Как настроить смартфоны и ПК. Информационный портал

Переменный ток зависимость от времени. Переменный ток

Темы кодификатора ЕГЭ : свободные электромагнитные колебания, колебательный контур, вынужденные электромагнитные колебания, резонанс, гармонические электромагнитные колебания.

Электромагнитные колебания - это периодические изменения заряда, силы тока и напряжения, происходящие в электрической цепи. Простейшей системой для наблюдения электромагнитных колебаний служит колебательный контур.

Колебательный контур

Колебательный контур - это замкнутый контур, образованный последовательно соединёнными конденсатором и катушкой.

Зарядим конденсатор, подключим к нему катушку и замкнём цепь. Начнут происходить свободные электромагнитные колебания - периодические изменения заряда на конденсаторе и тока в катушке. Свободными, напомним, эти колебания называются потому, что они совершаются без какого-либо внешнего воздействия - только за счёт энергии, запасённой в контуре.

Период колебаний в контуре обозначим, как всегда, через . Сопротивление катушки будем считать равным нулю.

Рассмотрим подробно все важные стадии процесса колебаний. Для большей наглядности будем проводить аналогию с колебаниями горизонтального пружинного маятника.

Начальный момент : . Заряд конденсатора равен , ток через катушку отсутствует (рис. 1 ). Конденсатор сейчас начнёт разряжаться.

Рис. 1.

Несмотря на то, что сопротивление катушки равно нулю, ток не возрастёт мгновенно. Как только ток начнёт увеличиваться, в катушке возникнет ЭДС самоиндукции, препятствующая возрастанию тока.

Аналогия . Маятник оттянут вправо на величину и в начальный момент отпущен. Начальная скорость маятника равна нулю.

Первая четверть периода : . Конденсатор разряжается, его заряд в данный момент равен . Ток через катушку нарастает (рис. 2 ).

Рис. 2.

Увеличение тока происходит постепенно: вихревое электрическое поле катушки препятствует нарастанию тока и направлено против тока.

Аналогия . Маятник движется влево к положению равновесия; скорость маятника постепенно увеличивается. Деформация пружины (она же - координата маятника) уменьшается.

Конец первой четверти : . Конденсатор полностью разрядился. Сила тока достигла максимального значения (рис. 3 ). Сейчас начнётся перезарядка конденсатора.

Рис. 3.

Напряжение на катушке равно нулю, но ток не исчезнет мгновенно. Как только ток начнёт уменьшаться, в катушке возникнет ЭДС самоиндукции, препятствующая убыванию тока.

Аналогия . Маятник проходит положение равновесия. Его скорость достигает максимального значения . Деформация пружины равна нулю.

Вторая четверть : . Конденсатор перезаряжается - на его обкладках появляется заряд противоположного знака по сравнению с тем, что был вначале (рис. 4 ).

Рис. 4.

Сила тока убывает постепенно: вихревое электрическое поле катушки, поддерживая убывающий ток, сонаправлено с током.

Аналогия . Маятник продолжает двигаться влево - от положения равновесия к правой крайней точке. Скорость его постепенно убывает, деформация пружины увеличивается.

Конец второй четверти . Конденсатор полностью перезарядился, его заряд опять равен (но полярность другая). Сила тока равна нулю (рис. 5 ). Сейчас начнётся обратная перезарядка конденсатора.

Рис. 5.

Аналогия . Маятник достиг крайней правой точки. Скорость маятника равна нулю. Деформация пружины максимальна и равна .

Третья четверть : . Началась вторая половина периода колебаний; процессы пошли в обратном направлении. Конденсатор разряжается (рис. 6 ).

Рис. 6.

Аналогия . Маятник двигается обратно: от правой крайней точки к положению равновесия.

Конец третьей четверти : . Конденсатор полностью разрядился. Ток максимален и снова равен , но на сей раз имеет другое направление (рис. 7 ).

Рис. 7.

Аналогия . Маятник снова проходит положение равновесия с максимальной скоростью , но на сей раз в обратном направлении.

Четвёртая четверть : . Ток убывает, конденсатор заряжается (рис. 8 ).

Рис. 8.

Аналогия . Маятник продолжает двигаться вправо - от положения равновесия к крайней левой точке.

Конец четвёртой четверти и всего периода : . Обратная перезарядка конденсатора завершена, ток равен нулю (рис. 9 ).

Рис. 9.

