Как настроить смартфоны и ПК. Информационный портал
  • Главная
  • Безопасность
  • Программы для разгона процессора Intel. Детальная инструкция по разгону процессора Можно ли разогнать процессор intel core i5

Программы для разгона процессора Intel. Детальная инструкция по разгону процессора Можно ли разогнать процессор intel core i5

Недавно компания Intel выпустила процессоры 9-го поколения вместе с чипсетом Z390. Продуктовую линейку пополнили модели Core i9-9900K, i7-9700K и i5-9600K. По сравнению с процессорами 8-го поколения было увеличено количество вычислительных ядер, чтобы более успешно конкурировать с продуктами AMD. Так, у модели Core i9-9900K имеется 8 ядер, способных выполнять 16 вычислительных потоков одновременно!

В свою очередь, компания MSI представила 9 моделей материнских плат на базе чипсета Z390 для процессоров 9-го поколения. Среди них, например, MEG Z390 ACE с мощной 13-фазной системой питания. И в данной статье мы расскажем, как с их помощью разогнать процессор Core i9-9900K до частоты 5,0 ГГц и выше. Наши инструкции подходят для всех плат MSI серии Z390, и даже неопытные пользователи смогут осуществить разгон своей системы, просто выполнив их шаг за шагом.

↓ Материнские платы MSI Z390

Что такое разгон?

Разгон – это увеличение частоты работы компьютерных компонентов по сравнению со стандартным уровнем, чтобы повысить их производительность. Разогнать можно все ключевые узлы: процессор, память, видеокарту. Однако, разгон всегда связан с определенным риском. Он может привести к нестабильной работе компьютера или даже повреждению компонентов.

Технология Intel® Turbo Boost - это официальный разгон от компании Intel. Благодаря ей частота процессора меняется в зависимости от его нагрузки, чтобы соблюсти баланс между энергопотреблением и производительностью.

Мы же покажем другой способ разгона, который позволяет задавать параметры работы процессора вручную.

Чипсет Intel® Z390 и процессоры Intel® 9-го поколения

В линейку процессоров Intel Core 9-го поколения входят модели Core i9-9900K, i7-9700K и i5-9600K. Все они поддерживают разгон. По сравнению с восьмым поколением, девятое использует в качестве термоинтерфейса припой, а не термопасту, поэтому такие процессоры должны лучше охлаждаться, а значит и обладать более высоким разгонным потенциалом. Благодаря этому максимальная частота процессора Core i9-9900K в режиме Turbo достигает 5 ГГц.

Отличия чипсета Z390 от его предшественника Z370 состоят в поддержке беспроводного модуля Intel Wireless-AC и интерфейса USB 3.1 Gen2. По сравнению с процессорами 8-го поколения, модели 9-го поколения отличаются лучшим охлаждением, а значит и увеличенным разгонным потенциалом, за счет использования припоя в качестве термоинтерфейса.

Линейка процессоров Intel® Core 9-го поколения включает в себя модели i5-9600K, i7-9700K и i9-9900K. Термопакет каждой равен 95 Вт, все они поддерживают технологию Intel Turbo Boost 2.0. Количество ядер увеличено по сравнению с предыдущим поколением: до 6 у модели i5-9600K и до 8 у моделей i7-9700K и i9-9900K. Процессор i9-9900K – единственный из них, в котором реализована технология Hyper-Threading, позволяющая выполнять два вычислительных потока на одном ядре одновременно для повышения общей производительности.

Модель процессора Hyper- Threading Ядра/потоки Термопакет Intel Turbo Boost 2.0 Intel Smart Cache
9-го поколения Intel®Core™ i9-9900K 8/16 95 W 5.0 GH 16MB
9-го поколения Intel®Core™ i7-9700K x 8/8 95 W 4.9 GH 12MB
9-го поколения Intel®Core™ i5-9600K x 6/6 95 W 4.6 GH 9MB

Обзор разгонных возможностей процессоров Intel 9-го поколения

На то, какой частоты можно достичь при разгоне, влияние оказывают несколько факторов. В их числе конструкция системы питания материнской платы, наличие радиатора для охлаждения транзисторов и, самое важное, разгонный потенциал самого чипа. У каждого экземпляра процессора имеется свой частотный потолок. Хорошие чипы могут работать на более высокой частоте, чем менее удачные, а также требовать меньшего напряжения питания.

Мы взяли несколько экземпляров процессоров Intel 9-го поколения и выявили соотношение между их частотой и напряжением. Все они были поделены на классы A, B и C в соответствии с результатами тестов. Класс A лучше всего подходит для разгона, класс C – плох в разгоне, а класс B – нечто среднее между двумя другими. На представленных ниже диаграммах показано процентное соотношение разных классов. Как видите, 20% экземпляров процессора i9-9900K хорошо проявляют себя при оверклокинге.

По результатам тестов, A – лучшие чипы для разгона, B – средние, C – наименее удачные.

Соотношение частота/напряжение процессоров Intel 9-го поколения

Основываясь на результатах наших собственных тестов процессоров Intel 9-го поколения, мы составили кривую зависимости частоты от напряжения. Эта зависимость может быть иной для конкретного экземпляра, однако приведенные ниже данные послужат хорошей отправной точкой для разгонных экспериментов. Используя их, вы сэкономите время на поиск оптимальных настроек для вашего процессора.

Разгон процессора i9-9900K через интерфейс BIOS

Существуют разные методы разгона: с помощью интерфейса BIOS, эксклюзивной разгонной утилиты MSI Command Center или функции геймерского ускорения Game Boost. В данной статье мы будем осуществлять оверклокинг через BIOS. Начнем!

1. Входим в интерфейс BIOS

Первым делом нужно войти в интерфейс MSI Click BIOS, нажав клавишу Delete при загрузке компьютера.

2. Жмем F7, чтобы переключиться в расширенный режим BIOS

В интерфейсе Click BIOS имеется два режима: упрощенный и расширенный. В упрощенном режиме все часто используемые настройки выводятся на одной странице, а в расширенном пользователю предлагаются абсолютно все имеющиеся настройки BIOS. Именно расширенный режим рекомендуется для разгона. Для перехода в него нужно нажать клавишу F7.

3. Переходим к настройкам разгона

Перейдите на страницу OC, которая содержит все настройки, относящиеся к разгону. Переключите параметр OC Explore Mode из стандартного значения Normal в значение Expert. Теперь вы видите все, что нужно для оверклокинга, включая такие настройки как частотный множитель процессора, частота памяти, напряжение питания процессора и памяти.

По умолчанию интерфейс BIOS открывается в упрощенном режиме. Чтобы перейти в расширенный, нажмите клавишу F7.

На этой странице можно увидеть множество настроек.

4. Изменяем частотные множители (CPU Ratio и Ring Ratio)

Параметр Ring Ratio
Разгон процессора i9-9900K нужно начать с параметра CPU Ratio. Нашей целью является 5 ГГц, поэтому введите для него значение 50. Затем измените параметр Ring Ratio в значение 47. Вы можете попробовать другие значения для Ring Ratio, однако мы рекомендуем, чтобы оно было на 3 меньше, чем значение параметра CPU Ratio. Кольцевая шина Ring Bus связывает не относящиеся к вычислительным ядрам элементы процессора, такие как контроллер памяти и кэш, поэтому более высокая частота ее работы поможет достичь более высокой производительности.

Параметр CPU Ratio Mode
Множитель частоты процессора может задаваться в фиксированном (Fixed Mode) или динамическом (Dynamic Mode) режиме. Мы рекомендуем выбрать фиксированный. В нем частота процессора будет постоянной, независимо от нагрузки. В динамическом же она меняется в зависимости от нагрузки и, например, в спящем режиме опустится ниже обычного значения.

