Как настроить смартфоны и ПК. Информационный портал
  • Главная
  • Телевизоры 
  • Широкополосный усилитель мощности вч на транзисторах. Простые усилители высокой частоты (УВЧ) для приемников

Широкополосный усилитель мощности вч на транзисторах. Простые усилители высокой частоты (УВЧ) для приемников

Потребляемый ток - 46 мА. Напряжение в цепи смещения V bjas определяет уровень выходной мощности (коэффициент передачи) усилителя

Рис.33.11. Внутреннее строение и цоколевка микросхем TSH690, TSH691

Рис. 33.12. Типовая включения микросхем TSH690, TSH691 в качестве усилителя в полосе частот 300- 7000 МГц

и может регулироваться в пределах 0-5,5 (6,0) В. Коэффициент передачи микросхемы TSH690 (TSH691) при напряжении смещения V bias =2,7 В и сопротивлении нагрузки 50 Ом в полосе частот до 450 МГц составляет 23(43) дБ, до 900(950) МГц - 17(23) дБ.

Практическая включения микросхем TSH690, TSH691 приведена на рис. 33.12. Рекомендуемые номиналы элементов: С1=С5=100- 1000 пФ; С2=С4=1000 пФ; С3=0,01 мкФ; L1 150 нГн; L2 56 нГн для частот не свыше 450 МГц и 10 нГн для частот до 900 МГц. Резистором R1 можно регулировать уровень выходной мощности (можно использовать для системы автоматической регулировки выходной мощности).

Широкополосный INA50311 (рис. 33.13), производимый фирмой Hewlett Packard, предназначен для использования в аппаратуре подвижной связи, а также в бытовой радиоэлектронной аппаратуре, например, в качестве антенного усилителя или усилителя радиочастоты. Рабочий диапазон усилителя 50-2500 МГц. Напряжение питания - 5 В при потребляемом токе до 17 мА. Усредненный коэффициент усиления

Рис. 33.13. внутреннего строения микросхемы ΙΝΑ50311

10 дБ. Максимальная мощность сигнала, подводимого к входу на частоте 900 МГц, не более 10 мВт. Коэффициент шума 3,4 дБ.

Типовая включения микросхемы ΙΝΑ50311 при питании от стабилизатора напряжения 78LO05 приведена на рис. 33.14.

Рис. 33.14. широкополосного усилителя на микросхеме INA50311

Шустов М. А., Схемотехника. 500 устройств на аналоговых микросхемах. - СПб.: Наука и Техника, 2013. -352 с.

Продолжаем разговор о транзисторном приемнике прямого усиления, начатый еще на седьмом практикуме. Соединив тогда детекторный приемник с однокаскад-ным усилителем НЧ, ты тем самым превратил их в приемник 0-V-1. Потом собрал однотранзисторный рефлекс- ный приемник, а на предыдущем практикуме добавил к нему двухкаскадный усилитель НЧ — получился приемник 1-V-3. Теперь попробуй добавить к нему каскад предварительного усиления модулированных колебаний высокой частоты (ВЧ), чтобы он стал приемником 2-V-3. Чувствительность в этом случае будет достаточной для приема на магнитную антенну не только местных, но и отдаленных радиовещательных станций.

Что потребуется для такого однокаскадного усилителя ВЧ? В.основном — маломощный высокочастотный транзистор любой из серий П401...П403, П416, П422, ГТ308, лишь бы он был исправным, несколько конденсаторов, резистор и кольцо из феррита марки 600НН с внешним диаметром 8... 10 мм. Коэффициент h21Э транзистора, может быть в пределах 50...100. Использовать транзистор с большим статическим коэффициентом передачи тока не следует — опытный усилитель будет склонен к самовозбуждению.

Принципиальная схема усилителя изображена на рис. 56. Собственно усилитель образуют только транзистор V 1 и резисторы R 1, R 2. Резистор R 2 выполняет роль нагрузки, а базовый резистор R 1 определяет режим работы транзистора. Коллекторной нагрузкой транзистора может быть дроссель высокой частоты — такой же, как в рефлексном приемнике.

Настраиваемый контур L 1 C 1 и катушка связи L 2 относятся к входной цепи, конденсатор С2 — разделительный. Эта часть — точное повторение входной части уже испытанного тобой приемника. Конденсатор Сраз, резистор R , диод V 2, телефоны В1 с блокирующим их конденсатором Сбл образуют детекторную цепь, необходимую для проверки усилителя.