Данный момент идентичен моменту , а данный рисунок - рисунку 1 . Совершилось одно полное колебание. Сейчас начнётся следующее колебание, в течение которого процессы будут происходить точно так же, как описано выше.

Аналогия . Маятник вернулся в исходное положение.

Рассмотренные электромагнитные колебания являются незатухающими - они будут продолжаться бесконечно долго. Ведь мы предположили, что сопротивление катушки равно нулю!

Точно так же будут незатухающими колебания пружинного маятника при отсутствии трения.

В реальности катушка обладает некоторым сопротивлением. Поэтому колебания в реальном колебательном контуре будут затухающими. Так, спустя одно полное колебание заряд на конденсаторе окажется меньше исходного значения. Со временем колебания и вовсе исчезнут: вся энергия, запасённая изначально в контуре, выделится в виде тепла на сопротивлении катушки и соединительных проводов.

Точно так же будут затухающими колебания реального пружинного маятника: вся энергия маятника постепенно превратится в тепло из-за неизбежного наличия трения.

Энергетические превращения в колебательном контуре

Продолжаем рассматривать незатухающие колебания в контуре, считая сопротивление катушки нулевым. Конденсатор имеет ёмкость , индуктивность катушки равна .

Поскольку тепловых потерь нет, энергия из контура не уходит: она постоянно перераспределяется между конденсатором и катушкой.

Возьмём момент времени, когда заряд конденсатора максимален и равен , а ток отсутствует. Энергия магнитного поля катушки в этот момент равна нулю. Вся энергия контура сосредоточена в конденсаторе:

Теперь, наоборот, рассмотрим момент, когда ток максимален и равен , а конденсатор разряжен. Энергия конденсатора равна нулю. Вся энергия контура запасена в катушке:

В произвольный момент времени, когда заряд конденсатора равен и через катушку течёт ток , энергия контура равна:

Таким образом,

(1)

Соотношение (1) применяется при решении многих задач.

Электромеханические аналогии

В предыдущем листке про самоиндукцию мы отметили аналогию между индуктивностью и массой. Теперь мы можем установить ещё несколько соответствий между электродинамическими и механическими величинами.

Для пружинного маятника мы имеем соотношение, аналогичное (1) :

(2)

Здесь, как вы уже поняли, - жёсткость пружины, - масса маятника, и - текущие значения координаты и скорости маятника, и - их наибольшие значения.

Сопоставляя друг с другом равенства (1) и (2) , мы видим следующие соответствия:

(3)

(4)

(5)

(6)

Опираясь на эти электромеханические аналогии, мы можем предвидеть формулу для периода электромагнитных колебаний в колебательном контуре.

В самом деле, период колебаний пружинного маятника, как мы знаем, равен:

B соответствии с аналогиями (5) и (6) заменяем здесь массу на индуктивность , а жёсткость на обратную ёмкость . Получим:

(7)

Электромеханические аналогии не подводят: формула (7) даёт верное выражение для периода колебаний в колебательном контуре. Она называется формулой Томсона . Мы вскоре приведём её более строгий вывод.

Гармонический закон колебаний в контуре

Напомним, что колебания называются гармоническими , если колеблющаяся величина меняется со временем по закону синуса или косинуса. Если вы успели забыть эти вещи, обязательно повторите листок «Механические колебания».

Колебания заряда на конденсаторе и силы тока в контуре оказываются гармоническими. Мы сейчас это докажем. Но прежде нам надо установить правила выбора знака для заряда конденсатора и для силы тока - ведь при колебаниях эти величины будут принимать как положительные, так и отрицательные значения.

Сначала мы выбираем положительное направление обхода контура. Выбор роли не играет; пусть это будет направление против часовой стрелки (рис. 10 ).

Рис. 10. Положительное направление обхода

Сила тока считается положительной class="tex" alt="(I > 0)"> , если ток течёт в положительном направлении. В противном случае сила тока будет отрицательной .

Заряд конденсатора - это заряд той его пластины, на которую течёт положительный ток (т. е. той пластины, на которую указывает стрелка направления обхода). В данном случае - заряд левой пластины конденсатора.

При таком выборе знаков тока и заряда справедливо соотношение: (при ином выборе знаков могло случиться ). Действительно, знаки обеих частей совпадают: если class="tex" alt="I > 0"> , то заряд левой пластины возрастает, и потому class="tex" alt="\dot{q} > 0"> .

