Как настроить смартфоны и ПК. Информационный портал
  • Главная
  • Windows Phone
  • Расчет диэлектрической антенны. Выбор конструкции антенны и антенной решетки

Расчет диэлектрической антенны. Выбор конструкции антенны и антенной решетки

Введение

В настоящее время в телекоммуникационных системах большой популярностью пользуется спутниковая система вещания. Эта популярность стала настолько большой, что около Земли уже практически нет свободного места для других спутников. Для каждой страны выделено место и строго определено количество спутников, которое она может вывести на орбиту. Спутниковая система вещания – это такая телекоммуникационная система, связь между двумя наземными станциями которой происходит с помощью ретранслятора, находящегося на искусственном спутнике Земли. Данные системы работают на сверхвысоких частотах, обеспечивая связь на больших расстояниях. Без использования спутникового ретранслятора вести вещание в диапазоне СВЧ можно лишь в пределах прямой видимости либо с использованием многочисленных наземных ретрансляторов.

Объяснить большую популярность можно тем, что иногда запустить на орбиту спутник с ретрансляционной аппаратурой проще, быстрее и дешевле, чем проложить наземную линию станций. Также спутниковая система вещания охватывает большие площади обслуживания, чем наземная.

Все современные системы связи основаны на распространении электромагнитных волн в открытом пространстве или направляющих структурах. Для излучения и приема электромагнитных волн используют антенные устройства, соединяемые с приемно-передающей аппаратурой посредством фидеров. Антенны предназначены для согласования искусственной системы канализаций электромагнитных волн с окружающей естественной средой их распространения, т.е. улучшения качества связи без дополнительных затрат энергии. Для уменьшения мощности передатчика на передающей стороне антенна должна излучать ЭМВ в направлении потребителя. На приемной стороне антенна должна обеспечивать повышенную чувствительность к приходящим от передатчика электромагнитным волнам. Это все достигается применением высоконаправленных антенн тем самым, повышая достоверность передачи информации без повышения излучаемой мощности.


Сравнительная характеристика антенн

Типы антенн Основные свойства
Зеркальные: - осесимметричные однозеркальные; - осесимметричные двухзеркальные; - осенесимметричные (офсетные); - рупорно-параболические; - перископические; Могут обеспечить высокую направленность, широкополосны, имеют сравнительно простую конструкцию. На высоких частотах требования к точности изготовления очень жесткие. Круговая поляризация обеспечивается конструкцией облучателя или введением дополнительных элементов, что усложнит и утяжелит конструкцию.
Рупорные: - Е -секториальные; - Н -секториальные; - пирамидальные; - конические; Являются частью питающего волновода. Широкополосные устройства, с коэффициентом полезного действия около 100%. Но для достижения высокого КНД необходимо увеличивать ширину раскрыва рупора, а этим ухудшается его согласование с волноводом, так что нужно увеличивать длину рупора пропорционально квадрату увеличения его поперечных размеров. Чтобы обеспечить круговую поляризацию, необходимо вводить дополнительные элементы в раствор рупора, либо применять пару рупоров с взаимным смещением фаз 90 0 . Формируют ДН от 10 до 140 градусов.
Линзовые: - замедляющие; - ускоряющие; Также обеспечивают высокую направленность излучения/приема, однако по сравнению с зеркальными менее требовательны к точности изготовления поверхности, имеют 3 степени свободы (2 поверхности преломления и закон распределения коэффициента преломления) для придания антенне дополнительных свойств (широкоугольное качание диаграммы направленности, требуемое распределения амплитуды и фазы поля по раскрыву). Также отсутствует затенение раскрыва облучателем. Существенными недостатками являются большая масса, узкополосность и потери в веществе линзы.
Спиральные: - цилиндрические; - конические; - плоские; Основное преимущество – легкость обеспечения поляризации ЭМВ, близкой к круговой без введения дополнительных элементов, простота конструкции. Однако для получения высоконаправленной антенны её длина должна быть недопустимо большой (не выполняется условие механической прочности).
- плоские диэлектрические; - плоские ребристые; - плоские модулированные; - дисковые диэлектрические; - дисковые ребристые; - стержневые Поперечные размеры незначительны, хорошие диапазонными свойствами по диаграмме направленности и входному сопротивлению. Технология их изготовления достаточно проста. Большой уровень боковых лепестков, КПД – низкий (за счет поглощения в диэлектрике или переотражения от металлических рёбер).Стержневые. Просты в изготовлении. Обладают малыми поперечными размерами, хорошими диапазонными свойствами по ДН и входному сопротивлению. Недостаток: большой по сравнению с антеннами других типов уровень боковых лепестков, маленькое значение КПД (т.к. происходит поглощение в диэлектрике).
Волноводно-щелевые: Ввиду отсутствия выступающих частей излучающая поверхность может быть совмещена с внешними обводами корпуса летательного аппарата; распределение поля в раскрыве может выбираться в широких пределах за счет изменения связи излучателя с волноводом; имеет сравнительно простое возбуждающее устройство; проста в эксплуатации; имеет ограниченный диапазон свойств;