Как работает такой усилитель? Принципиально так же, как однокаскадный усилитель НЧ. Только усиливает он колебания не звуковой частоты, как тот усилитель, а модулированные колебания высокой частоты, поступающие к нему с катушки связи L 2. Высокочастотный сигнал, усиленный транзистором, выделяется на нагрузочном ре-зисторе R 2 (или другой коллекторной нагрузке) и может быть подан на вход второго каскада для дополнительного усиления или к детектору для преобразования его в низкочастотный сигнал.

Детали усилителя смонтируй на временной (картонной) плате, как показано справа на рис. 56. Сюда же перенеси и соедини с усилителем детали входного контура (L1C1) и катушку связи (L2) приемника. Не забудь включить в цепь катушки связи разделительный конденсатор С2. Подключи батарею напряжением 9 В и, подбирая базовый резистор R 1, установи коллекторный ток транзистора в пределах 0,8...1,2 мА. Не забудь: сопротивление базового резистора должно быть тем больше, чем больше статический коэффициент передачи тока транзистора (номинал этого резистора, указанный на схеме, Соответствует коэффициенту h 21Э транзистора около 50).

Теперь на отдельной небольшой картонке смонтируй детекторную цепь, соединив последовательно телефоны B1 с блокировочным конденсатором Сбл емкостью 2200..3300 пФ, точечный диод V 2 любой серии и разделитель ныу конденсатор Сраз емкостью 3300...6800 пФ, Сопротивление резистора R может быть 4,7...6,8 кОм. Эту цепь включи между коллектором и эмиттером транзистора, то есть к выходу усилителя, а к входному контуру L1C1 подключай наружную или комнатную антенну и, конечно, заземление. При настройке входного контура на волну местной радиостанции ее высокочастотный сигнал будет усилен транзистором VI , продетектирован диодом V 2 и преобразован телефонами В1 в звук. Резистор R в этой цепи необходим для нормальной работы детектора. Без него телефоны будут звучать тише и с искажениями звука.

Дня следующего опыта с усилителем ВЧ нужен высокочастотный понижающим трансформатор (рис. 57). Намотай его на кольце из феррита марки 600НН (таком же, как сердечник высокочастотного дросселя рефлексного каскада приемника). Его первичная обмотка L 3 должна содержать 180..200 витков провода ПЭВ или ПЭЛ 0,1...0,12, а вторичная L4 60...80 витков такого же проводе.

Обмотку L3 высокочастотного трансформатора включи в- коллекторную цепь транзисторе вместо нагрузочного резисторе, а к его обмотке L 4 подключи такую же детекторную цепь, как к в предыдущем опыте, но без разделительного конденсатора и резистора, которые сейчас не нужны. Как теперь звуча? телефоны? Громче. Объясняется это лучшим, чем в первом опыте, согласованием выходного сопротивления усилителя и входного сопротивления детекторной цели.

А теперь, пользуясь схемой, изображенной на рис. 58, соедини этот однокаскадный усилитель с входом транзистора рефлексного приемника 1-V-З. Усилитель ВЧ приемника стал двухкаскадным. Связующим элементом между каскадами стала катушка L 4 высокочастотного трансформатора, включенная в цепь базы транзистора V2 (в приемнике 1-V-З выл транзистором W1) вместо катушки связи (была L 2) с бывшим входным настраиваемым контуром. Теперь внешняя антенна и заземление не нужны — прием ведется на магнитную антенну W1. роль которой: выполняет ферритовый стержень с находящейся на нем катушкой L 1 входного настраиваемого контура L 1 C 1.

Итак, вместе с двухкаскадным усилителем НЧ подучился четырехтранзисторный приемник прямого усиления 2-У-З. Приемник, возможно, самовозбуждается. Это потому, что он, во-первых, рефлексный, а рефлексные приемники вообще склонны к самовозбуждению, во-вторых, проводники, соединяющие опытный усилительный каскад с рефлексным каскадом, длинны. Если новый каскад вместе с магнитной антенной смонтировать компактно на той же плате приемника, делая цепи по возможности короче, причин для самовозбуждения будет меньше. Этому способствует и ячейка развязывающего фильтра R 2 C 3 в минусовой цепи питания первого транзистора усилителя ВЧ, которая устраняет связь между каскадами через общий источник литания и тем самым предотвращает самовозбуждение высокочастотного тракта приемника.