Величины и меняются со временем, но энергия контура остаётся неизменной:

(8)

Стало быть, производная энергии по времени обращается в нуль: . Берём производную по времени от обеих частей соотношения (8) ; не забываем, что слева дифференцируются сложные функции (Если - функция от , то по правилу дифференцирования сложной функции производная от квадрата нашей функции будет равна: ):

Подставляя сюда и , получим:

Но сила тока не является функцией, тождественно равной нулю; поэтому

Перепишем это в виде:

(9)

Мы получили дифференциальное уравнение гармонических колебаний вида , где . Это доказывает, что заряд конденсатора колеблется по гармоническому закону (т.е. по закону синуса или косинуса). Циклическая частота этих колебаний равна:

(10)

Эта величина называется ещё собственной частотой контура; именно с этой частотой в контуре совершаются свободные (или, как ещё говорят, собственные колебания). Период колебаний равен:

Мы снова пришли к формуле Томсона.

Гармоническая зависимость заряда от времени в общем случае имеет вид:

(11)

Циклическая частота находится по формуле (10) ; амплитуда и начальная фаза определяются из начальных условий.

Мы рассмотрим ситуацию, подробно изученную в начале этого листка. Пусть при заряд конденсатора максимален и равен (как на рис. 1 ); ток в контуре отсутствует. Тогда начальная фаза , так что заряд меняется по закону косинуса с амплитудой :

(12)

Найдём закон изменения силы тока. Для этого дифференцируем по времени соотношение (12) , опять-таки не забывая о правиле нахождения производной сложной функции:

Мы видим, что и сила тока меняется по гармоническому закону, на сей раз - по закону синуса:

(13)

Амплитуда силы тока равна:

Наличие «минуса» в законе изменения тока (13) понять не сложно. Возьмём, к примеру, интервал времени (рис. 2 ).

Ток течёт в отрицательном направлении: . Поскольку , фаза колебаний находится в первой четверти: . Синус в первой четверти положителен; стало быть, синус в (13) будет положительным на рассматриваемом интервале времени. Поэтому для обеспечения отрицательности тока действительно необходим знак «минус» в формуле (13) .

А теперь посмотрите на рис. 8 . Ток течёт в положительном направлении. Как же работает наш «минус» в этом случае? Разберитесь-ка, в чём тут дело!

Изобразим графики колебаний заряда и тока, т.е. графики функций (12) и (13) . Для наглядности представим эти графики в одних координатных осях (рис. 11 ).

Рис. 11. Графики колебаний заряда и тока

Обратите внимание: нули заряда приходятся на максимумы или минимумы тока; и наоборот, нули тока соответствуют максимумам или минимумам заряда.

Используя формулу приведения

запишем закон изменения тока (13) в виде:

Сопоставляя это выражение с законом изменения заряда , мы видим, что фаза тока, равная , больше фазы заряда на величину . В таком случае говорят, что ток опережает по фазе заряд на ; или сдвиг фаз между током и зарядом равен ; или разность фаз между током и зарядом равна .

Опережение током заряда по фазе на графически проявляется в том, что график тока сдвинут влево на относительно графика заряда. Сила тока достигает, например, своего максимума на четверть периода раньше, чем достигает максимума заряд (а четверть периода как раз и соответствует разности фаз ).

Вынужденные электромагнитные колебания

Как вы помните, вынужденные колебания возникают в системе под действием периодической вынуждающей силы. Частота вынужденных колебаний совпадает с частотой вынуждающей силы.

Вынужденные электромагнитные колебания будут совершаться в контуре, поключённом к источнику синусоидального напряжения (рис. 12 ).

Рис. 12. Вынужденные колебания

Если напряжение источника меняется по закону:

то в контуре происходят колебания заряда и тока с циклической частотой (и с периодом, соответственно, ). Источник переменного напряжения как бы «навязывает» контуру свою частоту колебаний, заставляя забыть о собственной частоте .

Амплитуда вынужденных колебаний заряда и тока зависит от частоты : амплитуда тем больше,чем ближе к собственной частоте контура .При наступает резонанс - резкое возрастание амплитуды колебаний. Мы поговорим о резонансе более подробно в следующем листке, посвящённом переменному току.


Время, в течение которого совершается один цикл колебания (полное изменение ЭДС) или один полный оборот радиуса-вектора, называется периодом колебания переменного тока

Период измеряется в секундах и обозначают латинской буквой Т . Так же нашли применение более мелкие единицы измерения периода это миллисекунда (мс) - одна тысячная секунды и микросекунда (мкс) - одна миллионная секунды.

