Как настроить смартфоны и ПК. Информационный портал
  • Главная
  • Windows 10
  • Процессоры. Мешает ли пластичный термоинтерфейс под крышкой процессора разгону? Разгон частично разблокированных процессоров

Процессоры. Мешает ли пластичный термоинтерфейс под крышкой процессора разгону? Разгон частично разблокированных процессоров

Еще недавно о существенном увеличении тактовой частоты рядовым пользователем можно было только мечтать, такое могли осуществить только энтузиасты при использовании жидкостного охлаждения. Компания Intel начала реализацию концепции массового оверклокинга с процессора i7-7700K серии Kaby Lake с высокой базовой тактовой частотой, обещающей пробить 5-гигагерцовый предел при использовании простых средств. Мы не могли не попробовать новые возможности разгона на тестовой модели 7700K и материнской плате Gigabyte GA-Z270X-Gaming 9 с чипсетом Intel Z270 Express.

Оверклокинг: как и зачем?

Система жидкостного охлаждения состоит из ватерблока (теплосъемника) (1) и радиатора (2) . Горячая вода подается по шлангам к радиатору, охлаждается и возвращается в ватерблок уже холодной.

Одной из основных характеристик производительности процессора является его тактовая частота. Она не закладывается в явном виде в кремнии, а устанавливается производителем в результате проведения исчерпывающих тестов. Фактически частота чипа в процессе работы определяется материнской платой: на ней установлена специальная микросхема - генератор тактовых импульсов. Через определенные промежутки времени (такты) тактовый генератор подает импульсы, которые так или иначе проходят через всю основные узлы компьютера (например, через шины PCIe или USB) и синхронизируют работу компонентов.

От генерируемой материнской платой базовой тактовой частоты через множитель и задается частота процессора, которая может изменяться и стать намного более высокой. Процессоры Intel в каком-то смысле умеют сами разгоняться - на них предусмотрена технология автоматического увеличения тактовой частоты под нагрузкой до тех пор, пока позволяют рамки термопакета и температура. Данная технология получила название Turbo Boost. Если охлаждение не справляется с тепловой нагрузкой, процессор начинает пропускать такты, не давая температуре подняться, - этот механизм называется дросселированием или троттлингом.

Таким образом, увеличить тактовую частоту процессора можно двумя способами: либо за счет изменения базовой частоты тактового генератора, либо за счет изменения множителя. Но множитель у большинства процессоров защищен от увеличения на определенной предельной величине, поэтому остается альтернативный путь - увеличить базовую частоту, а это нередко вызывает нестабильность в работе системы.

На некоторых же процессорах с приставкой «K» в названии защита от повышения тактовой частоты снята, поэтому можно определить опытным путем, на какой максимальной скорости этот процессор будет стабильно работать. Рост быстродействия выше номинального вызывает повышение энергопотребления и тепловыделения, поэтому для разгона нужна производительная система охлаждения. Дело в том, что для обеспечения стабильной работы на более высоких частотах требуется повысить напряжение питания внутри процессора в результате чего непропорционально повышается теплоотдача.

Залог успешного разгона: топовые материнская плата и система охлаждения
Из перечисленных пунктов следует вывод: система охлаждения, которая по эффективности существенно превосходит поставляемый в комплекте с процессором кулер и обеспечивает хороший теплоотвод в стандартном режиме работы, является необходимым условием для разгона. В настоящее время подобные системы охлаждения представлены на рынке в достаточном количестве. Улучшенный результат, а, значит, и более высокие результаты при разгоне обеспечивает система жидкостного охлаждения, поскольку жидкость обладает более высокой теплоемкостью, чем воздух.

Для нашего тестирования мы использовали водяной охладитель в сборе Corsair Hydro Series H115i. Ватерблок крепится к материнской плате, через контактную поверхность основания он отводит с крышки процессора тепло и передает его воде, которая подается по шлангу по направлению к радиатору. Два 140-миллиметровых вентилятора продувают воздух сквозь ребра радиатора и таким образом рассеивают излишки тепла, а встроенная помпа проталкивает охлажденную воду обратно к ватерблоку.

Преимущество готовой системы жидкостного охлаждения заключается в ее установке - по простоте сборки и крепления она сопоставима с воздушным охладителем. Правда, для этого необходим соответствующий корпус. Наш корпус Be Quiet Silent Base 800 показал скорее неудовлетворительные результаты. В шасси было предусмотрено крепление для радиатора, но оба 140-мм вентилятора мы едва закрепили на два из четырех винтов, предусмотренных для каждого, причем так, что вентиляторы выдували воздух изнутри наружу. Выглядит довольно неуклюже, но, тем не менее, для тестирования с открытым корпусом идея сработала. Для закрытого корпуса вентиляторы должны всасывать свежий воздух снаружи вовнутрь.


Инструмент Corsair Link позволяет регулировать систему водяного охлаждения. Чем выше частота ЦП, тем быстрее работают вентиляторы и помпа

Наша система водяного охлаждения обеспечивается питанием через разъем SATA, а управление работой вентиляторов осуществляется от процессорного разъема ветилятора. Кроме того, система подключается к материнской плате при помощи кабеля USB, который использует ПО для управления под названием Corsair Link. Для нивелирования шума при работе на полупассивном блоке питания - в нашем случае Corsair RM850i - в управлении вентиляторами в Corsair Link нужно выбрать профиль «Silent».

Если же вы будете собирать систему водяного охлаждения самостоятельно, то при условии использования выбранной нами материнской платы сможете также подключить ее к контуру без лишних манипуляций - модель GA-Z270X-Gaming 9 поставляется с завода с предустановленным на цепях питания гибридным радиатором, совмещенным с ватерблоком. Кроме того, она примечательна еще и наличием специального контроллера, обеспечивающего равномерное распределение линий PCI-e процессора между подключенными устройствами, имеет два высокоскоростных LAN-адаптера Killer DoubleShot X3 Pro и беспроводной Killer Wireless-AC 1535, по два разъема M.2 и U.2 для подключения высокоскоростных SSD-дисков. Иными словами, в ней есть все, что только может пожелать геймер или компьютерный энтузиаст.