заданного диапазона частот

Исходные данные варианта 0412

Тема 04. Антенная синфазная решетка диэлектрических стержневых излучателей для приемной VSАТ станции.

Выбор конструкции антенны и антенной решетки. Принцип работы диэлектрической стержневой антенны

Диэлектрическая стержневая антенна относится к антеннам бегущей волны с замедленной фазовой скоростью (υ ф <с). Они применяются на границе сантиметрового и дециметрового диапазонов волн в полосе частот от 2 до10 Ггц

Наиболее типичная схема диэлектрической стержневой антенны приведена на рисунке.

Рис. 1. Диэлектрическая стержневая антенна:

1 – диэлектиричекий стержень, 2 – возбуждающее устройство,

3 – возбудитель, 4 – питающий фидер

Наиболее часто используются цилиндрические и конические стержни. Наряду со стержнями могут использоваться диэлектрические трубки. Наиболее часто используют стержни с круглым поперечным сечением и это поперечное сечение, как правило, сужается к концу антенны, что приводит к некоторому повышению КНД и лучшему согласованию антенны с окружающей средой.

Электромагнитная волна, возбужденная в обойме, распространяется внутри стержня или трубки, отражаясь от их стенок, как и в волноводе. Однако, в отличие от волновода, здесь отражение неполное, частично энергия во всех точках поверхности стержня выходит наружу и излучается. Благодаря этому в стержне устанавливается бегущая волна, и сам он может рассматриваться как антенна бегущей волны. Диаграмма направленности стержневой антенны зависит от длины стержня l, площади поперечного сечения его в начале S 1 и конце S 2 , от диэлектрической ε и магнитной m проницаемостей стержня.

С точки зрения распространения радиоволн стержни являются диэлектрическими волноводами, в которых могут распространяться волны различных типов. Наиболее благоприятным для излучения энергии является тип волны HЕ 11 , конфигурация электрического поля для этого типа волн показана на рисунке:


Распределение поля волны HE 11

Рис.2

Фазовая скорость распространения волн вдоль стержня зависит от диэлектрической проницаемости материала, а также от соотношения между диаметром стержня и длиной волны. От этих же параметров зависит соотношение между величиной мощности переносимой внутри стержня и вне его. Так, при малом диаметре стержня фазовая скорость близка к скорости света в свободном пространстве. При этом большая часть всей мощности проходит вне стержня и его роль незначительна. Однако с диаметром стержня равным l 0 и больше, фазовая скорость волн заметно понижается и приближается к значению, соответствующему распространению волн в неограниченном диэлектрике. При увеличении диаметра увеличивается доля мощности, концентрирующаяся в стержне.

Однако увеличение сечения стержня создает условия для возбуждения волн высших типов, что нежелательно. Существует некоторый оптимальный диаметр, при котором для заданной длины получается максимальный КНД.

