Как настроить смартфоны и ПК. Информационный портал

Счетчики Гейгера. Принцип работы

В 1908 году физик из Германии Ганс Гейгер трудился в химических лабораториях, принадлежащих Эрнсту Резерфорду. Там же им было предложено испытать счетчик заряженных частиц, представлявший собой ионизированную камеру. Камера являлась электро-конденсатором, который наполняли газом под высоким давлением. Еще Пьер Кюри применял это устройство на практике, изучая электричество в газах. Идея Гейгера - обнаруживать излучения ионов - была связана с их влиянием на уровень ионизации летучих газов.

В 1928 г. немецкий ученый Вальтер Мюллер, работавший с Гейгером и под его началом, создал несколько счетчиков, регистрирующих ионизирующие частицы. Устройства были нужны для дальнейшего исследования радиации. Физика, будучи наукой экспериментов, не могла бы существовать без измерительных конструкций. Были открыты только несколько излучений: γ, β, α. Задача Гейгера состояла в том, чтобы измерить чувствительными приборами все виды излучения.

Счетчик Гейгера-Мюллера - простой и дешевый радиоактивный датчик. Это не точный инструмент, который фиксирует отдельные частицы. Техника измеряет общую насыщенность ионизирующего излучения. Физики используют его с другими датчиками, чтобы добиться точности расчетов при проведении экспериментов.

Немного об ионизирующих излучениях

Можно было бы сразу перейти к описанию детектора, но его работа покажется непонятной, если вы мало знаете об ионизирующих излучениях. При излучении происходит эндотермическое влияние на вещество. Этому способствует энергия. К примеру, ультрафиолет или радиоволна к таким излучениям не относятся, а вот жесткий ультрафиолетовый свет - вполне. Здесь определяется граница влияния. Вид именуется фотонным, а сами фотоны - это γ-кванты.

Эрнст Резерфорд поделил процессы испускания энергии на 3 вида, используя установку с магнитным полем:

  • γ - фотон;
  • α - ядро атома гелия;
  • β - электрон с высокой энергией.

От частиц α можно защититься бумажным полотном. β проникают глубже. Способность проникновения γ самая высокая. Нейтроны, о которых ученые узнали позже, являются опасными частицами. Они воздействуют на расстоянии нескольких десятков метров. Имея электрическую нейтральность, они не вступают в реакцию с молекулами разных веществ.

Однако нейтроны легко попадают в центр атома, провоцируют его разрушение, из-за чего образуются радиоактивные изотопы. Распадаясь, изотопы создают ионизирующие излучения. От человека, животного, растения или неорганического предмета, получившего облучение, радиация исходит несколько дней.

Устройство и принцип работы счетчика Гейгера

Прибор состоит из металлической или стеклянной трубки, в которую закачан благородный газ (аргоново-неоновая смесь либо вещества в чистом виде). Воздуха в трубке нет. Газ добавляется под давлением и имеет примесь спирта и галогена. По всей трубке протянута проволока. Параллельно ей располагается железный цилиндр.

Проволока называется анодом, а трубка - катодом. Вместе они - электроды. К электродам подводится высокое напряжение, которое само по себе не вызывает разрядных явлений. В таком состоянии индикатор будет пребывать, пока в его газовой среде не возникнет центр ионизации. От источника питания к трубке подключается минус, а к проволоке - плюс, направленный через высокоуровневое сопротивление. Речь идет о постоянном питании в десятки сотен вольт.

Когда в трубку попадает частица, с ней сталкиваются атомы благородного газа. При соприкосновении выделяется энергия, отрывающая электроны от атомов газа. Затем образуются вторичные электроны, которые тоже сталкиваются, порождая массу новых ионов и электронов. На скорость электронов по направлению к аноду влияет электрическое поле. По ходу этого процесса образуется электрический ток.

При столкновении энергия частиц теряется, запас ионизированных атомов газа подходит к концу. Когда заряженные частицы попадают в газоразрядный счетчик Гейгера, сопротивление трубки падает, что немедленно снижает напряжение средней точки деления. Затем сопротивление вновь растет - это влечет за собой восстановление напряжения. Импульс становится отрицательным. Прибор показывает импульсы, а мы можем их сосчитать, заодно оценив количество частиц.