Процессор i7-7700K на плате Gigabyte GA-Z270X-Gaming 9 по умолчанию работает в автоматическом режиме разгона (UEFI: «M.I.T. | CPU Upgrade = Auto»). Наш процессор под полной нагрузкой (тест Prime95) в режиме увеличенной до 4,5 ГГц тактовой частоты стабильно работал при температуре до 60 °C. Эти значения все еще полностью соответствуют спецификациям Intel и, по нашим оценкам, не должны привести к преждевременным повреждениям процессора.

Настройка разгона через UEFI


Меню UEFI платы Gigabyte GA-Z270X-Gaming 9 содержит пресеты для автоматической настройки параметров разгона

Чтобы лишний раз не подвергать опасности процессор, мы придерживались автоматически заданных параметров функции оверклокинга Gigabyte (UEFI: «M.I.T. | CPU Upgrade»). Здесь находятся предустановленные параметры рабочих частот компонентов вместе с внутренним напряжением питания и многим другим. Для собственно разгона потребуется всего пара кликов в UEFI: в том же меню «CPU Upgrade» выбираем нужный уровень разгона, например, «i7-7700K CPU 4,8 GHz».

Наша система запустилась и работала совершенно нормально. Если процессор с самого начала не справляется, следующий процесс загрузки не удается, и UEFI выводит сообщение об ошибке и рекомендацию проверить настройки. В таком случае попробуйте уменьшить частоту. Так повреждений процессора возникать не должно, поскольку в случае возникновения перегрева или перенапряжения он выключается.

Предельная мощность

Материнская плата Gigabyte GA-Z270X-Gaming 9 с Corsair H115i стабильно выдержала тестирование Prime95 на самом высоком уровне разгона через пресеты UEFI до 5 ГГц под полной нагрузкой в течение нескольких часов. Против номинальной стандартной тактовой частоты i7-7700K в 4,2 ГГц (при стандартном охлаждении 4,2 ГГц для i7-7700K надолго стали бы потолком) прирост составил 19%, что сразу же отразилось на производительности: бенчмарк Cinebench R15, измеряющий чистую вычислительную мощность при рендеринге графических объектов, заработал быстрее на 18,3%. Немного меньше оказался прирост производительности при кодировании видео: конвертирование «Big Buck Bunny» при помощи инструмента Handbrake из 4K в 720p (профиль «iPad») на разогнанном процессоре происходило примерно на 10% быстрее.

При каждой пробе разгона мы следили за внутренней температурой процессора при помощи инструмента SpeedFan. Она изменялась с удивительной скоростью: со значения до 25 °C без нагрузки менее чем за секунду она могла подняться до максимального, стоило стресс-тесту, например, Prime95, полностью нагрузить процессор. С прекращением нагрузки температура тут же падала до исходных значений. Изменения температуры зависели от уровня разгона и вида нагрузки: если при 4,5 ГГц температура могла составить 80 °C, то при 5,0 ГГц она подбиралась к 90 °C. При этом отдельные ядра то и дело ненадолго сбрасывали скорость, чтобы избежать перегрева. Для достижения более высоких частот нужно прибегнуть к более смелым методам, например, к улучшению теплоотвода в самом процессоре.

В общей сложности нас удивило то, что процессор Kaby Lake Core i7 без особых усилий и проблем можно использовать с увеличенной на 20% тактовой частотой.

Еще больше мощности на свой страх и риск

Тонкая ручная настройка UEFI позволяет изменять разнообразнейшие параметры, которые нередко оказываются мало описанными. Специалистам тоже не чужды предвкушение открытий и жажда экспериментов. Так или иначе, каждая система охлаждения рано или поздно достигает своих пределов, которые прежде всего определяются способностью корпуса процессора отводить тепло.

> Скальпирование процессора означает демонтаж процессорной сборки. Между кристаллом и распределителем тепла - металлической защитной крышкой, которая должна равномерно распределять тепло для передачи на основание ватерблока - Intel проложила термопасту, причем с достаточно средними характеристиками. Демонтаж подразумевает отделение теплораспределительной крышки от подложки процессора, удаление остатков клеевого состава, нанесение слоя высококачественного теплопроводящего состава (жидкого металла) и приклеивание крышки обратно с использованием силиконового герметика. В зависимости от ЦП внутренняя температура может упасть на несколько градусов.

Разгон Core i7-3770K | Что это влечёт за собой?

Пониженное энергопотребление, предположительно пониженное выделение тепла, уменьшенный размер кристалла, уменьшенные затраты на производство, всё это характерно для нового 22-нанометровго дизайна . Но не привело ли уменьшение техпроцесса к сокращению потенциала для разгона? В нашем первом обзоре новой архитектуры (Обзор ) мы выяснили, что разгон новых процессоров оказался не лучше чем у флагманского процессора Core i7-2700K на архитектуре Sandy Bridge с техпроцессом 32 нм. Хотя температура на базовых частотах была низкой, она быстро поднялась, когда мы начали увеличивать напряжение чтобы получить 5 ГГц на воздушном охлаждении.


Разгон: что для этого нужно?

Время переключения транзистора в цифровой схеме зависит от его размера, производственного процесса, компоновки, температуры и рабочего напряжения. Максимальная частота работы чипа зависит от этой задержки и количества логических уровней, которые сигналу приходится преодолевать за один такт. Последний показатель фиксирован и зависит от архитектуры процессора. Поэтому для разгона мы концентрируем наше внимание на том, как уровень напряжения влияет на задержку транзистора. Более высокое напряжение может сократить задержку, но при этом увеличить энергопотребление. Увеличение тактовой частоты также повышает динамическое энергопотребление за единицу времени, а это, в свою очередь, повышает энергопотребление цепи, что приводит к увеличению температуры чипа.

