовольтаики Германии, может озадачить инженеров электросетей - примеры имеются . На данный момент, например Европа, решает свои “сетевые” дисбалансы с помощью импорта и экспорта электроэнергии, но на наш взгляд возможности этого инструмента ограничены. На концептуальном уровне есть ряд подходов:

Резервирование . Удобный пример это Германия. Из-за описанных выше проблем приходится держать “в боевой готовности” 10 ГВт генерации на газовом топливе, то есть резервировать солнечную генерацию, хотя применение солнечной генерации позволило летом почти полностью отказаться от этой дорогой генерации на дневных пиках. Основная часть себестоимости электроэнергии газовой ТЭС это топливо, и общество, в какой-то степени выиграло, сэкономив на импорте природного газа, несмотря на простаивание ТЭС в летнее время.

Обратная ситуация наблюдается в случае маневровых угольных ТЭС, где основная доля себестоимости это капитальные расходы. В этом случае всё наоборот: топливо занимает небольшую долю себестоимости и при снижении коэффициента использования установленной мощности (КИУМ) электроэнергия в целом обойдётся для общества дороже, так как придётся платить и за солнечную генерацию и за простаивающие мощности угольных ТЭС, которые намного дороже газовых .

Аккумуляция . К вопросу сетевых проблем возможно подойти и через аккумуляцию электроэнергии. В странах, где летняя инсоляция значительно превышает зимнюю (напр. Германия), проблемы интеграции начинаются когда фотовольтаика формирует 7% среднегодовой электрогенерации. В этом случае летом среднесуточная доля поднимается к 10%, а в дневные часы - до 30% , что представляет серьёзную проблему для энергосистемы. Аккумуляция - напрашивающийся выход для дальнейшего развития ситуации, несмотря на то, что на данный момент в ней пока нет необходимости . Более того, сомнения о масштабном развитии солнечной энергетики редуцируемы к вопросу дешёвой аккумуляции, так как проблема высокой себестоимости электрогенерации фотоэлементов с высокой вероятностью рано или поздно перестанет существовать и останется только проблема интеграции в сеть.

На 2014 год мировая установленная мощность аккумулирующих систем составляет 145 ГВт, 99% представлены гидроаккумулирующими электростанциями (ГАЭС) . Аккумулирующие системы на сжатом воздухе (АССВ) применяются не одно десятилетие, но пока не получили распространения - текущее исполнение обоих систем критично к географическим и геологическим условиям.


Текущий нижний порог составляет $80/МВт*ч и есть основания полагать, что АССВ и другие технологии способны его понизить, но скорее это реальность как минимум следующего десятилетия. Дополнительные $80/МВт*ч аккумулирующих мощностей неподъёмны для солнечной энергетики, но в какой-то степени это вопрос методологии. Аккумуляторные батареи свинцово-кислотного и других типов на данный момент и в среднесрочной перспективе не целесообразны в роли аккумулирующих систем для промышленной фотовольтаики.

EROEI фотовольтаики - энергетическая рентабельность

Вкратце про энергетическую рентабельность, с примерами и рассчётами, рассказывалось в предыдущей статье, поэтому опустим повторение основ. EROEI фотовольтаики не является “тайной за семью печатями” и существует множество исследований на этот счёт. Если суммировать 38 исследований , то можно получить следующий диапазон EROEI для разных технологий:

На наш взгляд, это хорошие результаты. Соответственно, энергетически, солнечные фотоэлементы окупаются за 0,5-4 года.

Территориальные аспекты

Территориальный вопрос для фотовольтаики это ещё один отличный пример “серединной истины” - cтраны сильно различаются по потреблению электроэнергии на единицу своей площади. Ребята из Массачусетсткого Технологического Института оценивают необходимую площадь фотовольтаики для удовлетворения потребности США в электроэнергии как квадрат 170х170 км . Эту же цифру можно получить и эмпирическим путём: например, современная солнечная электростанция Solar Star имеет мощность 579 МВт и площадь 13 кв.км, система слежения за солнцем позволяет поднять коэффициент использования установленной мощности (КИУМ) до 30%, а всё потребление электроэнергии в США составляет 4,1*10^15 Вт*ч - ряд несложных вычислений приведёт любознательного читателя к тому же числу. Для примера, ниже карта США, на которую мы нанесли необходимую площадь солнечных электростанций (с учётом поправки на КИУМ) для удовлетворения всего электропотребления США:


По материалам GoogleMaps

Как видно, несложно отделаться небольшой частью пустынь Аризоны и Невады. Интересно добавить, что суммарная площадь всех крыш в США это квадрат 140х140 км . А вот Япония имеет всего лишь в четыре раза меньшее энергопотребление по сравнению с США и в 25 раз меньшую площадь, поэтому для Японии территориальный нюанс фотовольтаики намного острее и лишних 90х90 км там нет.

Уроки истории: эволюция оценок потенциала фотовольтаики

Парадокс Гегеля гласит, что “история учит человека тому, что человек ничему не учится из истории”. Несмотря на молодость солнечной энергетики, к сегодняшнему дню уже имеется опыт, который “сын ошибок трудных”, и стоит обратить внимание на предыдущие ошибки, чтобы не множить собственные. Суммируя прогнозы по солнечной энергетике многолетней давности двух ведущих энергетических агентств:


Вывод очевиден - фотовольтаика систематически недооценивалась, причём очень сильно: в 2006 году МЭА прогнозировало 87 ГВт на 2030, но этот уровень был превзойдён уже через шесть лет. Базовый прогноз 2009 года (208 ГВт) будет превзойдён в 2015-2016. Аналогичны были и прогнозы АЭИ (EIA), подразделения Минэнерго США. Суть прогнозов была одинакова - замедление текущего экспоненциального развития, но развитие фотовольтаики систематически опровергало эти предпосылки.
Таким образом, смотреть на развитие фотовольтаики в пессимистичных красках будет, скорее, ошибкой, чему и учит ретроспектива. Следует упомянуть и эффект низкой базы: несмотря на то, что солнечная генерация увеличивалась на 50% ежегодно, в абсолютных числах это составляет около 30 ТВт*ч для последних лет. В то время как мировое потребление электроэнергии увеличивается, в среднем, на 650 ТВт*ч ежегодно . То есть вклад фотовольтаики пока ничтожно мал - 1% мировой электрогенерации и 0,2% мирового производства первичной энергии (этот параметр включает в себя вообще все источники энергии: углеводороды и т.п.).

