Как настроить смартфоны и ПК. Информационный портал
  • Главная
  • Windows 7, XP
  • Сборочный метод. Ветвление и последовательная детализация алгоритма — Гипермаркет знаний

Сборочный метод. Ветвление и последовательная детализация алгоритма — Гипермаркет знаний

Суть метода была описана выше. Сначала анализируется исходная задача. В ней выделяются подзадачи. Строится иерархия таких подзадач (рис. 48).

Затем составляются алгоритмы (или программы), начиная с основного алгоритма (основной программы), далее - вспомогательные алгоритмы (подпрограммы) с последовательным углублением уровня, пока не получим алгоритмы, состоящие из простых команд.

Вернемся к задаче «Интерпретатор», которая рассматривалась в разд. 3.16. Напомним условие: дана исходная символьная строка, имеющая следующий вид:

На месте а и b стоят десятичные цифры; значком

обозначен один из знаков операций: +, -, *. Нужно, чтобы машина вычислила это выражение и после знака = вывела результат. Операция деления не рассматривается для того, чтобы иметь дело только с целыми числами.

Сформулируем требования к программе Interpretator, которые сделают ее более универсальной, чем вариант, рассмотренный в разд. 3.16:

1. Операнды а и b могут быть многозначными целыми положительными числами в пределах MaxInt.

2. Между элементами строки, а также в начале и в конце могут стоять пробелы.

3. Программа осуществляет синтаксический контроль текста. Ограничимся простейшим вариантом контроля: строка должна состоять только из цифр, знаков операций, знака = и пробелов.

4. Проводится семантический контроль: строка должна быть построена по схеме а

b =. Ошибка, если какой-то элемент отсутствует или нарушен их порядок.

5. Осуществляется контроль диапазона значений операндов и результата (не должны выходить за пределы MaxInt).

Уже из перечня требований становится ясно, что программа будет непростой. Составлять ее мы будем, используя метод последовательной детализации. Начнем с того, что представим в самом общем виде алгоритм как линейную последовательность этапов решения задачи:

1. Ввод строки.

2. Синтаксический контроль (нет ли недопустимых символов?).

3. Семантический контроль (правильно ли построено выражение?).

4. Выделение операндов. Проверка операндов на допустимый диапазон значений. Перевод в целые числа.

5. Выполнение операции. Проверка результата на допустимый диапазон.

6. Вывод результата.

Этапы 2, 3, 4, 5 будем рассматривать как подзадачи первого уровня, назвав их (и будущие подпрограммы) соответственно Sintax, Semantika, Operand, Calc

В свою очередь, для их реализации потребуется решение следующих подзадач: пропуск лишних пробелов (Propusk), преобразование символьной цифры в целое число (Cifra). Кроме того, при выделении операндов понадобится распознавать операнд, превышающий максимально допустимое значение (Error). Обобщая все сказанное в схематической форме, получаем некоторую структуру подзадач. Этой структуре будет соответствовать аналогичная структура программных модулей (рис. 49).

Первый шаг детализации. Сначала наметим все необходимые подпрограммы, указав лишь их заголовки (спецификации). На месте тела подпрограмм запишем поясняющие комментарии (такой вид подпрограммы называется «заглушкой»). Напишем основную часть программы. А потом вернемся к детальному программированию процедур и функций. На первом этапе программирования вместо тела подпрограммы опишем ее назначение в форме комментария. Окончательно объединив тексты подпрограмм с основной программой, получаем рабочий вариант программы Interpretator. Теперь ее можно вводить в компьютер.

Отладка и тестирование программы. Никогда нельзя быть уверенным, что одним махом написанная программа будет верной (хотя такое и возможно, но с усложнением программы становится все менее вероятным). До окончательного рабочего состояния программа доводится в процессе отладки.

Ошибки могут быть «языковые», могут быть алгоритмические. Первый тип ошибок, как правило, помогает обнаружить компилятор с Паскаля. Это ошибки, связанные с нарушением правил языка программирования. Их еще называют ошибками времени компиляции, ибо обнаруживаются они именно во время компиляции. Алгоритмические ошибки приводят к различным последствиям. Во-первых, могут возникнуть невыполнимые действия. Например, деление на нуль, корень квадратный из отрицательного числа, выход индекса за границы строки и т.п. Это ошибки времени исполнения. Они приводят к прерыванию выполнения программы. Как правило, имеются системные программные средства, помогающие в поиске таких ошибок.

