Как настроить смартфоны и ПК. Информационный портал
  • Главная
  • Windows 7, XP
  • Простой преобразователь частоты. Частотный преобразователь для электродвигателя и принцип работы

Простой преобразователь частоты. Частотный преобразователь для электродвигателя и принцип работы

Сегодня асинхронные двигатели являются основными тяговыми приводами для станков, конвейеров, и прочих промышленных агрегатов.

Для того чтобы моторы могли нормально функционировать, им нужен частотный преобразователь. Он позволяет оптимизировать работу агрегата и продлить срок его службы. Покупать устройство необязательно - частотник для трехфазного электродвигателя можно сделать своими руками.

Назначение частотного преобразователя

Асинхронный электродвигатель может работать и без частотника, но в этом случае у него будет постоянная скорость без возможности регулировки. К тому же отсутствие частотного преобразователя приведет к возрастанию пускового тока в 5−7 раз от номинального, что вызовет увеличение ударных нагрузок, повысит потери электроэнергии и приведет к существенному сокращению срока службы агрегата.

Для нивелирования всех вышеперечисленных негативных факторов были изобретены преобразователи частоты для асинхронных двигателей трехфазного и однофазного тока.

Частотник дает возможность в широких пределах регулировать скорость электродвигателя, обеспечивает плавный пуск, позволяет регулировать как скорость запуска, так и скорость торможения, подключать трехфазный мотор к однофазной сети и многое другое. Все эти функции зависят от микроконтроллера, на котором он построен, и могут отличаться у разных моделей.

Принцип работы устройства

Переменный ток поступает из сети на диодный мост, где он выпрямляется и попадает на батарею сглаживающих конденсаторов, где окончательно превращается в постоянный ток, который поступает на стоки мощных IGBT транзисторов, управляемых главным контроллером. Истоки транзисторов, в свою очередь, подключены к двигателю.

Вот упрощенная схема преобразователя частоты для трехфазного асинхронного двигателя.

Теперь рассмотрим, что происходит с транзисторами и как они работают.

Полевой транзистор (он же ключ, мосфет и пр.) - это электронный выключатель, принцип его действия основан на возникновении проводимости между двумя выводами (сток и исток) мосфета, при появлении на управляющем выводе (затворе) напряжения, превышающего напряжение стока.

В отличие от обычных реле, ключи работают на очень высоких частотах (от нескольких герц до сотен килогерц) так что заменить их на реле не получится.

С помощью этих быстродействующих переключателей микроконтроллер получает возможность управления силовыми цепями.

К контроллеру, кроме мосфетов, также подключены датчики тока, органы управления частотником, и другая периферия.

При работе частотного преобразователя микроконтроллер измеряет потребляемую мощность и, в соответствии с установленными на панели управления параметрами, изменяет длительность и частоту периодов, когда транзистор открыт (включен) или закрыт (выключен), тем самым изменяя или поддерживая скорость вращения электродвигателя.

Самостоятельное изготовление прибора

Несмотря на множество агрегатов заводского производства, люди делают преобразователи частоты самостоятельно, благо на сегодняшний день все его компоненты можно купить в любом радиомагазине или заказать из Китая. Такой частотник обойдется вам значительно дешевле покупного, к тому же вы не будете сомневаться в качестве его сборки и надежности.

Делаем трехфазный преобразователь

Собирать наш преобразователь будем на мосфетах G4PH50UD, которыми будет управлять контроллер PIC16F628A посредством оптодрайверов HCPL3120.

Собранный частотник при подключении в однофазную сеть 220 В будет иметь на выходе три полноценные фазы 220 В, со сдвигом 120°, и мощность 3 КВт.

Схема частотника выглядит так:

Так как частотный преобразователь состоит из частей, работающих как на высоком (силовая часть), так и на низком (управление) напряжении, то логично будет разбить его на три платы (основная плата, плата управления, и низковольтный блок питания для неё) для исключения возможности пробоя между дорожками с высоким и низким напряжением и выхода устройства из строя.