Но второй каскад усилителя ВЧ может быть таким, как первый, то есть не рефлексным, и связь между ними может быть не трансформаторная, Схема возможного варианта усилителя изображена нa рис. 59. Здесь нагрузкой транзистора V 1 первого каскада, как и в первом опыте этого практикума (см. рис. 56), служит резистор R2; Создающееся на нем напряжение высокочастотного сигнала через конденсатор СЗ подается на базу транзистора V 2 второго каскада, точно такого же, как первый. Сигнал, дополнительно усиленный транзистором второго каскада, снимается с его нагрузочного резистора R 4 (такого же; как R2) и через конденсатор C4 (такой же, как СЗ) поступает к детектору на диоде V3, детектируется им, а колебания низкой частоты, создающиеся на его нагрузочном резисторе R 5, подаются на вход усилителя НЧ.

В этом варианте второй каскад и детектор представляют собой как бы развернувшийся рефлексный каскад предыдущего варианта. Но транзистор усиливает только высокочастотные колебания. И если его соединить с двухкаскадным усилителем НЧ, то получится приемник прямого усиления 2- V -2. Усиление низкочастотного сигнала несколько уменьшится, телефоны или головка громкоговорителя на выходе такого приемника будут звучать немного тише, зато уменьшится опасность самовозбуждения его высокочастотного тракта. Этот проигрыш можно частично скомпенсировать увеличением напряжения низкочастотного сигнала на выходе детектора, включив в детекторный каскад второй диод (на рис. 59 — показанный штриховыми линиями V 4), как это ты делал в одном из опытов седьмого практикума (см. рис. 50), или использовать в детекторном каскаде транзистор.

Попробуй поэкспериментировать с вариантами усилителя НЧ, сравни качество их работы к сделай соответствующие выводы на будущее.

Еще один совет. Экспериментируя с тем или иным вариантом приемника, черти и запоминай его полную принципиальную схему. Зачем? Радиолюбитель, даже начинающий, должен по памяти чертить, схемы таких устройств. Принципиальная схема, кроме того, поможет тебе лучше усвоить работу приемника в целом и его деталей, облегчит поиск неисправности в нем.

Литература: Борисов В. Г. Практикум начинающего радиолюбителя.2-е изд., перераб. и доп. — М.: ДОСААФ, 1984. 144 с., ил. 55к.

Простейший усилитель на транзисторах может быть хорошим пособием для изучения свойств приборов. Схемы и конструкции достаточно простые, можно самостоятельно изготовить устройство и проверить его работу, произвести замеры всех параметров. Благодаря современным полевым транзисторам можно изготовить буквально из трех элементов миниатюрный микрофонный усилитель. И подключить его к персональному компьютеру для улучшения параметров звукозаписи. Да и собеседники при разговорах будут намного лучше и четче слышать вашу речь.

Частотные характеристики

Усилители низкой (звуковой) частоты имеются практически во всех бытовых приборах - музыкальных центрах, телевизорах, радиоприемниках, магнитолах и даже в персональных компьютерах. Но существуют еще усилители ВЧ на транзисторах, лампах и микросхемах. Отличие их в том, что УНЧ позволяет усилить сигнал только звуковой частоты, которая воспринимается человеческим ухом. Усилители звука на транзисторах позволяют воспроизводить сигналы с частотами в диапазоне от 20 Гц до 20000 Гц.

Следовательно, даже простейшее устройство способно усилить сигнал в этом диапазоне. Причем делает оно это максимально равномерно. Коэффициент усиления зависит прямо от частоты входного сигнала. График зависимости этих величин - практически прямая линия. Если же на вход усилителя подать сигнал с частотой вне диапазона, качество работы и эффективность устройства быстро уменьшатся. Каскады УНЧ собираются, как правило, на транзисторах, работающих в низко- и среднечастотном диапазонах.

Классы работы звуковых усилителей

Все усилительные устройства разделяются на несколько классов, в зависимости от того, какая степень протекания в течение периода работы тока через каскад:

  1. Класс «А» - ток протекает безостановочно в течение всего периода работы усилительного каскада.
  2. В классе работы «В» протекает ток в течение половины периода.
  3. Класс «АВ» говорит о том, что ток протекает через усилительный каскад в течение времени, равного 50-100 % от периода.
  4. В режиме «С» электрический ток протекает менее чем половину периода времени работы.
  5. Режим «D» УНЧ применяется в радиолюбительской практике совсем недавно - чуть больше 50 лет. В большинстве случаев эти устройства реализуются на основе цифровых элементов и имеют очень высокий КПД - свыше 90 %.

