Как настроить смартфоны и ПК. Информационный портал
  • Главная
  • Железо
  • Разложение в ряд фурье последовательности треугольных импульсов. Ряд фурье для периодических сигналов

Разложение в ряд фурье последовательности треугольных импульсов. Ряд фурье для периодических сигналов

Среди разнообразных систем ортогональных функций, которые могут использоваться в качестве базисов для представления радиотехнических сигналов, исключительное место занимают гармонические (синусоидальные и косинусоидальные) функции. Значение гармонических сигналов для радиотехники обусловлено рядом причин.

В частности:

1. Гармонические сигналы инвариантны относительно преобразований, осуществляемых стационарными линейными электрическими цепями. Если такая цепь возбуждена источником гармонических колебаний, то сигнал на выходе цепи остается гармоническим с той же частотой, отличаясь от входного сигнала лишь амплитудой и начальной фазой.

2. Техника генерирования гармонических сигналов относительно проста.

Если какой-либо сигнал представлен в виде суммы гармонических колебаний с различными частотами, то говорят, - что осуществлено спектральное разложение этого сигнала. Отдельные гармонические компоненты сигнала образуют его спектр.

2.1. Периодические сигналы и ряды Фурье

Математической моделью процесса, повторяющегося во времени, является периодический сигнал со следующим свойством:

Здесь Т - период сигнала.

Ставится задача найти спектральное разложение такого сигнала.

Ряд Фурье.

Зададим на отрезке времени рассмотренный в гл. I ортонормированцый базис, образованный гармоническими функциями с кратными частотами;

Любая функция из этого базиса удовлетворяет условию периодичности (2.1). Поэтому, - выполнив ортогональное разложение сигнала в этом базисе, т. е. вычислив коэффициенты

получим спектральное разложение

справедливое на всей бесконечности оси времени.

Ряд вида (2.4) называется рядом Фурье даннрго сигнала. Введем основную частоту последовательности, образующей периодический сигнал. Вычисляя коэффициенты разложения по формуле (2.3), запишем ряд Фурье для периодического сигнала

с коэффициентами

(2.6)

Итак, в общем случае периодический сигнал содержит не зависящую от времени постоянную составляющую и бесконечный набор гармонических колебаний, так называемых гармоник с частотами кратными основной частоте последовательности.

Каждую гармонику можно описать ее амплитудой и начальной фазой Для этого коэффициенты ряда Фурье следует записать в виде

Подставив эти выражения в (2.5), получим другую, - эквивалентную форму ряда Фурье:

которая иногда оказывается удобнее.

Спектральная диаграмма периодического сигнала.

Так принято называть графическое изображение коэффициентов ряда Фурье для конкретного сигнала. Различают амплитудные и фазовые спектральные диаграммы (рис. 2.1).

Здесь по горизонтальной оси в некотором масштабе отложены частоты гармоник, а по вертикальной оси представлены их амплитуды и начальные фазы.

Рис. 2.1. Спектральные диаграммы некоторого периодического сигнала: а - амплитудная; б - фазовая

Особо интересуются амплитудной диаграммой, которая позволяет судить о процентном содержании тех или иных гармоник в спектре периодического сигнала.

Изучим несколько конкретных примеров.

Пример 2.1. Ряд Фурье периодической последовательности прямоугольных видеоимпульсов с известными параметрами , четной относительно точки t = 0.

В радиотехнике отношение называют скважностью последовательности. По формулам (2.6) находим

Окончательную формулу ряда Фурье удобно записать в виде

На рис. 2.2 представлены амплитудные диаграммы рассматриваемой последовательности в двух крайних случаях.

Важно отметить, что последовательность коротких импульсов, следующих друг за другом достаточно редко , обладает богатым спектральным составом.

Рис. 2.2. Амплитудный спектр периодической последовательности ррямоугольных видеоимпульсов: а - при большой скважности; б - при малой скважности

Пример 2.2. Ряд Фурье периодической последовательности импульсов, образованной гармоническим сигналом вида ограниченным на уровне (предполагается, что ).

Введем специальный параметр - угол отсечки , определяемый из соотношения откуда

В соотаетствии с этим величина равна длительности одного импульса, выраженной в угловой мере:

Аналитическая запись импульса, порождающего рассматриваемую последовательность, имеет вид

Постоянная составляющая последовательности

Амплитудный коэффициент первой гармоники

Аналогично вычисляют амплитуды - гармонических составляющих при

Полученные результаты обычно записывают так:

где так называемые функции Берга:

Графики некоторых функций Берга приведены на рис. 2.3.