1 мс =0,001сек =10 -3 сек.
1 мкс=0,001 мс = 0,000001сек =10 -6 сек.
1000 мкс = 1 мс
.

Чем быстрее осуществляется изменение ЭДС, тем меньше период колебания и тем выше частота. Поэтому, частота и период тока являются величинами, обратно пропорциональными друг другу. Математическая связь между периодом и частотой описывается формулами.

Частота обозначается латинской буквой f и выражается в периодах в секунду или в герцах . Одна тысяча герц называется килогерцем (кГц) , а миллион герц - мегагерцем (МГц) . Используется так же физическая единица гигагерц (ГГц) равная одной тысячи мегагерц.

1000 Гц = 10 3 Гц = 1 кГц;
1000 000 Гц = 10 6 Гц = 1000 кГц = 1 МГц;
1000 000 000 Гц = 10 9 Гц = 1000 000 кГц = 1000 МГц = 1 ГГц;

f = 1/T или Т = 1/f

Например, известно, что частота тока в электрической сети перемнного тока равна 50 Гц, то период будет равен 0,02 секунды

Частоты от 20 до 20 000 Гц называются звуковыми частотами, так как их способно воспринимать ухо человека. Далее идут ультразвуковые частоты это упругие волны диапазона чуть выше звукового от 20 кГц и более, высокой частоты, отлично демонстрирует работу ультразвука . А вот например некоторые радиопередатчики или мобильные телефоны работают на частотах уже МГц и даже ГГц. Поэтому высокие частоты получили название радиочастоты. Кроме того используется и более высокие частоты, например в антеннах радиолокационных станций, спутниковой связи, ГЛОНАСС, GPS частотный диапазон от 40 ГГц и даже выше.

Максимальное значение, которого достигает ЭДС или сила тока в течении периода, называется амплитудой ЭДС или силы переменного тока. Легко увидеть по рисунку, что амплитуда в масштабе определяется длиной радиуса-вектора. Амплитуды тока, ЭДС и напряжения обозначаются соответственно латинскими символами Im, Em и Um .

Угловая частота переменного тока

Скорость вращения радиуса-вектора, или изменение величины угла поворота в течение одной секунды, называется угловой частотой переменного тока и обозначается греческим символом ω (омега). Угол поворота радиуса-вектора в любой момент относительно его начального расположения измеряется не в градусах, а в специальных единицах - радианах . Радиан это угловая величина дуги окружности, длина которой соответствует радиусу этой окружности. Вся окружность, составляющая 360°, равна 6,28 радиан, то есть 2π .

Тогда, 1 рад = 360°/2π

Значит, конец радиуса-вектора в течение одного периода проходит путь, равный 6,28 радиан (2π). Так как в течение секунды радиус-вектор сделает число оборотов, соответствующее частоте переменного тока f, то за секунду его конец пройдет путь, равный 6,28 × f радиан. Это выражение, говорящее о скорости вращения радиуса-вектора, является угловой частотой переменного тока ω .

ω= 6,28×f = 2fπ

Угол поворота радиуса-вектора в любой возможный момент относительно его начального положения называется фазой переменного тока . Фаза характеризует величину ЭДС или тока в какое-то произвольное конкретное мгновение или, как говорят, мгновенное значение ЭДС, ее направление в цепи и направление ее изменения; фаза говорит о том, убывает ли ЭДС или возрастает, в произвольный момент времени

Полный цикл (оборот) радиуса-вектора равен 360° градусов. С началом нового цикла радиуса-вектора изменение ЭДС осуществляется в том же порядке, что и в течение первого оборота. Поэтому, все фазы ЭДС будут идти в прежнем порядке. Например, фаза ЭДС при повороте радиуса-вектора на угол в 370 градусов будет такой же, как и при повороте на десять градусов. В обоих случаях радиус-вектор займет одинаковое положение, и, поэтому, мгновенные значения ЭДС будут в обоих случаях одинаковыми по фазе.

Ток, периодически меняющийся по величине и направлению, называется переменным током. Представление о переменном токе можно получить, если медленно вращать ручку действующей модели генератора, подключенного к гальванометру. Отклонение стрелки гальванометра то вправо, то влево говорит о периодическом изменении величины и направления тока в цепи, т. е. о переменном токе.