Оба эффекта вместе объясняют, почему разгон с увеличенным напряжением CPU повышает потребление электроэнергии и тепловыделение, и почему охлаждение разогнанного процессора может стать затруднительным. Как и в спорте, вытянуть последние несколько очков – самая трудная задача.

Производители CPU стараются предохраняться от необдуманного разгона, который могут сделать неопытные пользователи (и безответственные сборщики систем). Несколько лет назад AMD и Intel начали поставки процессоров с заблокированным множителем, а для разгона выпускают более продвинутые модели.

В случае процессоров Intel серии K на архитектуре , самый высокий множитель CPU был увеличен до 63x (с 57x на Sandy Bridge ), что в теории может обеспечить частоту 6,3 ГГц, если не затрагивать BCLK 100 МГц. Чтобы получить больше, необходимо изменить базовую частоту, что довольно тяжело. Выше показателя 110 МГц большинство систем теряют стабильность. Как бы там ни было, для охлаждения вам понадобится более продвинутый кулер. В реальности, предельные частоты для архитектуры вы, скорее всего, увидите только в соревнованиях по разгону и в видеороликах на YouTube.

Разгон: ожидания

В прошлом уменьшение производственного техпроцессора увеличивало разгонный потенциал. Маленькие транзисторы требовали более низкого напряжения и потребляли меньше энергии, что обычно проявлялось в увеличенных показателях разгона. Процессоры Intel серии К на базе архитектуры Sandy Bridge с лёгкостью достигали 4,3-4,6 ГГц с помощью воздушных кулеров, а иногда и больше. Исходя их этого, от мы ожидали цифру ближе к 5 ГГц (как и многие другие энтузиасты).

Однако этого не случилось, несмотря на множество экспериментов в различных странах и на различных образцах процессоров. Но мы также получали сообщения, что чипы Intel с техпроцессом 22 нм можно разогнать до рекордных показателей с помощью более экстремальных систем охлаждения при использовании жидкого азота.

Понимая, что жидкий азот применяется в единичных случаях для установки рекордов, мы намерены получить максимальный разгон с помощью традиционного воздушного охлаждения, при этом мы будем обсуждать причины ограничений архитектуры .

Разгон Core i7-3770K | Справляемся с температурой

Даже шестиядерный процессор Core i7-3960X (Sandy Bridge-E , у которого более 2,2 миллиарда транзисторов) демонстрирует более низкие показатели температуры. Ни одно из шести ядер не перешагивает за 81°C притом, что частота чипа 4,7 ГГц.



СОДЕРЖАНИЕ

Старшего представителя нового семейства Coffee Lake. С его выпуском компания Intel решительно ввела в массовый сегмент чипы с шестью вычислительными ядрами, чем сделала старшую новинку обновлённого модельного ряда крайне желанным решением для энтузиастов. Действительно, шестиядерный Core i7-8700K не только оказался намного (в среднем на 35 %) быстрее флагманского четырёхъядерного Kaby Lake, но и смог предложить лучшую производительность по сравнению с конкурирующими восьмиядерниками серии AMD Ryzen 7. Поэтому совершенно неудивительно, что прогрессивная часть компьютерного сообщества с нетерпением встречает все новости, связанные с Coffee Lake. Тем более что реальных владельцев таких процессоров совсем немного: официальные продажи Coffee Lake только начались, и их поставки в магазины пока носят эпизодический характер.

Поэтому мы решили продолжить исследование имеющегося в нашей редакции образца процессора Core i7-8700K и уделить дополнительное внимание его разгону. Причин «второго подхода к снаряду» две. Во-первых, компания Intel снабдила нас новым образцом процессора. Это значит, что, сопоставив результаты разгона двух экземпляров CPU, мы сможем получить более полную статистику частотного потенциала. Во-вторых, в рамках первоначального обзора проверка оверклокерских возможностей Coffee Lake делалась с немодифицированным процессором. Но давно известно, что значительно улучшить результаты разгона интеловских чипов можно при помощи скальпирования. Поэтому расширить старый опыт за счёт более основательного подхода к процессу оверклокинга - вполне логичный следующий шаг.

Тестовый Intel Core i7-8700K

В принципе всё, что следует знать о Core i7-8700K, мы рассказали в - никаких важных дополнительных сведений о новинке после анонса нам не открылось. Поэтому ограничимся лишь повторением её базовых спецификаций в сравнении с характеристиками его предшественника, Core i7-7700K:

Core i7-8700K Core i7-7700K
Кодовое имя Coffee Lake Kaby Lake
Технология производства, нм 14++ 14+
Ядра/потоки 6/12 4/8
Базовая частота, ГГц 3,7 4,2
Частота Turbo Boost 2.0, ГГц 4,7 4,5
L3-кеш, Мбайт 12 8
Поддержка памяти DDR4-2666 DDR4-2400
Интегрированная графика GT2: 24 EU GT2: 24 EU
Макс. частота графического ядра, ГГц 1,2 1,15
Линии PCI Express 16 16
TDP, Вт 95 91
Сокет LGA1151 v2 LGA1151 v1
Официальная цена $359 $339

Как следует из этой небольшой таблички, Core i7-8700K стал немного дороже, чем прошлый флагманский LGA1511-процессор, но зато он теперь предлагает в полтора раза больше вычислительных ядер и, что немаловажно, более высокие турбочастоты. Таким образом, Coffee Lake воплощает идеальный вариант увеличения многопоточности процессора. Добавление в этот процессор дополнительных параллельных вычислительных мощностей не обернулось ни значительным увеличением тепловыделения, ни падением производительности при одно- и двухпоточной нагрузке.

И даже больше того, реальные рабочие частоты Core i7-8700K всегда выше, чем у Core i7-7700K, без какого бы то ни было разгона. Компания Intel решила не сообщать подробности о работе технологии Turbo Boost 2.0 для процессоров поколения Coffee Lake, а зря. Дело в том, что при разной нагрузке она всегда готова вывести Core i7-8700K на более высокую частоту, чем мог обеспечить в аналогичной ситуации Kaby Lake. Наглядно это видно по следующей таблице.