Выводы

Истина посередине, между двумя обозначенными в начале материала позициями.
  • Электрогенерация фотовольтаики растёт с высокой скоростью и тенденция продолжится
  • Существенный вклад в мировую электрогенерацию из-за низкой текущей базы произойдёт в лучшем случае в 2030-х
Таким образом, несмотря на существенный прогресс как фотовольтаики, так и возобновляемых источников энергии в целом, придётся ещё достаточно долго использовать ископаемые топлива, а трудности перехода на новый энергоуклад - впереди. Развитие в целом и увеличение энергопотребления в частности это неизменные атрибуты человечества на протяжении сотен лет и общество, несомненно, продолжит совершенствоваться. По данным Всемирного Банка, миллиард человек находится без доступа к электроэнергии и задача обеспечить человечество электроэнергией является вызовом для солнечной энергетики. Учитывая, что мировое потребление электроэнергии растёт со скоростью 3% в год, а к 2040 году вырастет вдвое, размер ниш будет увеличиваться как в относительных, так и в абсолютных цифрах.
Интересно взглянуть на результаты и в цивилизационном аспекте :

В рамках предложенного подхода можно утверждать, что искусственно созданная ниша в Европе, в целом, заполнилась и дальнейшее развитие туманно и будет определяться экономической конъюктурой. Поэтому европейская ассоциация фотовольтаики прогнозирует развитие фотовольтаики в широком диапазоне: 120-240 ГВт к 2020 году . Вектор и производства и применения фотоэлементов за последние два года перенаправлен в Азию, где в течение двух лет установленная мощность фотоэлементов превысит соответствующую для стран Европы.

Все комментарии о перспективах солнечной энергетики делятся на 2 категории: «Вот молодцы, а мы только нефть жгем» и "EROEI ! Производство солнечных батарей требует больше энергии чем они производят!".

Въедливый читатель наверняка подумает: Как это производит меньше, чем требуется на производство? Их же поставил - они работают, каши не просят, 10 лет, 50 лет, 100 лет - значит суммарная произведенная энергия равна бесконечности, и они должны быть выгодны при любой стоимости постройки…

Как обстоит все на самом деле, какие есть подходы к солнечной генерации, что ограничивает КПД солнечных элементов, какие гениальные идеи уже были реализованы и почему солнечная энергетика как-то не активно захватывает мир - см. ниже.

Сколько энергии мы получаем от солнца?

На каждый квадратный метр от солнца приходит 1367 Ватт энергии (солнечная постоянная). До земли через атмосферу - доходит порядка 1020 Ватт (на экваторе). Если у нас КПД солнечного элемента 16% - то с квадратного метра мы можем получать в лучшем случае 163,2 Ватта электричества. Но ведь у нас есть погода, солнце не в зените, иногда бывает ночь (разной длительности) - как это все посчитать?

Годовая инсоляция все это учитывает, включая и тип установки солнечной батареи (параллельно земле, под оптимальным углом, со слежением за солнцем) и дает нам понять, сколько электричества можно будет выработать за год в среднем (в кВт*ч/м 2 , без учета КПД солнечной батареи):

Т.е. мы видим, что если мы возьмем 1 км2 солнечных батарей, установим под оптимальным углом в Москве (40.0°), то за год сможем выработать 1173*0.16 = 187.6 ГВт*ч. При цене 3 рубля за кВт/ч _условная_ стоимость сгенерированной энергии будет - 561 млн рублей. Почему условная - выясним ниже.

Основные подходы к получению энергии от солнца

Солнечные тепло-электространции

Огромное поле поворачиваемых зеркал отражает солнце на солнечный коллектор, где тепло превращается в электроэнергию двигателем Стирлинга, или нагревом воды и далее - обычные паровые турбины как на ТЭЦ. КПД - 20-30%.


Также существует вариант с линейным параболическим зеркалом (поворачивать нужно только вокруг одной оси):


Какова цена вопроса? Если посмотреть на электростанцию Ivanpah (392 МВт) в которую опосредованно вложился Google - стоимость её строительства составила 2.2 млрд $, или 5612$ на кВт установленной мощности. В Википедии даже радостно написано, что это хоть и дороже угольных электростанций, но якобы дешевле атомных.

Однако тут есть пара нюансов - 1кВт установленной мощности на АЭС стоит на самом деле 2000-4000$ (в зависимости от того кто строит), т.е. Ivanpah на самом деле уже получается дороже АЭС. Затем, если посмотреть на годовую оценку выработки электроэнергии - 1079 ГВт*ч, и разделить на количество часов в году, то среднегодовая мощность получается 123.1МВт (ведь станция у нас генерирует только днем).

Это доводит «усредненную» стоимость строительства до 17871 $/кВт, что не просто дорого, а фантастически дорого. Дороже наверное только в космосе электричество вырабатывать. Обычные электростанции на газе обходятся в 500-1000$/кВт, т.е. в 18-36 раз дешевле , и работают всегда, а не как повезет.

И последнее - в стоимость строительства не включены аккумуляторы, вообще. Если сюда добавить аккумуляторы (о них ниже) или строительство гидроаккумулирующей электростанции - стоимость вылезет через крышу.