Помимо антенн со сплошными диэлектрическими стержнями, применяют антенны с полыми стержнями или диэлектрическими трубами. В отличие от сплошного диэлектрического стержня для диэлектрической трубы характерен сравнительно малый уровень боковых лепестков диаграммы направленности (около 10% от уровня основного лепестка).

Выбор материала диэлектрика

Для изготовления излучателя выберем полистирол, параметры которого имеют следующие значения:

Диэлектрическая проницаемость;

Тангенс диэлектрических потерь.

Определение диаметра стержня

Чтобы обеспечить преобразование большей части энергии в поверхностную волну, стержень у возбудителя делают толстым, а затем плавно уменьшают, чтобы приблизить фазовую скорость х ф к скорости света. Рекомендуется выполнять стержни диаметром:

При МГц м, значит:

Расчет коэффициента замедления

По выбранному значению () и по графику из методической литературы (2, стр 41) находим коэффициент замедления, он равен:

При 0.83 1.205

Расчет длины стержня антенны

Длина диэлектрического стержня выбирается исходя из заданной ширины диаграммы направленности антенны.

При =40…45 соответственно L1.588…1.255 м.

С другой стороны, максимальный коэффициент направленного действия антенны достигается при длине стержня, равной

Отсюда L=1.723м.

Из этих выражений выбираем оптимальную длину стержня: L м

Расчет КНД антенны

Коэффициент направленного действия определяется по формуле:

Расчет диаграмм направленности

При расчете диаграммы направленности конической диэлектрической антенны используют выражения для расчёта диаграммы направленности цилиндрической антенны среднего диаметра, при этом предполагается, что волной в стержне, бегущей с постоянным замедлением вдоль его длины и отражением от конца стержня пренебрегают, тогда выражение для расчета диаграммы направленности получается как у линейной антенны с непрерывным распределением излучающих элементов, в которых распределение токов по длине соответствует закону бегущей волны.

где - волновое число, - угол между осью антенны и направлением в точку наблюдения.


Рис 2.


Рис 3.

диэлектрической стержневой антенны в полярной системе координат

диэлектрический антенна стержень

Расчет согласующего устройства

Для передачи с наименьшими потерями энергии в коаксиальном кабеле, следует создать режим бегущей волны. Чтобы получить режим бегущей волны, надо обеспечить равенство нагрузочного сопротивления и волнового сопротивления линии т.е. согласовать линию с нагрузкой. Однако такое согласование, при котором коэффициент бегущей волны (КБВ = 1) получить трудно. Практически уже хорошо, если КБВ = 0,8 ч 0,9. При этом ухудшение работы линии незначительно.

Для согласования волнового сопротивления коаксиального кабеля W ф с входным сопротивлением антенны необходимо найти нужную величину действующей высоты возбудителя (штыря) h д, при которой R вх =W.

Расстояние от закорачивающей стенки до оси штыря z 1 , выбирается равным в /4, где в - длина волны в волноводе с волной Н 11 при наличии диэлектрика

а волновое сопротивление круглого волновода, заполненного диэлектриком для волны H 11 , равно

417.034 Ом, отсюда 0.781 м и z1 0.195 м

Тогда действующая высота штыря может быть найдена из выражения:

Возьмем для расчета коаксиальный кабель с внешним проводником из круглых проволок в ПЭ оболочке РК 50-33-17 с максимально допустимой мощностью на частотах 100 МГц и 1 ГГц 5 кВт и 0.9 кВт соответственно. Его волновое сопротивления 50 Ом, то 0.059 м

Геометрическая высота находится из соотношения:

Длина круглого волновода от вибратора до его раскрыва z 2 выбирается из условий обеспечения необходимого затухания высших типов волн. Обычно считают, что ослабление поля ближайшей высшей волны Е 01 должно быть не менее 10…20 дБ (100 раз по мощности). Если принять величину ослабления равную 20 дБ, тогда

При расчетах оказалось, что под корнем отрицательное число, это означает, что волна находится в докритическом режиме и не затухает. В этом случае надо исключить возможность ее возбуждения, для этого длину возбудителя примем 0.75 0.206. При этом закритическое затухание необходимо обеспечить для следующей волны высшего типа с, тогда м

Для согласования излучателя с питающим фидером следует применить четвертьволновый согласующий трансформатор с волновым сопротивлением равным

Расчет максимального напряжения в питающем фидере

При выборе коаксиального кабеля следует учесть не только коэффициент затухания на максимальной рабочей частоте, но и на надёжность его на электрический пробой. С этой целью производится его проверка по допустимости максимального рабочего напряжения с максимально допустимым напряжением для данной марки кабеля.