Вот так выглядит разводка платы управления:

Для питания платы управления можно использовать любой блок питания на 24 В, с пульсациями не более 1 В в размахе, с задержкой прекращения подачи питания на 2−3 секунды с момента исчезновения питающего напряжения 220 В.

Блок питания можно собрать и самим по этой схеме:

Обратите внимание, что номиналы и названия всех радиокомпонентов на схемах уже подписаны, так что собрать по ним работающее устройство может даже начинающий радиолюбитель.

Перед тем как приступить к сборке преобразователя, убедитесь:

Если вы все сделали правильно и ничего не забыли, можете приступать к сборке.

После сборки у вас получится что-то похожее:

Теперь вам осталось проверить устройство: для этого подключаем двигатель к частотнику и подаем на него напряжение. После того как загорится светодиод, сигнализирующий о готовности, нажмите на кнопку «Пуск». Двигатель должен начать медленно вращаться. При удержании кнопки двигатель начинает разгоняться, при отпускании - поддерживает обороты на том уровне, до которого успел разогнаться. При нажатии кнопки «Сброс» двигатель останавливается с выбегом. Кнопка «Реверс» задействуется только при остановленном двигателе.

Если проверка прошла успешно, то можете начинать изготавливать корпус и собирать в нем частотник. Не забудьте сделать в корпусе отверстия для притока холодного и оттока горячего воздуха от радиатора IGBT транзисторов.

Частотник для однофазного двигателя

Преобразователь частоты для однофазного двигателя отличается от трехфазного тем, что имеет на выходе две фазы (ошибки тут нет, двигатель однофазный, при подключении без частотника рабочая обмотка подключается в сеть напрямую, а пусковая - через конденсатор; но при использовании частотника пусковая обмотка подключается через вторую фазу) и одну нейтраль - в отличие от трех фаз у последнего, так что сделать частотник для однофазного электродвигателя , используя в качестве основы схему от трехфазного, не получится, поэтому придется начинать все сначала.

В качестве мозга этого преобразователя мы будем использовать МК ATmega328 с загрузчиком ардуины. В принципе, это и есть Arduino, только без своей обвязки. Так что, если у вас в закромах завалялась ардуинка с таким микроконтроллером, можете смело выпаивать его и использовать для дела, предварительно залив на него скетч (прошивку) из этого архива:

К атмеге будет подключен драйвер IR2132, а уже к нему - мосфеты IRG4BC30, к которым мы подключим двигатель мощностью до 1 КВт включительно.

Схема частотного преобразователя для однофазного двигателя:

Также для питания ардуины (5в) и для питания силового реле (12в), нам понадобятся 2 стабилизатора. Вот их схемы:

Стабилизатор на 12 вольт .

Стабилизатор на 5 вольт.

Внимание! Эта схема не из простых. Возможно, придется настраивать и отлаживать прошивку для достижения полной работоспособности устройства, но это несложно, и мануалов по программированию Arduino в интернете - великое множество. К тому же сам скетч содержит довольно подробные комментарии к каждому действию. Но если для вас это слишком сложно, то вы можете попробовать найти такой частотник в магазине. Пусть они и не так распространены, как частотники для трехфазных двигателей, но купить их можно, пусть и не в каждом магазине.

Еще обратите внимание на то, что включать схему без балласта нельзя - сгорят выходные ключи. Балласт нужно подключать через диод, обращенный анодом к силовому фильтрующему конденсатору. Если подключите балласт без диода - опять выйдут из строя ключи.

Если вас все устраивает, можете приступать к изготовлению платы , а затем - к сборке всей схемы. Перед сборкой убедитесь в правильности разводки платы и отсутствии дефектов в ней, а также - в наличии у вас всех указанных на схеме радиодеталей. Также не забудьте установить IGBT-транзисторы на массивный радиатор и изолировать их от него путем использования термопрокладок и изолирующих шайб.