У солнечных теплоэлектростанций есть возможность генерировать электричество круглосуточно, используя большой объем нагретого за день теплоносителя. Такие станции тоже есть, но стоимость их стараются не писать, видимо чтобы никого не пугать.

Полупроводниковые фотоэлементы (фотовольтаика, PV) - идея очень простая, берем полупроводниковый диод большой площади. Когда квант света влетает в pn-переход - генерируются пара электрон-дырка, которые создают перепад напряжения на выводах этого диода (около 0.5В для кремниевого фотоэлемента).


КПД у кремниевых солнечных батарей - около 16%. Почему так мало?

На формирование электронно-дырочной пары требуется определенная энергия, не больше и не меньше. Если квант света прилетает с энергией меньшей, чем нужно - то он не может вызвать генерацию пары, и проходит через кремний как через стекло (потому кремний прозрачен для инфракрасного света дальше 1.2мкм). Если квант света прилетает с энергией большей чем нужно (зеленый свет и короче) - пара генерируется, но лишняя энергия теряется. Если энергия еще выше (синий и ультрафиолетовый свет) - квант может просто не успеть долететь до глубины залегания p-n перехода.

Помимо этого, свет может отразиться от поверхности - чтобы избежать этого на поверхность наносят анти-отражающее покрытие (как на линзах в фотообъективах), и могут поверхность сделать в виде гребенки (тогда после первого отражения у света будет еще один шанс).

Увеличить КПД выше 16% у фотоэлементов можно комбинируя несколько разных фотоэлементов (на основе других полупроводников, и соответственно с другой энергией требуемой для генерации пары электрон-дырка) - сначала ставим тот, что эффективно поглощает синий свет, а зеленый, красный и ИК - пропускает, затем зеленый, и на конец красный и ИК. Именно на таких 3-х ступенчатых элементах и достигаются рекордные показатели эффективности в 44% и выше.

К сожалению, 3-х ступенчатые фотоэлементы оказываются очень дорогими, и сейчас балом правят обычные дешевые одноступенчатые кремниевые фотоэлементы - именно за счет очень низкой цены они вырываются вперед по показателю Ватт/$, Стоимость одного ватта для кремниевых фотоэлементов с вводом гигантских производств в Китае опустилась до ~0.5$/Ватт (т.е. за 500$ можно купить солнечных элементов на 1000 Ватт).

Основные типы кремниевых элементов - монокристаллические (более дорогие, чуть выше КПД) и поликристаллические (дешевле в производстве, буквально на 1% меньше КПД). Именно поликристаллические солнечные батареи сейчас дают самую низкую стоимость 1 Ватта генерируемой мощности.

Из проблем - солнечные батареи не вечные. Даже если не брать в расчет пыль и грязь (надеемся на дождь и ветер), за счет фотодеградации за 20 лет эксплуатации лучшие кремниевые элементы теряют ~15% мощности. Возможно дальше деградация замедляется, но это все равно нужно учитывать.

Пройдемся теперь по основным попыткам увеличить экономическую эффективность:

А давайте возьмем маленький высокоэффективный фотоэлемент и параболическое зеркало
Это называется concentrated photovoltaics. Идея в принципе неплоха - зеркало дешевле, чем солнечная батарея, да и КПД можно иметь 40% а не 16… Проблема только с тем, что теперь нужна (ненадежная) механика для слежения за солнцем, и наша огромная поворотная тарелка должна быть достаточно прочной, чтобы противостоять порывам ветра. Другая проблема - когда солнце заходит за не слишком плотные тучи - выработка энергии падает до нуля, т.к. параболическое зеркало не может рассеянный свет фокусировать (у обычных солнечных батарей выработка конечно падает, но не до 0).

С падением цен на кремниевые солнечные батареи этот подход оказался слишком дорогим (как по установочной стоимости, так и обслуживанию)

А давайте сделаем солнечные элементы круглыми, разместим на крыше, а крышу покрасим в белый цвет
Этим занималась печально известная нынче компания Solyndra, с подачи Барака Обамы получившая гос.гарантию по кредиту в 535 миллионов долларов от американского министерства энергетики… и внезапно объявившая банкротство. Круглые солнечные батареи делали, напыляя слой полупроводника (в их случае Copper indium gallium (di)selenide) на стеклянные трубы. Эффективность солнечных батарей получалась 8.5% (да, получилось хуже простых и дешевых кремниевых).

Яркий пример того, как американский капитализм при должном лоббировании способен по инерции вкачать огромные ресурсы в принципиально не эффективные технологии. По результатам работы никого не посадили.

Дорога ложка к обеду

Теперь после этого буйства непрерывного усовершенствования технологий открываем грустную страницу истории. Солнечные электростанции генерируют электричество днем, а оно больше всего нужно вечером:


Это значит, что если аккумуляторов у нас нет, электростанции на вечерний пик потребления все равно строить придется, а днем - часть должны быть выключены, а часть - находиться в горячем резерве, чтобы если тучки соберутся над солнечной электростанцией - мгновенно заместить выпавшую солнечную генерацию.

Получается, если мы обязываем покупать электричество у солнечных электростанций по обычной цене тогда, когда оно у них генерируется - мы фактически перераспределяем прибыль от существующих классических генерирующих мощностей, которые вынуждены днем простаивать в резерве в пользу солнечных.

Есть и такой интересный вариант - если где-то вечерний пик потребления - где-то на земле разгар дня. Может строить солнечную электростанцию именно там, а электричество передавать по ЛЭП? Это возможно, но требует передачи энергии на расстояния порядка 5-8 тыс км, что также требует огромных капитальных затрат (по крайней мере пока мы не перешли на сверхпроводники) и согласований с кучей стран. Примерно в этом направлении развивался проект Desertec - генерация в Африке, передача в Европу.