Виды счётчиков Гейгера

По конструкции счетчики Гейгера бывают 2 видов: плоский и классический.

Классический

Сделан из тонкого гофрированного металла. За счет гофрирования трубка приобретает жесткость и устойчивость к внешнему воздействию, что препятствует ее деформации. Торцы трубки оснащены стеклянными или пластмассовыми изоляторами, в которых находятся колпачки для вывода к приборам.

На поверхность трубки нанесен лак (кроме выводов). Классический счетчик считается универсальным измерительным детектором для всех известных видов излучений. Особенно для γ и β.

Плоский

Чувствительные измерители для фиксации мягкого бета-излучения имеют другую конструкцию. Из-за малого количества бета-частиц, их корпус имеет плоскую форму. Есть окошко из слюды, слабо задерживающее β. Датчик БЕТА-2 - название одного из таких приборов. Свойства других плоских счетчиков зависят от материала.

Параметры и режимы работы счетчика Гейгера

Чтобы рассчитать чувствительность счетчика, оцените отношение количества микрорентген от образца к числу сигналов от этого излучения. Прибор не измеряет энергию частицы, поэтому не дает абсолютно точной оценки. Калибровка устройств происходит по образцам изотопных источников.

Также нужно смотреть на следующие параметры:

Рабочая зона, площадь входного окна

Характеристика площади индикатора, через которую проходят микрочастицы, зависит от его размеров. Чем шире площадь, тем большее число частиц будет поймано.

Рабочее напряжение

Напряжение должно соответствовать средним характеристикам. Сама характеристика работы - это плоская часть зависимости количества фиксированных импульсов от напряжения. Ее второе название - плато. В этом месте работа прибора достигает пиковой активности и именуется верхним пределом измерений. Значение - 400 Вольт.

Рабочая ширина

Рабочая ширина - разница между напряжением выхода на плоскость и напряжением искрового разряда. Значение - 100 Вольт.

Наклон

Величина измеряется в виде процента от количества импульсов на 1 вольт. Он показывает погрешность измерения (статистическую) в подсчете импульсов. Значение - 0,15 %.

Температура

Температура важна, поскольку счётчик часто приходится применять в сложных условиях. Например, в реакторах. Счетчики общего использования: от -50 до +70 С по Цельсию.

Рабочий ресурс

Ресурс характеризуется общим числом всех импульсов, зафиксированных до момента, когда показания прибора становятся некорректными. Если в устройстве есть органика для самогашения, количество импульсов составит один миллиард. Ресурс уместно подсчитывать только в состоянии рабочего напряжения. При хранении прибора расход останавливается.

Время восстановления

Это промежуток времени, за который устройство проводит электричество после реагирования на ионизирующую частицу. Существует верхний предел для частоты импульсов, ограничивающий интервал измерений. Значение - 10 микросекунд.

Из-за времени восстановления (его ещё называют мертвое время) прибор может подвести в решающий момент. Для предотвращения зашкаливания производители устанавливают свинцовые экраны.

Есть ли у счетчика фон

Фон измеряется в толстостенной свинцовой камере. Обычное значение - не более 2 импульсов за минуту.

Кто и где применяет дозиметры радиации?

В промышленных масштабах выпускают много модификаций счетчиков Гейгера-Мюллера. Их производство началось во времена СССР и продолжается сейчас, но уже в Российской Федерации.

Устройство применяют:

  • на объектах атомной промышленности;
  • в научных институтах;
  • в медицине;
  • в быту.

После аварии на Чернобыльской АЭС дозиметры покупают и рядовые граждане. Во всех приборах установлен счетчик Гейгера. Такие дозиметры оснащают одной или двумя трубками.

Можно ли сделать счетчик Гейгера своими руками?

Изготовить счетчик самостоятельно сложно. Нужен датчик излучения, а его купить смогут далеко не все. Сама схема счетчика давно известна - в учебниках физики, например, её тоже печатают. Однако воспроизвести устройство в домашних условиях сумеет только настоящий «левша».