После сборки частотника можете приступать к его проверке. В идеале у вас должен получиться такой функционал: кнопка «S1» - пуск, каждое последующее нажатие добавляет определенное (изменяется путем редактирования скетча) количество оборотов; «S2» - то же самое, что и «S1», только заставляет двигатель вращаться в противоположном направлении; кнопка «S3» - стоп, при её нажатии двигатель останавливается с выбегом.

Обратите внимание, что реверс осуществляется через полную остановку двигателя, при попытке сменить направление вращения на работающем двигателе произойдет его мгновенная остановка, а силовые ключи сгорят от перегрузки. Если вам не жаль денег, которые придется потратить на замену мосфетов, то можете использовать эту особенность в качестве аварийного тормоза.

Возможные проблемы при проверке

Если при проверке частотника схема не заработала или заработала неправильно, значит, вы где-то допустили ошибку. Отключите частотник от сети и проверьте правильность установки компонентов, их исправность и отсутствие разрывов/замыканий дорожек там, где их быть не должно. После обнаружения неисправности устраните её и проверьте преобразователь снова. Если с этим все в порядке, приступайте к отладке прошивки.

Трёхфазный асинхронный двигатель был создан в конце XIX столетия и на данном этапе развития человечества является одним из незаменимых элементов в современном промышленном производстве. Для обеспечения плавного пуска и остановки такого двигателя используется специальное устройство.

Называется оно - преобразователь частоты или частотник, если попроще. Для крупных двигателей с большой мощностью наличие такого преобразователя особенно актуально . С помощью частотников можно регулировать пусковые токи, что подразумевает осуществление таких манипуляций, как контроль и ограничение их величины.

Принцип работы частотного преобразователя

Исключительно механическое управление током приводит к энергетическим потерям и уменьшению срока службы оборудования. Показатели этого тока будут в несколько раз больше номинальных , что крайне отрицательно скажется на нормальной работе оборудования.

Принцип работы частотного преобразователя заключается в том, что управление током осуществляется электронным путём. Это обеспечивает мягкий пуск, плавное регулирование работы привода, путём соблюдения соотношения между частотой и направления по специальной заданной формуле.

У частотного преобразователя существует целый ряд преимуществ, которые очень положительно характеризуют работу этого устройства. Одним из таких преимуществ является тот факт, что частотник помогает экономить потребляемую энергию . Экономия составляет примерно 50%, что само по себе является весьма большим плюсом. Кстати, с учётом потребности конкретного производства существует возможность регулирования энергии, которая потребляется в процессе работы оборудования.

Суть работы данного устройства заключается в принципе двойного преобразования напряжения. Сама суть может быть описана посредством расписывания всего двух пунктов, что позволит проследить и осознать весь принцип:

  1. Напряжение сети подвергается выпрямлению и фильтрации системой конденсаторов.
  2. После этого в работу вступает непосредственно электронное управление , что заключается в образовании тока с частотой, которая была заранее запрограммирована.

На выходе выдаются прямоугольные импульсы, которые поддаются воздействию обмотки статора двигателя, после чего они становятся близкими к синусоиде.

Выбор частотника

Производители таких приборов делают упор на стоимость частотных преобразователей. Из этого следует, что многие опции, которые имеются у более дорогих моделей, на дешёвых моделях преобразователей уже не будут присутствовать. Перед выбором нужного прибора следует обратить внимание на технические характеристики всех имеющихся моделей, представленных в ассортименте, а также на основные требования для конкретного использования.