Другая ситуация, когда алгоритмические ошибки не приводят к прерыванию выполнения программы. Программа выполняется до конца, получаются какие-то результаты, но они не являются верными. Для окончательной отладки алгоритма и анализа его правильности производится тестирование. Тест - это такой вариант решения задачи, для которого заранее известны результаты. Как правило, один тестовый вариант не доказывает правильность программы. Программист должен придумать систему тестов, построить план тестирования для исчерпывающего испытания всей программы.

Мы уже говорили о том, что качественная программа ни в каком варианте не должна завершаться аварийно.

Успешное прохождение всех тестов есть необходимое условие правильности программы. Заметим, что при этом оно необязательно является достаточным. Чем сложнее программа, тем труднее построить исчерпывающий план тестирования. Опыт показывает, что даже в «фирменных» программах в процессе эксплуатации обнаруживаются ошибки. Поэтому проблема тестирования программы - очень важная и одновременно очень сложная проблема.

Конец

Каждый блок может содержать в себе как простую команду, так и сложную структуру, но обязательно должен иметь один вход и один выход.

Ветвление - алгоритмическая альтернатива. С помощью этой команды, которую еще называют развилкой, осуществляется выбор одного из двух возможных действий в зависимости от условия. После завершения команды происходит выход на общее продолжение:

На псевдокоде эта команда в общем виде записывается так:

если <условие>

то <действие 1>

иначе <действие 2>

Действия, указанные после служебных слов то ииначе , могут быть простыми или составными командами. При исполнении команды ветвления выполняется только одно из действий: если условие соблюдено, то выполняется действие1, в противном случае – действие2.

Команда ветвления может использоваться в сокращенной форме (коррекция) , когда в случае несоблюдения условия никакое действие не выполняется. На псевдокоде коррекция записывается так:

если <условие>

то <действие >

Команда повторения (цикл). Большинство алгоритмов содержат серии многократно повторяемых команд. Если такие команды записывать в виде составной команды следования, то каждую повторяемую команду пришлось бы выписывать ровно столько раз, сколько раз она повторяется. Но это очень неэкономный способ записи. Поэтому для обозначения многократно повторяемых действий используют специальную конструкцию, называемую циклом.

Составная команда цикла, называемая также командой повторения, содержит условие, которое используется для определения количества повторений. Рассмотрим три типа команды повторения.

Команда повторения с предусловием записывается на псевдокоде следующим образом:

пока <условие >

повторять <действие>

Под действием, как и прежде, понимается простая или составная команда. Исполнение такой команды повторения состоит в том, что сначала проверяется условие (отсюда и название – цикл с предусловием), и если оно соблюдено, то выполняется команда, записанная после служебного слова повторять. После этого снова проверяется условие. Выполнение цикла завершается, когда условие перестает соблюдаться. Для этого необходимо, чтобы команда, выполняемая в цикле, влияла на условие.

Запись команды повторения с предусловием на языке блок-схем выглядит так:



Команда повторения с постусловием выполняется аналогично, только условие проверяется после выполнения команды, а повторение выполнения команды происходит в том случае, когда условие не соблюдено, т.е. повторение производится до соблюдения условия (поэтому этот тип цикла называют также циклом “до"). На псевдокоде и языке блок-схем цикл с постусловием записывается следующим образом:



повторять

действие

до условие

Под действием, как и прежде, понимается простая или составная команда.

Цикл с параметром (известным количеством повторений)

Для параметр:= N1 до N2 делать

действие

N1, N2 – выражения, определяющие соответственно начальное и конечное значения параметра цикла, N3 –шаг изменения параметра цикла.

Если N1< N2, то N3 >0.

Если N1> N2, то N3 <0.

Теоретически необходимым и достаточным является лишь первый тип цикла - цикл с предусловием . Любой циклический алгоритм можно построить с его помощью. Это более общий вариант цикла, чем цикл-до и цикл с параметром. Но, в ряде случаев применение цикла-до и цикла с параметром оказывается более удобным.

Структурный подход требует соблюдения стандарта в изображении блок-схем алгоритмов. Чертить их нужно так, как это делалось во всех приведенных примерах. Каждая базовая структура должна иметь один вход и один выход . Нестандартно изображенная блок-схема плохо читается, теряется наглядность и семантика алгоритма.