5. Меняем напряжение питания процессорного ядра

Далее займемся напряжением питания процессорного ядра. Для достижения высокой частоты напряжение нужно повысить. Наша рекомендация для частоты 5 ГГц: 1,32 В для процессора i9-9900K, 1,37 В для i7-9700K и 1,43 В для i5-9600K. Каждый экземпляр процессора будет работать стабильно на определенной частоте. Если вам повезет, то ваш заработает на частоте 5 ГГц при меньшем напряжении, чем указано выше. Поэтому вы можете попробовать понизить или увеличить рекомендуемое напряжение, чтобы найти оптимальный вариант именно для вашего чипа.

Автоматическая настройка напряжения
Если вы не имеете ни малейшего представления о том, какое напряжение питания требует ваш чип, можно оставить параметр CPU Core Voltage в значении Auto. В этом случае напряжение питания будет выбрано автоматически в соответствии с возможностями процессора. Такой выбор осуществляется на основе тестовых данных, собранных специалистами MSI, и зависит от конкретного процессора: ниже для удачных экземпляров и выше для не очень удачных. Впоследствии вы сможете изменить напряжение на основе результатов теста стабильности.

Функция автоматической настройки напряжения питания процессора, реализованная на материнских платах MSI серии Z390, не гарантирует идеального результата. Например, ниже показаны результаты для двух экземпляров процессора i9-9900K, разогнанных до 5 ГГц. Одному потребовалось напряжение 1,345 В, а другому – 1,38 В.

Разным экземплярам процессора требуется разное напряжение питания.

Формирование напряжения питания ядра
Имеется 5 вариантов формирования напряжения питания процессорных ядер:
- Override Mode
- Adaptive Mode
- Offset Mode
- Override+Offset Mode
- Adaptive+Offset Mode

В режиме Override напряжение ядра остается фиксированным, независимо от нагрузки на процессор. В режиме Adaptive оно меняется в зависимости от нагрузки. В режиме Offset к базовому напряжению добавляется некоторое значение. Также есть комбинированные режимы: Override+Offset и Adaptive+Offset. Для разгона рекомендуется режим Override – он же по умолчанию выбирается в BIOS при оверклокинге.

Параметр CPU Loadline Calibration
Обычной ситуацией в работе процессора является уменьшение напряжения питания ядра при возрастании нагрузки. Такое проседание напряжения может привести к нестабильной работе компьютера во время разгона, и для исправления данной проблемы служит параметр CPU Loadline Calibration. Наша рекомендация – оставить его в значении Auto (Mode 3), чтобы система BIOS применяла оптимальные значения этого параметра во время разгона. Если вам хочется узнать об этом больше, ознакомьтесь с нашей статьей

6. Отключаем технологию Intel C-State (C-State: CPU State)

Технологии управления электропитанием Intel, такие как C-State и Package C-State, могут оказывать негативное влияние на стабильность компьютера при разгоне. Чтобы избежать этой проблемы, мы рекомендуем отключить их.

7. Готово! Жмем F10, чтобы сохранить изменения.

Задав все необходимые настройки, нажмите на клавишу F10, чтобы их сохранить и выйти из интерфейса BIOS. Для этого выберите Yes в появившемся диалоговом окне.

Тест стабильности для разогнанного компьютера

После того, как все параметры разгона будут заданы в интерфейсе BIOS, наступит время провести тест стабильности. Если компьютер будет работать без проблем, значит можно попытаться поднять частоту еще больше, чтобы достичь еще более высокой производительности. Или можно снизить напряжение, чтобы уменьшить температуру процессора. Если же компьютер станет работать с ошибками, нужно увеличить напряжение питания процессора или снизить его частоту.

Рекомендованные приложения для теста стабильности
Ниже представлен список популярных утилит, которые часто используются для проверки стабильности компьютера.
- Утилита CPU-Z используется для проверки частоты процессора.
- Утилиты Core Temp и HWiNFO используются для отслеживания температуры и энергопотребления процессора.
- Приложение Cinebench R15 служит для быстрой проверки стабильности и отслеживания роста производительности компьютера.
- AIDA64 или Prime95 v26.6 (non-AVX) / Prime95 v27.9 (AVX) используются для стресс-теста.

Проверка стабильности с приложением Cinebench R15
Cinebench R15 – это полезный инструмент для быстрой проверки стабильности компьютера. При этом утилита CPU-Z может использоваться для того, чтобы проверить работоспособность настройки CPU Ratio, которую мы меняли в BIOS, а утилита Core Temp – для мониторинга температуры процессора. Если компьютер работает нестабильно, попробуйте увеличить напряжение питания (Core Voltage) или снизить множитель частоты (CPU Ratio). Если температура процессора превышает 90°, следует снизить его напряжение питания.

Рост производительности процессоров серии 9000 в тесте Cinebench R15
Ниже представлены данные о результатах теста Cinebench R15 для процессоров i9-9900K, i7-9700K и i5-9600K. Можете использовать их для оценки того, насколько производительность вашего процессора растет по мере повышения его частоты.

↓ i5-9600K Cinebench R15

↓ i7-9700K Cinebench R15

↓ i9-9900K Cinebench R15

Данное руководство по разгону предназначено для платформы Z390 с системой BIOS компании MSI. Все приведенные в нем результаты были получены нами во время собственных тестов. Если вы являетесь новичком, то следуйте этим инструкциям шаг за шагом, используя наши настройки. Для более опытных пользователей они могут стать фундаментом для того, чтобы затем вручную подкорректировать параметры разгона в соответствии со своими предпочтениями.

Подробнее о материнских платах MSI серии Z390:

*Примечание: Ответственность за риск, связанный с разгоном, ложится на пользователя. Неправильные действия при разгоне могут привести к повреждению компонентов. Представленная в данной статье информация относится к конфигурации с системой BIOS версии E7B10IMS.100, двухканальной памятью DDR4-2133 и самосборной системой водяного охлаждения. Параметры разгона, тепловыделение и производительность компьютера могут меняться в зависимости от версии BIOS и отличий в конфигурации. В процессе разгона рекомендуется соблюдать максимальную осторожность.

Те пользователи, знакомство которых с миром персональных компьютеров началось ещё в прошлом веке, наверняка помнят легендарные процессоры Celeron 300A. Ведь оверклокинг как массовое явление начинался именно с них. И тому были веские причины: они без особого труда разгонялись по частоте как минимум в полтора раза, и в результате такой процессор со стоимостью около $150 достигал по производительности уровня старшего 700-долларового Pentium II 450. Именно это и заложило идеологическую базу оверклокинга: «Плати меньше - получай больше».

Однако золотые дни разгона процессоров, подпитываемого желанием сэкономить, остались далеко в прошлом. Теперь разгон стал хобби для богатых, и те пользователи, которые хотят приобщиться к армии оверклокеров, вынуждены, наоборот, платить больше: на все оверклокерские процессоры накладывается дополнительная наценка. Последним же относительно недорогим процессором, который можно было разгонять до уровня старших представителей в линейке, стал выпущенный в 2009 году Core i5-750 поколения Lynnfield. Его при определённом везении вполне можно было раскочегарить до производительности, выдаваемой процессорами класса Core i7. И кстати, выпускаемые в то же время процессоры Core i3 поколения Clarkdale тоже вполне допускали разгон.

Но в 2011 году выход платформы LGA1155 и очередного поколения процессоров Core положил конец всему этому богатству возможностей, доступному даже в бюджетных платформах. Обычные процессоры поколения Sandy Bridge разгоняться перестали совсем, а оверклокерам на выбор были предложены лишь две модели: Core i5-2500K и Core i7-2600K, которые Intel решила продавать несколько дороже обычных и аналогичных по характеристикам собратьев. В результате входной билет в оверклокерский клуб стал стоить $216 - именно в такую сумму был оценён разгоняемый Core i5. Впрочем, энтузиастов это не сломило, и продажи таких дорогих процессоров оказались весьма приличными. Ведь заплатить явно было за что. Рабочую частоту Core i5-2500K и Core i7-2600K можно было поднять до уровня в 4,8-5,0 ГГц, при том что их номинальные частоты составляли 3,3-3,4 ГГц. Поэтому, немного повозмущавшись для приличия, пользователи всё же приняли новую оверклокерскую парадигму, даже несмотря на то, что ни одна из моделей CPU дешевле $200 больше не могла быть разогнана.