Номинальная частота Максимальная частота Turbo Boost 2.0
1 ядро 2 ядра 3 ядра 4 ядра 5 ядер 6 ядер
Core i7-8700K 3,7 ГГц 4,7 ГГц 4,6 ГГц 4,4 ГГц 4,4 ГГц 4,3 ГГц 4,3 ГГц
Core i7-7700K 4,2 ГГц 4,5 ГГц 4,4 ГГц 4,4 ГГц 4,4 ГГц - -

Главное, чтобы Core i7-8700K хватало охлаждения: если его температура остаётся в приемлемых рамках, он действительно может работать на частоте 4,3 ГГц при нагрузке на все ядра без какого-либо разгона. И да, это верно даже для приложений, которые задействуют наиболее энергоёмкие инструкции AVX 2.0.

Именно поэтому разгон Core i7-8700K, который мы получили при подготовке прошлого обзора, показался не слишком результативным. Частоту процессора удалось повысить с 4,3 до 4,7 ГГц, то есть всего лишь на 9 %, - стоило ли это затраченных на эксперименты усилий?

В то же время обзоры Core i7-8700K, которые можно найти на некоторых других ресурсах, в первую очередь англоязычных, утверждают, что этот процессор легко разгоняется до 5,0 ГГц и даже выше, что совершенно не сходится с нашими выводами. Поэтому мы взяли другой экземпляр CPU и повторили тестирование.

Впрочем, никаких принципиально иных результатов замена процессора не дала. Даже без всякого разгона, в номинальном режиме, второй Core i7-8700K вновь продемонстрировал подозрительно высокий нагрев. Даже с весьма производительным воздушным кулером Noctua ND-U14S максимальные температуры Core i7-8700K под нагрузкой в LinX 0.8.0 (данная утилита основана на математической библиотеке Intel Math Kernel Library) достигали отметки в 84 градуса, при том что предельно допустимое значение температуры для ядер Coffee Lake - 100 градусов.

Напомним, прошлый побывавший в наших руках экземпляр Core i7-8700K в аналогичных условиях разогревался до 88 градусов, то есть новый процессор оказался получше, но не так чтобы кардинально. Иными словами, Core i7-8700K - весьма горячий CPU, и это - непреложный факт, который вряд ли нуждается в каких-либо дополнительных подтверждениях.

Неудивительно, что разгон такого процессора вновь оказался ограничен высокими температурами. Новый образец удалось вывести на частоту 4,8 ГГц, что на 100 МГц лучше, чем позволял прошлый экземпляр, но проверка стабильности в таком состоянии приводила к близкому к критическому разогреву процессорного кристалла. Максимальные температуры при тестировании в LinX 0.8.0 достигали 95 градусов.

Напряжение для стабильной работы на частоте 4,8 ГГц пришлось повысить до 1,3 В. Потребление процессора при таком разгоне по его собственной оценке, выросло с 135-140 Вт под максимальной нагрузкой в номинальном режиме до 165-170 Вт.

Каким образом в таких условиях некоторым обозревателям удаётся добиться работы Coffee Lake на частотах порядка 5,0 ГГц? Всё очень просто: дело в критериях стабильности. В то время как мы требуем от процессора беспроблемной работы и отсутствия троттлинга в абсолютно любых ситуациях, в том числе и при AVX/AVX2-нагрузке, многие наши коллеги не столь щепетильны и считают достаточным, чтобы разогнанный процессор проходил тесты в простых бенчмарках вроде Cinebench или wPrime, нагрузка в которых носит гораздо более щадящий характер. Более того, даже известные магазины уровня caseking .de или overclockers.co.uk , предлагающие предварительно отобранные процессоры с гарантией разгона, пользуются для проверки чипов отнюдь не современными средствами, а утилитой Prime95 старой версии 26.6 (актуальная версия Prime95 имеет номер версии 29.3), которая не поддерживает векторные инструкции AVX/AVX2.

Иными словами, оверклокинг, о котором говорим в этой статье мы, принципиально отличается тем, что он гарантированно применим в совершенно любых условиях: в играх, в ресурсоёмких приложениях и даже в специализированных тестах. Улучшить же такой «железобетонный» разгон Core i7-8700K до близких к пятигигагерцевой отметке частот возможно лишь сделав что-то для улучшения эффективности отвода выделяемого процессором тепла. И рецепт, как этого добиться, давно и хорошо известен. Помогает скальпирование и замена штатного интеловского термоинтерфейса материалом с более высокой теплопроводностью, который мог бы обеспечить более эффективный отвод тепла от разогнанного процессорного кристалла.

Скальпирование Coffee Lake

Итак, имеющийся процессор Core i7-8700K в своём исходном состоянии способен разгоняться до 4,8 ГГц с увеличением напряжения до 1,3 В. Но если говорить о его частотном потенциале и температурном режиме в более широком смысле, то свойства этого экземпляра можно обрисовать следующей температурной картой, построенной в LinX 0.8.0 с использованием кулера Noctua ND-U14S.

При напряжениях питания V CC менее 1,1 В процессор не способен поддерживать стабильность на частоте хотя бы 4,0 ГГц, а при увеличении напряжения выше 1,375 В такая частота оказывается недостижима из-за перегрева кристалла под нагрузкой. В интервале между 1,1 и 1,375 В оптимальным с точки зрения раскрытия разгонного потенциала оказывается напряжение 1,3 В, однако очевидно, что результаты разгона можно улучшить, поскольку он упирается в достижение процессором предельных температур.