Чаще всего алгоритм содержит комбинации базовых команд, соединенных между собой. Соединяться эти структуры могут двумя способами: последовательным и вложенным . Эта ситуация аналогична той, которая наблюдается в электротехнике, где любая сколь угодно сложная электрическая цепь может быть разложена на последовательно и параллельно соединенные участки.

Если блок, составляющий тело цикла, сам является циклической структурой, то, значит, имеют место вложенные циклы. В свою очередь, внутренний цикл может иметь внутри себя еще один цикл и т.д. В связи с этим вводится представление о глубине вложенности циклов. Точно так же и ветвления могут быть вложенными друг в друга.

Иногда в литературе структурное программирование называют программированием без goto. Действительно, при таком подходе нет места безусловному переходу.

Неоправданное использование в программах оператора безусловного перехода goto лишает ее структурности, а значит, всех связанных с этим положительных свойств: прозрачности и надежности алгоритма. Хотя во всех процедурных языках программирования этот оператор присутствует, однако, придерживаясь структурного подхода, его употребления следует избегать.

Языки программирования Паскаль и Си называют языками структурного программирования. В них есть все необходимые управляющие конструкции для структурного построения программы. Наглядность такому построению придает структуризация внешнего вида текста программы. Основной используемый для этого прием - сдвиги строк, которые должны подчиняться следующим правилам:

Конструкции одного уровня вложенности записываются на одном вертикальном уровне (начинаются с одной позиции в строке);

Вложенная конструкция записывается смещенной по строке на несколько позиций вправо относительно внешней для нее конструкции.

Структурная методика алгоритмизации - это не только форма описания алгоритма, но это еще и способ мышления программиста. Создавая алгоритм, нужно стремиться составлять его из стандартных структур.

Еще одним важнейшим технологическим приемом структурного программирования является декомпозиция решаемой задачи на подзадачи - разбиение задачи на более простые части исходной задачи с точки зрения программирования.

Алгоритмы решения таких подзадач называются вспомогательными алгоритмами. В связи с этим возможны два пути в построении алгоритма:

"сверху вниз" – сначала строится основной алгоритм, затем вспомогательные алгоритмы;

"снизу вверх" – сначала составляются вспомогательные алгоритмы, а затем основной.

Первый подход еще называют методом последовательной детализации , второй - сборочным методом.

Сборочный метод предполагает накопление и использование библиотек вспомогательных алгоритмов, реализованных в языках программирования в виде подпрограмм, процедур, функций.

При последовательной детализации сначала строится основной алгоритм, а затем в него вносятся обращения к вспомогательным алгоритмам первого уровня. После этого составляются вспомогательные алгоритмы первого уровня, в которых могут присутствовать обращения к вспомогательным алгоритмам второго уровня, и т. д. Вспомогательные алгоритмы самого нижнего уровня состоят только из простых команд.

Метод последовательной детализации применяется в любом конструировании сложных объектов. Это естественная логическая последовательность мышления конструктора: постепенное углубление в детали. Достаточно сложный алгоритм другим способом построить практически невозможно.

Таким образом, методику пошаговой детализации можно представить в виде схемы:

Сначала анализируется исходная задача. В ней выделяются подзадачи. Строится иерархия таких подзадач.

Затем составляются алгоритмы (или программы), начиная с основного алгоритма (основной программы), далее - вспомогательные алгоритмы (подпрограммы) с последовательным углублением уровня, пока не получим алгоритмы, состоящие из простых команд.

Методика последовательной детализации позволяет организовать работу коллектива программистов над сложным проектом. Например, руководитель группы строит основной алгоритм, а разработку вспомогательных алгоритмов и написание соответствующих подпрограмм поручает своим сотрудникам. Участники группы должны лишь договориться об интерфейсе (т. е. взаимосвязи) между разрабатываемыми программными модулями, а внутренняя организация программы - личное дело программиста.

Отладка и тестирование программы. Никогда нельзя быть уверенным, что написанная программа будет верной (хотя такое и возможно, но с усложнением программы становится все менее вероятным). До окончательного рабочего состояния программа доводится в процессе отладки.