Аккумуляторы

Итак, 1 Вт солнечная батарея стоит 0.5$. За день она сгенерирует допустим 8Вт*ч электричества (за 8 солнечных часов). Как нам эту энергию сохранить до вечера, когда она будет больше всего нужна?

Китайские литиевые аккумуляторы стоят примерно 0.4$ за Вт*ч, соответственно, на 1Вт солнечной батареи (ценой в 0.5$) нам понадобится аккумуляторов на 3.2$, т.е. аккумулятор получается в 6 раз дороже солнечной батареи! Помимо этого нужно учитывать, что через 1000-2000 циклов заряд-разряд аккумулятор придется заменить, а это всего 3-6 лет службы. Может есть аккумуляторы дешевле?

Самые дешевые - свинцово-кислотные (которые естественно далеко не «зеленые»), их оптовая цена - 0.08$ за Вт*ч, соответственно, на сохранение дневной выработки нам нужно аккумуляторов на 0.64$, что снова больше стоимости самих солнечных батарей. Свинцовые аккумуляторы также быстро умирают, 3-6 лет службы в таком режиме. Ну и на десерт - КПД свинцовых аккумуляторов - 75% (т.е. четверть энергии теряется в цикле заряд-разряд).

Существует также вариант с гидроаккумулирующими электростанциями (днем - закачиваем воду «вверх» насосом, ночью - работаем как обычная гидроэлектростанция) - но их строительство также обходится дорого, и не везде возможно (КПД - до 90%).

Из-за того, что аккумуляторы получаются дороже самой солнечной электростанции, в крупных электростанциях их и не предусматривают, продавая электричество в распределительную сеть сразу по мере генерации, рассчитывая ночью и вечером на обычные электростанции.

Какова же справедливая цена нерегулируемой солнечной генерации?

Возьмем например Германию, как лидера по развитию солнечной энергетики. Каждый кВт сгенерированный солнечными электростанциями там выкупают по 12.08-17.45 евроцентов за кВт*ч, не взирая на то, что генерируют они в дневной минимум потребления. Все чего они добиваются этим - экономия Российского газа, т.к. газовые электростанции все равно должны быть построены и быть в горячем резерве (и все их остальные расходы остаются неизменными - зарплаты, кредиты, обслуживание).

С экономической точки зрения, было бы справедливо, если бы солнечные электростанции получали ровно столько, сколько они позволяют сэкономить на топливе газовым электростанциям.

Допустим стоимость российского газа - 450 $ за 1 тыс. м3. Из этого объема можно выработать 39000 ГДж ≈10.8*0,4 GWh ≈ 4.32 GWh электричества (при КПД генерации 40%), соответственно, на 1 кВт*ч солнечного электричества мы экономим российского газа на 0.104$ = 7.87 евроцента. Именно такая должна быть справедливая стоимость нерегулируемой солнечной генерации, и похоже Германия постепенно идет к этой цифре, но на данный момент солнечная энергетика в Германии получается на 50% дотируемой.

Резюме

Поликристаллические солнечные батареи дают самое дешевое солнечное электричество, порядка 0.5$/Ватт, остальные способы намного дороже.

Проблема солнечной энергетики не в КПД солнечных элементов, не в EROEI (он действительно в теории бесконечен), и не в их цене - а в том, что сгенерированную энергию очень дорого хранить до вечера. Т.е. основная проблема - аккумуляторы, которые сейчас уже дороже, чем солнечные батареи и при этом имеют короткий срок службы (3-6 лет).

На данный момент крупномасштабную солнечную генерацию без аккумуляторов можно рассматривать только как способ сэкономить днем небольшую часть ископаемого топлива, она принципиально не может уменьшить количество необходимых классических электростанций (газовых, угольных, АЭС, гидро) - они все равно должны стоять в резерве днем, и полностью брать на себя нагрузку в вечерний пик потребления.

Если в будущем с помощью (жестоких) тарифов удасться сместить пик потребления на день - строительство солнечных электростанций обретет бОльший смысл (например, если тарифы будут такие, что будет выгодно включать электролизное производство алюминия и водорода только днем).

Стоимость «нерегулируемой» солнечной генерации нельзя сопоставлять со стоимостью генерации на классических электростанциях - т.к. они генерируют когда получится, а не когда нужно. Справедливая стоимость нерегулируемой солнечной электроэнергии должна быть равна стоимости сэкономленного ископаемого топлива, и не более - для газа по 450$ справедливая цена солнечной генерации не выше 0.1$ за 1кВт*ч (соответственно, в Германии солнечная генерация дотируется на ~50%).

«Честная» солнечная энергетика (с аккумуляторами) сегодня может быть экономически оправданна лишь в удаленных районах, где нет возможности подключиться к сети (как например в случае отдаленной, одиноко стоящей базовой станции сотовой связи).

Самая большая проблема солнечной энергетики - ископаемое топливо пока слишком дешевое, чтобы солнечная генерация была экономически оправданной.

  • Устройство и принцип работы
  • Где применяются?
  • Преимущества устройства

В настоящее время актуальной становится обеспеченность энергоресурсами отдаленных и труднодоступных районов. Причин этому несколько. Во-первых, электричество - незаменимый элемент комфортного существования современного человека. Во-вторых, снижение затрат за пользование электричеством и постоянная бесперебойная его подача имеют большое значение в наше время. Солнечный генератор - это прибор, с помощью которого можно решить вопросы энергообеспеченности и экономии энергоресурсов.

Устройство и принцип работы

Солнечный генератор представляет собой металлический корпус-моноблок со съемной крышкой. Он состоит из нескольких несложных элементов:

  1. Фотопанели, которые создают постоянный ток.
  2. Аккумулятор для накопления энергии.
  3. Инвертор, преобразующий постоянный ток в переменный.
  4. Контроллер заряда, накапливающий энергию в аккумуляторе.