Наличие искажений в различных классах НЧ-усилителей

Рабочая область транзисторного усилителя класса «А» характеризуется достаточно небольшими нелинейными искажениями. Если входящий сигнал выбрасывает импульсы с более высоким напряжением, это приводит к тому, что транзисторы насыщаются. В выходном сигнале возле каждой гармоники начинают появляться более высокие (до 10 или 11). Из-за этого появляется металлический звук, характерный только для транзисторных усилителей.

При нестабильном питании выходной сигнал будет по амплитуде моделироваться возле частоты сети. Звук станет в левой части частотной характеристики более жестким. Но чем лучше стабилизация питания усилителя, тем сложнее становится конструкция всего устройства. УНЧ, работающие в классе «А», имеют относительно небольшой КПД - менее 20 %. Причина заключается в том, что транзистор постоянно открыт и ток через него протекает постоянно.

Для повышения (правда, незначительного) КПД можно воспользоваться двухтактными схемами. Один недостаток - полуволны у выходного сигнала становятся несимметричными. Если же перевести из класса «А» в «АВ», увеличатся нелинейные искажения в 3-4 раза. Но коэффициент полезного действия всей схемы устройства все же увеличится. УНЧ классов «АВ» и «В» характеризует нарастание искажений при уменьшении уровня сигнала на входе. Но даже если прибавить громкость, это не поможет полностью избавиться от недостатков.

Работа в промежуточных классах

У каждого класса имеется несколько разновидностей. Например, существует класс работы усилителей «А+». В нем транзисторы на входе (низковольтные) работают в режиме «А». Но высоковольтные, устанавливаемые в выходных каскадах, работают либо в «В», либо в «АВ». Такие усилители намного экономичнее, нежели работающие в классе «А». Заметно меньшее число нелинейных искажений - не выше 0,003 %. Можно добиться и более высоких результатов, используя биполярные транзисторы. Принцип работы усилителей на этих элементах будет рассмотрен ниже.

Но все равно имеется большое количество высших гармоник в выходном сигнале, отчего звук становится характерным металлическим. Существуют еще схемы усилителей, работающие в классе «АА». В них нелинейные искажения еще меньше - до 0,0005 %. Но главный недостаток транзисторных усилителей все равно имеется - характерный металлический звук.

«Альтернативные» конструкции

Нельзя сказать, что они альтернативные, просто некоторые специалисты, занимающиеся проектировкой и сборкой усилителей для качественного воспроизведения звука, все чаще отдают предпочтение ламповым конструкциям. У ламповых усилителей такие преимущества:

  1. Очень низкое значение уровня нелинейных искажений в выходном сигнале.
  2. Высших гармоник меньше, чем в транзисторных конструкциях.

Но есть один огромный минус, который перевешивает все достоинства, - обязательно нужно ставить устройство для согласования. Дело в том, что у лампового каскада очень большое сопротивление - несколько тысяч Ом. Но сопротивление обмотки динамиков - 8 или 4 Ома. Чтобы их согласовать, нужно устанавливать трансформатор.

Конечно, это не очень большой недостаток - существуют и транзисторные устройства, в которых используются трансформаторы для согласования выходного каскада и акустической системы. Некоторые специалисты утверждают, что наиболее эффективной схемой оказывается гибридная - в которой применяются однотактные усилители, не охваченные отрицательной обратной связью. Причем все эти каскады функционируют в режиме УНЧ класса «А». Другими словами, применяется в качестве повторителя усилитель мощности на транзисторе.

Причем КПД у таких устройств достаточно высокий - порядка 50 %. Но не стоит ориентироваться только на показатели КПД и мощности - они не говорят о высоком качестве воспроизведения звука усилителем. Намного большее значение имеют линейность характеристик и их качество. Поэтому нужно обращать внимание в первую очередь на них, а не на мощность.