  • Управления может осуществляться двумя способами : векторным и скалярным. Векторное управление предоставляет возможность точной регулировки. Принцип работы скалярного управления заключается в поддержании одного соотношения между напряжением и частотой на выходе, заданного пользователем. Скалярное управление не подходит для сложных устройств и используется на более простых устройствах вроде вентилятора.
  • Чем выше указанная в характеристиках мощность , тем выше универсальность преобразователя. Это означает, что это обеспечит взаимозаменяемость. К тому же обслуживание такого устройства будет проще.
  • Непременно следует обратить внимание на указанный диапазон напряжения сети . Он должен быть максимально широким, что обеспечит безопасность при перепадах его норм. И нельзя не упомянуть тот факт, что повышение намного опаснее, чем понижение. При повышении могут взорваться сетевые конденсаторы.
  • Указанная частота обязательно должна соответствовать всем производственным потребностям . На диапазон регулирования скорости привода указывает нижний предел. При надобности в более широком следует прибегнуть к векторному управлению. Практическое применение предусматривает применение таких частот, как: от 10 до 60 Гц. Редко, но встречаются и до 100 Гц.
  • Осуществление управление предусматривает использование различных входов и выходов . Чем их больше, тем, конечно же, лучше. Но нужно брать вниманию, что при большем количестве входов и выходов, значительно увеличивается стоимость частотного преобразователя, а также усложняется его настройка.
  • Внимание также следует обратить и на шину управления подключаемого оборудования . Она должна совпадать с возможностью схемы частотника по количеству входов и выходов. Также не стоит забывать о том, что лучше иметь в наличии небольшой запах для возможной модернизации.
  • Не стоит забывать и о перегрузочных возможностях устройства . Рекомендуется выбирать частотный преобразователь, обладающий мощность, которая будет на 15 % больше мощности используемого двигателя. Настоятельно рекомендуется прочесть инструкции, прилагающуюся к частотнику в комплекте. Производители непременно указывают в документации к устройству все его основные параметры. В том случае, если важны пиковые нагрузки, то следует обратить при выборе устройства внимание на реальные показатели тока и величины, указанные в качестве пиковых. В этом случае нужно выбрать преобразователь с показателями пикового тока, которые будут на 10% выше, чем указанные в документации.

Подключение частотного преобразователя к электродвигателю

  • Для однофазной проводки (220 В) , то есть для использования в домашних условиях, подключение должно осуществляться пользователем путём выполнения схемы «треугольник». Ток на выходе ни в коем случае не должен превышать 50% от номинального! Это очень важно!
  • Для промышленного использования (трёхфазная проводка на 380В) рекомендуется осуществление подключения частотного преобразователя к двигателю по схеме «звезда».

Клеммы

Частотный преобразователь имеет определённое количество клемм, которые обозначены разными буквами, и которые нужны для разных подключений:

Для того чтобы продлить срок эксплуатации преобразователя, следует выполнять ряд требований и следовать советам, которые помогут продлить жизнь устройству:

Управление асинхронным двигателем - процесс совсем не лёгкий. Требуется обладать определёнными знаниями, чтобы успешно осуществлять все манипуляции, предполагающие как подключения, так и мероприятия по эксплуатации.

Преобразователи, которые были произведены кустарно, вполне могут быть использованы в домашних условиях и в бытовых целях. К тому же стоят такие частотники существенно меньше, чем промышленные аналоги. Но на для работы на производстве крайне не рекомендуется использовать такие преобразователи. Для таких условий следует выбирать частотники, которые были собраны на заводах. Работу на таких устройствах и их обслуживание следует доверить персоналу, который хорошо разбирается в данных устройствах и обладает достаточными знаниями для того, чтобы работать с частотниками.

Выводы

Асинхронные электродвигатели по многим параметрам превосходят двигатели постоянного тока. Превосходство это касается и устройства и надёжности. Поэтому во многих случаях пользователи выбирают именно асинхронные двигатели, руководствуясь именно соображениями насчёт их превосходства над другими устройствами.

Механическое управление током вызывает некоторые негативные последствия, так как при использовании этого варианта управления нельзя быть уверенным в стопроцентной и качественной работе оборудования. Использование частотных преобразователей для асинхронных двигателей имеет свои очень важные преимущества, которые немаловажны во многих аспектах работы с двигателями. Одним из самых главных плюсов использования электронного управления и частотников является тот факт, что эти устройства позволяют экономить расход потребляемой электроэнергии. К тому же и мощность будет больше.