Переменный ток, используемый в производстве и быту, изменяется по синусоидальному закону:

i = I m sinω t ,

где i - значение переменного тока в любой момент времени, называемое мгновенным значением переменного тока. Величина I m , стоящая перед знаком синуса, называется амплитудой переменного тока.

Действующим значением переменного тока называется постоянный ток, который за время одного периода оказывает такое тепловое (механическое и др.) действие, как и данный переменный ток. Действующее значение для данного переменного тока есть величина постоянная и равная амплитудному значению, деленному на √2 , т. е.

I Д = I m
√2

Все определения и соотношения действующего значения переменного тока справедливы и для переменного напряжения.

Амперметр и вольтметр, работа которых основана на тепловом или механическом действии, при измерении переменного тока и напряжения показывают их действующие значения.

1. Мгновенное значение - величина тока соответствующая данному моменту времени

2. Амплитуда - это наибольшее положительное или отрицательное значение переменного тока. Величина ω , стоящая под знаком синуса, является угловой скоростью. Произведение угловой скорости на время (ωt ) представляет собой угол, возрастающий со временем.

Графиком переменного тока является синусоида (см. рис.).

График переменного тока

Амплитуда - максимальное мгновенное значение (наибольшее значение, которого достигает переменный ток).

Здесь амплитуда 20 мА

3. Периодом (T ) называется время, в течение которого происходит полное изменение (колебание) тока в проводнике.

Обозначается буквой Т

кликните по картинке чтобы увеличить

За один период совершается одно колебание переменного тока, т. е. период это время одного колебания. Одно колебание состоит из двух движений тока.

Частотой (f ) называется величина, выражающаяся числом полных колебаний тока за одну секунду. Частота измеряется в герцах (Гц). При частоте в 1 Гц происходит одно полное колебание тока за одну секунду.

Стандартной частотой переменного тока в СССР является частота 50 Гц, что соответствует 50 полным колебаниям тока за одну секунду.

Частота - величина, обратная периоду. Следовательно,

f = 1/T или T = 1/f

Переменный ток, как и постоянный, оказывает тепловое, механическое, магнитное и химическое действия. В формулы расчета теплового, механического, магнитного и химического действий переменного тока подставляется действующее значение переменного тока.

5. Фаза - это состояние переменного тока за определенный период времени

кликните по картинке чтобы увеличить

Переменные величины могут совпадать по фазе. Это значит что они одновременно достигают нулевых значений и одновременно достигают максимальных значений одинаковых направлений.

Здесь токи I1 и I2 совпадают по фазе

кликните по картинке чтобы увеличить

Здесь напряжения U1 и U2 находятся в противофазе.

Это значит что они одновременно достигают нулевых и максимальных значений противоположных направлений.

Если переменные величины не совпадают по фазе, то говорят что они сдвинуты по фазе.Сдвиг по фазе выражается в градусах или в долях периода. Весь период 360 0 , так как период получается за один полный оборот проводника по окружности в магнитном поле.

кликните по картинке чтобы увеличить

Здесь напряжение отстает от тока на 90 0 , т. е. ток и напряжение сдвинуты по фазе на 90 0 .

Действительно в начале ток уже достиг максимума, а напряжение находится на нуле. Напряжение достигнет максимума через 90 0 .

Сдвиг по фазе обозначается греческой буквой φ например φ=90 0 .

Допустим, что до отключения в цепи рис. 4.5, а был установившийся ток I = U/r и энергия магнитного поля катушки составляла

WL = I 2 L /2.

Казалось бы, после размыкания выключателя ток должен мгновенно прекратиться. Однако на основании первого закона коммутации при t = 0+ ток сохраняет свое прежнее значение.

Возникает как будто несоответствие: цепь разомкнута, ток есть. В действительности при размыкании выключатели происходит следующее. Ток уменьшается, и в катушке индуктируется значительная ЭДС. При этом напряжение между контактами выключателя, равное сумме напряжения сети и ЭДС самоиндукции, пробивает воздушный промежуток между контактами - возникает электрическая дуга и электрическая цепь оказывается замкнутой. По мере увеличения расстояния между контактами сопротивление дуги возрастает, ток и ЭДС уменьшаются и цепь оказывается разомкнутой. За время переходного процесса энергия магнитного поля катушки выделяется в виде теплоты в электрической дуге и сопротивлении катушки.

Переходный процесс в этом случае получается довольно сложным вследствие того, что сопротивление дуги нелинейное и изменяется во времени.