Принцип работы: солнечная панель собирает энергию от солнца и сохраняет её в аккумуляторе для использования в дальнейшем. При этом вырабатывается постоянный ток. Также батареи обеспечивают питание максимальной нагрузки, то есть ток нагрузки обеспечивает сумма токов от солнечной батареи и аккумулятора.

Если нужно получить 220В переменного тока, то следует использовать преобразователи постоянного тока в переменный. Энергия солнца в генераторе может применяться также напрямую разными нагрузками постоянного тока.

Солнечный генератор электроэнергии имеет предохранительные модули, защищающие от превышения допустимых значений тока и напряжения. Что важно - если в какое-то время нет солнечных лучей, то генератор можно подзарядить от обыкновенной электросети.

Где применяются?

Солнечные генераторы бывают разных моделей и имеют различные характеристики (а именно производительность, ёмкость аккумулятора, время, необходимое для зарядки и т.д.). Но чаще всего у них у всех выходные параметры - розетки на 220 В и выходы на 12 В, а также в наличии дисплей, отображающий работу прибора.
Несмотря на свою универсальность, генераторы на солнечных батареях зависят от погодных условий. А потому могут применяться только в качестве резервного или вспомогательного источника электроэнергии. Особую актуальность это имеет для жилых домов, тем более в отдаленных уголках страны и районах с нестабильным электроснабжением.

Солнечные батареи устанавливаются на улице в местах с наибольшим доступом солнечных лучей, ведь их эффективность напрямую зависима от освещенности. Чаще всего ставят их на крышах домов либо на других подходящих участках. При этом желательно предусмотреть возможность менять угол наклона фотоэлементов. Например, увеличив её до 75-80 градусов, получаем то, что лучи солнца в 12-00 дня практически перпендикулярны поверхности батареи. Солнечные батареи устанавливаются и подключаются очень просто, их удобно обслуживать. К генератору они подключаются с помощью специального сетевого шнура.

Солнечный генератор создан для использования в качестве основного и дополнительного (резервного, аварийного) источника тока частных домов и коттеджей, дач, объектов торговли, демонстрационных площадок, туристических баз и тому подобное. У него весьма обширный спектр использования. Можно применять для обеспечения электричеством осветительных и бытовых приборов (холодильников, телевизоров, ноутбуков, компьютеров, оргтехники), электроинструмента, дренажных и циркуляционных насосов, отопительных котлов и так далее. Время автономной работы у всех моделей разное, но практически все они довольно производительны и могут работать непрерывно до 10-12 часов.

Преимущества устройства

Солнечный генератор имеет такие преимущества:

  1. Не зависит от электросети, заряд от энергии солнца.
  2. Возможность подзарядки от сети 220 В (или даже от прикуривателя).
  3. Выходная мощность переменного тока до 1500 Вт.
  4. На выходе 220 В переменного и 12 В постоянного тока.
  5. Не боится короткого замыкания.
  6. Не зависит от топлива (бензин, дизельное топливо), так как его не потребляет.
  7. Работа без шумов.
  8. Отсутствие вредных выбросов, альтернативный источник электроэнергии.
  9. Возможность применения в помещениях без вентиляции.
  10. Эстетичный дизайн, компактность и удобство использования.
  11. Наличие светодиодного индикатора зарядки аккумулятора.
  12. Регулируемый кронштейн для крепления солнечных панелей.
  13. Легко транспортируется.
  14. Экономит электроэнергию.

Свой генератор электричества - удовольствие не из дешевых. На начальном этапе придётся понести определенные затраты на его приобретение и установку. Он дороже привычных топливных моделей. Но не стоит об этом беспокоиться, так эти первоначальные инвестиции достаточно быстро окупятся, и уже спустя несколько лет Вы будете наслаждаться бесперебойным электроснабжением, экономя при этом свои деньги.

Можно ли собрать устройство самостоятельно?

Сейчас можно приобрести любую модификацию солнечного генератора, а можно сделать его своими руками. Для этого достаточно иметь необходимые знания по его строению и принципу работы. Можно собрать генератор электрической энергии с любым напряжением и током на выходе путем соединения цепочек фотоэлементов или батарей в последовательно-параллельные комбинации. При этом важно помнить, что параллельное подключение увеличивает мощность, а последовательное - напряжение.

Ни для кого не секрет, что природные ресурсы, используемые человеком, начинают заканчиваться. А благодаря альтернативным источникам энергии, таким как солнечный генератор можно сохранить природные ресурсы и восстанавливать их запасы. В наше время появились технологии, позволяющие использовать на пользу человека щедрый источник энергии - солнечные лучи.

Солнце - это безвозмездный совершенно чистый и неиссякаемый источник энергии. Генератор электрической энергии, несомненно, будет способствовать сохранению экологии на нашей планете и жизни будущих поколений.

Направления научных исследований [ | ]

Фундаментальные исследования [ | ]

Прикладные исследования [ | ]

