Как настроить смартфоны и ПК. Информационный портал
  • Главная
  • Ошибки
  • Проблемы возникающие при коммутации каналов. Сети с коммутацией каналов

Проблемы возникающие при коммутации каналов. Сети с коммутацией каналов

Коммутация каналов на основе разделения времени

Коммутация на основе техники разделения частот разрабатывалась в расчете на передачу непрерывных сигналов, представляющих голос. При переходе к цифро­вой форме представления голоса была разработана новая техника мультиплекси­рования, ориентирующаяся на дискретный характер передаваемых данных.

Эта техника носит название мультиплексирования с разделением времени (Time Division Multiplexing, TDM). Рис. 3.3. пояс­няет принцип коммутации каналов на основе техники TDM.

Рис. 3.3. Коммутация на основе разделения канала во времени

Аппаратура TDM-сетей - мультиплексоры, коммутаторы, демультиплексоры - работает в режиме разделения времени, поочередно обслуживая в течение цикла своей работы все абонентские каналы. Цикл работы оборудования TDM равен 125 мкс, что соответствует периоду следования замеров голоса в цифровом абонент­ском канале. Это значит, что мультиплексор или коммутатор успевает вовремя обслужить любой абонентский канал и передать его очередной замер далее по сети. Каждому соединению выделяется один квант времени цикла работы аппаратуры, называемый также тайм-слотом. Длительность тайм-слота зависит от числа або­нентских каналов, обслуживаемых мультиплексором TDM или коммутатором.

Мультиплексор принимает информацию по N входным каналам от конечных абонентов, каждый из которых передает данные по абонентскому каналу со скорос­тью 64 Кбит/с - 1 байт каждые 125 мкс. В каждом цикле мультиплексор выполняет следующие действия:

· прием от каждого канала очередного байта данных;

· составление из принятых байтов уплотненного кадра, называемого также обоймой;

· передача уплотненного кадра на выходной канал с битовой скоростью, равной Nx64 Кбит/с.

Порядок байт в обойме соответствует номеру входного канала, от которого этот байт получен. Количество обслуживаемых мультиплексором абонентских каналов зависит от его быстродействия. Например, мультиплексор Т1, представляющий собой первый промышленный мультиплексор, работавший по технологии TDM, поддер­живает 24 входных абонентских канала, создавая на выходе обоймы стандарта Т1, передаваемые с битовой скоростью 1,544 Мбит/с.

Демультиплексор выполняет обратную задачу - он разбирает байты уплотнен­ного кадра и распределяет их по своим нескольким выходным каналам, при этом он считает, что порядковый номер байта в обойме соответствует номеру выходного канала.

Коммутатор принимает уплотненный кадр по скоростному каналу от мульти­плексора и записывает каждый байт из него в отдельную ячейку своей буферной памяти, причем в том порядке, в котором эти байты были упакованы в уплотнен­ный кадр. Для выполнения операции коммутации байты извлекаются из буферной памяти не в порядке поступления, а в таком порядке, который соответствует под­держиваемым в сети соединениям абонентов. Так, например, если первый абонент левой части сети рис. 3.3 должен соединиться со вторым абонентом в правой части сети, то байт, записанный в первую ячейку буферной памяти, будет извле­каться из нее вторым. «Перемешивая» нужным образом байты в обойме, коммута­тор обеспечивает соединение конечных абонентов в сети.


Однажды выделенный номер тайм-слота остается в распоряжении соединения «входной канал-выходной слот» в течение всего времени существования этого со­единения, даже если передаваемый трафик является пульсирующим и не всегда требует захваченного количества тайм-слотов. Это означает, что соединение в сети TDM всегда обладает известной и фиксированной пропускной способностью, крат­ной 64 Кбит/с.

Работа оборудования TDM напоминает работу сетей с коммутацией пакетов, так как каждый байт данных можно считать некоторым элементарным пакетом. Однако, в отличие от пакета компьютерной сети, «пакет» сети TDM не имеет ин­дивидуального адреса. Его адресом является порядковый номер в обойме или номер выделенного тайм-слота в мультиплексоре или коммутаторе. Сети, использующие технику TDM, требуют синхронной работы всего оборудования. Нарушение синхронности разрушает требуемую коммутацию абонентов, так как при этом те­ряется адресная информация. Поэтому перераспределение тайм-слотов между раз­личными каналами в оборудовании TDM невозможно, даже если в каком-то цикле работы мультиплексора тайм-слот одного из каналов оказывается избыточным, так как на входе этого канала в этот момент нет данных для передачи (например, або­нент телефонной сети молчит).

Сети TDM могут поддерживать либо режим динамической коммутации, либо режим постоянной коммутации, а иногда и оба эти режима. Так, например, основ­ным режимом цифровых телефонных сетей, работающих на основе технологии TDM, является динамическая коммутация, но они поддерживают также и посто­янную коммутацию, предоставляя своим абонентам службу выделенных каналов.

Существует аппаратура, которая поддерживает только режим постоянной ком­мутации. К ней относится оборудование типа Т1/Е1, а также высокоскоростное оборудование SDH. Такое оборудование используется для построения первичных сетей, основной функцией которых является создание выделенных каналов между коммутаторами, поддерживающими динамическую коммутацию.

Сегодня практически все данные - голос, изображение, компьютерные данные - передаются в цифровой форме. Поэтому выделенные каналы TDM-технологии, которые обеспечивают нижний уровень для передачи цифровых данных, являются универсальными каналами для построения сетей любого типа: телефонных, теле­визионных и компьютерных.

Сети с коммутацией каналов обладают несколькими важными общими свойствами независимо от того, какой тип мультиплексирования в них используется.

1. Сети с динамической коммутацией требуют предварительной процедуры уста­новления соединения между абонентами. Для этого в сеть передается адрес вы­зываемого абонента, который проходит через коммутаторы и настраивает их на последующую передачу данных. Запрос на установление соединения маршрутизи­руется от одного коммутатора к другому и в конце концов достигает вызываемого абонента. Сеть может отказать в установлении соединения, если емкость требуемо­го выходного канала уже исчерпана. Для FDM-коммутатора емкость выходного канала равна количеству частотных полос этого канала, а для TDM-коммутатора - количеству тайм-слотов, на которые делится цикл работы канала. Сеть отказывает в соединении также в том случае, если запрашиваемый абонент уже установил соединение с кем-нибудь другим. В первом случае говорят, что занят коммутатор, а во втором - абонент. Возможность отказа в соединении является недостатком метода коммутации каналов.