Талантливые мастера-самоучки научились делать счетчику заменитель, который также способен замерять гамма- и бета-излучения с помощью люминесцентной лампы и лампы накаливания. Также используют трансформаторы от сломанной техники, трубка Гейгера, таймер, конденсатор, различные платы, резисторы.

Заключение

Диагностируя излучения, нужно учитывать собственный фон измерителя. Даже при наличии свинцовой защиты приличной толщины скорость регистрации не обнуляется. У этого явления есть объяснение: причина активности - космическое излучение, проникающее через толщи свинца. Над поверхностью Земли ежеминутно проносятся мюоны, которые регистрируются счетчиком с вероятностью 100%.

Есть и еще один источник фона - радиация, накопленная самим устройством. Поэтому по отношению к счётчику Гейгера тоже уместно говорить об износе. Чем больше радиации прибор накопил, тем ниже достоверность его данных.

Изобретенный еще в 1908 г. немецким физиком Гансом Вильгельмом Гейгером прибор, способный определить широко используется и в наши дни. Причиной тому является высокая чувствительность устройства, его возможность регистрировать самые различные излучения. Простота эксплуатации и дешевизна позволяют купить счетчик Гейгера любому человеку, решившему самостоятельно измерить уровень радиации в любое время и в любом месте. Что же это за прибор и как он работает?

Принцип действия счетчика Гейгера

По своей конструкции довольно прост. В герметизированный баллон с двумя электродами закачивается газовая смесь, состоящая из неона и аргона, которая легко ионизируется. На электроды подается (порядка 400В), которое само по себе никаких разрядных явлений не вызывает до того самого момента, пока в газовой среде прибора не начнется процесс ионизации. Появление пришедших извне частиц приводит к тому, что первичные электроны, ускоренные в соответствующем поле, начинают ионизировать иные молекулы газовой среды. В результате под воздействием электрического поля происходит лавинообразное создание новых электронов и ионов, которые резко увеличивают проводимость электронно-ионного облака. В газовой среде счетчика Гейгера происходит разряд. Количество импульсов, возникающих в течение определенного промежутка времени, прямо пропорционально количеству фиксируемых частиц. Таков в общих чертах принцип работы счетчика Гейгера.

Обратный процесс, в результате которого газовая среда возвращается в исходное состояние, происходит сам собой. Под воздействием галогенов (обычно используется бром или хлор) в данной среде происходит интенсивная рекомбинация зарядов. Процесс этот происходит значительно медленнее, а потому время, необходимое для восстановления чувствительности счетчика Гейгера, - очень важная паспортная характеристика прибора.

Несмотря на то что принцип действия счетчика Гейгера довольно прост, он способен реагировать на ионизирующие излучения самых различных видов. Это α-, β-, γ-, а также рентгеновское, нейтронное и Все зависит от конструкции прибора. Так, входное окно счетчика Гейгера, способного регистрировать α- и мягкое β-излучения, выполняется из слюды толщиной от 3 до 10 микрон. Для обнаружения его изготавливают из бериллия, а ультрафиолетового - из кварца.

Где применяется счетчик Гейгера

Принцип действия счетчика Гейгера положен в основу работы большинства современных дозиметров. Эти небольшие приборы, имеющие относительно невысокую стоимость, отличаются довольно высокой чувствительностью и способны выводить результаты в удобных для восприятия единицах измерения. Простота их использования позволяет эксплуатировать эти приборы даже тем, кто имеет весьма отдаленные понятия о дозиметрии.

По своим возможностям и точности измерений дозиметры бывают профессиональные и бытовые. При помощи них можно своевременно и эффективно определить имеющийся источник ионизированного излучения как на открытой местности, так и внутри помещений.

Эти приборы, использующие в своей работе принцип действия счетчика Гейгера, могут своевременно подать сигнал опасности как при помощи визуальных, так и звуковых или вибросигналов. Так, можно всегда проконтролировать продукты питания, одежду, обследовать мебель, технику, стройматериалы и т. д. на предмет отсутствия вредных для организма человека излучений.