Частотники следует выбирать, беря во внимание множество характеристик, которые прописываются в документации, приложенной к устройству. Частотные преобразователи, сделанные кустарно, могут пригодиться в бытовых условиях, но на производстве их использовать не стоит.

Эксплуатация преобразователей должна проводиться грамотно, в соответствии со всеми рекомендациями и правилами. Это позволит улучшить качество работы оборудования. К тому же многие советы позволят продлить работу двигателю и преобразователю. Крайне рекомендуется следить за напряжением. В случае критического повышения напряжения могут взорваться конденсаторы. Частотники должны быть использованы с оглядкой на все основные правила безопасности. Рекомендуется не браться за работу с ними в отсутствие всех необходимых знаний в этой области.

С все более увеличивающимся ростом автоматизации в бытовой сфере появляется необходимость в современных системах и устройствах управления электродвигателями.

Управление и преобразование частоты в небольших по мощности однофазных асинхронных двигателях, запускаемых в работу с помощью конденсаторов, позволяет экономить электроэнергию и активирует режим энергосбережения на новом, прогрессивном уровне.

Принцип работы однофазной асинхронной машины

В основе работы асинхронного двигателя лежит взаимодействие вращающегося магнитного поля статора и токов, наводимых им в роторе двигателя. При разности частоты вращения пульсирующих магнитных полей возникает вращающий момент. Именно этим принципом руководствуются при регулировании скорости вращения асинхронного двигателя с помощью .

Пусковая обмотка занимает в конструкции статора 1/3 пазов, на главную обмотку приходится 23 паза статора.

Ротор однофазного двигателя коротко замкнутый, помещенный в неподвижное магнитное поле статора, начинает вращаться.

Рис.№1 Схематический рисунок двигателя, демонстрирующий принцип работы однофазного асинхронного двигателя.

Основные виды однофазных электроприводов

Кондиционеры воздуха, холодильные компрессоры, электрические вентиляторы, обдувочные агрегаты, водяные, дренажные и фекальные насосы, моечные машины используют в своей конструкции асинхронный трехфазный двигатель.

Все типы частотников преобразуют переменное сетевое напряжение в постоянное напряжение. Служат для формирования однофазного напряжения с регулируемой частотой и заданной амплитудой для управления вращения асинхронных двигателей.

Управление скоростью вращения однофазных двигателей

Существует несколько способов регулирования скорости вращения однофазного двигателя.

  1. Управление скольжением двигателя или изменением напряжения. Способ актуален для агрегатов с вентиляторной нагрузкой, для него рекомендуется использовать двигатели с повышенной мощностью. Недостаток способа – нагрев обмоток двигателя.
  2. Ступенчатое регулирование скорости вращения двигателя с помощью автотрансформатора.

Рис.№2. Схема регулировки с помощью автотрансформатора.

Достоинства схемы – напряжение выхода имеет чистую синусоиду. Способность трансформатора к перегрузкам имеет большой запас по мощности.

Недостатки – автотрансформатор имеет большие габаритные размеры.

Использование тиристорного . Применяются тиристорные ключи, подключенные встречно-параллельно.

Рис. №3.Схема тиристорного регулирования однофазного асинхронного электродвигателя.

При использовании для регулирования скорости вращения однофазных асинхронных двигателей, чтобы избежать негативного влияния индукционной нагрузки производят модификацию схемы. Добавляют LRC-цепи для защиты силовых ключей, для корректировки волны напряжения используют конденсатор, минимальная мощность двигателя ограничивается, так гарантируется старт двигателя. Тиристор должен иметь ток выше тока электродвигателя.

Транзисторный регулятор напряжения

В схеме используется широтно-импульсная модуляция (ШИМ) с применением выходного каскада, построенного на использовании полевых или биполярных IGBT транзисторах.

Рис. №4. Схема использования ШИМ для регулирования однофазного асинхронного электродвигателя.

Частотное регулирование асинхронного однофазного электродвигателя считается основным способом регулирования , мощности, эффективности использования, скорости и показателей энергосбережения.