2. Если соединение может быть установлено, то ему выделяется фиксированная полоса частот в FDM-сетях или же фиксированная пропускная способность в TDM-сетях. Эти величины остаются неизменными в течение всего периода соединения. Гарантированная пропускная способность сети после установления соединения явля­ется важным свойством, необходимым для таких приложений, как передача голо­са, изображения или управления объектами в реальном масштабе времени. Однако динамически изменять пропускную способность канала по требованию абонента сети с коммутацией каналов не могут, что делает их неэффективными в условиях пульсирующего трафика.

3. Недостатком сетей с коммутацией каналов является невозможность примене­ния пользовательской аппаратуры, работающей с разной скоростью. Отдельные части составного канала работают с одинаковой скоростью, так как сети с комму­тацией каналов не буферизуют данные пользователей.

9. МЕТОДЫ КОММУТАЦИИ

9.1. Коммутация каналов

Коммутация каналов подразумевает образование непрерывного составного физического канала из последовательно соединенных отдельных канальных участков для прямой передачи данных между узлами. Отдельные каналы соединяются между собой специальной аппаратурой - коммутаторами, которые могут устанавливать связи между любыми конечными узлами сети. В сети с коммутацией каналов перед передачей данных всегда необходимо выполнить процедуру установления соединения, в процессе которой и создается составной канал.

Коммутаторы, а также соединяющие их каналы должны обеспечивать одновременную передачу данных нескольких абонентских каналов. Для этого они должны быть высокоскоростными и поддерживать какую-либо технику мультиплексирования абонентских каналов.

В настоящее время для мультиплексирования абонентских каналов используются две техники:

  • частотного мультиплексирования (Frequency Division Multiplexing, FDM);
  • мультиплексирования с разделением времени (Time Division Multiplexing , Т D М).

Техника частотного мультиплексирования каналов (FDM ) была разработана для телефонных сетей, но применяется она и для других видов сетей, например сетей кабельного телевидения.

Рассмотрим особенности этого вида мультиплексирования на примере телефонной сети.

Речевые сигналы имеют спектр шириной примерно в 10 000 Гц, однако основные гармоники укладываются в диапазон от 300 до 3400 Гц. Поэтому для качественной передачи речи достаточно образовать между двумя собеседниками канал с полосой пропускания в 3100 Гц, который и используется в телефонных сетях для соединения двух абонентов. В то же время полоса пропускания кабельных систем с промежуточными усилителями, соединяющих телефонные коммутаторы между собой, обычно составляет сотни килогерц, а иногда и сотни мегагерц. Однако непосредственно передавать сигналы нескольких абонентских каналов по широкополосному каналу невозможно, так как все они работают в одном и том же диапазоне частот и сигналы разных абонентов смешаются между собой так, что разделить их будет невозможно.

Для разделения абонентских каналов характерна техника модуляции высокочастотного несущего синусоидального сигнала низкочастотным речевым сигналом (рис. 37). Эта техника подобна технике аналоговой модуляции при передаче дискретных сигналов модемами, только вместо дискретного исходного сигнала используются непрерывные сигналы, порождаемые звуковыми колебаниями. В результате спектр модулированного сигнала переносится в другой диапазон, который симметрично располагается относительно несущей частоты и имеет ширину приблизительно совпадающую с шириной модулирующего сигнала.

Если сигналы каждого абонентского канала перенести в свой собственный диапазон частот, то в одном широкополосном канале можно одновременно передавать сигналы нескольких абонентских каналов.

На входы FDM-коммутатора поступают исходные сигналы от абонентов телефонной сети. Коммутатор выполняет перенос частоты каждого канала в свой диапазон частот. Обычно высокочастотный диапазон делится на полосы, которые отводятся для передачи данных абонентских каналов (рис. 38). Чтобы низкочастотные составляющие сигналов разных каналов не смешивались между собой, полосы делают шириной в 4 кГц, а не в 3,1 кГц, оставляя между ними страховой промежуток в 900 Гц. В канале между двумя FDM-коммутаторами одновременно передаются сигналы всех абонентских каналов, но каждый из них занимает свою полосу частот. Такой канал называют уплотненным .

Рис.37. Модуляция речевым сигналом


Рис. 38. Коммутация на основе частотного уплотнения

Выходной FDM-коммутатор выделяет модулированные сигналы каждой несущей частоты и передает их на соответствующий выходной канал, к которому непосредственно подключен абонентский телефон.

В сетях на основе FDM-коммутации принято несколько уровней иерархии уплотненных каналов. Первый уровень уплотнения образуют 12 абонентских каналов, которые составляют базовую группу каналов, занимающую полосу частот шириной в 48 кГц с гр аницами от 60 до 108 кГц. Второй уровень уплотнения образуют 5 базовых групп, которые составляют супергруппу , с полосой частот шириной в 240 кГц и границами от 312 до 552 кГц. Супергруппа передает данные 60 абонентских каналов тональной частоты. Десять супергрупп образуют главную группу , которая используется для связи между коммутаторами на больших расстояниях. Главная группа передает данные 600 абонентов одновременно и требует от канала связи полосу пропускания шириной не менее 2520 кГц с гр аницами от 564 до 3084 кГц.

Коммутаторы FDM могут выполнять как динамическую, так и постоянную коммутацию. При динамической коммутации один абонент инициирует соединение с другим абонентом, посылая в сеть номер вызываемого абонента. Коммутатор динамически выделяет данному абоненту одну из свободных полос своего уплотненного канала. При постоянной коммутации за абонентом полоса в 4 кГц закрепляется на длительный срок путем настройки коммутатора по отдельному входу, недоступному пользователям.

Принцип коммутации на основе разделения частот остается неизменным и в сетях другого вида, меняются только границы полос, выделяемых отдельному абонентскому каналу, а также количество низкоскоростных каналов в уплотненном высокоскоростном.

Коммутация на основе техники разделения частот разрабатывалась в расчете на передачу непрерывных сигналов. При переходе к цифровой форме представления голоса была разработана новая техника мультиплексирования, ориентирующаяся на дискретный характер передаваемых данных.

Эта техника носит название мультиплексирования с разделением времени (Time Division Multiplexing , TDM ) . Реже используется и другое ее название - синхронный режим передачи (Synchronous Transfer Mode , STM ) (рис. 39).