Строение и принцип работы счетчика Гейгера – Мюллера

В последнее время, внимание к радиационной безопасности со стороны обычных граждан в нашей стране все в большей степени возрастает. И это связано не только с трагическими событиями на чернобыльской АЭС и дальнейшими ее последствиями, но и с различного рода происшествиями, которые периодически случаются в том или ином месте планеты. В связи с этим, в конце прошлого века стали появляться приборы дозиметрического контроля радиации бытового назначения . И такие приборы очень многим людям спасли не только здоровье, но иногда и жизнь, и это касается не только прилежащих к зоне отчуждения территориях. Поэтому вопросы радиационной безопасности актуальны в любом месте нашей страны и по сегодняшний день.

В се бытовые и практически все профессиональные современные дозиметры оснащаются . По-другому его можно назвать чувствительным элементом дозиметра. Данный прибор был изобретен в 1908 году немецким физиком Гансом Гейгером, а спустя двадцать лет, данную разработку усовершенствовал еще один физик Вальтер Мюллер, и именно принцип этого устройства и применяется в и по настоящий момент.

Н екоторые современные дозиметры имеют сразу по четыре счетчика, что позволяет повысить точность измерений и чувствительность прибора, а также уменьшить время проведения замера. Большинство счетчиков Гейгера – Мюллера способны регистрировать гамма-излучение, высокоэнергетическое бета-излучение и рентгеновские лучи. Однако есть специальные разработки для определения альфа-частиц высоких энергий. Для настройки дозиметра на определение только гамма-излучения, самого опасного из трех видов радиации, чувствительную камеру укрывают специальным кожухом из свинца или другой стали, что позволяет отсечь проникновение в счетчик бета-частиц.

В современных дозиметрах бытового и профессионального назначения широко применяются датчики типа СБМ-20, СБМ-20-1, СБМ-20У, СБМ-21, СБМ-21-1. Они отличаются габаритными размерами камеры и другими параметрами, для линейки 20-х датчиков характерны следующие габариты, длина 110 мм, диаметр 11 мм, а для 21-й модели, длина 20-22 мм при диаметре 6мм. Важно понимать, что чем больше размеры камеры, тем большее количество радиоактивных элементов будет через нее пролетать, и тем большей чувствительностью и точностью она обладает. Так, для 20-х серий датчика характерны размеры в 8-10 раз большие, чем для 21-й, примерно в таких же пропорциях мы будем иметь разницу в чувствительности.

К онструкцию счетчика Гейгера можно схематически описать так. Датчик, состоящий из цилиндрического контейнера, в который закачан инертный газ (к примеру, аргон, неон или их смеси) под минимальным давлением, это делается для облегчения возникновения электрического разряда между катодом и анодом. Катод, чаще всего, представляет собой весь металлический корпус чувствительного датчика, а анод небольшую проволочку, размещенную на изоляторах. Иногда катод дополнительно оборачивают защитным кожухом из нержавейки или свинца, это делается для настройки счетчика на определение только гамма-квантов.

Д ля бытового применения, в настоящее время, чаще всего используются датчики торцевого исполнения (к примеру, Бета-1, Бета-2). Такие счетчики устроены таким образом, что способны обнаруживать и регистрировать даже альфа-частицы. Такой счетчик представляет собой плоский цилиндр с расположенными внутри электродами, и входным (рабочим) окном, выполненным из слюдяной пленки толщиной всего 12 мкм. Такая конструкция позволяет определить (с близкого расстояния) высокоэнергетические альфа-частицы и слабоэнергетические бета-частицы. При этом площадь рабочего окна счетчиков Бета-1 и Бета 1-1 составляет 7 кв.см. Площадь слюдяного рабочего окна для прибора Бета-2 в 2 раза больше, чем у Бета-1, его вполне можно использовать для определения , и т.д.