Однако в последнее время отношение Intel к разгону стало снова меняться. На волне падения интереса к традиционным ПК именно энтузиасты оказались наиболее преданными покупателями продукции микропроцессорного гиганта. Видимо, это растопило лёд в сердце Intel, и оверклокерам стали оказывать разнообразные знаки внимания. Одним из самых явных таких знаков стало появление Pentium G3258 Anniversary Edition - бюджетного 72-долларового процессора, предназначенного именно для разгона. Но хотя этот процессор стал весьма популярной игрушкой в руках экономных оверклокеров, полноценным оверклокерским предложением его назвать тяжело. Предложения серии Pentium имеют всего два ядра и не поддерживают технологию Hyper-Threading, что нельзя компенсировать никаким увеличением тактовой частоты. Поэтому для серьёзных систем Pentium G3258 попросту не годится.

С выходом новейших процессоров Skylake многие энтузиасты связывали надежды на ещё большие послабления в части ограничения разгонных возможностей процессоров Intel. Дело в том, что в числе свойств новой платформы LGA1151 значилась возможность беспрепятственного изменения частоты базового тактового генератора. И это обещало возвращение разгона любых процессоров - начиная с самых младших Pentium, и заканчивая процессорами Core i5 и i7 без литеры K в названии. Однако поначалу реальность оказалась несколько иной: в неоверклокерских процессорах Intel реализовала блокировку смены тактовой частоты - эта функция получила собственное название BCLK Governor.

Но по прошествии нескольких месяцев после анонса Skylake стало понятно, что работает такая блокировка исключительно на программном уровне и её, соответственно, не сложно обойти. В течение последних недель производители материнских плат смогли детально разобраться с функционированием защиты, и сегодня со всей определённостью можно сказать о том, что разгон моделей Skylake, не относящихся к числу оверклокерских, - это реальность. И кстати, судя по отсутствию какого-либо противодействия со стороны Intel, такая победа над BCLK Governor на самом деле не расстраивает производителя процессоров и происходит с его молчаливого согласия (а может быть, даже и с некоторым содействием).

Впрочем, не будем углубляться в конспирологию, у этого материала совсем иная цель. Открывшиеся возможности по разгону любых Skylake непременно должны быть проверены. Поэтому мы решили протестировать, как протекает и каких результатов позволяет достичь разгон наиболее интересных и правильных с точки зрения изначальной оверклокерской парадигмы объектов - младшего четырёхъядерника серии Core i5 и младшего двухъядерного процессора серии Core i3.

Итак, разгон, каким мы его знали несколько лет тому назад - до того, как Intel стала выпускать специализированные оверклокерские процессоры и блокировать возможность повышения рабочих частот в остальных CPU, наконец-то возвращается. Трудно сказать, откуда на самом деле было получено решение вопроса со снятием блокировки частоты базового тактового генератора у всего модельного ряда Skylake. Возможно, интеловская защита BCLK Governor оказалась не столь прочной и пала под натиском разработчиков BIOS материнских плат. Но и возможно, что подтолкнула их в нужную сторону сама Intel, ведь в конечном итоге выиграли все: и микропроцессорный гигант, и производители плат, и пользователи.

Действительно, благодаря открывшимся возможностям разгона у покупателей появились новые аргументы в пользу перехода на платформу LGA1151. Нет никаких сомнений, что это в определённой степени простимулирует продажи новых процессоров. Попутно получат новых клиентов и производители плат, которые наверняка смогут увеличить продажи моделей на базе Intel Z170. Внакладе не останутся и пользователи из числа энтузиастов. Перед ними открывается не только дополнительный простор для экспериментов, но и возможность извлечь вполне очевидную финансовую выгоду. Ведь теперь оверклокерские системы можно собирать из более дешёвых, чем раньше, комплектующих.

Но особую пикантность всей этой ситуации придаёт то, насколько всё удачно сложилось именно для Intel. Ведь открытие возможности разгона любых, в том числе и неоверклокерских, LGA1151-процессоров легко могло бы стать причиной падения спроса на флагманские модели Skylake. Однако продажи старших Skylake с официально разрешённым разгоном в безопасности. Дело в том, что при разгоне не-K-процессоров неожиданно возникает целый букет проблем, самая скверная из которых — снижение скорости выполнения AVX/AVX2-инструкций. В результате быстродействие при работе с целым рядом программ при оверклокинге не только не увеличивается, а напротив - падает. То есть реальную пользу от такого разгона можно извлечь лишь в тех случаях, когда речь идёт исключительно о работе в приложениях, не задействующих современные возможности процессорного FPU.

Всё это означает, что если речь идёт о профессиональной деятельности, для которой не хватает производительности работающих в номинальном режиме CPU, - выбирать можно, как и раньше, лишь из Core i5-6600K или Core i7-6700K. Разгон же не-К-процессоров фактически подходит лишь для того, чтобы поиграться - в обоих смыслах этого слова. С одной стороны, экспериментировать с разгоном таких процессоров безумно интересно, ведь это действительно что-то новое и отчасти запретное. С другой - игры относятся к числу тех приложений, которые AVX/AVX2-инструкции (пока?) не задействуют.

Впрочем, даже если вас интересуют исключительно игры и программы, где AVX/AVX2-расширения не используются и использоваться заведомо не будут, появившаяся у неоверклокерских процессоров поколения Skylake возможность разгона совсем не означает, что вы, выражаясь фигурально, сможете отмотать время назад и вернуться в золотой век Celeron 300A. В реалиях сегодняшнего дня нарастить производительность дешёвого процессора до уровня флагмана невозможно ни при каких обстоятельствах. После того как в середине 2000-х годов Intel поделила ассортимент потребительских процессоров на классы по числу вычислительных ядер и перечню поддерживаемых технологий, любая «межклассовая борьба» безвозвратно ушла в прошлое. И это наглядно показали проведённые тесты. Младший Core i3-6100 может претендовать лишь на то, чтобы при разгоне пытаться дотянуться до быстродействия начальных моделей Core i5. А младший Core i5-6400 может попробовать побороться с Core i5-6600K, но замахнуться на соперничество с Core i7-6700K ему, естественно, не по силам.

Прошлогоднее обновление процессорной микроархитектуры в лице Intel Skylake не принесло никаких сюрпризов в плане роста производительности десктопных решений, и мы получили уже привычные 5-10% превосходства над прошлым поколением. Но при анонсе оверклокерских моделей был замечен очень любопытный момент: и получили не только разблокированный множитель, но и возможность изменять частоту базового тактового генератора без потери стабильности. Этот факт подарил надежду энтузиастам на возрождение массового разгона процессоров, изначально не ориентированных на оверклокерскую аудиторию. Но чуда не произошло, и Intel заблокировала такую возможность в обычных моделях. Благо, это ограничение оказалось только на программном уровне, и в середине декабря новостные ленты технических ресурсов заполнили сообщения о том, что разгона моделей платформы Socket LGA1151 без индекса «K». Данный факт неоднократно подтвердился и при нашем практическом знакомстве с новой аппаратной платформой, в чем можно самостоятельно убедиться на страницах нашего ресурса.

Но по вашим просьбам мы снова решили вернуться к очень интересной теме разгона неоверклокерских процессоров Intel Skylake, посвятив ей отдельный материал. Попробуем обобщить всю накопленную информацию и дать практические рекомендации по оптимизации параметров системы. И самое главное ответить, есть ли в этом всем практическая ценность, что особенно актуально, учитывая не самую благоприятную экономическую ситуацию в стране. Все эксперименты будут проводиться на примере модели . Данный процессор любезно предоставлен нашим партнером − интернет-магазином PCshop.ua , где его же можно и купить примерно за $380.