Отключение цепи с индуктивностью вызывает обгорание контактов размыкающего устройства и появление значительных ЭДС и напряжения на выводах катушки, превышающих в несколько раз напряжение сети (это может привести к пробою изоляции катушки).

Во избежание этого в силовых цепях, обладающих значительной индуктивностью (обмотки возбуждения генераторов и двигателей постоянного тока, синхронных двигателей, магнитных плит и т. п.), параллельно обмоткам включают разрядные резисторы (рис. 4.5, б ).

В этом случае после отключения выключателя катушка индуктивности (r , L ) оказывается замкнутой на разрядное сопротивление r р . Ток в цепи будет убывать значительно медленнее. По этой причине значение возникающей ЭДС будет существенно меньше, чем без разрядного резистора, и возникшая слабая дуга исчезает почти мгновенно. В последующих рассуждениях и выводах предполагается, что дуга между контактами не возникает и цепь размыкается мгновенно.

Уравнение цепи, составленное по второму закону Кирхгофа, имеет вид

e = i (r + r p ).

Заменив e в (4.29), получим

Ldi/dt + i (r + r p ) = 0.

Решением дифференциального уравнения будет выражение

i = Aept .

Из характеристического уравнения pL+ (r + r p )= 0 определяют показатель степени р:

р = - r + r p = - 1 .
L Т

Подставив это выражение в (4.31), получим

i = Ae - t/T ,

где Т = L / (r + r p ) - постоянная времени цепи.

Значение А определяют из начальных условий на основании первого закона коммутации: приt = 0+

i = I нач =U/r и A = U/r.

Выражение тока в цепи имеет вид

i = U e - t/T = I нач e-t/T .
r

Подставив в (4.29) значение i из (4.32), получим ЭДС

е = U (r + r p )e-t/T = I нач (r + r p )e-t/T .
r

Напряжение на выводах катушки равно напряжению на разрядном резисторе:

u к = ir р = U r p e-t/T - I нач r p e-t/T .
r

В начальный момент при t = 0+

e нач = I нач (r + r p ),

u к.нач = I нач r p .

Из выражений (4.33) и (4.34) вытекает, что начальные значения e нач и u к.нач зависят от сопротивления разрядного резистора. При больших значениях r р они могут оказаться чрезмерно большими и опасными для изоляция установки.

На рис. 4.5, в изображены графики i (t ) и u к (t ) катушки после отключения цепи для двух значений r р , r р > r" р .

На практике обычно выбирают r р в 4-8 раз больше собственного сопротивления обмотки индуктивной катушки:

r р = (4÷8)r .

Рассмотрим подробнее кривую, изображающую зависимость мгновенного значения технического переменного тока (или напряжения) от времени (рис. 293). Прежде всего обращает на себя внимание тот факт, что этот ток (или напряжение) изменяется периодически, т. е. каждое мгновенное значение этих величин, например значение, соответствующее точке (или точке ), повторяется через один и тот же промежуток времени. Другими словами, сила тока (или напряжение) пробегает за этот промежуток времени все возможные значения, возвращаясь к исходному, т. е. совершает полное колебание. Промежуток времени, в течение которого сила тока (или напряжение) совершает полное колебание и принимает прежнее по модулю и знаку мгновенное значение, называется периодом переменного тока. Его принято обозначать буквой . Для сетей СССР и большинства других стран с, а так как изменение направления тока происходит два раза в течение каждого периода, то технический ток меняет свое направление 100 раз в секунду.

Рис. 293. Зависимость силы переменного тока от времени

Максимальное значение, которое может иметь переменный ток (или напряжение) в том или другом направлении, называется амплитудой этой величины. На рис. 293 амплитуда изображается отрезками . Амплитуду токов и напряжений обозначают или , а их мгновенные значения – и .

Число полных колебаний (циклов) синусоидального тока или напряжения за единицу времени называют частотой соответствующей величины и обозначают буквой . Очевидно,

За единицу частоты принимают частоту, равную одному колебанию в секунду. Эту единицу называют герцем (Гц) по имени немецкого физика Генриха Герца (1857-1394). Таким образом, технический переменный ток имеет частоту 50 Гц.

Вместо частоты вводят также величину , которую называют циклической или круговой частотой тока (напряжения). Она представляет собой число полных колебаний (циклов) данной величины за секунд.