Собственно, резкое снижение максимально достижимой частоты при увеличении напряжения V CC выше 1,3 В и указывает на то, что сдерживает разгон Core i7-8700K именно проблема с теплоотводом. Выделяемая полупроводниковым кристаллом тепловая энергия попросту не успевает отводиться, и это приводит к перегреву. Впрочем, это было понятно и без всяких экспериментов. Ещё в процессорах поколения Ivy Bridge компания Intel отказалась от пайки теплораспределительной крышки CPU на процессорный кристалл и стала применять в качестве термоинтерфейса между кристаллом и крышкой полимерную термопасту. Именно она из поколения в поколение выступает узким местом на пути теплового потока, не только сдерживая разгон, но и приводя к повышенным температурам процессора при нормальной эксплуатации в номинальном режиме.

Готовя к выпуску процессоры поколения Coffee Lake, компания Intel ввела в строй новую версию технологического процесса с нормами 14 нм, которая условно называется 14++ нм. Благодаря применению несколько ослабленных производственных параметров и совершенствованию профиля трёхмерных транзисторов в ней декларируется лучшее масштабирование частоты без роста энергопотребления. Так, Intel говорит об увеличении шага затворов транзисторов с 70 до 84 нм, что снижает негативное влияние токов утечки на общую стабильность полупроводникового устройства. В результате Coffee Lake должны быть способны работать на частотах, превышающих частоты Kaby Lake на 10-15 %, - так говорит теория.

Однако реальный опыт с теорией не сходится, поскольку возможность роста частоты блокируется недостаточной эффективностью применённого под процессорной крышкой теплоотвода. Попробуем избавиться от этого препятствия и заменить интеловский термоинтерфейс чем-то более эффективным.

Процесс скальпирования Core i7-8700K вряд ли нуждается в подробном описании. Конструктивно Coffee Lake не отличаются от своих предшественников: они не только используют тот же, что и раньше, процессорный разъём LGA1151, но и имеют абсолютно аналогичные размер и форму платы и теплораспределительной крышки. Не изменился и метод их сопряжения - они склеены герметиком, как и в Kaby Lake. Всё это позволяет использовать при снятии крышки с процессоров поколения Coffee Lake точно такие же подходы и приспособления, что и при скальпировании Kaby Lake.

Как показывает опыт, наиболее простой и безопасный метод - это силовой сдвиг теплораспределительной крышки с процессора в тисках или в специальном устройстве. Именно этим методом мы и воспользовались для разборки Core i7-8700K, но с одним важным дополнением. В нашем распоряжении осталось напечатанное на 3D-принтере вспомогательное приспособление для скальпирования процессора в тисках, которое мы делали для Core i7-7700K, им же мы решили воспользоваться и в этот раз.

О том, как работает это приспособление, подробно уже рассказывалось. Суть в том, что оно обеспечивает правильное распределение усилий при силовом сдвиге крышки относительно процессорной платы и предохраняет её от излома.

Сам процесс демонтажа теплораспределительной крышки вряд ли стоит описывать детально - на нашем сайте можно найти сразу по . Процессор просто вставляется в приспособление, к нему применяется усилие (надо заметить, достаточно серьёзное), и крышка оказывается оторванной от платы, к которой припаян процессорный кристалл.

В этот момент нетрудно убедиться, что Intel не отказалась от своей фирменной термопасты. Ненавистная плотная субстанция серого цвета заполняет промежуток между кристаллом и крышкой и в Core i7-8700K. То есть, даже несмотря на то, что ядер в процессоре стало больше, Intel продолжает считать, что эффективности полимерного термоинтерфейса вполне достаточно. Впрочем, ничего другого и не ожидалось. Пайка теперь не используется даже в премиальных многоядерных процессорах Intel серий Skylake-X и Skylake-SP, чего уж тогда ждать от массовых Coffee Lake.

Если очистить процессорную плату и кристалл от пасты и герметика, то можно оценить размеры кристалла Coffee Lake. Он стал больше, чем кристалл Kaby Lake, но ненамного. Площадь Coffee Lake оценивается в 150 мм 2 , в то время как у Kaby Lake эта величина примерно равнялась 126 мм 2 .

Заменять интеловскую термопасту лучше какими-то материалами на основе жидкого металла - индия или галлия. На сегодняшний день производители термоинтерфейсов предлагают богатый выбор соответствующих составов. Мы традиционно пользуемся продукцией компании Coollaboratory, но аналоги можно найти, например, в ассортименте Thermal Grizzly. Причём, судя по данным независимых тестов, жидкометаллический термоинтерфейс Thermal Grizzly Conductonaut несколько выигрывает по теплопроводности у вариантов Coollaboratory Liquid Pro и Ultra.

Тем не менее, в Core i7-8700K мы решили испытать жидкий металл Coollaboratory Liquid Ultra, который по сравнению с применяемым нами ранее в скальпированных процессорах термоинтерфейсом Coollaboratory Liquid Pro получил несколько улучшенную теплопроводность и стал более прост в использовании за счёт лучшего сцепления с поверхностями. Однако не стоит забывать о том, что перед тем, как начинать наносить жидкий металл на процессорный кристалл и крышку, поверхности необходимо тщательно очистить и обезжирить.

После нанесения нового теплопроводящего состава остаётся последнее - приклеить обратно на процессор медно-никелевую теплораспределительную крышку. Она, в отличие от внутреннего термоинтерфейса, сохранила качественное исполнение и превосходно решает возложенные на неё задачи - предохраняет от повреждений процессорный кристалл и распределяет поступающее на неё тепло по большей площади.

В том, что весь описанный процесс имеет огромный практический смысл, убедиться элементарно просто: достаточно сравнить коэффициенты теплопроводности разных термоинтерфейсных материалов. Так, коэффициент теплопроводности жидкого металла Coollaboratory Liquid Ultra - 38,4 Вт/(м∙К), в то время как теплопроводность интеловской термопасты оценивается величиной 4-5 Вт/(м∙К). Поэтому каждый раз, когда мы проделывали процедуру скальпирования, температуры CPU как в номинальном режиме, так и при разгоне заметно снижались. Давайте посмотрим, что произошло на этот раз.