Немного истории

Что такое разгон или оверклокинг? Под этим понятием следует понимать набор методов, которые позволяют работать компонентам компьютера на частотах, которые выше заводских. Главная цель разгона - получить максимум производительности из имеющегося «железа». Сейчас это занятие вполне можно назвать тривиальным. Любой пользователь свободно может купить подходящую материнскую плату, процессор с разблокированным множителем и в пару кликов разогнать его. Нет ощущения азарта и удовлетворения от проделанной работы. Но так было далеко не всегда.

На заре своего зарождения разгоном занимались исключительно хорошо подготовленные технари, используя паяльник, перемычки и другие аппаратные модификации. Если вкратце, то весь процесс оптимизации сводится к увеличению тактовой частоты процессора, которая является произведением двух параметров - множителя и базовой частоты. А так как в большинстве случаев изменять множитель нельзя, то приходится оперировать значениями шины. Это стало возможным благодаря тому, что модели одной серии разнятся только частотой. То есть после изготовления партия процессоров проходит ряд тестов, по худшим результатам которых она и маркируется. Так мы и получаем одни модели с тактовой частотой, например, 300 МГц, а другие − 700 МГц. Но не все экземпляры такие неудачные. Например, их умышленно могут замедлять из-за необходимости расширения ассортимента линейки, поэтому при наличии необходимых знаний эту досадную несправедливость можно исправить. При этом мы получаем производительность старшей модели при минимуме затрат. Разве это не прекрасно?

В частности, можно вспомнить 1998 год и популярные процессоры Intel Celeron 300 и Intel Celeron 333. При рекомендованной цене в $150 и $192 соответственно, в разгоне они давали фору Intel Pentium II 450 стоимостью $669. Да, в таком случае возрастает риск вывести из строя оборудование, но это было в прошлом и происходило через плохое охлаждение, несовершенные методы защиты и неумение самого пользователя вовремя остановиться на достигнутом. Сейчас же прогресс достиг такого уровня, что у вас вряд ли получится «сжечь» процессор.

По-настоящему золотой эрой оверклокинга можно считать выход первого поколения процессоров Intel Core под Socket LGA775 в 2006 году. Сам разгон стал куда более удобным. Для этого было достаточно настроить необходимые параметры в BIOS материнской платы или просто воспользоваться специальными утилитами под ОС. Любимчиками энтузиастов стали младшие модели Intel Pentium E5xxx и Intel Core 2 Duo E7xxx, которые в умелых руках обходили своих более дорогих собратьев Intel Core 2 Duo E8xxx или даже Intel Core 2 Quad. Кстати, даже сейчас некоторые модели Intel Core 2 Quad и их серверные аналоги Intel Xeon трудятся в системных блоках пользователей. Благодаря наличию четырех физических ядер и хорошему разгонному потенциалу они позволяют построить игровую систему начального уровня (по современным меркам).

В этот же период оверклокинг становится действительно массовым явлением, а не просто способом сэкономить деньги. Он превращается даже в спортивную дисциплину благодаря популярному ресурсу HWBOT . Суть соревнований проста - получить максимальный результат в бенчмарках (3DMark, PCMark, Cinebench, Super PI и так далее) и зафиксировать его с помощью процесса валидации. При этом используются топовые комплектующие и экстремальные методы охлаждения (системы фазового перехода, жидкий азот и сухой лед). Такому положению вещей способствовали и сами производители «железа», которые стали активно выпускать продукцию, специально рассчитанную на оверклокинг. Но такое раздолье длилось не очень долго. Осознав, что разгон становится очень популярным, компания Intel решила зарабатывать и на нем.

Последними легко разгоняющимися процессорами (по шине) являются модели для Socket LGA1156 (микроархитектура Intel Nehalem), которые увидели свет в далеком 2009 году. Последующие решения утратили такую возможность (начиная с микроархитектуры Intel Sandy Bridge для Socket LGA1155), так как опорная частота процессора (BCLK) стала жестко связана со всеми узлами CPU (процессорными ядрами, кэш-памятью последнего уровня, встроенным графическим ядром, кольцевой шиной, контроллером памяти, шинами PCI Express и DMI). Поэтому даже незначительное ее изменение (выше 104-107 МГц) приводило к нестабильной работе системы.

Для энтузиастов производитель подготовил две оверклокерские модели: и . Процессоры получили разблокированные множители, посредством которых и формируется тактовая частота. Но также возросла цена этих решений в сравнении с обычными версиями. То есть, хочешь разгонять - плати больше. Пропуск в мир оверклокинга стал доступен только для состоятельных пользователей и потерял свой исконный смысл.

Да, можно вспомнить доступный двухъядерный (Socket LGA1150, микроархитектура Intel Haswell) с разблокированным множителем, но это единичный случай.

Однако с выходом шестого поколения Intel Core ситуация изменилась, и теперь появилась возможность разгонять процессоры, не относящееся к K-серии, хотя она и активно не приветствуется производителем ЦПУ. Об этом более подробно в следующем разделе нашей статьи.

Разгон процессоров Intel Skylake без индекса «К» в теории

В процессорах Intel Skylake инженеры выделили шину PCI Express и чипсет в отдельный домен, частота которого остается фиксированной, независимо от изменений BCLK.

Базовая частота осталась жестко связана только с внутренними узлами CPU: процессорными ядрами, кэш-памятью последнего уровня, встроенным графическим ядром, кольцевой шиной и контроллером памяти. Благо, последние отлично работают на повышенных частотах. То есть в новой платформе можно осуществлять разгон не только манипуляциями с множителем, но и путем повышения BCLK.

Это подтвердилось и при первом знакомстве с оверклокерскими моделями. Но по какой-то причине Intel заблокировала возможность разгона в обычных процессорах, и даже незначительные изменения базовой шины не увенчались успехом. Технология получила название «BCLK Governor». Но, как уже писалось выше, ограничение носит не аппаратный характер, и оно «лечится» на программном уровне. Для этого достаточно обновить микрокод материнской платы.

Результаты не заставили себя долго ждать. Оверклокер под ником «Dhenzjhen» разогнал процессор Intel Core i3-6320 с заблокированным множителем с номинальных 3,9 ГГц до 4,955 ГГц . Для этого он использовал материнскую плату SuperMicro C7H170-M со специальной версией BIOS. Вскоре и другие производители выпустили обновленные версии BIOS, но только для материнских плат на флагманском чипсете . Решения на , и остались обделенными, хотя, судя по всему, никак препятствий этому не должно быть. Скорее всего, производители решили подстегнуть продажи только более дорогих моделей, а жаль. Примечательно, что лишь компания ASRock разместила у себя на официальном сайте специальные версии микрокода. Остальные вендоры - ASUS, BIOSTAR, GIGABYTE, EVGA и MSI − распространяют их через оверклокерские форумы, опасаясь негативной реакции компании Intel. Как оказалось, для этого были причины. И вскоре компания нежелание допускать разгон обычных процессоров линейки Intel Skylake. Несмотря на это, до сих пор в сети можно спокойно найти необходимые версии BIOS, которые продолжают появляться с исправлениями и дополнениями. Так что тут полный порядок.

Но не все так просто, как кажется на первый взгляд. И при разгоне неоверклокерских процессоров по шине возникает ряд нюансов и ограничений:

  • Прекращают работу энергосберегающие технологии, и процессор всегда функционирует на максимальной частоте при предельном напряжении питания. Технология Intel Turbo Boost также становится неактивной.
  • Мониторинг температур процессорных ядер начинает выдавать некорректные данные.
  • Происходит отключение интегрированного в процессор графического ядра.
  • Скорость выполнения AVX/AVX2-инструкций снижается в несколько раз.

Впрочем, не стоит преждевременно расстраиваться. Опытные оверклокеры и так рекомендуют отключать все дополнительные технологии: Intel Turbo Boost, Intel Enhanced SpeedStep и энергосберегающие состояния C-states, так как любые колебания множителя и напряжения могут негативно сказаться на стабильности системы в разгоне. Мониторинг температур можно производить по датчику упаковки процессора (CPU Package), например, используя утилиту HWiNFO . Отключение встроенного видео мало кого огорчит, поскольку большинство оверклокеров имеют дискретную видеокарту.