Аппаратура TDM-сетей - мультиплексоры, коммутаторы, демультиплексоры - работает в режиме разделения времени, поочередно обслуживая в течение цикла своей работы все абонентские каналы. Цикл работы оборудования TDM равен 125 мкс, что соответствует периоду следования замеров голоса в цифровом абонентском канале. Это значит, что мультиплексор или коммутатор успевает вовремя обслужить любой абонентский канал и передать его очередной замер далее по сети. Каждому соединению выделяется один квант времени цикла работы аппаратуры, называемый также тайм-слотом . Длительность тайм-слота зависит от числа абонентских каналов, обслуживаемых мультиплексором TDM или коммутатором.

Мультиплексор принимает информацию по N входным каналам от конечных абонентов, каждый из которых передает данные по абонентскому каналу со скоростью64 Кбит/с - 1 байт каждые 125 мкс. В каждом цикле мультиплексор выполняет следующие действия:

  • прием от каждого канала очередного байта данных;
  • составление из принятых байтов кадра, называемого также обоймой;
  • передача уплотненного кадра на выходной канал с битовой скоростью, равной N×64 Кбит/с .


Рис. 39. Коммутация на основе разделения канала во времени

Порядок байт в обойме соответствует номеру входного канала, от которого этот байт получен. Количество обслуживаемых мультиплексором абонентских каналов зависит от его быстродействия. Например, мультиплексор Т1 , представляющий собой первый промышленный мультиплексор, работавший по технологии TDM, поддерживает 24 входных абонентских канала, создавая на выходе обоймы стандарта Т1, передаваемые с битовой скоростью 1,544 Мбит/с.

Демультиплексор выполняет обратную задачу - он разбирает байты уплотненного кадра и распределяет их по своим нескольким выходным каналам, при этом он считает, что порядковый номер байта в обойме соответствует номеру выходного канала.

Коммутатор принимает уплотненный кадр по скоростному каналу от мультиплексора и записывает каждый байт из него в отдельную ячейку своей буферной памяти, причем в том порядке, в котором эти байты были упакованы в уплотненный кадр. Для выполнения операции коммутации байты извлекаются из буферной памяти не в порядке поступления, а в таком порядке, который соответствует поддерживаемым в сети соединениям абонентов. Так, например, если первый абонент левой части сети рис. 39 должен соединиться со вторым абонентом в правой части сети, то байт, записанный в первую ячейку буферной памяти, будет извлекаться из нее вторым. «Перемешивая» нужным образом байты в обойме, коммутатор обеспечивает соединение конечных абонентов в сети.

Однажды выделенный номер тайм-слота остается в распоряжении соединения «входной канал - выходной слот» в течение всего времени существования этого соединения, даже если передаваемый трафик является пульсирующим и не всегда требует захваченного количества тайм-слотов . Это означает, что соединение в сети TDM всегда обладает известной и фиксированной пропускной способностью, кратной 64 Кбит/с .

Сети TDM могут поддерживать либо режим динамической коммутации, либо режим постоянной коммутации, а иногда и оба эти режима. Так, например, основным режимом цифровых телефонных сетей, работающих на основе технологии TDM, является динамическая коммутация, но они поддерживают также и постоянную коммутацию, предоставляя своим абонентам службу выделенных каналов.

Сегодня практически все данные - голос, изображение, компьютерные данные - передаются в цифровой форме. Поэтому выделенные каналы TDM-технологии, которые обеспечивают нижний уровень для передачи цифровых данных, являются универсальными каналами для построения сетей любого типа: телефонных, телевизионных и компьютерных.

Сети с коммутацией каналов обладают несколькими важными общими свойствами независимо от того, какой тип мультиплексирования в них используется.

Сети с динамической коммутацией требуют предварительной процедуры установления соединения между абонентами. Для этого в сеть передается адрес вызываемого абонента, который проходит через коммутаторы и настраивает их на последующую передачу данных. Запрос на установление соединения маршрутизируется от одного коммутатора к другому и в конце концов достигает вызываемого абонента. Сеть может отказать в установлении соединения, если емкость требуемого выходного канала уже исчерпана. Для FDM-коммутатора емкость выходного канала равна количеству частотных полос этого канала, а для TDM-коммутатора - количеству тайм-слотов , на которые делится цикл работы канала. Сеть отказывает в соединении также в том случае, если запрашиваемый абонент уже установил соединение с кем-нибудь другим. В первом случае говорят, что занят коммутатор, а во втором - абонент. Возможность отказа в соединении является недостатком метода коммутации каналов.

Если соединение может быть установлено, то ему выделяется фиксированная полоса частот в FDM-сетях или же фиксированная пропускная способность в TDM-сетях. Эти величины остаются неизменными в течение всего периода соединения. Гарантированная пропускная способность сети является важным свойством, необходимым для таких приложений, как передача голоса, изображения или управления объектами в реальном масштабе времени. Однако динамически изменять пропускную способность канала по требованию абонента сети с коммутацией каналов не могут, что делает их неэффективными в условиях пульсирующего трафика.

Другим недостатком сетей с коммутацией каналов является невозможность применения пользовательской аппаратуры, работающей с разной скоростью. Отдельные части составного канала работают с одинаковой скоростью, так как сети с коммутацией каналов не буферизуют данные пользователей. Сети с коммутацией каналов хорошо приспособлены для коммутации потоков данных постоянной скорости, когда единицей коммутации является не отдельный байт или пакет данных, а долговременный синхронный поток данных между двумя абонентами. Для таких потоков сети добавляют минимум служебной информации для маршрутизации данных через сеть, используя временную позицию каждого бита потока в качестве его адреса назначения в коммутаторах сети.

В зависимости от направления возможной передачи данных способы передачи данных по линии связи делятся на следующие типы:

  • симплексный - передача осуществляется по линии связи только в одном направлении;
  • полудуплексный - передача ведется в обоих направлениях, но попеременно во времени. Примером такой передачи служит технология Ethernet ;
  • дуплексный - передача ведется одновременно в двух направлениях.

Дуплексный режим - наиболее универсальный и производительный способ работы канала. Самым простым вариантом организации дуплексного режима является использование двух независимых физических каналов в кабеле, каждый из которых работает в симплексном режиме. Именно такая идея лежит в основе реализации дуплексного режима работы во многих сетевых технологиях, например, Fast Ethernet или ATM.