Пока мы имеем дело только с одним синусоидальным переменным током или переменным напряжением, частота и амплитуда являются полными и исчерпывающими характеристиками этих величии, потому что начальный момент отсчета времени мы можем выбрать произвольно. Но когда нам приходится сопоставлять друг с другом две или несколько величин такого рода, мы должны учитывать и тот факт, что они могут достигать максимального значения не в один и тот же момент времени.

Две кривые на рис. 294,а изображают форму двух синусоидальных переменных токов с одной и той же частотой и амплитудой, но кривые эти смещены по оси абсцисс (оси времени) на отрезок, равный четверти, периода. Начальная точка отсчета времени выбрана так, что для первой кривой нулевые значения достигаются в моменты а амплитудные – в моменты . Вторая же кривая проходит через нулевые значения в моменты а через амплитудные – в моменты .

Рис. 294. Графическое изображение переменных токов одинаковой частоты и амплитуды, смещенных по фазе: а) два синусоидальных тока, смещенные по фазе на четверть периода; б) токи, изображаемые кривыми 2 и 3, смещены по фазе относительно кривой 1 на одну восьмую часть периода

В подобных случаях говорят, что эти два тока (или две другие синусоидальные величины) сдвинуты друг относительно друга по фазе, или, иначе, что между ними существует некоторый сдвиг фаз (или разность фаз), равный в данном примере четверти периода. Так как кривая 1 проходит через амплитудное значение, так же как и через любое другое соответствующее значение, раньше, чем кривая 2, то говорят, что она опережает кривую 2 по фазе или, иначе, что кривая 2 отстает по фазе от кривой 1.

153.1. На рис. 294,б кривые 2 и 3 сдвинуты относительно кривой 1 по фазе на одну восьмую периода. Определите, какая из этих кривых отстает по фазе от кривой 1 и какая опережает ее. Какова разность фаз между кривыми 2 и 3?

Во всех случаях, когда приходится сопоставлять синусоидальные величины или рассматривать их совместное действие (складывать или перемножать их), вопрос о соотношении фаз между этими величинами имеет очень важное значение. Таким образом, в общем случае, когда имеется несколько синусоидальных токов или напряжений, нужно характеризовать каждый из них тремя величинами: частотой, амплитудой и фазой или, точнее, сдвигом фаз между данным током (или напряжением) и каким-нибудь другим, относительно которого мы рассматриваем сдвиг фаз всех остальных.

Соотношения между фазами различных синусоидальных переменных токов очень удобно изучать при помощи петлевого осциллографа, имеющего в отличие от прибора, описанного в §152, не одну, а две отдельные рамки (петли), помещенные в общее магнитное поле (рис. 295). Развертка формы обоих токов, проходящих по этим петлям, по оси времени осуществляется одним и тем же вращающимся барабаном, так что точки двух получающихся на экране кривых, расположенные друг над другом, изображают мгновенные значения сравниваемых токов, соответствующие одному и тому же моменту времени.

Рис. 295. Двухпетлевой осциллограф для одновременной записи двух переменных токов, проходящих через петли 1 и 2

Точное математическое определение фазы синусоидальной переменной величины (тока или напряжения) таково. Мгновенное значение этой величины в какой-нибудь момент времени определяется значением величины , стоящей под знаком функции в формуле (151.2). Если начальный момент отсчета времени выбран уже так, чтобы мгновенное значение тока проходило через нуль в моменты то, вообще говоря, другой ток будет проходить через нуль в моменты , и закон его изменения со временем будет иметь вид

где буквой обозначено произведение . Фазой тока (или напряжения) в общем случае называют значение величины, стоящей под знаком функции в формуле (153.2), а величина определяет разность фаз сравниваемых токов (или напряжений). Если эта величина положительна, то первый ток опережает по фазе второй ток, а если она отрицательна, то первый ток отстает по фазе от второго. Фаза измеряется в радианах.

Время, в течение которого совершается одно полное изме­нение ЭДС, то есть один цикл колебания или один полный оборот радиуса-вектора, называется периодом колебания пере­менного тока (рисунок 1).

Рисунок 1. Период и амплитуда синусоидального колебания. Период - время одного колебания; Аплитуда - его наибольшее мгновенное значение.

Период выражают в секундах и обозначают буквой Т .

Так же используются более мелкие единицы измерения периода это миллисекунда (мс)- одна тысячная секунды и микросекунда (мкс)- одна миллионная секунды.

1 мс =0,001сек =10 -3 сек.

1 мкс=0,001 мс = 0,000001сек =10 -6 сек.

1000 мкс = 1 мс.