Разгон скальпированного Core i7-8700K

Эффект от скальпирования Core i7-8700K виден сразу. Даже в номинальном режиме предельные температуры тут же упали на 13 градусов. То есть теперь, даже при максимальной и самой жёсткой для процессора нагрузке нагрев ядер не превышает 71 градуса.

Ещё более весомое улучшение температурного режима прослеживается при разгоне. Например, при выборе для процессора настроек частоты, которые изначально были предельными и приводили к нагреву Core i7-8700K до критических температур, теперь стал отчётливо виден доступный и нераскрытый частотный потенциал.

При выборе частоты 4,8 ГГц с напряжением 1,3 В температуры процессорных ядер не превышают 78 градусов. То есть здесь скальпирование позволило выиграть целых 17 градусов. Но что ещё важнее, оно открыло путь к дальнейшему оверклокингу.

Понемногу повышая напряжение дальше, мы смогли добиться работы тестового Core i7-8700K на частоте 5,0 ГГц. Причём речь идёт об абсолютно стабильном разгоне, в котором процессор способен проходить любые испытания, включая и тестирование в LinX 0.8.0 с задействованием AVX/AVX2-инструкций.

Для обеспечения работоспособности процессора на частоте 5,0 ГГц его напряжение пришлось повысить до 1,4 В, но температуры ядер, фиксируемые при работе c AVX-алгоритмами, не превышали 89 градусов. Иными словами, частота 5,0 ГГц для скальпированного Core i7-8700K - вполне подходящий режим, который можно без каких-либо колебаний ставить «на постоянно».

Здесь стоит отметить одну немаловажную деталь. В качестве тестовой платформы в экспериментах по разгону мы пользовались материнской платой ASUS Strix Z370-F Gaming. И несмотря на то, что на ней реализован фирменный четырёхканальный стабилизатор питания Digi+ на ШИМ-контроллере ASP1400BT с удвоителями фаз, на данный момент эта плата не может обеспечить стабильное напряжение на процессоре даже при включении максимального, седьмого уровня Load-Line Calibration. Как можно судить по данным мониторинга, под нагрузкой напряжение проседает почти на 0,1 В - до 1,312 В. Но несмотря на это, никаких претензий к стабильности работы Core i7-8700K на частоте 5,0 ГГц у нас не возникло, и в нашем случае явно дефектная реализация Load-Line Calibration на плате ASUS Strix Z370-F Gaming разгонный потенциал никак не ограничила. Тем не менее на других платах, где данная функция работает без проблем, частоту 5,0 ГГц можно было бы получить и при более низком напряжении V CC . Насколько более низком - мы обязательно проверим, как только другие платы доберутся до нашей лаборатории.

Более полно картину того, насколько значительный эффект даёт скальпирование Core i7-8700K при разгоне, можно оценить по температурной карте, составленной для этого процессора после замены термоинтерфейса. Приведённые на ней значения температур - это максимум, который был зафиксирован при прохождении тестирования в LinX 0.8.0.

Представленная таблица ясно даёт понять, что замена интеловской термопасты жидким металлом, который имеет на порядок лучшую теплопроводность, серьёзно снижает рабочие температуры и буквально отодвигает предел разгона. То есть штатный интеловский термоинтерфейс искусственно сдерживает частотные возможности кристаллов Coffee Lake в составе процессоров Core восьмого поколения, и на самом деле они способны на гораздо большее.

Правда, нужно учитывать и ещё один момент - безопасность долговременной эксплуатации разогнанного процессора. Считается, что от длительной работы при повышенных частоте и напряжении полупроводниковый кристалл может деградировать. И в этом есть доля истины: такое действительно случается. Поэтому на оверклокерских форумах для 14-нм процессоров обычно рекомендуют останавливаться на максимальных значениях напряжений порядка 1,35-1,4 В - они у оверклокеров-практиков считаются сравнительно безопасными.

Тем не менее инженеры из числа разработчиков материнских плат говорят, что эта рекомендация - не слишком корректная. Дело в том, что деградация полупроводниковой структуры процессора происходит не столько от напряжения, сколько от высоких токов, поэтому безопасный уровень напряжения питания зависит от изначального качества полупроводникового кристалла, и его нужно определять не в виде абсолютной величины, а через фактическое энергопотребление каждого конкретного экземпляра CPU при его разгоне. Общая рекомендация звучит так: повышать напряжение V CC безопасно до тех пор, пока потребление процессора под нагрузкой превышает изначальный уровень энергопотребления, наблюдаемый при номинальной частоте и штатном VID, не более чем вдвое.

Поэтому попутно с температурой мы проанализировали и то, как растёт потребление разогнанного Core i7-8700K. Для этого было выполнено измерение тока, проходящего через разъём EPS 12V на материнской плате, от которого питается процессорный VRM, при разгоне CPU до различных частот с различным напряжением. Результаты представлены в следующей таблице.

Подумать только, разгон приводит к тому, что потребление 95-ваттного (формально) процессора Core i7-8700K может переваливать за 250 Вт! Но стоит иметь в виду, что реальное потребление старшего Coffee Lake при максимальной нагрузке в номинальном режиме составляет далеко не 95 Вт. В реальности при работе с AVX/AVX2-инструкциями этот процессор расходует существенно больше электроэнергии - на уровне 135-140 Вт. Поэтому 250 Вт при разгоне - вполне допустимый режим, который не должен внушать опасения по поводу быстрой деградации полупроводникового кристалла.

До этого момента мы говорили об оверклокинге, имея в виду полную стабильность процессора в программах, которые активно работают с AVX/AVX2-инструкциями. Среди игровых и офисных приложений таких встречается очень немного, но современные творческие программы, в первую очередь связанные с обработкой изображений или видео, векторные инструкции задействуют достаточно активно. Однако пользуются такими программами далеко не все, поэтому в дополнение к проделанному тестированию мы решили посмотреть, насколько разгонится скальпированный Core i7-8700K, если его стабильность проверять не в LinX 0.8.0, а более поверхностно - в Prime95 29.3 с отключённой поддержкой AVX/AVX2.