Схема однотактного УНЧ на транзисторе

Самый простой усилитель, построенный по схеме с общим эмиттером, работает в классе «А». В схеме используется полупроводниковый элемент со структурой n-p-n. В коллекторной цепи установлено сопротивление R3, ограничивающее протекающий ток. Коллекторная цепь соединяется с положительным проводом питания, а эмиттерная - с отрицательным. В случае использования полупроводниковых транзисторов со структурой p-n-p схема будет точно такой же, вот только потребуется поменять полярность.

С помощью разделительного конденсатора С1 удается отделить переменный входной сигнал от источника постоянного тока. При этом конденсатор не является преградой для протекания переменного тока по пути база-эмиттер. Внутреннее сопротивление перехода эмиттер-база вместе с резисторами R1 и R2 представляют собой простейший делитель напряжения питания. Обычно резистор R2 имеет сопротивление 1-1,5 кОм - наиболее типичные значения для таких схем. При этом напряжение питания делится ровно пополам. И если запитать схему напряжением 20 Вольт, то можно увидеть, что значение коэффициента усиления по току h21 составит 150. Нужно отметить, что усилители КВ на транзисторах выполняются по аналогичным схемам, только работают немного иначе.

При этом напряжение эмиттера равно 9 В и падение на участке цепи «Э-Б» 0,7 В (что характерно для транзисторов на кристаллах кремния). Если рассмотреть усилитель на германиевых транзисторах, то в этом случае падение напряжения на участке «Э-Б» будет равно 0,3 В. Ток в цепи коллектора будет равен тому, который протекает в эмиттере. Вычислить можно, разделив напряжение эмиттера на сопротивление R2 - 9В/1 кОм=9 мА. Для вычисления значения тока базы необходимо 9 мА разделить на коэффициент усиления h21 - 9мА/150=60 мкА. В конструкциях УНЧ обычно используются биполярные транзисторы. Принцип работы у него отличается от полевых.

На резисторе R1 теперь можно вычислить значение падения - это разница между напряжениями базы и питания. При этом напряжение базы можно узнать по формуле - сумма характеристик эмиттера и перехода «Э-Б». При питании от источника 20 Вольт: 20 - 9,7 = 10,3. Отсюда можно вычислить и значение сопротивления R1=10,3В/60 мкА=172 кОм. В схеме присутствует емкость С2, необходимая для реализации цепи, по которой сможет проходить переменная составляющая эмиттерного тока.

Если не устанавливать конденсатор С2, переменная составляющая будет очень сильно ограничиваться. Из-за этого такой усилитель звука на транзисторах будет обладать очень низким коэффициентом усиления по току h21. Нужно обратить внимание на то, что в вышеизложенных расчетах принимались равными токи базы и коллектора. Причем за ток базы брался тот, который втекает в цепь от эмиттера. Возникает он только при условии подачи на вывод базы транзистора напряжения смещения.

Но нужно учитывать, что по цепи базы абсолютно всегда, независимо от наличия смещения, обязательно протекает ток утечки коллектора. В схемах с общим эмиттером ток утечки усиливается не менее чем в 150 раз. Но обычно это значение учитывается только при расчете усилителей на германиевых транзисторах. В случае использования кремниевых, у которых ток цепи «К-Б» очень мал, этим значением просто пренебрегают.

Усилители на МДП-транзисторах

Усилитель на полевых транзисторах, представленный на схеме, имеет множество аналогов. В том числе и с использованием биполярных транзисторов. Поэтому можно рассмотреть в качестве аналогичного примера конструкцию усилителя звука, собранную по схеме с общим эмиттером. На фото представлена схема, выполненная по схеме с общим истоком. На входных и выходных цепях собраны R-C-связи, чтобы устройство работало в режиме усилителя класса «А».

Переменный ток от источника сигнала отделяется от постоянного напряжения питания конденсатором С1. Обязательно усилитель на полевых транзисторах должен обладать потенциалом затвора, который будет ниже аналогичной характеристики истока. На представленной схеме затвор соединен с общим проводом посредством резистора R1. Его сопротивление очень большое - обычно применяют в конструкциях резисторы 100-1000 кОм. Такое большое сопротивление выбирается для того, чтобы не шунтировался сигнал на входе.

Это сопротивление почти не пропускает электрический ток, вследствие чего у затвора потенциал (в случае отсутствия сигнала на входе) такой же, как у земли. На истоке же потенциал оказывается выше, чем у земли, только благодаря падению напряжения на сопротивлении R2. Отсюда ясно, что у затвора потенциал ниже, чем у истока. А именно это и требуется для нормального функционирования транзистора. Нужно обратить внимание на то, что С2 и R3 в этой схеме усилителя имеют такое же предназначение, как и в рассмотренной выше конструкции. А входной сигнал сдвинут относительно выходного на 180 градусов.