Ошибки могут быть "языковые" – синтаксические, и алгоритмические (логические). Первый тип ошибок, как правило, помогает обнаружить компилятор языка программирования. Это ошибки, связанные с нарушением правил языка программирования. Их еще называют ошибками времени компиляции, ибо обнаруживаются они именно во время компиляции. Сам компилятор в той или иной форме сообщает пользователю о характере ошибки и ее месте в тексте программы. Исправив очередную ошибку, пользователь повторяет компиляцию. Так продолжается до тех пор, пока не будут ликвидированы все ошибки этого уровня.

Алгоритмические ошибки приводят к различным последствиям. Во-первых, могут возникнуть невыполнимые действия. Например, деление на ноль, корень квадратный из отрицательного числа, выход индекса за границы массива и т. п. Это ошибки времени исполнения. Они приводят к прерыванию выполнения программы. Как правило, имеются системные программные средства, помогающие в поиске таких ошибок.

Другая ситуация, когда алгоритмические ошибки не приводят к прерыванию выполнения программы. Программа выполняется до конца, получаются какие-то результаты, но они не являются верными. Для окончательной отладки алгоритма и анализа его правильности производится тестирование.

Тест - это такой вариант решения задачи, для которого заранее известны результаты. Как правило, один тестовый вариант не доказывает правильность программы. Программист должен придумать систему тестов, построить план тестирования для исчерпывающего испытания всей программы.

Качественная программа ни в каком варианте не должна завершаться аварийно .

Тесты программы должны продемонстрировать, что при правильном вводе исходных данных будут всегда получаться верные результаты, а при наличии ошибок (синтаксических, семантических, выхода за диапазон) будут получены соответствующие сообщения.

Успешное прохождение всех тестов есть необходимое условие правильности программы. Заметим, что при этом оно необязательно является достаточным. Чем сложнее программа, тем труднее построить исчерпывающий план тестирования. Опыт показывает, что даже в «фирменных» программах в процессе эксплуатации обнаруживаются ошибки. Поэтому проблема тестирования программы - очень важная и одновременно очень сложная проблема.

Суть метода была описана выше. Сначала анализируется исходная задача. В ней выделяются подзадачи. Строится иерархия таких подзадач (рис. 48).

Затем составляются алгоритмы (или программы), начиная с основного алгоритма (основной программы), далее - вспомогательные алгоритмы (подпрограммы) с последовательным углублением уровня, пока не получим алгоритмы, состоящие из простых команд.

Вернемся к задаче «Интерпретатор», которая рассматривалась в разд. 3.16. Напомним условие: дана исходная символьная строка, имеющая следующий вид:

На месте а и b стоят десятичные цифры; значком

обозначен один из знаков операций: +, -, *. Нужно, чтобы машина вычислила это выражение и после знака = вывела результат. Операция деления не рассматривается для того, чтобы иметь дело только с целыми числами.

Сформулируем требования к программе Interpretator, которые сделают ее более универсальной, чем вариант, рассмотренный в разд. 3.16:

1. Операнды а и b могут быть многозначными целыми положительными числами в пределах MaxInt.

2. Между элементами строки, а также в начале и в конце могут стоять пробелы.

3. Программа осуществляет синтаксический контроль текста. Ограничимся простейшим вариантом контроля: строка должна состоять только из цифр, знаков операций, знака = и пробелов.

4. Проводится семантический контроль: строка должна быть построена по схеме а

b =. Ошибка, если какой-то элемент отсутствует или нарушен их порядок.

5. Осуществляется контроль диапазона значений операндов и результата (не должны выходить за пределы MaxInt).

Уже из перечня требований становится ясно, что программа будет непростой. Составлять ее мы будем, используя метод последовательной детализации. Начнем с того, что представим в самом общем виде алгоритм как линейную последовательность этапов решения задачи:

1. Ввод строки.

2. Синтаксический контроль (нет ли недопустимых символов?).

3. Семантический контроль (правильно ли построено выражение?).

4. Выделение операндов. Проверка операндов на допустимый диапазон значений. Перевод в целые числа.

5. Выполнение операции. Проверка результата на допустимый диапазон.

6. Вывод результата.

Этапы 2, 3, 4, 5 будем рассматривать как подзадачи первого уровня, назвав их (и будущие подпрограммы) соответственно Sintax, Semantika, Operand, Calc

В свою очередь, для их реализации потребуется решение следующих подзадач: пропуск лишних пробелов (Propusk), преобразование символьной цифры в целое число (Cifra). Кроме того, при выделении операндов понадобится распознавать операнд, превышающий максимально допустимое значение (Error). Обобщая все сказанное в схематической форме, получаем некоторую структуру подзадач. Этой структуре будет соответствовать аналогичная структура программных модулей (рис. 49).