Иногда такое простое решение оказывается недоступным или неэффективным. Чаще всего это происходит в тех случаях, когда для дуплексного обмена данными имеется всего один физический канал, а организация второго связана с большими затратами. В таких случаях дуплексный режим работы организуется на основе разделения канала на два логических подканала с помощью техники FDM или TDM.

Модемы для организации дуплексного режима работы на двухпроводной линии применяют технику FDM. Модемы, использующие частотную модуляцию, работают на четырех частотах: две частоты - для кодирования единиц и нулей в одном направлении, а остальные две частоты - для передачи данных в обратном направлении.

При цифровом кодировании дуплексный режим на двухпроводной линии организуется с помощью техники TDM. Часть тайм-слотов используется для передачи данных в одном направлении, а часть - для передачи в другом направлении. Обычно тайм-слоты противоположных направлений чередуются, из-за чего такой способ иногда называют «пинг-понговой» передачей.

В волоконно-оптических кабелях при использовании одного оптического волокна для организации дуплексного режима работы применяется передача данных в одном направлении с помощью светового пучка одной длины волны, а в обратном - другой длины волны. Такая техника относится к методу FDM, однако для оптических кабелей она получила название разделения по длине волны (Wave Division Multiplexing , WDM ) . WDM применяется и для повышения скорости передачи данных в одном направлении, обычно используя от 2 до 16 каналов.

В сетях с коммутацией каналов абонентов соединяет составной канал, образуемый коммутаторами сети по запросу одного из абонентов, при данном методе коммутации перед передачей данных всегда необходимо выполнить процедуру установления соединения, в процессе которой и создается составной канал.

Сети с коммутацией каналов хорошо коммутируют потоки данных постоянной интенсивности, например потоки данных, создаваемые разговаривающими по телефону собеседниками, но не могут перераспределять пропускную способность магистральных каналов между потоками абонентских каналов динамически.

Для совместного разделения каналов между коммутаторами сети несколькими абонентскими каналами используются две технологии: технология частотного разделения канала (FDM) и технология разделения канала во времени (TDM).

Частотное разделение характерно для аналоговой модуляции сигналов, а временное – для цифрового кодирования. Технология частотного разделения канала -FDM была разработана для телефонных сетей, но применяется и для других видов сетей, например сетей кабельного телевидения и компьютерных сетей. При переходе к цифровой форме представления голоса была разработана новая технология, ориентирующаяся на дискретный характер передаваемых данных - это технология разделения канала во времени (TDM).

Сравнение коммутации каналов и коммутации пакетов

Коммутация каналов

Коммутация пакетов

Гарантированная пропускная способность (полоса) для взаимодействующих абонентов

Пропускная способность сети для абонентов неизвестна, задержки передачи носят случайный характер

Сеть может отказать абоненту в установлении соединения

Сеть всегда готова принять данные от абонента

Трафик реального времени передается без задержек

Ресурсы сети используются эффективно при передаче пульсирующего трафика

Адрес используется только на этапе установления соединения

Адрес передается с каждым пакетом

Коммутация пакетов.

Коммутация пакетов – это техника коммутации абонентов, которая была специально разработана для эффективной передачи компьютерного трафика.

При методе коммутации пакетов все передаваемые пользователями сообщения разбиваются в исходном узле на сравнительно небольшие части, называемые пакетами. Каждый пакет снабжается заголовком, в котором обязательно указывается адресная информация, необходимая для доставки пакета узлу назначения и другая служебная информация. Коммутаторы глобальной сети принимают пакеты и на основании адресной информации передают их друг другу, а в конечном итоге – узлу назначения.

Коммутаторы пакетной сети отличаются от коммутаторов каналов тем, что имеют внутреннюю буферную память для временного хранения пакетов, если выходной порт коммутатора в момент принятия данного пакета занят передачей другого пакета. В этом случае пакет находится некоторое время в очереди пакетов в буферной памяти выходного порта, когда до него дойдет очередь, то он передается следующему коммутатору.

Сети с коммутацией каналов эффективно работают в том отношении, что объем передаваемых данных от всех абонентов сети в единицу времени больше, чем при использовании сети с коммутацией каналов. Однако для каждой пары абонентов пропускная способность сети может оказаться ниже, чем у сети с коммутацией каналов, за счет очередей пакетов в коммутаторах.

Размеры пакетов существенно влияют на производительность сети. Обычно пакеты в сетях имеют размер в 1 – 4 Кбайт.

Сети с коммутацией пакетов могут работать в одном из двух режимов : дейтаграммном режиме или режиме виртуальных каналов .

При дейтаграммном режиме передачи пакетов предполагается независимая маршрутизация каждого пакета. При этом коммутатор может изменить маршрут какого - либо пакета в зависимости от состояния сети. Дейтаграммный метод не требует предварительного установления соединения и поэтому работает без задержки перед передачей данных.

Режим виртуальных каналов предполагает передачу пакетов по заранее определенному пути – по виртуальному каналу. В этом случае перед тем, как начать передачу данных между двумя конечными узлами, должен быть установлен виртуальный канал, который представляет собой единственный маршрут, соединяющий эти узлы. Время затраченное на установление виртуального канала компенсируется последующей быстрой передачей всего потока пакетов. Виртуальный канал может быть динамическим и постоянным .

Динамический виртуальный канал устанавливается на один сеанс связи, для этого передается в сеть специальный служебный пакет – запрос на установление соединения. Этот пакет проходя через устройства сети «прокладывает» виртуальный канал, по которому будут передаваться эти пакеты. Постоянные виртуальные каналы создаются администратором сети путем ручной настройки коммутаторов.

Тема 3.3: Прикладные программы для создания Веб-сайтов

Тема 3.4: Применение Интернет в экономике и защита информации

Глобальные сети

3.2. Сетевые технологии. Глобальные сети и технологии глобальных сетей

3.2.1. Глобальные сети с коммутацией каналов и пакетов

Глобальные сети Wide Area Networks (WAN), которые относятся к территориальными компьютерными сетями, предназначены, как и локальные сети для предоставления услуг, но значительно большему количеству пользователей, находящихся на большой территории.