Е сли говорить о принципе работы камеры счетчика Гейгера, то вкратце ее можно описать следующим образом. При активации , на катод и анод подается высокое напряжение (порядка 350 – 475 вольт), через нагрузочный резистор, однако между ними не происходит разряда из-за инертного газа, служащего диэлектриком. При попадании в камеру , ее энергии оказывается достаточно, чтобы выбить свободный электрон из материала корпуса камеры или катода, этот электрон лавинообразно начинает выбивать свободные электроны из окружающего инертного газа и происходит его ионизация, которая в итоге приводит к разряду между электродами. Цепь замыкается, и данный факт можно зарегистрировать при помощи микросхемы прибора, что является фактом обнаружения или кванта гамма или рентгеновского излучения. Затем камера приходит в исходное состояние, что позволяет обнаружить следующую частицу.

Ч тобы процесс разряда в камере прекратить и подготовить камеру для регистрации следующей частицы, существует два способа, один из них основан на том, что на очень короткий промежуток времени прекращается подача напряжения на электроды, что прекращает процесс ионизации газа. Второй способ основан на добавлении в инертный газ еще одного вещества, к примеру, йода, спирта и других веществ, при этом они приводят к уменьшению напряжения на электродах, что также прекращает процесс дальнейшей ионизации и камера становится способной обнаружить следующий радиоактивный элемент. При данном методе используется нагрузочный резистор большой емкости.

П о количеству разрядов в камере счетчика и можно судить об уровне радиации на измеряемой местности или от конкретного предмета.

Принцип действия приборов для регистрации элементарных частиц. Любое устройство, регистрирующее элементарные частицы или движущиеся атомные ядра, подобно заряженному ружью с взведенным курком. Небольшое усилие при нажатии на спусковой крючок ружья вызывает эффект, не сравнимый с затраченным усилием, - выстрел.

Регистрирующий прибор - это более или менее сложная макроскопическая система, которая может находиться в неустойчивом состоянии. При небольшом возмущении, вызванном пролетевшей частицей, начинается процесс перехода системы в новое, более устойчивое состояние. Этот процесс и позволяет регистрировать частицу. В настоящее время используется множество различных методов регистрации частиц.

В зависимости от целей эксперимента и условий, в которых он проводится, применяются те или иные регистрирующие устройства, отличающиеся друг от друга по основным характеристикам.

Газоразрядный счетчик Гейгера. Счетчик Гейгера - один из важнейших приборов для автоматического подсчета частиц.

Счетчик (рис. 13.1) состоит из стеклянной трубки, покрытой изнутри металлическим слоем (катод), и тонкой металлической нити, идущей вдоль оси трубки (анод). Трубка заполняется газом, обычно аргоном. Действие счетчика основано на ударной ионизации. Заряженная частица (электрон, -частица и т. д.), пролетая в газе, отрывает от атомов электроны и создает положительные ионы и свободные электроны. Электрическое поле между анодом и катодом (к ним подводится высокое напряжение) ускоряет электроны до энергий, при которых начинается ударная ионизация. Возникает лавина ионов, и ток через счетчик резко возрастает. При этом на нагрузочном резисторе R образуется импульс напряжения, который подается в регистрирующее устройство.

Для того чтобы счетчик мог регистрировать следующую попавшую в него частицу, лавинный paзряд, необходимо погасить. Это происходит автоматически. Так как в момент появления импульса тока падение напряжения на нагрузочном резисторе R велико, то напряжение между анодом и катодом резко уменьшается - настолько, что разряд прекращается.

Счетчик Гейгера применяется в основном для регистрации электронов и -квантов (фотонов большой энергии).

В настоящее время созданы счетчики, работающие на и пых принципах.

Камера Вильсона. Счетчики позволяют лишь регистрировать факт прохождения через них частицы и фиксировать некоторые ее характеристики. В камере же Вильсона, созданной в 1912 г., быстрая заряженная частица оставляет след, который можно наблюдать непосредственно или сфотографировать. Этот прибор можно назвать окном в микромир, т. е. мир элементарных частиц и состоящих из них систем.

Принцип действия камеры Вильсона основан на конденсации перенасыщенного пара на ионах с образованием капелек воды. Эти ионы создает вдоль своей траектории движущаяся заряженная частица.