Единственный действительно неприятный момент - падение скорости выполнения AVX/AVX2-инструкций. И это очень странно, учитывая, что оверклокерские модели лишены этого недостатка и отлично разгоняются по шине. А по сути они ничем не отличаются от обычных, кроме разблокированного множителя и немного большей частоты. Можно предположить, что это снова программное ограничение. В основном AVX/AVX2 используются в прикладных программах, таких как кодирование видео, 3D-моделирование и некоторые графические редакторы. Большинство повседневных программ, в том числе и игры, практически не используют AVX-инструкции. Исключением можно считать GRID Autosport и DiRT Showdown, но как показывает практика, ничего критичного в этом нет. Достаточно вспомнить процессор , который вообще лишен поддержки векторных инструкций, но это не мешает его владельцам играть в современные игры.

Подготовка к разгону по BCLK

Как вы уже могли понять из сказанного выше, для разгона по шине подходят абсолютно все процессоры поколения Intel Skylake: от Intel Celeron до Intel Core i7. Но наибольший практичный интерес составляют младшие модели каждой линейки, так как при минимальной цене разгон им позволяет легко настигать и даже обходить по уровню производительности более дорогих старших собратьев. В этом можно самостоятельно убедиться в обзорах и . Для наглядности приведем список самых интересных моделей для разгона в виде сводной таблицы:

Название модели

Количество ядер / потоков

Базовая / динамическая частота, МГц

Множитель

Но кроме подходящего процессора, понадобится материнская плата на чипсете Intel Z170. В нашем случае их будет целых три: , и ASUS Z170-P. Для чего так сделано? Попробуем на их примере выяснить, сможем ли мы получить достойный разгон на доступных платах или все же для этого понадобятся специализированные решения. Да и разгонять мы будем далеко не самый простой процессор - Intel Core i7-6700. Если платы справятся с ним, то с каким-нибудь Intel Core i3 и подавно. Перед началом экспериментов нужно найти необходимый BIOS для вашей материнской платы и прошить его. Для этого мы заглянули на HWBOT в соответствующий раздел форума .

Теперь можно переходить непосредственно к подготовительным настройкам.

  • Для начала заходим в UEFI BIOS и в разделе «Advanced\CPU Configuration» устанавливаем опцию «Boot Performance Mode» в значение «Turbo Performance», а в подразделе «CPU Power Management Configuration» выключаем «Intel Turbo Boost», «Intel Enhanced SpeedStep» и энергосберегающие состояния C-states, выбирая значение «Disabled».
  • Далее заходим в раздел «Extreme Tweaker» или «Ai Tweaker» (в зависимости от производителя материнской платы названия могут быть разными) и переводим опцию «Ai Overclock Tuner» в режим «Manual». В этом случае мы получим полный доступ к изменению всех параметров по собственному усмотрению.
  • Следом фиксируем максимальный множитель всех ядер процессора в пункте «1-Core Ratio Limit».
  • Чтобы оперативная память не стала ограничением при разгоне, с помощью пункта «DRAM Frequency» выставляем ее частоту на несколько пунктов ниже номинала, так как при изменении шины будет расти и ее частота.

На все настройки BIOS материнских плат можно взглянуть на видео ниже:

Настройка BIOS ASUS MAXIMUS VIII RANGER для разгона Intel Core i7-6700

Настройка BIOS ASUS Z170-P D3 для разгона Intel Core i7-6700

Настройка BIOS ASUS Z170-P для разгона Intel Core i7-6700

Теперь можно приступать непосредственно к самому разгону процессора Intel Skylake non-K. Сам процесс довольно прост и сводится к повышению частоты шины (BCLK Frequency) и постепенному увеличению напряжения, подаваемого на процессор (CPU Core Voltage Override).

Как правильно подобрать частоту? Напомним, что частота процессора рассчитывается по формуле:

CPU Freq = CPU Ratio × CPU Cores Base Freq

Допустим, мы хотим, чтобы наш Intel Core i7-6700 с множителем «x34» работал на частоте 4400 МГц. Для этого мы делим 4400 / 34 и получаем BCLK равным 129 МГц. То же самое правило действует и для других процессоров. Для удобства приведем значение BCLK для достижения типичных частот 4500 − 4700 МГц для ранее рассмотренных процессоров:

Название модели

Частота BCLK, МГц

Множитель

Тактовая частота, МГц

Intel Pentium G4400

Intel Core i3-6100

Intel Core i3-6300

Intel Core i5-6400

Intel Core i7-6700

При этом нужно следить за температурой и проверять стабильность системы после разгона.

Давайте более подробно остановимся на допустимых значениях напряжений и температуры. Опытные оверклокеры считают безопасным для повседневного использования порог в 1,4-1,45 В. Но, учитывая не лучший термоинтерфейс под теплораспределительной крышкой процессора, мы бы рекомендовали значения ближе к 1,4 В. Если вы планируете разгонять оперативную память, то необходимо обратить внимание еще на три важных параметра:

  • CPU VCCIO Voltage (VCCIO) - напряжение на встроенном в процессор контроллере памяти. Рекомендуется не превышать значение 1,10 В.
  • CPU System Agent Voltage (VCCSA) - напряжение на системном агенте и прочих контроллерах, встроенных в процессор. Рекомендуется не превышать значение 1,20 В.
  • DRAM Voltage (Vdram) - напряжение питания на модулях оперативной памяти. Условно безопасным можно считать значения до 1,4 В.

Для более детального ознакомления с возможностями каждой опции предлагаем посетить наш .

Теперь касательно температуры. Если компания Intel указывает значение T CASE =71°C, это означает, что максимально допустимая температура в интегрированном теплораспределителе (IHS) процессора, которую можно измерять только внешним датчиком, достигает 71°С. Механизм же пропуска тактов (троттлинг) включается при достижении 100°C по данным внутренних датчиков ядер. Поэтому, грубо говоря, показатель T CASE на уровне 71°С можно считать равносильным 100°С внутренних датчиков ядер.

Разгон и тестирование

Для экспериментов использовался следующий список оборудования:

Процессор

Intel Core i7-6700 (Socket LGA1151, 4,0 ГГц, L3 8 МБ)

Материнские платы

ASUS MAXIMUS VIII RANGER (Intel Z170, Socket LGA1151, DDR4, ATX)

ASUS Z170-P (Intel Z170, Socket LGA1151, DDR4, ATX)

ASUS Z170-P D3 (Intel Z170, Socket LGA1151, DDR3, ATX)

Оперативная память

2 x 8 ГБ DDR4-2400 HyperX Fury HX424C15FBK2/16

2 x 8 ГБ DDR3L-1600 HyperX Fury HX316LC10FBK2/16

Видеокарта

ASUS GeForce GTX 980 Matrix Platinum (4 ГБ GDDR5)

Жесткий диск

Seagate Enterprise Capacity 3.5 HDD v4 (ST6000NM0024), 6 ТБ, SATA 6 Гбит/с

Блок питания

Seasonic X-560 Gold (SS-560KM Active PFC)

Philips Brilliance 240P4QPYNS

Устройство видеозахвата

AVerMedia Live Gamer Portable

Операционная система

Microsoft Windows 8.1 64-bit

Тестовый процессор Intel Core i7-6700 имеет «batch code» L542B978 − 96000, который несет в себе информацию о месте, дате и партии изготовления. В нашем случае он произведен на 42 неделе 2015 года (между 12 и 18 октября) в Малайзии с номером партии 96000.

Разгон проводился на материнских платах ASUS MAXIMUS VIII RANGER, ASUS Z170-P D3 иASUS Z170-P в трех режимах:

  • Без поднятия напряжения.
  • Промежуточный разгон с небольшим поднятием напряжения для стабильной работы на частоте 4400 МГц.
  • Максимально стабильный разгон.