Число полных изменений ЭДС или число оборотов ради­уса-вектора, то есть иначе говоря, число полных циклов колеба­ний, совершаемых переменным током в течение одной секунды, называется частотой колебаний переменного тока .

Частота обо­значается буквой f и выражается в периодах в секунду или в герцах.

Одна тысяча герц называется килогерцом (кГц), а миллион герц - мегагерцом (МГц). Существует так же единица гигагерц (ГГц) равная одной тысячи мегагерц.

1000 Гц = 10 3 Гц = 1 кГц;

1000 000 Гц = 10 6 Гц = 1000 кГц = 1 МГц;

1000 000 000 Гц = 10 9 Гц = 1000 000 кГц = 1000 МГц = 1 ГГц;

Чем быстрее происходит изменение ЭДС, то есть чем бы­стрее вращается радиус-вектор, тем меньше период колебания Чем быстрее вращается радиус-вектор, тем выше частота. Таким образом, частота и период переменного тока являются величинами, обратно пропорциональными друг другу. Чем больше одна из них, тем меньше другая.

Математическая связь между периодом и частотой переменного тока и напряжения выра­жается формулами

Например, если частота тока равна 50 Гц, то период будет равен:

Т = 1/f = 1/50 = 0,02 сек.

И наоборот, если известно, что период тока равен 0,02 сек, (T=0,02 сек.), то частота будет равна:

f = 1/T=1/0,02 = 100/2 = 50 Гц

Частота переменного тока, используемого для освещения и промышленных целей, как раз и равна 50 Гц.

Частоты от 20 до 20 000 Гц называются звуковыми часто­тами. Токи в антеннах радиостанций колеблются с частотами до 1 500 000 000 Гц или, иначе говоря, до 1 500 МГц или 1,5 ГГц. Такие вы­сокие частоты называются радиочастотами или колебаниями высокой частоты.

Наконец, токи в антеннах радиолокационных станций, станций спутниковой связи, других спецсистем (например ГЛАНАСС, GPS) колеблются с частотами до 40 000 МГц (40 ГГц) и выше.

Амплитуда переменного тока

Наибольшее значение, которого достигает ЭДС или сила тока за один период, называется амплитудой ЭДС или силы переменного тока . Легко заметить, что амплитуда в масштабе равна длине радиуса-вектора. Амплитуды тока, ЭДС и напряжения обозначаются соответственно бук­вами Im, Em и Um (рисунок 1).

Угловая (циклическая) частота переменного тока.

Скорость вращения радиуса-вектора, т. е. изменение ве­личины угла поворота в течение одной секунды, называется угловой (циклической) частотой переменного тока и обозначается греческой буквой ? (оме­га). Угол поворота радиуса-вектора в любой данный момент относительно его начального положения измеряется обычно не в градусах, а в особых единицах - радианах.

Радианом называется угловая величина дуги окружности, длина которой равна радиусу этой окружности (рисунок 2). Вся окружность, составляющая 360°, равна 6,28 радиан, то есть 2.

Рисунок 2.

1рад = 360°/2

Следовательно, конец радиуса-вектора в течение одного периода пробегают путь, равный 6,28 радиан (2). Так как в тече­ние одной секунды радиус-вектор совершает число оборотов, равное частоте переменного тока f , то за одну секунду его ко­нец пробегает путь, равный 6,28 * f радиан. Это выражение, характеризующее скорость вращения радиуса-вектора, и будет угловой частотой переменного тока - ? .

? = 6,28*f = 2f

Угол поворота радиуса-вектора в любое данное мгновение относительно его начального положения называется фазой переменного тока . Фаза характеризует величину ЭДС (или тока) в данное мгновение или, как говорят, мгновенное значение ЭДС, ее направление в цепи и направление ее изменения; фаза пока­зывает, убывает ли ЭДС или возрастает.

Рисунок 3.

Полный оборот радиуса-вектора равен 360°. С началом но­вого оборота радиуса-вектора изменение ЭДС происходит в том же порядке, что и в течение первого оборота. Следова­тельно, все фазы ЭДС будут повторяться в прежнем поряд­ке. Например, фаза ЭДС при повороте радиуса-вектора на угол в 370° будет такой же, как и при повороте на 10°. В обо­их этих случаях радиус-вектор занимает одинаковое положе­ние, и, следовательно, мгновенные значения ЭДС будут в обоих этих случаях одинаковыми по фазе.

Лучшие статьи по теме