Рис. №5. Схема управления электродвигателем без исключения из конструкции конденсатора.

Частотный преобразователь: виды, принцип действия, схемы подключения

Разрешает своему владельцу снизить энергопотребление и автоматизировать процессы в управлении оборудованием и производством.

Основные компоненты частотного преобразователя: выпрямитель, конденсатор, IGBT-транзисторы, собранные в выходной каскад.

Благодаря способности управлением параметрами выходной частоты и напряжения достигается хороший энергосберегающий эффект. Энергосбережение выражается в следующем:

  1. В двигателе поддерживается неизменный текущий момент ращения вала. Это обусловлено взаимодействием выходной частоты инверторного преобразователя с частотой вращения двигателя и соответственно, зависимостью напряжения и крутящего момента на валу двигателя. Значит, что преобразователь дает возможность автоматически регулировать напряжение на выходе при обнаружении превышающего норму значения напряжения с определенной рабочей частотой нужно для поддержания требуемого момента. Все инверторные преобразователи с векторным управлением имеют функцию поддержания постоянного вращающего момента на валу.
  2. Частотный преобразователь служит для регулировки действия насосных агрегатов (). При получении сигнала, поступающего с датчика давления, частотник снижает производительность насосной установки. При снижении оборотов вращения двигателя уменьшается потребление выходного напряжения. Так, стандартное потребление воды насосом требует 50Гц промышленной частоты и 400В напряжения. Руководствуясь формулой мощности можно высчитать соотношение потребляемых мощностей.

Уменьшая частоту до 40Гц, уменьшается величина напряжения до 250В, означает, что уменьшается количество оборотов вращения насоса и потребление энергии снижается в 2,56 раз.

Рис. №6. Использование частотного преобразователя Speedrive для регулирования насосных агрегатов по систем CKEA MULTI 35.

Для повышения энергетической эффективности использования необходимо сделать следующее:

  • Частотный преобразователь должен соответствовать параметрам электродвигателя.
  • Частотник подбирается в соответствии с типом рабочего оборудования, для которого он предназначен. Так, частотник для насосов функционирует в соответствии с заложенными в программу параметрами для управления работой насоса.
  • Точные настройки параметров управления в ручном и автоматическом режиме.
  • Частотный преобразователь разрешает использовать режим энергосбережения.
  • Режим векторного регулирования позволяет произвести автоматическую настройку управления двигателем.

Преобразователь частоты однофазный

Компактное устройство преобразования частоты служит для управления однофазными электродвигателями для оборудования бытового предназначения. Большинство частотных преобразователей обладает следующими конструктивными возможностями:

  1. Большинство моделей использует в своей конструкции новейшие технологии векторного управления.
  2. Они обеспечивают улучшенный вращающий момент однофазного двигателя.
  3. Энергосбережение введено в автоматический режим.
  4. Некоторые модели частотных преобразователей используют съемный пульт управления.
  5. Встроенный PLC контроллер (он незаменим для создания устройств сбора и передачи данных, для создания систем телеметрии, объединяет устройства с различными протоколами и интерфейсами связи в общую сеть).
  6. Встроенный ПИД регулятор (контролирует и регулирует температуру, давление и технологические процессы).
  7. Напряжение выхода регулируется в автоматическом режиме.

Рис.№7. Современный преобразователь Optidrive с основными функциональными особенностями.

Важно: Однофазный преобразователь частоты, питаясь от однофазной сети напряжением 220В, выдает три линейных напряжения, величина каждого из них по 220В. То есть, линейное напряжение между 2 фазами находится в прямой зависимости от величины выходного напряжения самого частотника.

Частотный преобразователь не служит для двойного преобразования напряжения, благодаря наличию в конструкции ШИМ-регулятора, он может поднять величину напряжения не более чем на 10%.