Методы коммутации

В глобальных сетях существует три принципиально различные схемы коммутации:

  • коммутация каналов;
  • коммутация сообщений
  • коммутация пакетов;

Коммутация каналов в глобальных сетях – процесс, который по запросу осуществляет соединение двух или более станций данных и обеспечивает монопольное использование канала передачи данных до тех пор, пока не произойдет разъединение. Коммутация каналов подразумевает образование непрерывного составного физического канала из последовательно соединенных отдельных канальных участков для прямой передачи данных между узлами. Отдельные каналы соединяются между собой специальной аппаратурой – коммутаторами, которые могут устанавливать связи между любыми конечными узлами сети.

Коммутация сообщений в глобальных сетях – процесс пересылки данных, включающий прием, хранение, выбор исходного направления и дальнейшую передачу сообщений без нарушения их целостности. Используются в тех случаях, когда не ожидается немедленной реакции на сообщение. Сообщения передаются между транзитными компьютерами сети с временной буферизацией их на дисках каждого компьютера. Сообщениями называются данные, объединенные смысловым содержанием, имеющие определенную структуру и пригодные для обработки, пересылки или использования.

Источниками сообщений могут быть голос, изображения, текст, данные. Для передачи звука традиционно используется телефон, изображений – телевидение, текста – телеграф (телетайп), данных – вычислительные сети. Установление соединения между отправителем и получателем с возможностью обмена сообщениями без заметных временных задержек характеризует режим работы online. При существенных задержках с запоминанием информации в промежуточных узлах имеем режим offline.

Коммутация пакетов в глобальных сетях – это коммутация сообщений, представляемых в виде адресуемых пакетов, когда канал передачи данных занят только во время передачи пакета и по ее завершению освобождается для передачи других пакетов. Коммутаторы сети, в роли которых выступают шлюзы и маршрутизаторы, принимают пакеты от конечных узлов и на основании адресной информации передают их друг другу, а в конечном итоге станции назначения.

В глобальных сетях для передачи информации применяются следующие виды коммутации:

  • коммутация каналов (используется при передаче аудиоинформации по обычным телефонным линиям связи;
  • коммутация сообщений (применяется в основном для передачи электронной почты, в телеконференциях, электронных новостях);
  • коммутация пакетов (для передачи данных, в настоящее время используется также для передачи аудио - и видеоинформации).

Достоинством сетей коммутации каналов является простота реализации (образование непрерывного составного физического канала), а недостатком - низкий коэффициент использования каналов, высокая стоимость передачи данных, повышенное время ожидания других пользователей.

При коммутации сообщений передача данных (сообщения) осуществляется после освобождения канала, пока оно не дойдет до адресата.

Каждый сервер производит прием, проверку, сборку, маршрутизацию и передачу сообщения. К достоинствам можно отнести - уменьшение стоимости передачи данных. Недостатком данного способа является низкая скорость передачи информации, невозможность ведения диалога между пользователями.

Пакетная коммутация подразумевает обмен небольшими пакетами (часть сообщения) фиксированной структуры, которые не дают возможности образования очередей в узлах коммутации. Достоинства: быстрое соединение, надежность, эффективность использования сети.

Передача данных между двумя удаленными оконечными сетевыми устройствами обычно осуществляется через промежуточные сетевые узлы - узлы коммутации. В качестве оконечного устройства могут выступать рабочая станция, хост-компьютер, терминал, телефон или другое коммуникационное устройство. Соответственно, разные функции могут иметь связанные между собой физическими каналами узлы коммутации. Совокупность оконечных устройств и узлов коммутации образуют сеть передачи данных, рис. 21, а.

Спект различных технологий коммутации для передачи данных по сети приведен на рис. 21, б.

Два крайних случая представляют две основные традиционные технологии коммутации: коммутация каналов и коммутация пакетов .


Соединение с коммутацией каналов состоит в том, что на время передачи в сети создается канал, обеспечивающий определенную, фиксированную скорость передачи данных в системе прием - передача (пример - телефонные сети, традиционные аналоговые и цифровые сети ISDN). Особенностью этих сетей - длительное время установления соединения (в аналоговых сетях до нескольких секунд и более).

Особенностью работы сетевых устройств локальной сети является их очень быстрое взаимодействие с сетью (десятки миллисекунд и меньше). Технологии передачи данных, характерные для локальных сетей, преимущественно используют контролируемую со стороны рабочих станцией пакетную коммутацию.

Коммутация каналов

При использовании коммутации каналов подразумевается наличие выделенного коммуникационного канала между взаимодействующими устройствами. Этот путь образуется последовательностью определенных узлов сети.

Связь посредством коммутации каналов включает три фазы, объяснение которых проведем с использованием рис. 21 а.

  • 1. Установление канала. Для простоты будем рассматривать передачу данных в одном направлении. Пусть устройство А хочет передавать данные на устройство Е. Прежде чем данные начнут передаваться, должен установиться канал, соединяющий оконечные станции через цепь узлов. Например, станция А посылает запрос узлу 4 с требованием установить соединение со станцией Е. Поскольку сегмент А-4 - выделенная линия, то часть канала уже существует, Узел 4 должен определить, следующий узел в маршруте, ведущий к узлу 6. Основываясь на информации о маршрутах и анализируя стоимости каналов, узел 4 выбирает канал, например к узлу 5, выделяя в этом канале (используя мультиплексирование TDM или FDM) соответствующую полосу. После этого выделенный канал установлен от устройства А через узел 4 до узла 5. Поскольку несколько станций может быть подключено к узлу 4, он должен быть способен устанавливать внутренние пути от множества станций к множеству узлов. Теперь узел 5 по аналогии с узлом 4 устанавливает канал к узлу 6 и внутренне привязывает этот канал к каналу, идущему от узла Далее узел 6 завершает соединение с устройством Е. По завершении соединения проводится тестирование, определяющее, свободно ли устройство Е, готово ли оно принимать данные.
  • 2. Передача данных. Если устройство Е свободно, данные могут передаваться через сеть. Данные могут быть цифровыми (например, взаимодействие терминала с хостом) или аналоговыми (например, передача голоса). Сигнализация и передача могут быть как цифровыми, так и аналоговыми. В любом случае, путь образуется через: сегмент А-4, внутреннюю коммутацию на узле 4, сегмент 4-5, внутреннюю коммутацию на узле 5, сегмент 5-6, внутреннюю коммутацию на узле 6 и сегмент 6-Е. В общем, происходит установление и обратного канала, так что соединение является полнодуплексным, и данные могут передаваться в обоих направлениях.
  • 3. Отсоединение канала. После определенного времени передачи данных соединение терминируется, обычно после соответствующей команды от одной из станций. Сигналы разъединения должны пройти по узлам 4, 5, 6 чтобы высвободить ресурсы в сеть.