Рис. 2.3. Графики нескольких первых функций Берга

Комплексная форма ряда Фурье.

Спектральное разложение периодического сигнала можно выполнить и несколько ионному, используя систему базисных функций, состоящую из экспонент с мнимыми показателями:

Легко видеть, что функции этой системы периодичны с периодом ортонормированы на отрезке времени так как

Ряд Фурье произвольного периодического сигнала в данном случае принимает вид

с коэффициентами

Обычно используют следующую форму записи:

Выражение (2.11) представляет собой ряд Фурье в комплексной форме.

Спектр сигнала в соответствии с формулой (2.11) содержит компоненты на отрицательной полуоси частот, причем . В ряде (2.11) слагаемые с положительными и отрицательными частотами объединяются в пары, например: и строят суммы векторов - в сторону увеличения фазового угла, в то время как векторы вращаются в противоположном направлении. Конец результирующего вектора в каждый момент времени определяет текущее значение сигнала.

Такая наглядная интерпретация спектрального разложения периодического сигнала будет использована в последующем параграфе.

2.1. Спектры периодических сигналов

Периодическим сигналом (током или напряжением) называют такой вид воздействия, когда форма сигнала повторяется через некоторый интервал времени T , который называется периодом. Простейшей формой периодического сигнала является гармонический сигнал или синусоида, которая характеризуется амплитудой, периодом и начальной фазой. Все остальные сигналы будут негармоническими или несинусоидальными . Можно показать, и практика это доказывает, что, если входной сигнал источника питания является периодическим, то и все остальные токи и напряжения в каждой ветви (выходные сигналы) также будут периодическими. При этом формы сигналов в разных ветвях будут отличаться друг от друга.

Существует общая методика исследования периодических негармонических сигналов (входных воздействий и их реакций) в электрической цепи, которая основана на разложении сигналов в ряд Фурье. Данная методика состоит в том, что всегда можно подобрать ряд гармонических (т.е. синусоидальных) сигналов с такими амплитудами, частотами и начальными фазами, алгебраическая сумма ординат которых в любой момент времени равна ординате исследуемого несинусоидального сигнала. Так, например, напряжение u на рис. 2.1. можно заменить суммой напряжений и , поскольку в любой момент времени имеет место тождественное равенство: . Каждое из слагаемых представляет собой синусоиду, частота колебания которой связана с периодом T целочисленными соотношениями.

Для рассматриваемого примера имеем период первой гармоники совпадающим с периодом негармонического сигнала T 1 = T , а период второй гармоники в два раза меньшим T 2 = T /2, т.е. мгновенные значения гармоник должны быть записаны в виде:

Здесь амплитуды колебаний гармоник равны между собой ( ), а начальные фазы равны нулю.

Рис. 2.1. Пример сложения первой и второй гармоники

негармонического сигнала

В электротехнике гармоническая составляющая, период которой равен периоду негармонического сигнала, называется первой или основной гармоникой сигнала. Все остальные составляющие называются высшими гармоническими составляющими. Гармоника, частота которой в k раз больше первой гармоники (а период, соответственно, в k раз меньше), называется

k - ой гармоникой. Выделяют также среднее значение функции за период, которое называют нулевой гармоникой. В общем случае ряд Фурье записывают в виде суммы бесконечного числа гармонических составляющих разных частот:

(2.1)

где k - номер гармоники; - угловая частота k - ой гармоники;

ω 1 = ω =2 π / T - угловая частота первой гармоники; - нулевая гармоника.

Для сигналов часто встречающихся форм разложение в ряд Фурье можно найти в специальной литературе. В таблице 2 приведены разложения для восьми форм периодических сигналов. Следует отметить, что приведенные в таблице 2 разложения будут иметь место, если начало системы координат выбраны так, как это указано на рисунках слева; при изменении начала отсчета времени t будут изменяться начальные фазы гармоник, амплитуды гармоник при этом останутся такими же. В зависимости от типа исследуемого сигнала под V следует понимать либо величину, измеряемую в вольтах, если это сигнал напряжения, либо величину, измеряемую в амперах, если это сигнал тока.

Разложение в ряд Фурье периодических функций

Таблица 2

График f (t )

Ряд Фурье функции f (t )

Примечание

k=1,3,5,...

k=1,3,5,...

k=1,3,5,...

k=1,2,3,4,5

k=1,3,5,...

k=1,2,3,4,5

S=1,2,3,4,..

k=1,2,4,6,..

Сигналы 7 и 8 формируются из синусоиды посредством схем, использующих вентильные элементы.