Напряжение 1,095 вольт в BIOS (по данным мониторинга 1,104 В) принято за номинальное, так как платы самостоятельно его выставляли при максимальной нагрузке в полностью автоматическом режиме. Проверку стабильности мы осуществляли прохождением бенчмарка и 15 минутного стресс-теста в RealBench 2.41 . Этого времени вполне достаточно для определения стабильности. В таком случае нагрев был одним из самых высоких, чего в реальных условиях использования вряд ли получится добиться. Кстати, классические стресс-тесты типа Linpack или Prime95 на эту роль не подходят, так как они активно пользуют AVX-инструкции, которые при разгоне неоверклокерских процессоров замедляются и не могут воссоздать максимальную нагрузку. Мониторинг осуществлялся силами утилит HWiNFO и CPU-Z .

Первой в бой пошла геймерская плата ASUS MAXIMUS VIII RANGER с отличными возможностями по оверклокингу. При напряжении 1, 104 В и ручном поднятии опорной частоты до 121 МГц, скорость Intel Core i7-6700 удалось довести до 4113,86 МГц, что составляет прибавку в 21% относительно номинала.

При этом энергопотребление системы увеличилось незначительно: с 51 Вт в простое (активированы все энергосберегающие технологии) и 223 Вт при стрессовой нагрузке до 61 Вт и 230 Вт соответственно. Максимальная температура под стрессовой нагрузкой не поднималась выше 51˚C.

На ASUS Z170-P D3 получилось добиться 4107,23 МГц при тех же 1, 104 В и значении BCLK равном 121 МГц.

Энергопотребление увеличилось с 48 Вт и 223 Вт до 62 Вт и 230 Вт соответственно. Максимальная температура не поднималась выше значения 53˚C.

ASUS Z170-P покорилась немного меньшая частота процессора, а именно 4060,70 МГц при напряжении 1, 104 В и значении BCLK 119,5 МГц.

В таком режиме работы энергопотребление возросло с 48 Вт и 225 Вт до 59 Вт и 230 Вт соответственно. Температура не поднималась выше 52˚C.

Чтобы ускорить Intel Core i7-6700 до частоты 4400 МГц на ASUS MAXIMUS VIII RANGER потребовалось поднять базовую частоту до 129,5 МГц, а напряжение − до 1,215 В, хотя, судя по показаниям утилит, временами оно достигало 1,232 В. Прирост частоты составил 29,4% относительно номинала.

Показатели энергопотребления составили 64 Вт в простое и 240 Вт в нагрузке - все еще довольно скромные значения. Температура держится в диапазоне 60-64 ˚C.

Для стабильной работы Intel Core i7-6700 на 4400 МГц на ASUS Z170-P D3 потребовалось выставить немного более высокое напряжение - 1,230 В (по данным мониторинга − до 1,248 В).

Энергопотребление находилось на уровне 63 Вт и 249 Вт соответственно, а температуры − на уровне 70˚C.

На ASUS Z170-P для 4400 МГц потребовалось поднимать напряжение 1,215 В (по данным мониторинга − до 1,232 В).

При этом энергопотребление составило 63 Вт и 265 Вт в простое и нагрузке соответственно. Максимальная температура не поднималась выше 63˚C.

Переходим к самой интересной части - максимальному разгону.

На ASUS MAXIMUS VIII RANGER получилось добиться частоты 4708,22 МГц при увеличении BCLK до 138,5 МГц. В итоге мы получили 38% прибавки к номинальной частоте. При этом напряжение было увеличено до 1,415 В (1,472 В по данным мониторинга), а для компенсации его просадок в настройках BIOS параметр «Load Line Calibration» (LLC) был выставлен в положение «LEVEL -6».

При этом энергопотребление процессора увеличивалось до 74 Вт и 322 Вт в простое и нагрузке соответственно, а сам он прогрелся под стрессовой нагрузкой до 98˚C.

Максимальная стабильная частота на ASUS Z170-P D3 составила 4523 МГц при поднятии опорной частоты до 133 МГц. Прирост составил 33% относительно номинала. Для этого пришлось поднять питающее напряжение до 1,415 В (1,408 В по данным мониторинга) и выставить для «LLC» значение «LEVEL -5».

В таком режиме энергопотребление возросло до 71 Вт и 310 Вт соответственно. Под стрессовой нагрузкой температура не превышала 85˚C.

На ASUS Z170-P мы заставили процессор стабильно работать на частоте 4691 МГц при BCLK 138 МГц. При этом понадобилось поднять напряжение до 1,415 В, а «LLC» выставить в «LEVEL -6».

В таком режиме энергопотребление составило 73 Вт и 325 Вт соответственно, а температура в пике нагрузки доходила до 96˚C.

Для наглядной оценки полученных результатов разгона предлагаем взглянуть на сводную таблицу:

ASUS MAXIMUS VIII RANGER

Разгон Intel Core i7-6700

Частота процессора, МГц

Частота BCLK, МГц

Напряжение CPU, В

Энергопотребление всей системы простой / нагрузка, Вт

Максимальная температура, ˚C

Анализируя результаты разгона Intel Core i7-6700, можно смело констатировать, что все тестируемые материнские платы справились с поставленной задачей. Правда, кто-то лучше, а кто-то немного хуже. Если вы хотите получить бескомпромиссный разгон, то решение уровня ASUS MAXIMUS VIII RANGER вполне может его дать. В данном случае все благодаря усиленной 10-фазной цифровой подсистеме питания, которая отлично справляется со своими прямыми обязанностями при любом типе нагрузки и при самых высоких напряжениях, без намека на просадки. У платы явно большой запас прочности для экстремального разгона. Впрочем, экономным пользователям вполне можно рекомендовать подобные ASUS Z170-P или ASUS Z170-P D3 решения. Например, и у указанных плат имеется 7-фазная цифровая система питания, хорошее охлаждение и широкие возможности настройки. То есть все необходимое для получения достойного разгона у них есть. Главное позаботиться о хорошей системе охлаждения. Но также стоит понимать, что разгон - это лотерея. Не факт, что ваш процессор сможет повторить достигнутые показатели. Благо, все побывавшие у нас в лаборатории модели Intel Skylake покорили отметку 4,6 ГГц. Так что, с другой стороны, вам может повезти и больше нашего.

В завершении предлагаем взглянуть на результаты RealBench v.2.41 на максимальной частоте Intel Core i7-6700

Места распределились согласно полученной максимальной частоте процессора: ASUS MAXIMUS VIII RANGER, ASUS Z170-P и ASUS Z170-P D3. В среднем прирост производительности составил около 24% относительно номинала.

Энергопотребление

Разгон Intel Core i7-6700 приятно нас порадовал, но давайте оценим, насколько выросло его энергопотребление после таких оптимизаций. Для этого воспользуемся результатами, полученными на материнской плате ASUS MAXIMUS VIII RANGER.

Взглянув на график, можно заметить, что пока напряжение на процессоре остается неизменным, рост энергопотребления идет линейно с увеличением частоты. Но только мы существенно поднимаем напряжение на процессоре, как наблюдается резкий скачок потребления. В итоге энергопотребление Intel Core i7-6700 в максимальном разгоне увеличилось на 100 Вт в сравнении с номиналом. Такова плата за увеличение производительности. Это следует учесть при проведении экспериментов и позаботиться о качественном блоке питания.

Анализ практичной пользы разгона

Давайте представим, что вы хотите собрать среднеценовой компьютер. Что лучше выбрать? Процессор попроще и комплектующие под разгон или сразу процессор мощнее, а комплектующие подешевле. Попробуем разобраться.

Процессор

Intel Core i3-6100 tray - $127 (3175 грн.)

Intel Core i5-6400 BOX - $199 (4986 грн.)

Материнская плата

DeepcoolGAMMAXX 300 - $23 (584 грн.)

Блок питания

Общая сумма

$349 (8712 грн.)

$345 (8612 грн.)