Главная задача однофазного преобразователя частоты – обеспечить питание как одно- так и трехфазного электродвигателя. В этом случае ток двигателя будет соответствовать параметрам подключения от трехфазной сети, и оставаться постоянным

Частотное регулирование однофазных асинхронных электродвигателей

Первое на что обращаем внимание при выборе частотника для своего оборудования – это соответствие сетевого напряжения и номинального значения тока нагрузки, на который рассчитан двигатель. Способ подключения выбирается относительно рабочего тока.

Главным в схеме подключения является наличие фазосдвигающего конденсатора, он служит для сдвига напряжения, поступающего на пусковую обмотку. Она служит для пускового включения двигателя, иногда после того, как двигатель заработал, пусковая обмотка вместе с конденсатором отключается, иногда остается включенной.

Схема подключения однофазного двигателя с помощью однофазного частотного преобразователя без использования конденсатора

Выходное линейное напряжение устройства на каждой фазе равно выходному напряжению частотника, то есть на выходе будет три напряжения линии, каждое по 220В. Для запуска может использоваться только пусковая обмотка.

Рис. №8. Схема присоединения однофазного асинхронного двигателя через конденсатор

Фазосдвигающий конденсатор не может обеспечить равномерный фазовый сдвиг в пределах границ частот инвертора. Частотник обеспечит равномерный сдвиг фаз. Для того, чтобы исключить из схемы конденсатор, нужно:

  1. Конденсатор стартера С1 удаляется.
  2. Вывод обмотки двигателя присоединяем к точке выхода напряжения частотника (используется прямая проводка).
  3. Точка А присоединяется к СА; В соединяется с СВ; W соединяется к СС, таким образом электродвигатель присоединится напрямую.
  4. Для включения в обратном направлении (обратная проводка) необходимо В присоединить к СА; А присоединить к СВ; W соединить с СС.

Рис. №9. Схема подключения однофазного асинхронного двигателя без использования конденсатора.

На видео — Частотный преобразователь. в однофазную сеть 220В.

Создание трёхфазного асинхронного электродвигателя пришлось на конец XIX века. С тех пор, никакие промышленные работы не являются возможными без его использования. Наиболее значимый момент в рабочем процессе — плавный пуск и торможение двигателя. Это требование в полной мере выполняется при помощи частотного преобразователя.

Существует несколько вариантов названий частотника для трёхфазного электродвигателя. В том числе, он может называться:

  • Инвертором;
  • Преобразователем частоты переменного тока;
  • Частотным преобразователем;
  • Частотно регулируемым приводом.

С помощью инвертора осуществляется , предназначенного для преобразования электрической энергии в механическую. Осуществляемое при этом движение можно трансформировать в движение другого типа.

  1. «Треугольник».

Схема актуальна, если требуется управлять однофазным приводом. Уровень мощности преобразователя в схеме при этом составляет до трёх киловатт, а мощность не теряется.

  1. «Звезда».

Способ, подходящий для подключения клемм трёхфазных частотников, питаемых промышленными трёхфазными сетями.

На рисунке схема подключения частотника 8400 Vector

Для ограничения пускового тока и снижения пускового момента при запуске электрического двигателя по мощности превосходящего 5 кВт, применяется переключение «звезда-треугольник».

Когда на статор пускается напряжение, то фигурирует подключение устройства по типу «звезда». Как только значение скорости двигателя начинает соответствовать номинальному, поступление питания осуществляется по схеме «треугольник». Но этот приём используется, только когда технические возможности позволяют подключаться по двум схемам.

В объединённой схеме «звезды» и «треугольника» наблюдаются резкие скачки токов. При переходе на второй тип подключения показания по вращательной скорости значительно уменьшаются. Для восстановления прежнего режима работы и частоты оборотов следует осуществить увеличение силы тока.

Наиболее активно применяются частотники в конструкции электрического двигателя с уровнем мощности 0,4 — 7,5 кВт.

Сборка преобразователя частот своими руками

Одновременно с промышленным производством частотных преобразователей, остаётся актуальной сборка подобного устройства своими руками. Особенно этому способствует относительная простота процесса. В результате работы инвертора производится преобразование одной фазы в три.