Совокупность гармонических составляющих, образующих сигнал несинусоидальной формы, называется спектром этого негармонического сигнала. Из этого набора гармоник выделяют и различают амплитудный и фазовый спектр. Амплитудным спектром называют набор амплитуд всех гармоник, который обычно представляют диаграммой в виде набора вертикальных линий, длины которых пропорциональны (в выбранном масштабе) амплитудным значениям гармонических составляющих, а место на горизонтальной оси определяется частотой (номером гармоники) данной составляющей. Аналогично рассматривают фазовые спектры как совокупность начальных фаз всех гармоник; их также изображают в масштабе в виде набора вертикальных линий.

Следует заметить, что начальные фазы в электротехнике принято измерять в пределах от –180 0 до +180 0 . Спектры, состоящие из отдельных линий, называют линейчатыми или дискретными . Спектральные линии находятся на расстоянии f друг от друга, где f - частотный интервал, равный частоте первой гармоники f .Таким образом, дискретные спектры периодических сигналов имеют спектральные составляющие с кратными частотами - f , 2f , 3f , 4f , 5f и т.д.

Пример 2.1. Найти амплитудный и фазовый спектр для сигнала прямоугольной формы, когда длительности положительного и отрицательного сигнала равны, а среднее значение функции за период равно нулю

u (t ) = Vпри0<t <T /2

u (t ) = -VприT /2<t <T

Для сигналов простыхчасто используемых форм решение целесообразно находить с помощью таблиц.

Рис. 2.2. Линейчатый амплитудный спектр прямоугольного сигнала

Из разложения в ряд Фурье сигнала прямоугольной формы (см. табл.2 - 1) следует, что гармонический ряд содержит только нечетные гармоники, при этом амплитуды гармоник убывают пропорционально номеру гармоники. Амплитудный линейчатый спектр гармоник представлен на рис. 2.2. При построении принято, что амплитуда первой гармоники (здесь напряжения) равна одному вольту: B; тогда амплитуда третьей гармоники будет равна B, пятой - B и т.д. Начальные фазы всех гармоник сигнала равны нулю, следовательно, фазовый спектр имеет только нулевые значения ординат.

Задача решена.

Пример 2.2. Найти амплитудный и фазовый спектр для напряжения, изменяющегося по закону: при -T /4<t <T /4; u (t ) = 0 при T /4<t <3/4T . Такой сигнал формируется из синусоиды посредством исключения (схемным путем с использованием вентильных элементов) отрицательной части гармонического сигнала.


а)б)

Рис. 2.3. Линейчатый спектр сигнала однополупериодного выпрямления: а)амплитудный; б)фазовый

Для сигнала однополупериодного выпрямления синусоидального напряжения (см. табл.2 - 8) ряд Фурье содержит постоянную составляющую (нулевую гармонику), первую гармонику и далее набор только четных гармоник, амплитуды которых быстро убывают с ростом номера гармоники. Если, например, положить величину V = 100 B, то, умножив каждое слагаемое на общий множитель 2V/π , найдем (2.2)

Амплитудный и фазовый спектры этого сигнала изображены на рис.2.3а,б.

Задача решена.

В соответствии с теорией рядов Фурье точное равенство негармонического сигнала сумме гармоник имеет место только при бесконечно большом числе гармоник. Расчет гармонических составляющих на ЭВМ позволяет анализировать любое число гармоник, которое определяется целью расчета, точностью и формой негармонического воздействия. Если длительность сигнала t независимо от его формы много меньше периода T , то амплитуды гармоник будут убывать медленно, и для более полного описания сигнала приходится учитывать большое число членов ряда. Эту особенность можно проследить для сигналов, представленных в таблице 2 - 5 и 6, при выполнении условия τ <<T . Если негармонический сигнал по форме близок к синусоиде (например, сигналы 2 и 3 в табл.2), то гармоники убывают быстро, и для точного описания сигнала достаточно ограничиться тремя - пятью гармониками ряда.

где , - частота основной гармоники, ;

() – высшие гармоники; (включая ) и – коэффициенты Фурье.

,

Постоянную составляющую (среднее значение) функции удобно вычислять по отдельному выражению полученному из при :

, тогда ,

Очевидно, что если сигнал представляет собой четную функцию времени , то в тригонометрической записи ряда Фурье (1.14) остаются только косинусоидальные составляющие , так как коэффициенты обращаются в нуль. Для сигнала определяемого нечетной функцией времени, наоборот, в нуль обращаются коэффициенты , и ряд содержит синусоидальные составляющие

Часто выражение (1.15) удобно представлять в другой, эквивалентной форме ряда Фурье:

,

где , - амплитуда, - начальная фаза - ой гармоники.