Первый шаг детализации. Сначала наметим все необходимые подпрограммы, указав лишь их заголовки (спецификации). На месте тела подпрограмм запишем поясняющие комментарии (такой вид подпрограммы называется «заглушкой»). Напишем основную часть программы. А потом вернемся к детальному программированию процедур и функций. На первом этапе программирования вместо тела подпрограммы опишем ее назначение в форме комментария. Окончательно объединив тексты подпрограмм с основной программой, получаем рабочий вариант программы Interpretator. Теперь ее можно вводить в компьютер.

Отладка и тестирование программы. Никогда нельзя быть уверенным, что одним махом написанная программа будет верной (хотя такое и возможно, но с усложнением программы становится все менее вероятным). До окончательного рабочего состояния программа доводится в процессе отладки.

Ошибки могут быть «языковые», могут быть алгоритмические. Первый тип ошибок, как правило, помогает обнаружить компилятор с Паскаля. Это ошибки, связанные с нарушением правил языка программирования. Их еще называют ошибками времени компиляции, ибо обнаруживаются они именно во время компиляции. Алгоритмические ошибки приводят к различным последствиям. Во-первых, могут возникнуть невыполнимые действия. Например, деление на нуль, корень квадратный из отрицательного числа, выход индекса за границы строки и т.п. Это ошибки времени исполнения. Они приводят к прерыванию выполнения программы. Как правило, имеются системные программные средства, помогающие в поиске таких ошибок.

Другая ситуация, когда алгоритмические ошибки не приводят к прерыванию выполнения программы. Программа выполняется до конца, получаются какие-то результаты, но они не являются верными. Для окончательной отладки алгоритма и анализа его правильности производится тестирование. Тест - это такой вариант решения задачи, для которого заранее известны результаты. Как правило, один тестовый вариант не доказывает правильность программы. Программист должен придумать систему тестов, построить план тестирования для исчерпывающего испытания всей программы.

Мы уже говорили о том, что качественная программа ни в каком варианте не должна завершаться аварийно.

Успешное прохождение всех тестов есть необходимое условие правильности программы. Заметим, что при этом оно необязательно является достаточным. Чем сложнее программа, тем труднее построить исчерпывающий план тестирования. Опыт показывает, что даже в «фирменных» программах в процессе эксплуатации обнаруживаются ошибки. Поэтому проблема тестирования программы - очень важная и одновременно очень сложная проблема.

Тип урока: урок закрепления знаний и изучение нового материала.

Вид урока: комбинированный урок (лекция и практика). Цели урока: Общеобразовательные:

сформировать представление у учащихся об основных понятиях темы: команда ветвления, неполная форма команды ветвления;

сформировать навыки разработки алгоритмов с ветвлением в ГРИС «Стрелочка»;

Развивающие:

развитие информационного видения явлений и процессов окружающего мира;

Воспитательные:

воспитание информационной культуры учащихся, внимательность, аккуратность, дисциплинированности, усидчивости;

воспитание познавательного интереса школьников

Структура урока:

I .Организационный момент (2 мин.)

Приветствие. Проверка присутствующих. Сообщение темы урока.

II

Письменный опрос 2 варианта работ

III

Объяснение с помощью презентации

Пример задачи с двух шаговой детализацией

Объяснение с помощью презентации «Демонстрация алгоритма с ветвлением «Орнамент» в среде исполнителя Стрелочка».

IV

V . Итог урока (2 мин.)

VI . Домашнее задание (1 мин.)

Ход урока:

I .Организационный момент

Тема урока: “ Ветвление и последовательная детализация

Основные темы параграфа:

команда ветвления;
♦ неполная форма ветвления;
♦ пример задачи с двух шаговой детализацией.
(слайд 2)

II . Актуализация знаний (5 мин.)

Тест на тему: Циклические алгоритмы

Вариант 1

1.В какой из фигур выполняется проверка условия:

2. Циклический алгоритм это:


    нц
    шаг
    кц

    пока впереди не край, повторять
    нц
    шаг
    поворот
    кц

    нач
    шаг
    кон

    нц
    шаг
    кц

4. Тело цикла – это:

    графический способ описания алгоритма

    это набор инструкций, описывающих порядок действий исполнителя для достижения результата решения задачи за конечное число действий.