Подчеркнем, что путь соединения устанавливается до начала передачи данных. Таким образом, соответствующая емкость, требуемая для данного канала передачи, должна быть в наличие и резервируется между парами узлов на всем пути еще на этапе установления канала. Для этого каждый узел должен иметь внутреннюю коммутационную емкость, чтобы обеспечить соединение.

Коммутация каналов может быть довольно неэффективной, поскольку емкость установившегося канала выделяется на время соединений оконечных устройств и не доступна под другие приложения, даже если данные не передаются. Для телефонных сетей эффективность голосового канала далека от 100%. Еще хуже обстоит дело при подключении удаленного терминала к хосту, когда данные могут вовсе не идти в течение долгого времени, и канал будет простаивать. С точки зрения производительности, задержка вносится на этапе установления соединения. Однако, если соединение установлено, то сеть прозрачна по отношению к конечным устройствам, и данные идут с минимальными задержками.

Коммутация пакетов

Протяженные ВОСС с коммутацией каналов при разработке оптимизировались для достижения наилучших характеристик при передаче голоса, и подавляющая доля потока данных в этих сетях связывалась именно с голосовой передачей. Ключевая характеристика таких сетей в том, что ресурсы внутри сети выделяются под определенные телефонные вызовы. Для голосового соединения это не плохо, поскольку один из абонентов обычно говорит, и канал не простаивает. Можно сказать, что дуплексный канал при телефонной связи используется на 50%. Полоса пропускания для канала также оптимизирована и установлена как раз такой, чтобы можно было обеспечить приемлемое качество передачи речи. Однако при использовании таких телекоммуникационных сетей для передачи данных между компьютерами, появляются два очевидных недостатка.

  • 1. При типовом соединении (например, терминал-хост) значительную часть времени канал связи может быть свободен. Но телекоммуникационная сеть выделяет вполне определенную полосу пропускания под этот канал и не может использовать его для другого приложения. Таким образом, подход с коммутацией каналов не эффективен.
  • 2. В сетях с коммутацией каналов соединение обеспечивает передачу на постоянной скорости. Поэтому любой паре устройств терминал-хост будет предоставлена одна и та же фиксированная скорость, что ограничивает возможности сети при подключении разнообразных хостов и терминалов.

Сеть с коммутацией пакетов способна устранить эти недостатки. Данные в такой сети передаются в виде блоков, называемых пакетами (или кадрами). Обычно верхний предел длины пакета в зависимости от стандарта может быть от тысячи до нескольких тысяч байт.

Если устройство - источник передачи желает передать данные размером больше максимальной длины пакета, то данные разделяются на несколько пакетов, рис. 22.


Каждый пакет имеет поле данных, заголовок, другие служебные поля, расположенные в начале или в конце пакета. Поле заголовка, как минимум, включает информацию, необходимую узлу, сети для перенаправления (маршрутизации) пакетов в нужный канал. Возможна буферизация пакетов на узле.

На рис. 23 показаны основные операции. Рабочая станция или другое сетевое устройство посылает сообщение (например, файл данных) в виде последовательности пакетов (а). Каждый пакет наряду с данными содержит управляющую и/или контрольную информацию, в частности, адрес станции назначения, или идентификатор маршрута. Пакет первоначально посылается на узел, к которому подключена передающая станция. Узел, получая пакет, определяет по контрольной информации направление маршрута и на основание этого перенаправляет пакет в выходной порт соответствующего канала. Если связь между узлами по этому каналу исправна, пакет передается на соседний узел. Все пакеты последовательно "отрабатывают" свои пути, двигаясь через сеть к нужной станции назначения. Коммутация пакетов имеет несколько преимуществ над коммутацией каналов.

  • 1. Эффективность, использования линии при пакетной коммутации выше, поскольку один сегмент от узла к узлу может динамически распределять свои ресурсы между многими пакетами oт разных приложений. Если на передающем узле пакетов, предназначенных для отправки по определенному каналу, собирается больше, чем емкость этого канала, то пакеты помещаются в буфер, и устанавливается очередность передачи пакетов. Напротив, в сетях с коммутацией канала время, предназначенное для каждого приложения, выделяется в виде определенного тайм-слота на основе синхронного временного мультиплексирования. Максимальная скорость передачи определяется полосой этого тайм-слота, а не всей полосой канала.
  • 2. Сеть с пакетной коммутацией может осуществлять преобразование скорости передачи данных. Так способны обмениваться между собою пакетами станции, подключенные к соответствующим узлам сети каналами разной полосы пропускания.
  • 3. Когда поток через сеть с коммутацией каналов возрастает, сеть может оказаться перегруженной, и в установлении каналов связи между новыми станциями может быть отказано. При перегруженности телефонной сети попытка дозвона может быть блокирована. В сетях с пакетной коммутацией при большой загруженности передача пакетов сохраняется, хотя и могут возникать задержки с доставкой пакетов, или может уменьшаться скорость передачи.

В сетях с пакетной коммутацией можно использовать систему приоритетов. Если узел хочет передать несколько пакетов, то он может, в первую очередь, передать пакеты, имеющие наивысший приоритет. Пакеты с высоким приоритетом будут доставляться с меньшей задержкой, чем пакеты с низким приоритетом.

Пусть одна станция хочет послать сообщение другой в виде файла, размер которого превосходит максимальный размер пакета. Станция распределяет содержимое файла между несколькими пакетами и последовательно направляет пакеты в сеть. И здесь возникает вопрос, каким образом сеть должна обрабатывать эту последовательность пакетов, чтобы доставить их нужному адресату. В современных сетях с коммутацией пакетов используются два различных подхода, получившие название: дейтаграммные сети и сети с виртуальными каналами.

В дейтаграммной сети каждый пакет передается без ссылки на пакеты, которые идут до или после него, рис. 23.

Каждый узел на основании контрольной информации заголовка пакета и собственных данных об окружающих узлах сети выбирает следующий узел, на который перенаправляется пакет. Пакеты с одним и тем же адресом назначения могут следовать от станции отправителя к станции назначения разными маршрутами. Конечный узел маршрута восстанавливает правильную последовательность пакетов и уже в этой последовательности передает их станции назначения. В некоторых дейтаграммных сетях может отсутствовать функция упорядочения пакетов на выходном узле - тогда эту функцию берет на себя станция назначения. Пакет может повредиться при передаче по сети.