На рис. 1.10 приведены графики, иллюстрирующие представление периодической последовательности прямоугольных импульсов конечным числом слагаемых () ряда Фурье.

Для функции (рис.1.10) разложение имеет вид

Периодическая последовательность прямоугольных импульсов представляется как результат сложения постоянной составляющей и синусоидальных сигналов с частотами , причем период синусоиды с частотой совпадает с периодом последовательности импульсов . Для удобства можно представить в виде .

Совокупность всех гармонических составляющих разложения функции в ряд Фурье называется спектром функции.

Наличие отдельных гармонических составляющих спектра и величины из амплитуд можно наглядно показать с помощью спектральной диаграммы (рис.1.11), у которой горизонтальная ось служит осью частот, а вертикальная – осью амплитуд.

В точках оси частот отображаются амплитуды соответствующих гармонических составляющих разложения функции.

Легко заметить, что график суммы двух первых слагаемых разложения (1.16) воспроизводит форму графика функции очень грубо, только в основных чертах. Учет третьего слагаемого существенно улучшает совпадение суммы с функцией . Таким образом, с увеличением числа учитываемых гармоник точность представления возрастает.

На практике спектральные диаграммы называют более кратко – амплитудный спектр, фазовый спектр. Чаще всего интересуются амплитудным спектром (рис. 1.11). По нему можно оценить процентное содержание гармоник, наличие и уровни отдельных гармонических составляющих спектра.

Пример 1.1. Разложим в ряд Фурье периодическую последовательность прямоугольных видеоимпульсов с известными параметрами (, , ) (рис. 1.12), четную относительно точки :

.

Воспользуемся для представления этого сигнала формой записи ряда Фурье в виде (1.12). Для спектрального представления последовательности прямоугольных импульсов начало отсчета целесообразно брать в середине импульса. Действительно, в этом случае и в разложении останутся только косинусоидальные составляющие, так как интегралы от нечетных функций за период равны нулю bk=0.

По формулам (1.14) находим коэффициенты:

, ,

позволяющие записать ряд Фурье:

,

где - скважность импульсной последовательности.

Для построения спектральных диаграмм при конкретных числовых данных полагаем и вычисляем коэффициенты гармоник. Результаты расчета первых восьми составляющих спектра при , , и 8 сведены в табл. 1.1 и построены спектральные диаграммы на рис.1.13.

Таблица 1.1. Амплитуды спектральных составляющих для периодической последовательности прямоугольных импульсов

Из приведенного примера следует, что с увеличением скважности увеличивается число спектральных составляющих и уменьшаются их амплитуды.

Выбор количества спектральных составляющих зависит от формы сигнала и точности его представления рядом Фурье. Плавное изменение формы сигнала потребует меньше числа гармоник при той же точности представления, чем для скачкообразного сигнала. Для приближенного представления прямоугольных импульсов на практике обычно считают, что достаточно трех - пяти гармоник.

а) Последовательность прямоугольных импульсов .

Рис 2. Последовательность прямоугольных импульсов.

Данный сигнал является четной функцией и для его представления удобно использовать синусно-косинусную форму ряда Фурье:

. (17)

Длительность импульсов и период их следования входят в полученную формулу в виде отношения, которое называется скважностью последовательности импульсов :.

. (18)

Значение постоянного слагаемого ряда с учетом соответствует:

.

Представление последовательности прямоугольных импульсов в виде ряда Фурье имеет вид:

. (19)

График функции носит лепестковый характер. Горизонтальную ось градуируют в номерах гармоник и в частотах.

Рис 3. Представление последовательности прямоугольных импульсов

в виде ряда Фурье.

Ширина лепестков , измеренная в количестве гармоник, равна скважности (при , имеем , если ). Отсюда следует важное свойство спектра последовательности прямоугольных импульсов – в нем отсутствуют гармоники с номерами, кратными скважности . Расстояние по частоте между соседними гармониками равно частоте следования импульсов . Ширина лепестков, измеренная в единицах частоты, равна , т.е. обратно пропорциональна длительности сигнала. Можно сделать вывод: чем короче импульс, тем шире спектр .

б) Пилообразный сигнал.

Рис 4. Пилообразный сигнал.

Пилообразный сигнал в пределах периода описывается линейной функцией

, . (20)

Данный сигнал является нечетной функцией, поэтому его ряд Фурье в синусно-косинусной форме содержит только синусные составляющие:

Ряд Фурье пилообразного сигнала имеет вид:

Для спектров прямоугольного и пилообразного сигналов характерно, что амплитуды гармоник с ростом их номеров убывают пропорционально .