  • Фотоэлектрические преобразователи работают днём и с меньшей эффективностью работают в утренних и вечерних сумерках. При этом пик электропотребления приходится именно на вечерние часы. Кроме того, производимая ими электроэнергия может резко и неожиданно колебаться из-за смены погоды. Для преодоления этих недостатков на солнечных электростанциях используются эффективные электрические аккумуляторы (на сегодняшний день это недостаточно решённая проблема), либо преобразуют в другие виды энергии, например, строят гидроаккумулирующие станции , которые занимают большую территорию, или концепцию водородной энергетики , которая недостаточно экономически эффективна. На сегодняшний день эта проблема просто решается созданием единых энергетических систем, которые перераспределяют вырабатываемую и потребляемую мощность. Проблема некоторой зависимости мощности солнечной электростанции от времени суток и погодных условий решается также с помощью солнечных аэростатных электростанций.
  • Сравнительно высокая цена солнечных фотоэлементов. С развитием технологии и ростом цен на ископаемые энергоносители этот недостаток преодолевается. В - гг. цены на фотоэлементы снижались в среднем на 4 % в год.
  • Поверхность фотопанелей и зеркал (для тепломашинных ЭС) нужно очищать от пыли и других загрязнений. В случае крупных фотоэлектрических станций, при их площади в несколько квадратных километров это может вызвать затруднения, но применение отполированного стекла на современных солнечных батареях решает эту проблему.
  • Использование одно- и двухосевых трекеров (следящих систем) и систем с изменяемым углом наклона фотоэлектрических модулей позволяет оптимизировать угол падения солнечных лучей на модули в зависимости от времени суток и времени года. Однако практика показала низкую эффективность этих систем ввиду их высокой стоимости (относительно стремительно дешевеющих фотомодулей), дополнительных затрат энергии (для трекеров) либо на работы по изменению угла наклона (для систем с изменяемым углом), невысокой надёжности, в частности - ввиду постоянных атмосферных воздействий, необходимости регулярного обслуживания и ремонтов, а также повреждений модулей и электрического оборудования, вызванных регулярными механическими операциями .
  • Эффективность фотоэлектрических элементов падает при их нагреве (в основном это касается систем с концентраторами), поэтому возникает необходимость в установке систем охлаждения, обычно водяных. Также в фотоэлектрических преобразователях третьего и четвёртого поколений используют для охлаждения преобразование теплового излучения в излучение наиболее согласованное с поглощающим материалом фотоэлектрического элемента (так называемое up-conversion), что одновременно повышает КПД .
  • Через 30 лет эксплуатации эффективность фотоэлектрических элементов начинает снижаться. Отработавшие своё фотоэлементы, хотя и незначительная их часть, в основном специального назначения, содержат компонент (кадмий), который недопустимо выбрасывать на свалку. Нужно дополнительное расширение индустрии по их утилизации .

Экологические проблемы [ | ]

При производстве фотоэлементов уровень загрязнений не превышает допустимого уровня для предприятий микроэлектронной промышленности. Современные фотоэлементы имеют срок службы 30-50 лет. Применение кадмия , связанного в соединениях, при производстве некоторых типов фотоэлементов с целью повышения эффективности преобразования, ставит сложный вопрос их утилизации , который тоже не имеет пока приемлемого с экологической точки зрения решения, хотя такие элементы имеют незначительное распространение, и соединениям кадмия при современном производстве уже найдена достойная замена.

В последнее время активно развивается производство тонкоплёночных фотоэлементов, в составе которых содержится всего около 1 % кремния , по отношению к массе подложки, на которую наносятся тонкие плёнки. Из-за малого расхода материалов на поглощающий слой, здесь кремния, тонкоплёночные кремниевые фотоэлементы дешевле в производстве, но пока имеют меньшую эффективность и неустранимую деградацию характеристик во времени. Кроме того, развивается производство тонкоплёночных фотоэлементов на других полупроводниковых материалах, в частности Смиг , достойный конкурент кремнию. Так, например, в 2005 году компания Shell приняла решение сконцентрироваться на производстве тонкоплёночных элементов, и продала свой бизнес по производству монокристаллических (нетонкоплёночных) кремниевых фотоэлектрических элементов.

Солнечные концентраторы вызывают большие по площади затенения земель, что приводит к сильным изменениям почвенных условий, растительности и т. д. Нежелательное экологическое действие в районе расположения станции вызывает нагрев воздуха при прохождении через него солнечного излучения, сконцентрированного зеркальными отражателями. Это приводит к изменению теплового баланса, влажности, направления ветров; в некоторых случаях возможны перегрев и возгорание систем, использующих концентраторы, со всеми вытекающими отсюда последствиями. Применение низкокипящих жидкостей и неизбежные их утечки в солнечных энергетических системах во время длительной эксплуатации могут привести к значительному загрязнению питьевой воды. Особую опасность представляют жидкости, содержащие хроматы и нитриты, являющиеся высокотоксичными веществами.

Способы [ | ]

Способы получения электричества из солнечного излучения:

Развитие [ | ]

Годовая выработка электроэнергии в мире на СЭС
Год Энергия ТВт·ч Годовой прирост Доля от всей
2004 2,6 0,01%
2005 3,7 42% 0,02%
2006 5,0 35% 0,03%
2007 6,8 36% 0,03%
2008 11,4 68% 0,06%
2009 19,3 69% 0,10%
2010 31,4 63% 0,15%
2011 60,6 93% 0,27%
2012 96,7 60% 0,43%
2013 134,5 39% 0,58%
2014 185,9 38% 0,79%
2015 253,0 36 % 1,05 %
2016 301,0 33 % 1,3 %
Источник - Statistical Review of World Energy, 2015 - 2017

В 1985 году все установленные мощности мира составляли 0,021 ГВт.

В 2005 году Производство фотоэлементов в мире составляло 1,656 ГВт.

На начало 2010 года общая мировая мощность фотоэлементной солнечной энергетики составляла лишь около 0,1 % общемировой генерации электроэнергии .

В 2012 году общая мощность мировых гелиоэнергетических установок выросла на 31 ГВт, превысив 100 ГВт.

Крупнейшие производители фотоэлементов в 2012 году :

В 2013 году глобально было установлено 39 ГВт фотоэлектрических мощностей. В результате общая мощность фотоэлектрических установок на начало 2014 года оценивалась в 139 ГВт .

Лидером по установленной мощности является Евросоюз , среди отдельных стран - Китай: с января по сентябрь 2017 года в стране ввели в эксплуатацию 42 ГВт новых объектов фотоэлектрической генерации. По совокупной мощности на душу населения лидер - Германия.