Для проверки надежности работы с точки зрения электрического пробоя коаксиального кабеля определим

КБВ можно принять равным (0.5…0.7), примем КБВ = 0.5, тогда

Напряжение короны коаксиального кабеля РК 50-33-17 кВ, то 4250 В, значит условие выполняется.

Расчет КПД фидерной линии

Длина фидерной линии выбирается из конструктивных соображений (10…100 м), примем l = 10 м

Коэффициент затухания фидера, дБ/м, находится из справочных значений

где 0.03 дБ на частоте 100 МГц, значит 0.062 дБ/м.

Значение коэффициента затухания подставляются в Нп/м из формулы

значит = 0.007

Модуль коэффициента отражения от конца цилиндрического стержня может быть оценен по формуле

Для конического стержня коэффициент отражения значительно меньше (обычно в 2…5 раза), примем 0.068. Тогда расчетное КПД по приведенной выше формуле составляет 0.868.

Расчет КПД антенно-фидерного устройства

Расчет производится по формуле:

КПД антенны определяется в основном потерями в диэлектрике и составляют примерно 0.5…0.7. Примем 0.7, тогда 0.521

Сделаем еще несколько замечаний, относящихся к КПД диэлектрической стержневой антенны.

Во-первых, отметим, что диэлектрические стержневые антенны сами по себе не имеют резонансных элементов и в этом смысле являются широкополосными (если только коэффициент замедления не выходит за пределы допустимых значений). Ширина рабочей полосы частот в диэлектрической антенне обусловливается резонансными свойствами возбуждающего элемента, т, е. вибратора в металлическом волноводе.

Во-вторых, диэлектрик антенны должен иметь малые потери, в противном случае КПД будет низок. Кроме того, возбуждающий вибратор в металлическом волноводе должен располагаться вне диэлектрика. Это приводит к повышению КПД вследствие того, что возбуждаемые вибратором высшие типы волн затухают вблизи него и не проникают в диэлектрическую среду.

Конструкция антенны

Конструкция антенны соответствует Рис 1, диэлектрический стержень изготавливается конусообразный, выбираются рассчитанные геометрические размеры и принятые для расчета материалы.


МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

КАФЕДРА РАДИОУПРАВЛЕНИЯ И СВЯЗИ

курсовой проект

по дисциплине «Антенны и устройства СВЧ»

Выполнил: студент гр. 315 Климцов П.В.

Руководитель: ст. преподаватель Рендакова В.Я.

Рязань 2006


Задание на курсовой проект

Введение

1.Теоретическая часть(диелектрическая стержневая антенна)

2. Расчетная часть

2.1 Расчет одиночного излучателя

2.2 Расчет антенной решетки

2.3 Расчет конструкции

Заключение

Библиографический список

ВВЕДЕНИЕ

Антенно-фидерное устройство, обеспечивающее излучение и прием, является неотъемлемой частью любой радиотехнической системы.

В настоящее время существует большое многообразие различных антенн, в данной курсовой работе требуется спроектировать решетку диэлектрических антенн, которая собрана из стержневых диэлектрических антенн.

1. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Диэлектрические стержневые антенны относятся к антеннам бегущей волны с замедленной фазовой скоростью().

Основными элементами стержневых диэлектрических антенн являются волновод 1, обойма 2, диэлектрический стержень 3(рис.1). Применяются стержни прямоугольного и круглого сечения.

Наряду со стержнями применяются диэлектрические трубки.

Поперечное сечение стержней, как правило, сужается от обоймы к свободному концу, а трубок – чаще остается постоянным по всей длине. Коническая форма стержня обусловлена тем, что в этом случае антенна хорошо согласуется со свободным пространством.