Ослабленные требования к стабильности, естественно, позволили получить более высокую частоту. При выставленном в BIOS материнской платы напряжении 1,45 В процессор смог проходить часовое тестирование в Prime95 на частоте 5,2 ГГц.

Температура ядер не превышала 90 градусов, потребление процессора, по данным системного мониторинга, оставалось в пределах 170-175 Вт.

Этот результат позволяет применить для скальпированного процессора Core i7-8700K комбинированный разгон со снижением частоты при активации AVX/AVX2-инструкций. Соответствующая опция поддерживается в BIOS материнских плат на базе набора логики Intel Z370, поэтому «плавающий» разгон до 5,0-5,2 ГГц - вполне допустимый рабочий режим для скальпированного Core i7-8700K.

А это значит, что без каких-либо дополнительных финансовых затрат в наших руках оказался аналог процессоров Core i7-8700K Ultra Edition , которые распространяет немецкий энтузиаст Der 8auer через магазин caseking .de .

В частности, для Core i7-8700K Ultra Edition обещается стабильная работоспособность на частоте 5,2 ГГц в приложениях без поддержки AVX, и это ровно то же самое, что получилось после скальпирования имеющегося в нашей лаборатории образца Core i7-8700K. Конечно, нужно понимать, что успех разгона того или иного экземпляра CPU зачастую зависит от везения. Но очень похоже, что Coffee Lake, если ему обеспечить должный теплоотвод, действительно может предложить на 100-200 МГц лучший разгон по сравнению с Kaby Lake, несмотря на увеличенное в полтора раза количество вычислительных ядер. И это значит, что на покорение символической 5-гигагерцевой вершины может рассчитывать практически любой оверклокер, способный смириться с утратой гарантии на процессор и готовый решиться на скальпирование процессора и вживление в него эффективного термоинтерфейса на основе жидкого металла.

Разгоном называется принудительное увеличение тактовой частоты процессора сверх номинальной. Сразу поясним, что означают эти понятия.

Такт - это условный, очень короткий временной промежуток, за который процессор выполняет определенное количество инструкций программного кода.

А тактовая частота - это количество тактов за 1 секунду.

Повышение тактовой частоты прямо пропорционально скорости выполнения программ, то есть работает быстрее, чем не разогнанный.

Словом, разгон позволяет продлить «активную жизнь» процессора, когда его стандартная производительность перестает отвечать требованиям пользователя.

Он позволяет увеличить быстродействие компьютера без трат на покупку нового оборудования.

Важно! Отрицательные стороны разгона - это прирост энергопотребления компьютера, иногда весьма заметный, увеличение тепловыделения и ускорение износа устройств из-за работы в нештатном режиме. Также следует знать, что разгоняя процессор, вы вместе с ним разгоняете и оперативную память.

Что нужно сделать перед разгоном?

Каждый процессор имеет свой разгонный потенциал - предел тактовой частоты, превышение которого приводит к неработоспособности устройства.

Большинство процессоров, таких как intel core i3, i5, i7, можно безопасно разогнать лишь на 5–15% от исходного уровня, а некоторые еще меньше.

Стремление выжать максимум тактовой частоты из возможной не всегда оправдывает себя, поскольку при достижении определенного порога нагрева процессор начинает пропускать такты, чтобы снизить температуру.

Из этого следует, что для стабильной работы разогнанной системы необходимо хорошее охлаждение.

Кроме того, учитывая возросшее энергопотребление, может понадобиться замена блока питания на более мощный.

Непосредственно перед разгоном необходимо сделать три вещи:

  • Обновить компьютера до последней версии.
  • Убедиться в исправности и надежности установки .
  • Узнать исходную тактовую частоту своего процессора (посмотреть в BIOS или через специальные утилиты, например,CPU-Z).

Также перед разгоном полезно протестировать работу процессора на стабильность при максимальной нагрузке. Например, с помощью утилитыS&M .

После этого пора приступать к «таинству».

Обзор программ для разгона процессоров Intel

SetFSB

SetFSB - простая в использовании утилита, позволяющая разгонять процессор «на лету» простым перемещением ползунка.

После внесения изменений не требует перезагрузки компьютера.

Программа подходит для разгона как старых моделей процессоров вроде Intel Core 2 duo, так и современных.

Однако она поддерживает не все материнские платы, а это безусловная необходимость, поскольку разгон осуществляется путем повышения опорной частоты системной шины.

То есть воздействует она на тактовый генератор (чип PLL или как его называют, клокер), находящийся на материнской плате.

Узнать, входит ли ваша плата в список поддерживаемых, можно на сайте программы.

Совет! Во избежание выхода процессора из строя, работать с SetFSB рекомендуется только опытным пользователям, которые понимают, что делают, и знают о возможных последствиях. Кроме того, неподготовленный юзер вряд ли сможет правильно определить модель своего тактового генератора, который необходимо указывать вручную.

Итак, чтобы разогнать процессор с помощью SetFSB, нужно:

  • Выбрать из списка «Clock Generator» модель клокера, установленного на вашей материнской плате.
  • Кликнуть кнопку «Get FSB». После этого в окне SetFSB отобразится текущая частота системной шины (FSB) и процессора.
  • Осторожно, небольшими шагами передвигать ползунок в центре окна. После каждого перемещения ползунка необходимо контролировать температуру процессора. Например, с помощью программыCore Temp .
  • Выбрав оптимальное положение ползунка, нужно нажать кнопку Set FSB.

Плюс (а для кого-то минус) утилиты SetFSB в том, что выполненные в ней настройки будут действовать только до перезагрузки компьютера. После повторного старта их придется устанавливать заново.

Если нет желания делать это каждый раз, утилиту можно поместить в автозагрузку.

CPUFSB

CPUFSB - следующая в нашем обзоре программа для разгона процессоров Intel core i5, i7 и других, скачать которую можно с сайта разработчика.