Как видите, сборки получились практически одинаковыми по цене. Но благодаря разгону до 4,5 - 4,7 ГГц Intel Core i3-6100 обходит Intel Core i5-6400 на 3-5% процентов в зависимости от типа нагрузки. Справедливости ради нужно отметить, что 3-5% включает не только игровые приложения, а также специализированные (рендеринг, математически расчеты, кодирование и так далее). Но если брать компьютер исключительно для игр, то разогнанный Intel Core i3-6100 может выдать FPS, сравнимый с конфигурацией на Intel Core i5-6600, работающей в номинале. К тому же никто вам не мешает еще сэкономить на блоке питания и материнской плате. В первом случае все зависит от аппетитов вашей видеокарты, а во втором - от необходимой функциональности и лояльности к тому или иному производителю. В таком случае профит может быть куда более значимым.

Какая ситуация в более высоком ценовом диапазоне? Давайте взглянем на такую сборку.

Процессор

Intel Core i5-6400 tray - $192 (4785 грн.)

Intel Core i5-6600 BOX - $239 (5969 грн.)

Материнская плата

ASUS Z170-P - $141 (3518 грн.)

MSI B150M MORTAR - $96 (2400 грн.)

ZALMAN CNPS10X Performa - $34 (855 грн.)

Блок питания

Aerocool KCAS-600 - $58 (1455 грн.)

Aerocool KCAS-500 - $50 (1257 грн.)

Общая сумма

$425 (10609 грн.)

$ 385 (9610 грн.)

В результате мы получаем на 10% дороже и на 5% медленнее сборку на Intel Core i5-6400 в сравнении с Intel Core i5-6600. Но если разогнать Intel Core i5-6400, то он уже обходит старшего собрата на 10-15% и даже приближается к куда более дорогому Intel Core i7-6700 ($369 или 9207 грн.). В этом можно убедиться на примере тестирования . В таком случае разгон в полной мере оправдан, особенно если вы изначально смотрели в сторону . Разница в цене между ними составляет $71 (1772 грн.). А сэкономленные деньги можно доложить к более производительной видеокарте или направить на другие нужды.

Пару слов скажем и про Intel Core i7-6700. Разница между ним и Intel Core i7-6700K составляет около $31 (778 грн.), но оба они отлично разгоняются. Особой экономии вряд ли получится добиться, но как всегда - выбор за вами.

Выводы

Подводя итоги материала, у нас для вас две новости: хорошая и плохая. Начнем с плохой. Если вы работаете со специализированными программами, вроде кодирования видео, 3D-моделирования и тому подобными, которые используют AVX/AVX2-инструкции, то разгон неоверклокерских процессоров Intel Skylake вам противопоказан. Все потому, что в таком случае снижается скорость выполнения этих самых инструкций и, как следствие, наблюдается падение общей производительности. Если все же нужно получить больше производительности, и вы планируете разгонять процессор, то выбор остается только между IntelCorei5- 6600K и Intel Core i7-6700K.

Теперь хорошая новость. Во всех остальных случаях разгонять не только можно, но и нужно - особенно в игровых сборках. Тот же Intel Core i3-6100 в разгоне может выдать сравнимую производительность с полноценными 4-ядерниками, работающими в номинале. А младший Intel Core i5-6400 не только обходит старших собратьев по линейке, но даже может приблизиться к Intel Core i7-6700. При этом для достойного разгона (большинство процессоров Intel Skylake легко берут рубеж 4,5-4,6 ГГц) не обязательно покупать дорогую топовую материнскую плату, а можно обойтись доступными моделями. Главное позаботиться о хорошем охлаждении и качественном блоке питания.

Подписаться на наши каналы

Разгоном называется принудительное увеличение тактовой частоты процессора сверх номинальной. Сразу поясним, что означают эти понятия.

Такт - это условный, очень короткий временной промежуток, за который процессор выполняет определенное количество инструкций программного кода.

А тактовая частота - это количество тактов за 1 секунду.

Повышение тактовой частоты прямо пропорционально скорости выполнения программ, то есть работает быстрее, чем не разогнанный.

Словом, разгон позволяет продлить «активную жизнь» процессора, когда его стандартная производительность перестает отвечать требованиям пользователя.

Он позволяет увеличить быстродействие компьютера без трат на покупку нового оборудования.

Важно! Отрицательные стороны разгона - это прирост энергопотребления компьютера, иногда весьма заметный, увеличение тепловыделения и ускорение износа устройств из-за работы в нештатном режиме. Также следует знать, что разгоняя процессор, вы вместе с ним разгоняете и оперативную память.

Что нужно сделать перед разгоном?

Каждый процессор имеет свой разгонный потенциал - предел тактовой частоты, превышение которого приводит к неработоспособности устройства.

Большинство процессоров, таких как intel core i3, i5, i7, можно безопасно разогнать лишь на 5–15% от исходного уровня, а некоторые еще меньше.

Стремление выжать максимум тактовой частоты из возможной не всегда оправдывает себя, поскольку при достижении определенного порога нагрева процессор начинает пропускать такты, чтобы снизить температуру.

Из этого следует, что для стабильной работы разогнанной системы необходимо хорошее охлаждение.

Кроме того, учитывая возросшее энергопотребление, может понадобиться замена блока питания на более мощный.

Непосредственно перед разгоном необходимо сделать три вещи:

  • Обновить компьютера до последней версии.
  • Убедиться в исправности и надежности установки .
  • Узнать исходную тактовую частоту своего процессора (посмотреть в BIOS или через специальные утилиты, например,).

Также перед разгоном полезно протестировать работу процессора на стабильность при максимальной нагрузке. Например, с помощью утилитыS&M .

После этого пора приступать к «таинству».

Обзор программ для разгона процессоров Intel

SetFSB

Простая в использовании утилита, позволяющая разгонять процессор «на лету» простым перемещением ползунка.

После внесения изменений не требует перезагрузки компьютера.

Программа подходит для разгона как старых моделей процессоров вроде Intel Core 2 duo, так и современных.

Однако она поддерживает не все материнские платы, а это безусловная необходимость, поскольку разгон осуществляется путем повышения опорной частоты системной шины.

То есть воздействует она на тактовый генератор (чип PLL или как его называют, клокер), находящийся на материнской плате.

Узнать, входит ли ваша плата в список поддерживаемых, можно на сайте программы.

Совет! Во избежание выхода процессора из строя, работать с SetFSB рекомендуется только опытным пользователям, которые понимают, что делают, и знают о возможных последствиях. Кроме того, неподготовленный юзер вряд ли сможет правильно определить модель своего тактового генератора, который необходимо указывать вручную.

Итак, чтобы разогнать процессор с помощью SetFSB, нужно:

  • Выбрать из списка «Clock Generator» модель клокера, установленного на вашей материнской плате.
  • Кликнуть кнопку «Get FSB». После этого в окне SetFSB отобразится текущая частота системной шины (FSB) и процессора.
  • Осторожно, небольшими шагами передвигать ползунок в центре окна. После каждого перемещения ползунка необходимо контролировать температуру процессора. Например, с помощью программы .
  • Выбрав оптимальное положение ползунка, нужно нажать кнопку Set FSB.

Плюс (а для кого-то минус) утилиты SetFSB в том, что выполненные в ней настройки будут действовать только до перезагрузки компьютера. После повторного старта их придется устанавливать заново.

Если нет желания делать это каждый раз, утилиту можно поместить в автозагрузку.

CPUFSB

CPUFSB - следующая в нашем обзоре программа для разгона процессоров Intel core i5, i7 и других, скачать которую можно с сайта разработчика.

Если вы знакомы с утилитой CPUCool - комплексным инструментами мониторинга и разгона процессора, то знайте, что CPUFSB - это выделенный из нее модуль разгона.

Поддерживает множество материнских плат на чипсетах Intel, VIA, AMD, ALI и SIS.

В отличие от SetFSB, CPUFSB имеет русский перевод, поэтому понять, как с ней обращаться, гораздо легче.

Принцип работы у этих двух программ одинаков: повышение опорной частоты системной шины.

Порядок работы:

  • Выберите из списка изготовителя и тип вашей материнской платы .
  • Выберите марку и модель чипа PLL (тактового генератора).
  • Нажмите «Взять частоту» для отображения в программе текущей частоты системной шины и процессора.
  • Повышать частоту также необходимо маленькими шагами, контролируя при этом температуру процессора. После выбора оптимальной настройки нажмите «Установить частоту».