УНЧ с трансформатором на выходе

Можно изготовить такой усилитель своими руками для домашнего использования. Выполняется он по схеме, работающей в классе «А». Конструкция такая же, как и рассмотренные выше, - с общим эмиттером. Одна особенность - необходимо использовать трансформатор для согласования. Это является недостатком подобного усилителя звука на транзисторах.

Коллекторная цепь транзистора нагружается первичной обмоткой, которая развивает выходной сигнал, передаваемый через вторичную на динамики. На резисторах R1 и R3 собран делитель напряжения, который позволяет выбрать рабочую точку транзистора. С помощью этой цепочки обеспечивается подача напряжения смещения в базу. Все остальные компоненты имеют такое же назначение, как и у рассмотренных выше схем.

Двухтактный усилитель звука

Нельзя сказать, что это простой усилитель на транзисторах, так как его работа немного сложнее, чем у рассмотренных ранее. В двухтактных УНЧ входной сигнал расщепляется на две полуволны, различные по фазе. И каждая из этих полуволн усиливается своим каскадом, выполненном на транзисторе. После того, как произошло усиление каждой полуволны, оба сигнала соединяются и поступают на динамики. Такие сложные преобразования способны вызвать искажения сигнала, так как динамические и частотные свойства двух, даже одинаковых по типу, транзисторов будут отличны.

В результате на выходе усилителя существенно снижается качество звучания. При работе двухтактного усилителя в классе «А» не получается качественно воспроизвести сложный сигнал. Причина - повышенный ток протекает по плечам усилителя постоянно, полуволны несимметричные, возникают фазовые искажения. Звук становится менее разборчивым, а при нагреве искажения сигнала еще больше усиливаются, особенно на низких и сверхнизких частотах.

Бестрансформаторные УНЧ

Усилитель НЧ на транзисторе, выполненный с использованием трансформатора, невзирая на то, что конструкция может иметь малые габариты, все равно несовершенен. Трансформаторы все равно тяжелые и громоздкие, поэтому лучше от них избавиться. Намного эффективнее оказывается схема, выполненная на комплементарных полупроводниковых элементах с различными типами проводимости. Большая часть современных УНЧ выполняется именно по таким схемам и работают в классе «В».

Два мощных транзистора, используемых в конструкции, работают по схеме эмиттерного повторителя (общий коллектор). При этом напряжение входа передается на выход без потерь и усиления. Если на входе нет сигнала, то транзисторы на грани включения, но все равно еще отключены. При подаче гармонического сигнала на вход происходит открывание положительной полуволной первого транзистора, а второй в это время находится в режиме отсечки.

Следовательно, через нагрузку способны пройти только положительные полуволны. Но отрицательные открывают второй транзистор и полностью запирают первый. При этом в нагрузке оказываются только отрицательные полуволны. В результате усиленный по мощности сигнал оказывается на выходе устройства. Подобная схема усилителя на транзисторах достаточно эффективная и способна обеспечить стабильную работу, качественное воспроизведение звука.

Схема УНЧ на одном транзисторе

Изучив все вышеописанные особенности, можно собрать усилитель своими руками на простой элементной базе. Транзистор можно использовать отечественный КТ315 или любой его зарубежный аналог - например ВС107. В качестве нагрузки нужно использовать наушники, сопротивление которых 2000-3000 Ом. На базу транзистора необходимо подать напряжение смещения через резистор сопротивлением 1 Мом и конденсатор развязки 10 мкФ. Питание схемы можно осуществить от источника напряжением 4,5-9 Вольт, ток - 0,3-0,5 А.

Если сопротивление R1 не подключить, то в базе и коллекторе не будет тока. Но при подключении напряжение достигает уровня в 0,7 В и позволяет протекать току около 4 мкА. При этом по току коэффициент усиления окажется около 250. Отсюда можно сделать простой расчет усилителя на транзисторах и узнать ток коллектора - он оказывается равен 1 мА. Собрав эту схему усилителя на транзисторе, можно провести ее проверку. К выходу подключите нагрузку - наушники.