Из-за конструктивных и технологических преимуществ больше распространены трубки и стержни круглого сечения. Внутренняя полость металлической обоймы возбуждается при помощи коаксиального фидера или волновода и сама является, по сути, отрезком волновода, в свою очередь обойма возбуждает диэлектрический стержень, который является по сути своей диэлектрическим волноводом.

Стержневые диэлектрические антенны применяются на границе сантиметрового и дециметрового диапазонов.

Из теории диэлектрических волноводов известно, что в них могут распространяться как симметричные так и не симметричные волны. Симметричные волны, как правило, не используются в стержневых диэлектрических антеннах, т.к. вследствие осевой симметрии они не излучают вдоль оси стержня. Наиболее благоприятным для излучения энергии является тип волны , конфигурация электрического поля для этого типа волны изображена на рис.2:

С помощью одного стержня удается сформировать диаграмму направленности (ДН) шириной не меньше 20-25 градусов. В случае если данная ширина ДН не удовлетворяет предъявленным требованиям, то используют решетку из диэлектрических излучателей, в которой стержневые диэлектрические антенны являются отдельными излучателями.

Преимуществом диэлектрических антенн является малые поперечные размеры и простота конструкции. Диэлектрические антенны являются антеннами бегущей волны, поэтому сужение ДН таких антенн происходит за счет увеличения продольных, а не поперечных размеров. Это особенность позволяет размещать не выступающие диэлектрические антенны на гладкой поверхности фюзеляжей летательных аппаратов, что положительно сказывается на аэродинамических качествах.

Недостаток в том, что в диэлектрике существуют потери, которые ограничивают излучение больших мощностей.


2.РАСЧЕТНАЯ ЧАСТЬ

2.1 РАСЧЕТ ОДНОГО ИЗЛУЧАТЕЛЯ

Выбор волновода:

Рабочая длина волны определяется формулой

где м/с – скорость света в вакууме, Гц – рабочая частота

Волна с такой частотой может распространяться в круглом волноводе типа С-120, внутренним диаметром 1,745 см.

Выбор диэлектрика: Типичным недостатком диэлектрической антенны являются потери в диэлектрике, что является причиной уменьшения КПД и появления амплитудных искажений. Поэтому нужно использовать диэлектрик с малым тангенсом угла потерь на рабочей частоте, .

Таким требованием удовлетворяет полистирол ().

Расчет геометрии стержня:

Так как техническим заданием определен коэффициент усиления антенны, то он будет определять геометрические размеры.

По определению коэффициент усиления антенны равен произведению КПД на КНД:

Для простоты расчета КПД принимается равным 100%, т.е.:

Зависимость КНД антенны от её длины определяется следующим соотношением:

где [разы].

см

Для определения диаметра стержня необходимо найти коэффициент замедления – отношение скорости света в вакууме к фазовой скорости:


Из приведенного на рисунке 2 графика следует, что для данного коэффициента замедления отношение т.е.

.

см.

По определению

, где d max – диаметр возбудителя. Откуда

Расчет ДН излучателя:

При расчете ДН антенны предполагают, что волна, отраженная от конца стержня пренебрежимо мала, а также волна, распространяющаяся вдоль стержня, является волной с замедленной фазовой скоростью, которая не изменяется по длине стержня.

Выражение для ДН с учетом сказанного имеет вид:

где - угол между направлением в точку наблюдения и осью стержня,

Лямбда функция.

Это выражение состоит из трёх множителей.

Первый множитель характеризует влияние на ДН одиночного элемента тока. Второй множитель - влияние поперечного размера стержня. Последний множитель описывает влияние продольного размера стержня.

Множитель на ДН в плоскости Е не оказывает малое влияние на ее форму. В плоскости Н этот множитель отсутствует, поэтому в ДН несколько выше уровень боковых лепестков чем в плоскости Е. Множитель при можно не учитывать.