Если вы знакомы с утилитой CPUCool - комплексным инструментами мониторинга и разгона процессора, то знайте, что CPUFSB - это выделенный из нее модуль разгона.

Поддерживает множество материнских плат на чипсетах Intel, VIA, AMD, ALI и SIS.

В отличие от SetFSB, CPUFSB имеет русский перевод, поэтому понять, как с ней обращаться, гораздо легче.

Принцип работы у этих двух программ одинаков: повышение опорной частоты системной шины.

Порядок работы:

  • Выберите из списка изготовителя и тип вашей материнской платы .
  • Выберите марку и модель чипа PLL (тактового генератора).
  • Нажмите «Взять частоту» для отображения в программе текущей частоты системной шины и процессора.
  • Повышать частоту также необходимо маленькими шагами, контролируя при этом температуру процессора. После выбора оптимальной настройки нажмите «Установить частоту».

CPUFSB позволяет задавать частоту шины FSB при последующем запуске программы и при выходе. Текущие настройки также сохраняются до перезагрузки компьютера.

Отзывы к прошлой заметке о разгоне пестрили недовольствами: читателей не устраивало количество процессоров и выбор модели - как ни крути, а Core 2 Duo постепенно уходит на покой (что, однако, не отменяет возможности собрать на его базе бюджетный игровой ПК). В этот раз мы исправили оба недостатка - количество протестированных "камней" возросло более чем в два раза, да и выбранную модель язык не поворачивается назвать устаревшей. Встречайте: одиннадцать Core i7 920!

Тестовый стенд

Для проверки разгонного потенциала процессоров использовался тестовый стенд следующей конфигурации:

  • Материнская плата: ASUS P6T Deluxe (BIOS 1606)
  • Оперативная память: Corsair TR3X6G1600C8D (3 x 2048 Мбайт DDR3 8-8-8-24 1T 1,65 В)
  • Видеокарта: MSI R4870-T2D1G (Radeon HD 4870, 1 Гбайт DDR5)
  • Блок питания: Enermax ELT-620AWT ECO (620 Вт)
  • Система охлаждения процессора: Noctua NH-U12P + Thermaltake TT-1225T
  • Жесткий диск: WD 1500AHFD (10000 об/мин, 150 Гбайт)
  • Стоит сказать несколько слов о материнской плате, P6T Deluxe, подробный обзор которой можно посмотреть . Первая из её важных особенностей - повышение напряжения на процессоре при 100%-ной загрузке. По данным CPU-Z, к выставленному в BIOS напряжению добавляется 0,05...0,08 вольт. Это положительно влияет на стабильность системы, однако надо учитывать этот немаловажный момент при установке желаемых значений в AI Tweaker, чтобы Vcore даже в нагрузке не превышало требуемых значений (1,45 в). В таблице с результатами указано напряжение без учета "добавки".

    Второй момент - возможность увеличения множителя до 21 (штатный у Core i7 920 равен 20). Возможность хорошая, но работает далеко не на всех процессорах - лишь два из одиннадцати не сбрасывали множитель до 20 под нагрузкой. Поскольку учитывался максимальный стабильный результат, то в таблицу было решено занести результаты с бОльшим множителем.

    Методика тестирования

    Установки в AI Tweaker:

  • CPU Voltage: 1,45 В
  • CPU PLL Voltage: 1,84 В
  • QPI/DRAM Core Voltage: 1,4 В
  • IOH Voltage: 1,3 В
  • DRAM Bus Voltage: 1,68 В
  • Load-Line Calibration: Enabled
  • CPU Differential Amplitude: 900 мВ
  • DRAM Timings: 8-8-8-24 2T
  • После выяснения максимальной стабильной тактовой частоты при напряжении 1,45 В, последнее понижалось до потери стабильности. Наименьшее значение Vcore, при котором система оставалась стабильной, и заносился в таблицу. Для мониторинга частоты и напряжения CPU использовалась CPU-Z 1.51, а температуру каждого ядра подсказывал RealTemp 3.00. Стресс-тест - LinX 0.5.9 с объемом доступной памяти 4096 Мбайт и режимом "x64" и количеством проходов равным 20.

    Результаты

    Порядковый
    номер
    Тактовая частота,
    МГц
    Базовая частота,
    МГц
    Напряжение питания
    ядра, В
    Множитель Максимальная температура
    ядер процессора, С
    Скриншот
    CPU-Z
    1 3990 190 1,432 21 79
    2 3885 185 1,432 21 81
    3 4116 206 1,424 20 92
    4 4000 200 1,432 20 91
    5 3858 193 1,424 20 74
    6 4095 205 1,424 20 86
    7 4036 202 1,424 20 84
    8 4077 204 1,440 20 80
    9 4016 201 1,440 20 80
    10 3880 194 1,440 20 80
    11 3740 187 1,448 20 77

    Заключение

    Как видно из таблицы и диаграммы, почти половина процессоров смогла преодолеть четырехгигагерцовую отметку, при этом напряжение колебалось в пределах 1,424...1,44 в. Явный аутсайдер всего один - при почти 1,45 вольтах на ядре тактовая частота составляла менее 3800 МГц.

    С температурой все довольно прозрачно: в первую очередь она зависит от частоты процессора, и уже после - от напряжения. Правда, дельта Vcore не настолько велика, чтобы можно было построить график зависимости уровня нагрева CPU от его напряжения и / или тактовой частоты. Да, и очень важен равномерный хороший тепловой контакт между основанием СО и теплораспределительной крышкой процессора. В некоторых случаях приходилось переустанавливать кулер из-за очень высокой температуры в загрузке (более 95 градусов).

    В целом же можно констатировать факт: при наличии хорошей материнской платы выжать из Core i7 920 четыре гигагерца тактовой частоты не составляет большого труда.

    Выражаем благодарность:

  • Компании Джаст за тестовый стенд и процессоры;
  • Компании Noctua за кулер Noctua NH-U12P;
  • Компании Enermax за блок питания Enermax ELT-620AWT ECO.
  • Лучшие статьи по теме