Применение в бытовых условиях электрических двигателей, имеющих в комплектации подобное устройство, не вызывает никаких дополнительных затруднений. Поэтому можно смело браться за дело.

На рисунке структурная схема частотных преобразователей со звеном постоянного тока.

Схемы частотного преобразователя, используемые при сборке, состоят из выпрямительного блока, фильтрующих элементов (отвечающих за отсечение переменной составляющей тока и конструируемых из IGBT-транзисторов). По стоимости покупка отдельных компонентов преобразователя и выполнение сборки своими руками обходится дешевле, чем приобретение готового устройства.

Применять самосборные частотные преобразователи можно в электродвигателях имеющих мощность 0,1 — 0,75 кВт.

В то же время, современные заводские частотники имеют расширенную функциональность, усовершенствованные алгоритмы и улучшенный контроль безопасности рабочего процесса ввиду того, что при их производстве используются микроконтроллеры.

Сферы применения преобразователей:

  • Машиностроение;
  • Текстильная промышленность;
  • Топливно-энергетические комплексы;
  • Скважинные и канализационные насосы;
  • Автоматизация управления технологическим процессом.

Стоимость электродвигателей находится в прямой зависимости от того, есть ли в его комплектации преобразователей.

Для наглядности, схему можно разбить на три составляющих или три взаимосвязанных блока:

1. Выпрямитель.

2. Фильтр, предназначение которого есть сглаживание напряжения на выходе.

3. Инвертор, который собственно и отвечает за производство необходимой частоты.

Его использование дает значительное уменьшение пускового тока, при включении оборудования, что существенно продлевает эксплуатационный срок двигателя и устройства, где данный двигатель используется. Естественно, что избавившись таким образом от высоких показаний пускового тока, удается и сэкономить электроэнергию, которая уходила ранее при запуске оборудования. А это особенно актуально в условиях, где предусмотрены частые запуски и остановки устройств.

Рис. 2. Составляющие частотного преобразователя

Современные покупные инверторы широко используются в таких сферах, как производство, водоснабжение, энергетика, сельское и городское хозяйства, в электронике, и в автоматических линиях и комплексах.

Стоимость фирменного частотного преобразователя слишком высока, для того, чтобы изучить его процессы работы или использовать в быту или домашней мастерской. Поэтому часто используются в таких ситуациях самодельные частотники.

Сборка устройства

Стоит обратить внимание на то, что в домашних условиях крайне не рекомендуется использование двигателей, рассчитанных на мощность большую, чем 1 кВт. Таковы особенности домашней сети.

Имея необходимый двигатель, потребуется для начала соединить его обмотки между собой способом "треугольник".

Рис. 3. Трёхфазный двигатель

Рис. 4. Соединение треугольник

Схема самого частотного преобразователя.

Рис. 6. Схема частотного преобразователя

Питание осуществляется от блока питания 27 Вольт постоянного напряжения. Это может быть, как регулируемый БП, так и сделанный собственноручно, рассчитанный на данное напряжение. Схема подключения двигателя;

Рис. 7. Схема подключения двигателя

Схема простая и проверенная и не содержит компонентов, которые сложно будет купить. Но, к сожалению, не лишена недостатков и годится для применения лишь в быту.
Более сложная в сборке схема, но и более результативная представлена ниже.

Рис. 8. Схема подключения двигателя

На данный момент это самая обсуждаемая схема частотного преобразователя, который можно сделать собственноручно. Прошивки микроконтроллера изобилуют на тематических форумах. Потребуется не только умение грамотно паять, но и прошивать микроконтроллеры.

Рис. 9. Печатная плата

Потребуется надежный источник питания на 24 Вольта. Предлагается его также изготовить собственноручно по схеме.

Рис. 10. Схема источника питания

Естественно, что устройство можно приобрести и готовым. Они бывают фирменными или сделанными народными мастерами, которые обладают положительными рекомендациями.

Лучшие статьи по теме