Множитель оказывает определяющее влияние на ДН. Поскольку излучение антенны связано с потерей энергии в стержне, следует предположить затухание волны, которое можно выразить комплексным коэффициентом распространения , где - коэффициент фазы, - коэффициент затухания.

Коэффициент затухания, характеризующий убывание поля вдоль стержня из-за этих потерь, определяется выражением:


,

где R – фактор затухания, зависящий от типа волны, , и диаметра стержня. Зависимость фактора затухания для волны Н 11 от относительного диаметра стержня приведена на рис.3.

По графику находим, что для отношения и для R=0.65.

Тогда коэффициент затухания равен:

Коэффициент фазы определяется соотношением . .

где .

Так как , то мнимой частью данного выражения можно пренебречь.

Окончательно выражение для ДН имеет вид:

для плоскости Е

;

для плоскости Н

.

Диаграммы направленности (в декартовой системе координат) изображены на рис. 4(плоск.Е) и рис.5(плоск.Н).


ДН в полярной системе координат:


Ширина ДН на нулевом уровне определяется соотношением:

Ширина ДН на уровне половинной мощности определяется выражением:


2.2 РАСЧЕТ АНТЕННОЙ РЕШЕТКИ

Антенная решетка применяется в том случае, когда требуется сузить ДН, повысить КНД и уменьшит уровень боковых лепестков. ДН решетки можно представить как произведение , где – множитель одиночного излучателя; ­– множитель решетки.

В данной курсовой работе требуется спроектировать антенную решетку, которая представляет собой антенную решетку, которая схематически изображена на рис.8:

Здесь N 1 – число элементов в строке, N 2 – число элементов в столбце, d 1 – расстояние между элементами (излучателями) в строке, d 2 – расстояние между элементами в столбце.

Так как согласно заданию решетка синфазная, то расстояние между элементами следует выбирать оптимальным, т.к. в случае если это расстояние окажется больше, т.к. начнут появляться дифракционные лепестки.

ДН в плоскости Н согласно технического задания должна быть в 4 раза шире ДН в плоскости Е. Эту проблему можно было бы решить расположив элементы в пропорции 4N 1 =N 2 .Однако общее число излучателей, равное N общ =N 1 N 2 =50, также задано и накладывает дополнительные ограничения. Чтобы найти число излучателей в строках и столбцах нужно решить систему уравнений:

Решив ее получим не целочисленные значения, поэтому соотношение ДН в разных плоскостях можно соблюсти изменяя расстояние между излучателям в плоскости Н(расстояние между излучателями в плоскости Е – оптимальное).

Учитывая вышесказанное, принимается N 1 =5, N 2 =10.

Оптимальное расстояние между излучателями определяется формулой:

Подставив в нее значения, получим:

см.

Ширина ДН решетки в плоскости Е определяется выражением

Соответственно для ширины ДН в плоскости Е получим:

Расстояние между излучателями в плоскости Н найдем из системы уравнений:

Выразив отсюда d 1 получим:

см.

Множитель решетки при синфазном питании элементов имеет вид:

,

Тогда для плоскости Н он запишется так:


Для плоскости Е:

Как было сказано ранее, ДН антенны является произведением ДН одного излучателя на ДН множителя решетки.

Соответственно ДН антенны в плоскости Н:

В плоскости Е


Уровень боковых лепестков для решетки с оптимальным расстоянием между излучателями характеризуется следующим соотношением:

Для числа излучателей >10 КНД определяется по формуле:

где D 1 – КНД одного излучателя.

Коэффициент усиления по определению – произведение КНД на КПД:

КПД определяется следующим выражением:

Коэффициент усиления с учетом потерь в диэлектрике:

2.3 КОНСТРУКТИВНЫЙ РАСЧЕТ

Схема питания строки излучателей представлена на рис. 10

Направленный ответвитель распределяет энергию, поступающую от генератора, между излучателями в соответствии с выбранным соотношением мощности затем, через Н – тройники и плавные переходы от прямоугольного волновода к круглому, энергия поступает непосредственно к элементам решетки – диэлектрическим антеннам. Соединив таким образом излучатели в строке получим столбец из 5 волноводов, схема питания которого изображена на рис. 11.