Например, если один из узлов в сети вышел из строя, то все пакеты, находящиеся на этом узле в очереди на передачу, будут потеряны. Опять же, функцию обнаружения потерянных пакетов может брать на себя как конечный узел маршрута, так и станция-получатель. В такой сети каждый пакет передается независимо от остальных и называется дейтаграммой.

В сети с виртуальными каналами перед тем, как пакеты начинают идти, создается определенный маршрут следования. Этот маршрут служит для поддержки логического соединения между удаленными станциями. Если маршрут установлен, то все пакеты между взаимодействующими станциями будут идти строго по этому маршруту, рис. 2 Поскольку на время логического соединения маршрут строго фиксирован, то такое логическое соединение в некоторой степени аналогично образованию канала в сетях с коммутацией каналов и называется виртуальным каналом. Каждый пакет теперь содержит идентификатор виртуального канала наряду с полем данных. Все узлы по маршруту знают, куда направлять такие пакеты- никакого решения по маршрутизации теперь эти узлы не принимают.

В любое время каждая станция может установить один или несколько виртуальных каналов с другой станцией или станциями. Заметим, что виртуальный канал не является выделенным каналом, что было характерно для сетей с коммутацией, каналов. Пакеты, двигаясь по виртуальному каналу, могут в случае перегруженности узла или сегмента помещаться в входные и выходные буферы на узлах. Главное различие с дейтаграммным подходом и классической маршрутизацией состоит в том, что в сетях с виртуальными каналами узел не принимает решения о выборе маршрута для каждого входящего пакета, а делает это (вернее, получает инструкции куда перенаправлять пакеты с соответствующими идентификаторами маршрута) только один раз - на этапе формирования виртуального канала.

Преимущества сети с виртуальными каналами. Если две станции желают обмениваться данными на протяжении длительного времени, то подход с использованием виртуальных каналов имеет определенные преимущества. Первое, сеть может поддерживать ряд служб, связанных с виртуальными каналами, включая порядок следования, контроль ошибок и контроль потока. Правильный порядок следования легко поддерживается, поскольку все пакеты двигаются одним и тем же маршрутом и прибывают в первоначально установленной последовательности. Служба контроля ошибок гарантирует не только то, что пакеты прибывают в нужной последовательности, но и то, что все пакеты на приемной стороне корректны. Например, если один из пакетов в последовательности, двигаясь от узла 4 к узлу 6 (рис. 5.14) потерялся или пришел на узел 6 с ошибкой, то узел 6 может послать запрос на узел 4 с просьбой повторить соответствующий пакет последовательности. Служба контроля потока гарантирует, что отправитель не может "завалить" получателя данными. Например, если станция Е буферизует данные от станции А и видит, что приемный буфер близок к переполнению, то она может просигнализировать через обратный виртуальный канал о необходимости уменьшить или временно прекратить передачу данных от станции А. Второе преимущество этой сети состоит в том, что пакеты передаются через узел быстрее, когда узел не принимает решения о маршрутизации пакета.

Преимущества дейтаграммной сети. Первое - при передаче пакетов в дейтаграммной сети отсутствует фаза установления логического виртуального канала. Второе - дейтаграммная служба более примитивна и допускает большую гибкость. Например, если один из узлов в сети с использованием виртуальных каналов становится перегруженным, то "открытые" виртуальные каналы, проходящие через этот узел, невозможно перестроить. В дейтаграммной сети при перегрузке одного из узлов другие узлы могут перенаправить приходящие пакеты в обход перегруженного узла. Третье - доставка самой дейтаграммы более надежна. При использовании виртуальных каналов, если узел повреждается, все проходящие через него виртуальные каналы также разрушаются.

Коммутация каналов на разных скоростях и сети ISDN

Один из недостатков сетей с коммутацией каналов - это отсутствие гибкости в отношении предоставляемой полосы пропускания.

Если станция подключена к традиционной телекоммуникационной сети с коммутацией каналов, она вынуждена работать на определенной скорости передачи данных. Это скорость (или полоса пропускания) будет предоставлена станции независимо от вида приложения. В результате приложение с низкой скоростью будет не эффективно использовать предоставленный канал, а приложение, которому требуется высокая скорость передачи данных, наоборот, будет ограничено в выделенной емкости канала.

Для достижения гибкости используется расширенная служба предоставления канала, известная как коммутация каналов на разных скоростях. Эта техника объединяет коммутацию каналов с мультиплексированием. Станция подключается к сети при помощи единственного канала связи. По этому каналу могут передаваться данные на разных предварительно установленных скоростях с определенной дискретизацией. Поток по каждому каналу может коммутироваться независимо через сеть в различных направлениях.

Для этой техники можно построить схему, при которой все возможные каналы работают на одной и той же фиксированной скорости, или схему, которая использует различные скорости передачи данных. Примером служит сеть ISDN (Integrated Services Digital Network - Цифровая сеть с интегрированным обслуживанием). ISDN обеспечивает коммутируемую систему связи с комплексом услуг по передаче как данных, так и голоса. Определены два интерфейса доступа к ISDN: интерфейс базового доступа (BRI - Basic Rate Interfase) и интерфейс основного доступа (PRI - Primary Rate Interfase). BRI (144 Кбит/с) обеспечивает два речевых канала типа В со скоростью передачи 64 Кбит/с и один сигнальный канал типа D со скоростью передачи 16 Кбит/с (2B + D). PRI позволяет работать с каналами Т1 (1,544 Мбит/с) и Е1 (2,048 Мбит/с) которые разделены на 23 и 30 каналов типа В соответственно, и, кроме этого, имеют один сигнальный D-канал полосой 64 Кбит/с (23B + D или 30B + D). Выделенная линия может использовать как отдельный В-канал, так и их комбинацию для достижения большей полосы пропускания. Как установление, так и разъединение связи между абонентами осуществляется цифровым образом через сигнальный канал D и происходит почти мгновенно.