Распространение солнечной электроэнергетики [ | ]

В 2010 году 2,7 % электроэнергии Испании было получено из солнечной энергии .

В 2011 году около 3 % электроэнергии Италии было получено из фотоэлектрических установок .

В декабре 2011 года на Украине завершено строительство последней, пятой, 20-мегаваттной очереди солнечного парка в «Перово », в результате чего его суммарная установленная мощность возросла до 100 МВт . Солнечный парк «Перово» в составе пяти очередей стал крупнейшим парком в мире по показателям установленной мощности. За ним следуют канадская электростанция (97 МВт), итальянская Montalto di Castro (84,2 МВт) и немецкая (80,7 МВт). Замыкает мировую пятерку крупнейших фотоэлектрических парков - 80-мегаваттная электростанция «Охотниково » в Сакском районе Крыма .

В 2018 г. Саудовская Аравия заявила о намерении построить крупнейшую в мире солнечную электростанцию мощностью 200 ГВт .

Рабочие места [ | ]

Перспективы солнечной электроэнергетики [ | ]

В мире ежегодный прирост энергетики за последние пять лет составлял в среднем около 50 % . Полученная на основе солнечного излучения энергия гипотетически сможет к 2050 году обеспечить 20-25 % потребностей человечества в электричестве и сократит выбросы углекислоты. Как полагают эксперты Международного энергетического агентства (IEA), солнечная энергетика уже через 40 лет при соответствующем уровне распространения передовых технологий будет вырабатывать около 9 тысяч тераватт-часов - или 20-25 % всего необходимого электричества, и это обеспечит сокращение выбросов углекислого газа на 6 млрд тонн ежегодно .

Процент обеспечения потребностей человечества к 2050 году электроэнергией, полученной на СЭС - это вопрос стоимости 1 кВт·ч при установке солнечной электростанции «под ключ» и развитости мировой энергетической системы, а также сравнительной привлекательности других способов получения электроэнергии. Гипотетически это может быть от 1 % до 80 %. Одно из чисел в этом диапазоне точно будет соответствовать истине.

В 2005 году мир прошел пик добычи нефти и с тех пор углеводородное сырье постепенно и неуклонно иссякает с ускоряющимися темпами в 5-7% в год, поэтому через 15-25 лет нефть и газ уже не будут массово использовать как топливо, и мир вынужден будет переходить полностью на альтернативные источники энергии.

солнечной электростанции значительно меньше 30 лет. Для США, при средней мощности солнечного излучения в 1700 кВт·ч на м² в год, энергоокупаемость поликристаллического кремниевого модуля с КПД 12 % составляет менее 4 лет (данные на январь 2011) .

Перспективы использования солнца для получения электричества ухудшаются из-за высоких издержек. Так, СТЭС Айвонпа обходится вчетверо дороже, а генерирует гораздо меньше электроэнергии, по сравнению с газовыми электростанциями. По подсчётам экспертов, в будущем электроэнергия, вырабатываемая этой станцией, будет стоить вдвое дороже, чем получаемая от обычных источников энергии, а расходы, очевидно, будут переложены на потребителей .

В России перспективы развития солнечной энергетики остаются неопределёнными, страна многократно отстаёт от уровня генерации европейских стран. Доля солнечной генерации составляет менее 0,001 % в общем энергобалансе. К 2020 году запланирован ввод около 1,5-2 ГВт мощностей. Общая мощность солнечной генерации может увеличиться в тысячу раз, однако составит менее 1 % в энергобалансе. Директор Ассоциации солнечной энергетики России Антон Усачев выделяет Республику Алтай , Белгородскую область и Краснодарский край как наиболее развитые регионы с точки зрения солнечной энергетики. В перспективе планируется помещать установки в изолированных от энергосетей районах .

Типы фотоэлектрических элементов [ | ]

Твердотельные [ | ]

Солнечная электростанция установленной мощностью 200Вт на основе батарей поликристаллических элементов

В настоящее время принято различать три поколения ФЭП :

  • Кристаллические (первое поколение):
    • монокристаллические кремниевые;
    • поликристаллические (мультикристаллические) кремниевые;
    • технологии выращивания тонкостенных заготовок: EFG (Edge defined film-fed crystal growth technique), S-web (Siemens), тонкослойный поликремний (Apex).
  • Тонкоплёночные (второе поколение):
    • кремниевые: аморфные, микрокристаллические, нанокристаллические, CSG (crystalline silicon on glass);
    • на основе теллурида кадмия (CdTe);
    • на основе селенида меди-индия-(галлия) (CI(G)S);
  • ФЭП третьего поколения:
    • фотосенсибилизированные красителем (dye-sensitized solar cell, DSC);
    • органические (полимерные) ФЭП (OPV);
    • неорганические ФЭП (CTZSS);
  • ФЭП на основе каскадных структур.

Солнечный транспорт [ | ]

Фотоэлектрические элементы могут устанавливаться на различных транспортных средствах: лодках, электромобилях и гибридных автомобилях , самолётах, дирижаблях и т. д.

Фотоэлектрические элементы вырабатывают электроэнергию, которая используется для бортового питания транспортного средства, или для электродвигателя электрического транспорта.

В Италии и Японии фотоэлектрические элементы устанавливают на крыши ж/д поездов. Они производят электричество для кондиционеров, освещения и аварийных систем.

Компания Solatec LLC продаёт тонкоплёночные фотоэлектрические элементы для установки на крышу гибридного автомобиля Toyota Prius . Тонкоплёночные фотоэлементы имеют толщину 0,6 мм, что никак не влияет на аэродинамику автомобиля. Фотоэлементы предназначены для зарядки аккумуляторов, что позволяет увеличить пробег автомобиля на 10 %.