Излучатель представляет собой диэлектрический стержень, вставленный в круглый волновод. В круглом волноводе возбуждается волна с помощью плавного перехода от прямоугольного волновода к круглому. Длину перехода круглого волновода в волновод заполненный диэлектриком стержня выберем . Чертеж излучателя приведен на рис.12:

Для волны длиной 2.5 см используется прямоугольный волновод марки R120. Размеры волновода , . Чтобы от перехода прямоугольный – круглый волновод не было отражения длина его должна быть не меньше длины волны. Конструкция перехода приведена на рис.13.

ЗАКЛЮЧЕНИЕ

В данной курсовой работе спроектирована антенная решетка диэлектрических стержневых антенн, удовлетворяющая заданным в техническом задании параметрам.


БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1) Антенны и устройства СВЧ. Проектирование ФАР: Учеб. пособие для ВУЗов / Под ред. Д.И. Воскресенского – М.: Радио и связь, 1994.

2) Антенны и устройства СВЧ. Проектирование ФАР: Учеб. пособие для ВУЗов / Под ред. Д.И. Воскресенского – М.: Советское радио, 1972.

3) Антенно-фидерные устройства. Драбкин А.Л. и др. – М.: Советское радио,1974.

4) Сазонов Д.М. Антенны и устройства СВЧ: Учеб. для радиотехнич. спец. ВУЗов. – М.: Высш. шк., 1988.

5) Жук М.С., Молочков Ю.Б. Проектирование антенно-фидерных устойств. – М.: Энергия, 1966.

Диэлектрическая антенна

антенна в виде отрезка диэлектрического стержня, возбуждённого радиоволноводом или штырём коаксиального кабеля. В стержне Д. а. (рис. ) возбуждается волна особой структуры (так называемая поверхностная волна), распространяющаяся вдоль его оси, и, как следствие, на поверхности стержня возникают тангенциальные (касательные к поверхности) составляющие электрического и магнитного полей, фаза которых меняется по закону бегущей волны. По существу Д. а. представляет собой бегущей волны антенну (См. Бегущей волны антенна), состоящую из элементарных электрических и магнитных вибраторов. Её максимум излучения, как и всякой антенны бегущей волны, совпадает с осью стержня. Характер излучения Д. а. зависит от фазовой скорости (См. Фазовая скорость) распространения поверхностной волны. С увеличением диаметра стержня и диэлектрической проницаемости материала, из которого он выполнен, фазовая скорость уменьшается. Чем меньше фазовая скорость, тем больше длина стержня, при которой коэффициент направленного действия (КНД) антенны максимален (так называемая оптимальная длина), и больше максимально возможный КНД. По мере уменьшения фазовой скорости или приближения её к скорости света в окружающей среде (воздухе) диэлектрический стержень теряет волноводные свойства. Это приводит к резкому спаданию поля к концу стержня, увеличению излучения в окружающую Д. а. среду непосредственно из открытого конца радиоволновода и уменьшению эффективности Д. а. Диаметр и материал стержня обычно выбирают так, чтобы фазовая скорость была не очень близкой к скорости света (не более 0,95-0,96 скорости света). При такой фазовой скорости оптимальная длина равна 12 длинам излучаемой волны и КНД равен Диэлектрическая антенна 100. Стержень Д. а. изготовляют из диэлектрических материалов с малым затуханием электромагнитных волн в них - полистирол, фторопласт и др. Д. а. применяют преимущественно на летательных аппаратах в радиоустройствах, работающих на сантиметровых и дециметровых волнах.