Коснитесь входа усилителя пальцем - должен появиться характерный шум. Если его нет, то, скорее всего, конструкция собрана неправильно. Перепроверьте все соединения и номиналы элементов. Чтобы нагляднее была демонстрация, подключите к входу УНЧ источник звука - выход от плеера или телефона. Прослушайте музыку и оцените качество звучания.

Эта схема ВЧ усилителя передатчика (на 50 МГц) имеет 100 Вт выходной мощности. Данный УВЧ использовал с моим FT-736R для DX SSB. Он усиливает сигнал ровно в 10 раз. Устройство прекрасно подходит для автомобильных радиостанций таксистов, работающих в диапазонах 50 и 27 МГц (с перестройкой контуров).

Если вы хотите построить этот радиочастотный усилитель, собирайте его на двухсторонней печатной плате - для увеличения площади заземления. Транзистор 2SC2782 нуждается в приличном радиаторе. Максимальная мощность на выходе - 120W.

Схема усилителя мощности ВЧ


Рисунок печатной платы

Технические характеристики усилителя:

  • Входная Мощность: 10W
  • Выходная Мощность: 100W
  • Рабочая Частота: 50-52MHz
  • Режим работы: FM - SSB
  • Рабочее Напряжение: 10-16 В постоянного тока
  • Рабочий Ток: 10 ампер.

Схема была взята с одного китайского сайта и успешно повторена, только не использовались элементы детектора автоматического переключения приём-передача (на схеме зачёркнуты). Для создания УВЧ на частоты от 100 мегагерц - воспользуйтесь .


Принципиальная схема и фото преобразователя напряжения обычного автомобильного аккумулятора 12 вольт в сетевое - 220.

Предлагаемый вниманию читателей высокочастотный усилитель может найти самое широкое применение. Это и антенный усилитель для радиоприемника, и усилительная приставка к осциллографу с низкой чувствительностью канала вертикального отклонения, и апериодический усилитель ПЧ, и измерительный усилитель.

Вход и выход усилителя рассчитаны на включение в иинию с волновым сопротивлением 75 Ом. Полоса рабочих частот усилителя 35 кГц- 150 МГц при неравномерности на краях диапазона 3 дБ. Максимальное неискаженное выходное напряжение 1 В, коэффициент усиления (при нагрузке 75 Ом) - 43 дБ, коэффициент шума на частоте 100 МГц -4,7 дБ. Питается усилитель от источника напряжением 12,6 В, потребляемый ток 40 мА.

Принципиальная схема усилителя приведена на рисунке. Он представляет собой две последовательно включенные усилительные ячейки, в каждой из которых резистивные усилительные каскады на транзисторах N1, Т3 нагружены на эмиттерные повторители на транзисторах Т2, Т4. Для расширения динамического диапазона ток через последний эмиттерный повторитель выбран равным около 20 мА. Амплитудная и частотная характеристики усилителя сформированы элементами цепи час-тотнозависимой обратной связи R4C2, R10C5 и дросселями простой высокочастотной коррекции Др1 и Др2.

Конструктивно усилитель выполнен на печатной плате из фольгированного стеклотекстолита и помещен в латунный посеребренный корпус.

Разъемами служат высокочастотные соединители СР-75-166 Ф. Высокочастотные дроссели Др1 и Др2 бескаркасные. Их обмотки содержат по 10 витков провода ПЭВ-1 0,25, диаметр обмоток 5 мм.

Если усиление 43 дБ является чрезмерным, можно использовать только одну усилительную ячейку, причем в зависимости от целевого назначения либо на транзисторах T1. Т2 с напряжением питания + 5 В, либо на транзисторах Т3, Т4 с напряжением питания +12,6 В. В первом случае ниже коэффициент шума, однако меньше и максимальное выходное напряжение (около 400 мВ); во втором случае коэффициент шума несколько выше, зато максимальное напряжение на,нагрузке 75 Ом составляет 1 В. Усиление обеих усилительных ячеек примерно одинаково (21-22 дБ) во всем диапазоне указанных рабочих.частот, причем при использовании одной ячейки полоса частот еще шире (от 30 кГц до 170 МГц при неравномерности на краях диапазона 3 дБ).

В заключение необходимо отметить, что при сборке усилителя обязательно строгое соблюдение требований, предъявляемых к монтажу в дециметровом диапазоне.

Источник: Радио 7/76

C этой схемой также часто просматривают:

Лучшие статьи по теме