Почему пользователи (абоненты) могут предпочесть ISDN альтернативным решениям: модемам, выделенным линиям и другим службам глобальных сетей? Во первых, если сравнивать с работой модемов на аналоговых линиях, то ISDN дает с учетом компрессии передаваемых данных выигрыш от 8 до 26 раз в пропускной способности. Во вторых, цифровая коммутация с технологической точки зрения более надежна, чем аналоговая. Цифровая коммутация также позволяет защищать данные, используя разнообразные алгоритмы шифрования. При значительно большей гибкости по сравнению с простой аналоговой коммутацией каналов в технологии ISDN сохраняется фундаментальное ограничение. Хотя пользователь имеет возможность выбора скорости передачи, сам набор скоростей остается вполне определенный, что не позволяет в конечном итоге эффективно использовать ресурсы сети. Цифровые сети ISDN широко распространены сегодня, как альтернатива традиционным аналоговым абонентским сетям. Лидерами в распространении сервиса ISDN являются США, Япония и ряд европейских стран - Франция, Германия, Бельгия, Дания, Португалия, Великобритания.

Протокол X.25

Низкое качество каналов связи, которые были три десятилетия назад, сильная их подверженность воздействию помех и, как следствие, низкая достоверность передачи данных стали причиной разработки помехоустойчивых процедур передачи информации. Одним из наиболее широко распространенных и популярных протоколов, позволяющих решать проблемы плохих телефонных каналов связи, становится протокол Х.25. Этот протокол задумывается как эффективное средство удаленного доступа к хост-машинам. На основе коммутаторов Х.25 несколько пользователей одновременно могут общаться с одним хостом, причем каждый пользователь загружает канал связи с хост-машиной только на время передачи информации, при этом оставаясь на связи и в другие моменты времени. Поддержка связи обеспечивается благодаря установлению логического соединения или виртуального канала.

Протокол передачи данных с коммутаций пакетов Х.25 разработан комитетом МККТТ (сегодня ITU-T) именно для работы по линиям связи с большим уровнем помех, каковыми, например, являются аналоговые телефонные линии. Для обеспечения требуемой достоверности передачи информации используется многоуровневая система обнаружения и коррекции ошибок.

Каждый узел коммутации сети Х.25 на пути движения пакета проверяет целостность пакета, читает контрольную сумму, содержащуюся в его заголовке и вычисленную при передаче, находит ее значение для полученного пакета и сравнивает эти два значения. При небольшом количестве ошибок узел способен восстановить пакет и передать его дальше по пути следования. При этом узел посылает подтверждение предыдущему узлу о корректном приеме пакета. Если же восстановить пакет невозможно, делается запрос на его повторную передачу. По аналогичной схеме работают все сетевые узлы - коммутаторы Х.25.

Высокий уровень помех на линии приводит к падению скорости передачи, и по этой причине многие сети с пакетной коммутацией работают со скоростью передачи до 64 Кбит/с. Кроме того, скорость передачи информации (не следует ее путать со скоростью передачи данных непосредственно в физическом канале) не остается постоянной, а зависит от уровня помех и вызванных ими ошибок. Другими словами, время доставки одного пакета, обусловленное только качеством канала, не является постоянной величиной.

Ретрансляция кадров Frame Relay

Методы пакетной коммутации были разработаны в то время, когда в протяженных цифровых сетях при передаче данных появлялось большое количество ошибок. Как следствие, пакеты были перенасыщены заголовками и содержали большую избыточную информацию, позволяющую восстанавливать ошибки в пакетах. Восстановление пакетов и ликвидация ошибок входило в функции не только конечных станций, но и всех узлов сети, например, использование протокола Х.25.

В современных скоростных телекоммуникационных сетях, применяющих ВОЛС для передачи данных, уровень ошибок резко снизился и большая избыточность кодировки поля пакета становится ненужной (отнимает сетевые ресурсы).

Протокол Frame Relay разработан для использования на линиях связи с низким уровнем помех, поэтому в протоколе Frame Relay нет той избыточности, которая была характерна для Х.25. В Frame Relay устранена система контроля ошибок всего кадра. Вместо этого сетевой коммутатор проверяет целостность полученного кадра и только для адресного поля осуществляет контроль ошибок. Если хотя бы один из этих тестов не проходит, коммутатором посылается запрос на повторную передачу кадра.

Если первоначальные сети с коммутацией каналов предоставляли конечному пользователю скорость около 64 Кбит/с, то сети Frame Relay позволили подключаться пользователям в глобальную телекоммуникационную сеть со скоростью 2 Мбит/с. Главным достоинством, технологии Frame Relay стала низкая избыточность информации в пакете, увеличивающая производительность передачи данных в сети.

Первоначально предназначенные для объединения ВОЛС Frame Relay сегодня охватывают широкий диапазон потоков данных, включая SNA, X.25 и ряд других. В то же время, Frame Relay получил ограниченное применение в территориальных сетях. Одна из причин кроется в том, что в стандарте заложена возможность передачи протяженных кадров, причем разной длины (передаваемые кадры могут иметь переменную длину до 1500 бит). Другая причина в том, что битовая скорость для потока данных от конкретного передающего устройства может быть непостоянной от узла к узлу в сети Frame Relay из-за статистического мультиплексирования пакетов разной длины. Таким образом, возможны задержки в следовании пакетов и вариации этих задержек. Хотя эти свойства весьма удобны для передачи данных (сообщений, команд, файлов и так далее), они плохо согласуются с передачей голоса и видеоизображения. Последние требуют передачи регулярных потоков, скорость же передачи информации от узла к узлу в сети Frame Relay не постоянна, и поэтому при передаче голоса или видеоизображения их качество может ухудшаться при большой загруженности сети.

Интерфейс Frame Relay, безусловно, останется пользовательским интерфейсом, но при подключении к глобальной сети он, очевидно, будет преобразовываться в более универсальный протокол ATM.

Ретрансляция ячеек Cell Relay

Ретрансляция ячеек, более известная как ATM (Asynchronous Transfer Mode - режим асинхронной передачи), представляет собой последнее достижение в области пакетной коммутации и коммутации каналов на протяжение последних 25 лет и является эволюцией технологии ретрансляции кадров. Главным отличием между ними является то, что Frame Relay использует пакеты переменной длины, a Cell Relay использует пакеты фиксированной длины, которые называются ячейками, и предоставляют ограниченный до минимума заголовок для выполнения контроля. Используя фиксированную длину пакетов в ячейке ATM, удалось еще сильнее сократить заголовок по сравнению с заголовком пакета. Если Frame Relay обычно предоставляет скорость канала подключения для конечного пользователя к сети до 2 Мбит/с, то ATM позволяет подключать конечных пользователей на скорости от десятков до сотен Мбит/с.

Лучшие статьи по теме