О. Н. Терёшин, Г. К. Галимов.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Диэлектрическая антенна" в других словарях:

    Антенна в виде сплошного или трубчатого диэлектрич. (полистирол, полиэтилен) стержня, возбуждаемого радиоволноводом или коаксиальным кабелем (см. рис.). По существу Д. а. представляет собой бегущей волны антенну и применяется преим. в синтезир.… … Большой энциклопедический политехнический словарь

    Отрезок диэлектрического стержня, излучающий радиоволны при возбуждении его волноводом или коаксиальной линией. Используется преимущественно на летательных аппаратах в радиоустройствах, работающих на сантиметровых и дециметровых волнах … Большой Энциклопедический словарь

    Отрезок диэлектрического стержня, излучающий радиоволны при возбуждении его волноводом или коаксиальной линией. Используется преимущественно на летательных аппаратах в радиоустройствах, работающих на сантиметровых и дециметровых волнах. * * *… … Энциклопедический словарь

    диэлектрическая антенна - dielektrinė antena statusas T sritis radioelektronika atitikmenys: angl. dielectric antenna vok. dielektrische Antenne, f rus. диэлектрическая антенна, f pranc. antenne diélectrique, f … Radioelektronikos terminų žodynas

    Устройство для излучения и приёма радиоволн. Передающая А. преобразует энергию электромагнитных колебаний высокой частоты, сосредоточенную в выходных колебательных цепях радиопередатчика, в энергию излучаемых радиоволн. Преобразование… …

    Антенна - (осн. типы): симметричный (а) и несимметричный (б) вибраторы; диполь Надененко (в); волновой канал (г); рамочная (д); логопериодическая вибраторная (е); рупорная (ж); линзовая (з); волноводная щелевая (и); диэлектрическая (к). АНТЕННА (от… … Иллюстрированный энциклопедический словарь

    Направленная антенна, вдоль геометрической оси которой распространяется бегущая волна (См. Бегущие волны) электромагнитных колебаний. Б. в. а. выполняют либо из дискретных излучателей, расположенных вдоль оси на некотором расстоянии друг… … Большая советская энциклопедия

    Антенна радиотелескопа РТ 7.5 МГТУ им. Баумана. РФ, Московская область, Дмитровский район. Диаметр зеркала 7,5 метра, рабочий диапазон длин волн: 1 4 мм Антенна устройство для излучения и приёма радиоволн (разновидности электромагнитного… … Википедия

    - (по имени французского физика 17 в. Н. Кассегрена, N. Cassegrain) зеркальная антенна (См. Зеркальные антенны), состоящая из облучателя, главного и вспомогательных зеркальных отражателей электромагнитной энергии (зеркал), собранных по… … Большая советская энциклопедия

    Антенна, в к рой сферич. или цилиндрич. эл. магн. волна, создаваемая первичным излучателем (вибратор, открытый конец радиоволновода, рупор и т. п.), преобразуется в плоскую волну (или наоборот) с помощью преломляющих сред. Физический… … Физическая энциклопедия

Диэлектрические стержневые антенны относятся к антеннам бегущей волны с замедленной фазовой скоростью. Они применяются на границе сантиметрового и дециметрового диапазонов волн в полосе частот от 2 до 10 Ггц.

На рис. 6 приведена наиболее типичная схема диэлектрической стержневой антенны. Она представляет собой диэлектрический стержень1, возбуждаемый круглым волноводом 2 с возбудителем 3 и питающим фидером 4. В зависимости от требований, предъявляемых к антенне, поперечное сечение стержня, возбудитель и его питание могут изменяться. Наиболее часто используются цилиндрические и конические стержни.

Диэлектрическая стержневые антенна: 1-диэлектрический стержень; 2-возбуждающее устройство; 3-возбудитель; 4-питающий фидер.

Рис. 6

Спиральные антенны.

Спиральные антенны относятся к классу антенн бегущей волны. Они представляют собой металлическую спираль, питаемую коаксиальной линией. Существуют цилиндрические, конические и плоские спиральные антенны.

Примеры практического использования спиральных антенн приведены на фото. На первой фотографии показана часть советской космической станции «Венера» с установленной на ней логарифмической двухзаходной спиральной антенной, намотанной из плоской металлической ленты на диэлектрическом каркасе. На второй фотографии показана антенна наземной станции космической связи, представляющая собой решётку из четырёх цилиндрических спиральных антенн.

Лучшие статьи по теме