в) Последовательность треугольных импульсов .

Ряд Фурье имеет вид:

Рис 5. Последовательность треугольных импульсов.

Как видим, в отличие от последовательности прямоугольных и пилообразных импульсов, для треугольного периодического сигнала амплитуды гармоник убывают пропорционально второй степени номеров гармоник. Это связано с тем, что скорость убывания спектра зависит от степени гладкости сигнала.

Лекция №3. Преобразование Фурье.

Свойства преобразования Фурье.

Разложению в ряд Фурье могут подвергаться периодические сигналы. При этом они представляются в виде суммы гармонических функций, либо комплексных экспонент с частотами, образующими арифметическую прогрессию. Для того, чтобы такое разложение существовало, фрагмент сигнала длительностью в один период должен удовлетворять условиям Дирихле:

1. Не должно быть разрывов второго рода (с уходящими в бесконечность ветвями функции).

2. Число разрывов первого рода (скачков) должно быть конечным.

    Число экстремумов должно быть конечным.

Ряд Фурье может быть применён для представления не только периодических сигналов, но и сигналов конечной длительности. При этом оговаривается временной интервал, для которого строится ряд Фурье, а в остальные моменты времени сигнал считается равным нулю. Для расчёта коэффициентов ряда такой подход фактически означает периодическое продолжение сигнала за границами рассматриваемого интервала.

Методы Фурье используются для анализа линейных схем или систем: для предсказания реакции (отклика) системы; для определения передаточной функции; для оценки результатов тестов.

Произвольный периодический сигнал выражается через бесконечное число гармоник с возрастающими частотами:

основные члены;

гармонические члены (при n > 1, n – целое число);

коэффициенты гармоник;

постоянный член или составляющая постоянного тока.

Период функции
должен равняться или кратной величине; кроме того функция
должна быть однозначной.Ряд Фурье можно рассматривать как «рецепт приготовления» любого периодического сигнала из синусоидальных составляющих. Чтобы данный ряд имел практическое значение, он должен сходиться, т.е. частичные суммы ряда должны иметь предел.

Процесс создания произвольного периодического сигнала из коэффициентов, описывающих смешивание гармоник, называется синтезом. Обратный процесс вычисления коэффициентов именуется анализом. Вычисление коэффициентов облегчается тем, что среднее от перекрёстных произведений синусоиды на косинусоиду (и наоборот) равно 0.

Введём в пространство Гильберта базис:
Для упрощения будем полагать, что он ортонормированный.

Тогда любую функцию
из пространства Гильберта можно представить через проекции вектора х на оси базиса обобщённым рядом Фурье:

Ряды Фурье особенно полезны при описании произвольных периодических сигналов с конечной энергией каждого периода. Кроме того, они могут использоваться для описания непериодических сигналов, имеющих конечную энергию за конечный интервал. На практике для описания таких сигналов используют интеграл Фурье.

Выводы

1. Для описания периодических сигналов широко применяется ряд Фурье. Для описания непериодических сигналов используют интеграл Фурье.

Заключение

1. Сообщения, сигналы и помехи как векторы (точки) в линейном пространстве можно описать через набор координат в заданном базисе.

2. Для ТЭС наибольший интерес при отображении сигналов представляет n-мерное пространство Евклида
, бесконечное пространство Гильберта
и дискретное пространство Хэмминга2 n . В этих пространствах вводится понятие скалярного произведения двух векторов (x , y ) .

3. Любую непрерывную функцию времени как элемент можно представить обобщенным рядом Фурье по заданному ортонормированному базису.

Литература

Основная:

    Теория электрической связи: Учеб. Для вузов / А.Г. Зюко, Д. Д. Кловский, В.И. Коржик, М. В. Назаров; Под ред. Д. Д. Кловского. – М.: Радио и связь, 1998. – 433 с.

Дополнительная:

    Прокис Дж. Цифровая связь: Пер. с англ. / Под ред. Д.Д. Кловского. – М.: Радио и связь, 2000. – 800 с.

    Бернард Скляр. Цифровая связь. Теоретические основы и практическое применение: Пер. с англ. – М.: Издательский дом «Вильямс», 2003. – 1104 с.

    Сухоруков А.С. Теория электрической связи: Конспект лекций. Часть 1. – М.:МТУСИ, ЦЕНТР ДО, 2002. – 65 с.

    Сухоруков А.С. Теория цифровой связи: Учебное пособие. Часть 2. – М.:МТУСИ, 2008. – 53 с.

Лучшие статьи по теме