    алгоритм в котором какая-то последовательность команд должна быть выполнена несколько раз.

5.Нарисовать структуру цикла (блок-схема)

Тест на тему: Циклические алгоритмы

Вариант 2

1.В какой из фигур выполняется процедура:

2. Цикл - это:

  1. алгоритм в котором какая-то последовательность команд должна быть выполнена несколько раз.

    графический способ описания алгоритма

    это такая алгоритмическая структура, в которой осуществляется многократное повторение одной (или нескольких) команд.

    это набор инструкций, описывающих порядок действий исполнителя для достижения результата решения задачи за конечное число действий.

3. Требуется нарисовать горизонтальную линию через весь экран. Выберите правильную программу:

    нач
    шаг
    кон

    нц
    шаг
    кц

нц

шаг

поворот

кц

    пока впереди не край, повторять

нц

шаг

кц

4. Блок-схема – это:

    последовательность команд, входящая в алгоритмическую структуру “цикл”.

    графический способ описания алгоритма

    это набор инструкций, описывающих порядок действий исполнителя для достижения результата решения задачи за конечное число действий.

    алгоритм в котором какая-то последовательность команд должна быть выполнена несколько раз.

5. Написать программу зацикливание алгоритма.

III . Теоретическая часть (20 мин.)

Команда ветвления

Познакомимся еще с одной командой ГРИС. Она называется командой ветвления. Формат команды ветвления такой:

если <условие>
то <серия 1>
иначе <серия 2>
кв (слайд 3)

Служебное слово кв обозначает конец ветвления.

По-прежнему ГРИС может проверять только два условия: «впереди край?» или «впереди не край?». <Серия> - это одна или несколько следующих друг за другом команд. Если <условие> справедливо, то выполняется <серия 1>, в противном случае - <серия 2>. Пример показан на рис. 5.12.

(слайд 4)

Такое ветвление называется полным.

Неполная форма ветвления

В некоторых случаях используется неполная форма команды ветвления (рис. 5.13). Например:

если впереди край
то поворот
кв

(слайд 4)

Неполная команда ветвления имеет следующий формат:

если <условие>
то <серия>
кв

Здесь <серия> выполняется, если <условие> справедливо. слайд 5)

Составим последнюю, сравнительно сложную программу для ГРИС. На этом примере вы увидите, что применение метода последовательной детализации облегчает решение некоторых «головоломных» задач.

Пример задачи с двухшаговой детализацией

Задача 6. Построить орнамент, состоящий из квадратов, расположенных по краю поля. Исходное положение ГРИС - в верхнем левом углу, направление на юг (рис. 5.14).

(слайд 6)

Процедуру, рисующую цепочку квадратов от края до края поля, назовем РЯД. Процедуру, рисующую один квадрат, назовем КВАДРАТ. Сначала напишем основную программу.

программа Орнамент
нач
сделай РЯД
поворот
сделай РЯД
поворот
сделай РЯД
поворот
сделай РЯД
кон (слайд 7)

Теперь напишем процедуры РЯД и КВАДРАТ:

(слайд 8)

В процедуре РЯД в теле цикла содержится неполное ветвление. Структуру такого алгоритма можно назвать так: цикл с вложенным ветвлением.

На рис. 5.15 приведена блок-схема процедуры РЯД.

Составление этой программы потребовало двух шагов детализации алгоритма, которые выполнялись в такой последовательности:

Теперь вам известны все команды управления графическим исполнителем. Их можно разделить на три группы: простые команды; команда обращения к процедуре; структурные команды. К третьей группе относятся команды цикла и ветвления.

(слайд 9)

IV . Закрепление знаний (15 мин.)

Проработка алгоритма «Орнамент»

V . Итог урока (2 мин.)

Оценивание работы учеников на уроке.

VI . Домашнее задание (1 мин.)

§31, вопросы. Готовится к контрольной работе (слайд 10)

Вопросы и задания

1. Что такое пошаговая детализация?
2. Из каких команд могут состоять вспомогательные алгоритмы последнего уровня детализации?
3. Какой формат имеет команда ветвления? Какие действия исполнителя она определяет?
4. Чем отличается полное ветвление от неполного?
5. Путем пошаговой детализации составьте программы управления графическим исполнителем для решения следующих задач:
расчертить все поле горизонтальными пунктирными линиями;
нарисовать квадраты во всех четырех углах поля;
расчертить все поле в клетку со стороной, равной шагу.