CPUFSB позволяет задавать частоту шины FSB при последующем запуске программы и при выходе. Текущие настройки также сохраняются до перезагрузки компьютера.

SoftFSB

Завершает наш обзор утилитаSoftFSB - еще один инструмент для разгона процессора «на лету». Она не более сложна в обращении, чем предыдущие программы.

Так же как и они, поддерживает множество моделей материнских плат, различные модели тактовых генераторов и любые процессоры.

В отличие от платных SetFSB и CPUFSB, пользоваться SoftFSB можно безвозмездно.

Однако нет гарантии, что она запустится на вашем компьютере, поскольку больше не поддерживается автором.

Для разгона процессора с помощью SoftFSB вам также нужно знать модель материнской платы, чипа PLL и быть достаточно опытным пользователем.

Порядок действий:

  • В разделе «FSB select» укажите модель платы и тактового генератора.
  • Нажмите кнопку «GET FSB» для захвата частоты процессора и шины.
  • Контролируя температуру процессора, найдите оптимальную частоту, передвигая ползунок в середине окна.
  • Выбрав подходящее значение, нажмите кнопку «SET FSB».

Как видите, здесь всё то же самое. По схожему алгоритму работает и масса других программ для разгона процессоров под Windows.

Кроме универсальных, существуют утилиты с функцией разгона, которые выпускают сами производители материнских плат.

Ими пользоваться несколько проще и безопаснее, поскольку они рассчитаны на простого пользователя и заведомо не могут нанести системе вред.

Важно! Все рассмотренные программы позволяют разогнать как на ноутбуках , так и на стационарных ПК. Но если у вас ноутбук, следует соблюдать большую осторожность и не поднимать частоту системной шины до высоких значений.

Время на чтение: 44 мин

Разгон процессора Intel – это процедура снятия ограничения на количество обрабатываемых тактов за промежуток времени (1 сек.). Рассматривать разгон процессора без базовых понятий в этой сфере не рекомендуется.

Общая информация

Такт – это весьма маленький промежуток времени, который требуется для просчета переданного кода, обычно он составляет небольшие доли секунды. Тактовая частота – это количество тактов за 1 сек. Разгон провоцирует минимальное время обработки информации.

Компьютер обрабатывает информационный поток при помощи колебаний, чем больше за один заход процессор способен обработать, тем выше количество герц (единица измерения частоты). Соответственно, мы заставляем работать процессор во внештатном режиме, оставляя меньше времени на разгрузку.

Частоты бывает нескольких видов:

  1. Внешняя – это частота передачи данных между разными оборудованиями, даже в пределах одного системного блока;
  2. Внутренняя – это скорость работы непосредственно оборудования (что мы и будем увеличивать).

Очевидно, что если произвести разгон, то компьютер будет обрабатывать больше информации за тот же промежуток времени, за счет более длительного такта. Преимущественно процедура применяется для продления срока актуальности компьютера. Ни для кого не секрет, что постепенно технологии модернизируются, а компьютеры перестают соответствовать современным требованиям. Благодаря разгону можно несколько отложить покупку нового ПК.

Что нужно знать перед началом разгона процессора Intel?

Разгон процессора Intel Core нужно проводить с умом, иначе это чревато скорым выходом из строя процессора или отказом его работы моментально. Важно достигнуть максимальной скорости, но не превысить этот предел. Каждый процессор может разгоняться до разной максимальной скорости, часто об этом есть упоминание в документации или в интернете. Обычно можно получить больше скорости на 5-15%, существуют и более значительные приросты, но всё зависит от модели.

Для разгона лучше использовать особые процессоры, у которых технология изготовления подразумевает наличие разблокированного множителя – это K-серия.

У каждого активного пользователя ПК есть желание выжать из компьютера максимум и жадность может привести к негативным последствиям. Сегодня процессоры, если им передать чрезмерное количество информации, будут просто пропускать определенные такты для контроля температуры. Таким образом, прежде, чем заниматься разгоном, следует позаботиться о качественном охлаждении.

Важно учитывать, что:

  1. После разгона процессор будет сильнее греться, нужно заранее установить хорошую систему охлаждения, пассивные варианты не подходят;
  2. Требуется значительное количество электроэнергии. Больше времени работы требует и больше питания. Необходимо заранее рассчитать потянет ли ваш блок питания такую работу;
  3. Устройство быстрее изнашивается, так как работает больше;
  4. При ускорении работы процессора в разгон вовлекается и ОЗУ.
  1. Необходимо иметь новую версию BIOS;
  2. Удостовериться, что кулер на ЦП работает нормально и он исправен, лучше установить более мощный;

  1. Провести проверку нагрева процессора в текущем состоянии при максимальной нагрузке.

После всего перечисленного можно переходить к разгону.

Как разогнать процессор Intel Core 2, i3, i5, i7 при помощи SetFSB?

Программа для разгона процессора Intel SetFSB позволяет весьма просто увеличить тактовую частоту процессора , при этом процедура проводится непосредственно в Windows. В качестве регулятора выступает ползунок. Для изменения настроек перезагрузка не требуется, всё выполняется моментально.

Достоинство программы заключается в большом количестве поддерживаемых моделей процессоров, от устаревших Intel Core 2 duo до передовых i7. Увы, не все материнские платы способны сотрудничать с программой, что предотвращает его использование повсеместно. На сайте https://setfsb.ru можно узнать входит ли ваша модель платы в ряд поддерживаемых.

При работе с программой нужно соблюдать меры предосторожности, а также следует узнать модель своего тактового генератора. Информация содержится на самой плате PLL или её придется искать в интернете.

Процедура разгона:

  1. В верхней строке «Clock Generator» выбрать ваш генератор и нажать на «Get FSB»;

  1. После загрузки характеристик из базы вам отразится тактовая частота шины и процессора сейчас;
  2. Необходимо небольшими шагами менять скорость при помощи ползунка, перемещая его вправо и наблюдая за поведением процессора и кулера;

  1. После окончательного выбора нажать «Set FSB».

Как разогнать процессор Intel i5 при помощи CPUFSB?

Существует и другой способ, как разогнать процессор Intel Core i5, хотя его принцип и подобен. CPUFSB используется в своём большинстве для ускорения процессоров семейства i3, i5 и i7. Приложение является частью комплексной утилиты CPUCool для мониторинга, а также увеличения тактовой скорости. Программа хорошо работает с большинством материнских плат.

Преимущество перед прошлой утилитой в наличии русского языка, хотя принцип воздействия одинаковый:

  1. Выбрать производителя, а также модель материнской платы;

  1. Указать информацию о модели PLL-чипа (он же тактовый генератор);
  2. Клик по «Взять частоту»;
  3. Поэтапно, небольшими шагами, повышать частоту и проследите поведение процессора;
  4. В конце нажать на «Установить частоту».

Даже, если вы не сохранили настройки, они будут применены до перезапуска компьютера.

Как разогнать процессор Intel Core, используя SoftFSB?

Последний вариант, который позволяет разогнать процессор Intel ноутбук, равно как и стационарный компьютер. Основное преимущество перед предыдущими вариантами программ – это бесплатное использование. Ни покупать, ни искать пиратскую версию не придется. Недостаток в отсутствии поддержки со стороны автора, поэтому для новых процессоров может не подойти.

Принцип работы идентичный:

  1. Укажите модель материнской платы и тактового генератора в категории «FSB select» и клик на кнопку «GET FSB»;

  1. Аккуратно, понемногу перемещайте ползунок, который находится в центре главного окна;
  2. Сохраните изменения при помощи «SET FSB».

Существуют универсальные приложения для разгона, вроде уже рассмотренных, и весьма специфические, которые используются только для определенного типа материнских плат, обычно их выпускают разработчики. Такие варианты более безопасные и могут быть несколько проще в использовании.

Если у Вас остались вопросы по теме "Программы для разгона процессора Intel", то можете задать их в комментариях


Лучшие статьи по теме