В 1981 году летчик Paul Beattie MacCready совершил полет на самолёте Solar Challenger , питающемся только солнечной энергией, преодолев расстояние в 258 километров со скоростью 48 км/час . В 2010 году солнечный пилотируемый самолет Solar Impulse продержался в воздухе 24 часа. Военные испытывают большой интерес к беспилотным летательным аппаратам (БПЛА) на солнечной энергии, способным держаться в воздухе чрезвычайно долго - месяцы и годы. Такие системы могли бы заменить или дополнить спутники.

См. также [ | ]

Примечания [ | ]

  1. (англ.) . Department of Energy . energy.gov. Проверено 2 апреля 2015.
  2. Фомичева, Анастасия. «Солнечная генерация будет расти», - Сари Балдауф, председатель совета директоров энергохолдинга Fortum (неопр.) . Ведомости (03.12.2013). Проверено 3 апреля 2015.
  3. Photovoltaic Geographical Information System (PVGIS)
  4. Philip Wolfe. Solar Photovoltaic Projects in the Mainstream Power Market. // Oxford: Routledge. - 2012. - С. 240 . - ISSN 978-0-415-52048-5 .
  5. BP Statistical Review of World Energy June 2015, Renewables section , (June 2015).
  6. Статистическое обозрение Всемирной энергетической организации 2017 года , (June 2017).
  7. BFM.RU Солнечные технологии обеспечат четверть электричества.
  8. Graph of the Day: World’s top ten solar PV suppliers. 15 April 2013 // RE neweconomy
  9. Геро Рютер, Андрей Гурков. Мировая солнечная энергетика: переломный год (неопр.) . Deutsche Welle (29 мая 2013). Проверено 15 июня 2013. Архивировано 19 июня 2013 года.
  10. Владимир Сидорович . В текущем году в Китае будет введено более 50 ГВт солнечных электростанций , RenEn (17.10.2017).
  11. Paul Gipe Spain Generated 3 % of its Electricity from Solar in 2010 28 Январь 2011 г
  12. Paul Gipe Italy Passes 7,000 MW of Total Installed Solar PV 22 Июль 2011 г.
  13. Activ Solar построила в Крыму крупнейшую солнечную электростанцию в мире

По мнению Международного энергетического агентства, б ыстро сокращающиеся затраты на производство делают солнечные панели самым дешевым способом генерации электричества. По итогам прошлого года рост солнечной генерации превысил по темпам развития другие сектора электроэнергетики. С 2010 г. стоимость нового солнечного модуля снизилась на 70%, тогда как на оборудование в ветроэнергетике на 25% и расходы на аккумуляторы для электрокаров на 40%.

Согласно прогнозам независимых экспертов Bernreuter Research, к концу 2017 г. прирост мощностей в солнечной энергетике в глобальном масштабе достигнет 100 ГВт. Совокупная мощность установленных в мире СЭС по итогам 2016 г. составляла 74 ГВт. Самый большой прирост в этом сегменте приходится на Китай. Суммарная мощность новых солнечных станций достигла в КНР – 52 ГВт, на втором и третьем местах расположились США (12,5 ГВт) и Индия (9 ГВт). За год прирост составил более 30%: сейчас общие мощности солнечной электроэнергетики, по данным экспертов, составляют 300 ГВт.

По оценкам МЭА, в перспективе развитие солнечной энергетики получит особенно широкое распространение в Китае и Индии. Так, в последней недавно запустили специальную программу по электрификации, которая охватит 40 млн домохозяйств только до конца 2018 г. Решать проблемы снабжения электричеством будут в основном за счет дешевой солнечной энергии.

Однако, в отличие от АТР, в европейских странах доминирует ветроэнергетика. Согласно прогнозу МЭА, после 2030 г. именно она станет главным источником для выработки электроэнергии в европейских странах. «Солнечная энергетика быстро завоевывает рынки, включая Китай и Индию, поскольку именно она становится самым дешевым источником производства электроэнергии. Элекротранспорт, благодаря государственной поддержке и снижению затрат на выпускаемые аккумуляторы, быстро развивается», - утверждает исполнительный директор МЭА Фатих Бироль.

В период после 2030 г. в Европейском союзе на ВИЭ придется порядка 80% вводимых новых мощностей, а энергия ветра станет ведущим источником производства электроэнергии. Быстрое развитие солнечной энергетики, в особенности в Китае и Индии, позволит ей стать крупнейшим источником генерации к 2040 г. К этому времени доля всех возобновляемых источников энергии в общем объеме производства электроэнергии достигнет 40%.

МЭА отмечает быстрое развертывание мощностей и снижение затрат на экологически чистые энергетические технологии. Эксперты особо подчеркивают высокие темпы электрификации. По итогам прошлого года, расходы потребителей на электричество в глобальном масштабе достигли паритета с их расходами на нефтепродукты.

Вплоть до 2040 г. развитие возобновляемой энергетики будет по-прежнему поддерживаться со стороны государства. Однако трансформация энергетического сектора будет происходить главным образом благодаря миллионам домашних хозяйств, поселений и предприятий, инвестирующих в создание собственных распределенных мощностей возобновляемой энергетики.

Без учета крымских СЭС сегодня в России действует 10 станций общей мощностью около 100 МВт. В Крыму есть пять солнечных электростанций общей мощностью 300 МВт. В ноябре в России введена в строй первая Бичурская солнечная электростанция в Бурятии. Пока стоимость сооружения одной такой СЭС в стране составляет порядка 1 млрд рублей, при 70% локализации использованного оборудования. В сентябре компания «Хевел» запустила Майминскую СЭС на Алтае, мощностью в 20 МВт, стоимостью в 2 млрд рублей с использованием новых гетероструктурных моделей с повышенной эффективностью. Это уже четвертая СЭС на Алтае у «Хевел». Всего российским компаниям предстоит построить к 2024 г. 57 СЭС общей мощностью в 1,5 ГВт.

Нина Маркова

Лучшие статьи по теме