>>Информатика: Ветвление и последовательная детализация алгоритма

§ 31. Ветвление и последовательная детализация алгоритма

Основные темы параграфа:

♦ команда ветвления;
♦ неполная форма ветвления;
♦ пример задачи с двухшаговой детализацией.

Команда ветвления

Познакомимся еще с одной командой ГРИС. Она называется командой ветвления. Формат команды ветвления такой:

если <условие>
то <серия 1>
иначе <серия 2>
кв

Служебное слово кв обозначает конец ветвления.

По-прежнему ГРИС может проверять только два условия: «впереди край?» или «впереди не край?». <Серия> - это одна или несколько следующих друг за другом команд. Если <условие> справедливо, то выполняется <серия 1>, в противном случае - <серия 2>. Пример показан на рис. 5.12.

Такое ветвление называется полным.

Неполная форма ветвления

если впереди край
то поворот
кв


если <условие>
то <серия>
кв

Здесь <серия> выполняется, если <условие> справедливо.

Составим последнюю, сравнительно сложную программу для ГРИС. На этом примере вы увидите, что применение метода последовательной детализации облегчает решение некоторых «головоломных» задач.

Пример задачи с двухшаговой детализацией

Задача 6. Построить орнамент, состоящий из квадратов, расположенных по краю поля. Исходное положение ГРИС - в верхнем левом углу, направление на юг (рис. 5.14).

Процедуру, рисующую цепочку квадратов от края до края поля, назовем РЯД. Процедуру, рисующую один квадрат, назовем КВАДРАТ. Сначала напишем основную программу

программа Орнамент
нач
сделай РЯД
поворот
сделай РЯД
поворот
сделай РЯД
поворот
сделай РЯД
кон

Теперь напишем процедуры РЯД и КВАДРАТ:

В процедуре РЯД в теле цикла содержится неполное ветвление. Структуру такого алгоритма можно назвать так: цикл с вложенным ветвлением.

На рис. 5.15 приведена блок-схема процедуры РЯД.

Составление этой программы потребовало двух шагов детализации алгоритма, которые выполнялись в такой последовательности:

Теперь вам известны все команды управления графическим исполнителем. Их можно разделить на три группы: простые команды; команда обращения к процедуре; структурные команды. К третьей группе относятся команды цикла и ветвления.

Коротко о главном

Команда ветвления имеет следующий формат:

если <условие>
то <серия 1>
иначе <серия 2>
кв

Если <условие> истинно, то выполняются команды, составляющие <серию 1>, если ложно, то - <серию 2>.

Неполная команда ветвления имеет следующий формат:

если <условие>
то <серия>
кв

Если условие истинно, то выполняется <серия>, если ложно, то сразу происходит переход к следующей команде алгоритма.

Сложные алгоритмы удобно строить путем пошаговой детализации.

Вопросы и задания

1. Что такое пошаговая детализация?
2. Из каких команд могут состоять вспомогательные алгоритмы последнего уровня детализации?
3. Какой формат имеет команда ветвления? Какие действия исполнителя она определяет?
4. Чем отличается полное ветвление от неполного?
5. Путем пошаговой детализации составьте программы управления графическим исполнителем для решения следующих задач:
расчертить все поле горизонтальными пунктирными линиями;
нарисовать квадраты во всех четырех углах поля;
расчертить все поле в клетку со стороной, равной шагу.

Чему вы должны научиться, изучив главу 5

Освоить программное управление одним из учебных графических исполнителей.
Составлять линейные программы.
Составлять циклические программы.
Составлять программы, содержащие ветвления.
Описывать и использовать вспомогательные алгоритмы (подпрограммы).
Применять метод последовательной детализации.

И. Семакин, Л. Залогова, С. Русаков, Л. Шестакова, Информатика, 9 класс
Отослано читателями из интернет-сайтов

Вся информатика онлайн, список тем по предметам, сборник конспектов по информатике, домашняя работа , вопросы и ответы, рефераты по информатике 9 класс , планы уроков

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Если у вас есть исправления или предложения к данному уроку,

Лучшие статьи по теме