Камера Вильсона представляет собой герметически закрытый сосуд, заполненный парами воды или спирта, близкими к насыщению (рис. 13.2). При резком опускании поршня, вызванном уменьшением давления под ним, пар в камере адиабатно расширяется. Вследствие этого происходит охлаждение, и пар становится перенасыщенным. Это -неустойчивое состояние пара: он легко конденсируется, если в сосуде появляются центры конденсации. Центрами

конденсации становятся ионы, которые образует в рабочем пространстве камеры пролетевшая частица. Если частица проникает в камеру сразу после расширения пара, то на ее пути появляются капельки воды. Эти капельки образуют видимый след пролетевшей частицы - трек (рис. 13.3). Затем камера возвращается в исходное состояние, и ионы удаляются электрическим полем. В зависимости от размеров камеры время восстановления рабочего режима варьируется от нескольких секунд до десятков минут.

Информация, которую дают треки в камере Вильсона, значительно богаче той, которую могут дать счетчики. По длине трека можно определить энергию частицы, а по числу капелек на единицу длины трека - ее скорость. Чем длиннее трек частицы, тем больше ее энергия. А чем больше капелек воды образуется на единицу длины трека, тем меньше ее скорость. Частицы с большим зарядом оставляют трек большей толщины. Советские физики П. Л. Капица и Д. В. Скобельцын предложили помещать камеру Вильсона в однородное магнитное поле.

Магнитное поле действует на движущуюся заряженную частицу с определенной силой (силой Лоренца). Эта сила искривляет траекторию частицы, не изменяя модуля ее скорости. Трек имеет тем большую кривизну, чем больше заряд частицы и чем меньше ее масса. По кривизне трека можно определить отношение заряда частицы к ее массе. Если известна одна из этих величин, то можно вычислить другую. Например, по заряду частицы и кривизне ее трека можно найти массу частицы.

Пузырьковая камера. В 1952 г. американским ученым Д. Глейзером было предложено использовать для обнаружения треков частиц перегретую жидкость. В такой жидкости на ионах (центрах парообразования), образующихся при движении быстрой заряженной частицы, появляются пузырьки пара, дающие видимый трек. Камеры данного типа были названы пузырьковыми.

В исходном состоянии жидкость в камере находится под высоким давлением, предохраняющим ее от закипания, несмотря на то, что температура жидкости несколько выше температуры кипения при атмосферном давлении. При резком понижении давления жидкость оказывается перегретой, и в течение небольшого времени она будет находиться в неустойчивом состоянии. Заряженые частицы, пролетающие именно в это время, вызывают появление треков, состоящих из пузырьков пара (рис. 1.4.4). И качестве жидкости используются главным образом жидкий водород и пропан. Длительность рабочего цикла пузырьковой камеры невелика - около 0,1 с.

Преимущество пузырьковой камеры перед камерой Вильсона обусловлено большей плотностью рабочего вещества. Пробеги частиц вследствие этого оказываются достаточно короткими, и частицы даже больших энергий застревают в камере. Это позволяет наблюдать серию последовательных превращений частицы и вызываемые ею реакции.

Треки в камере Вильсона и пузырьковой камере - один из главных источников информации о поведении и свойствах частиц.

Наблюдение следов элементарных частиц производит сильное впечатление, создает ощущение непосредственного соприкосновения с микромиром.

ЧЕРЕНКОВСКИЙ СЧЁТЧИК детектор для регистрации заряж. ч-ц, в к-ром используется Черенкова Вавилова излучение. При движении заряж. ч-цы в среде со скоростью v, превышающей фазовую скорость света c/n в данной среде (n - показатель преломления среды), ч-ца излучает в направлении, составляющем угол q с её траекторией. Угол q связан со скоростью ч-цы v и показателем преломления среды га соотношением: cosq=c/vn=1/bn, b=v/c. (1) Интенсивность W черенковского излучения на 1 см пути заряж. ч-цы в интервале длин волн от l1 до l2 выражается соотношением:


Похожая информация.


Лучшие статьи по теме